
SANTA FE BUDAPEST COMPLEX SYSTEMS SUMMER SCHOOL 2002 1

Clustering under Multiobjective Optimization
Constraints with Genetic Algorithms

Albert Ali Salah�, Stanislav Redman, Gabriella Kov�acs

Abstract| In this paper, we attempt to solve a cluster-
ing problem, which requires simultaneous optimization of

several objective functions, with a genetic algorithm. Our
emphasis is on the representation of the problem, and the
choice of an appropriate aggregate �tness function. On the

toy problem of assigning the students of the Santa Fe Com-
plex Systems Summer School into working groups, we try

to point out some important general aspects of the task.

Keywords| Multiobjective constraint optimization, clus-
tering, genetic algorithms, aggregate �tness

I. Introduction

The multiobjective optimization problem is an open
problem that has found applications in many domains.
Roughly, it corresponds to the case where the aim is to
select values for a set of decision variables that will satisfy
or optimize several, possibly con
icting functions.
In the presence of multiple criteria, it is not clear how

the trade-o� between individual constraints should be re-
solved. For this problem, the notion of Pareto optimality

is introduced [15]. A solution is Pareto optimal, if there is
no feasible set of variables that will lead to a better value
in some of the constraints without worsening the value on
others. However, there usually is a set of Pareto-optimal
solutions, and even if that set can be found analytically,
the task of selecting one solution over the others persists.
(For more information on Pareto optimality and how it
relates to the performance of multiobjective genetic algo-
rithm, see [4].)
If a global optimum is not sought, the genetic algorithm

(GA) is suitable for this kind of problems, and used fre-
quently in the literature ([6], [7], [20], [21], [22], [23], [24],
[25]). Most of the applications involve function optimiza-
tion, and none of them involves clustering. (For a good
survey with pointers to applications, see [2].)
The clustering imposes additional structure on the opti-

mization problem. In the clustering problem, the decision
variables indicate which data points belong together as a
cluster. The constraints that are to be optimized can be re-
lated to individual data points, or to the whole assignment.
An example for the former is constrained clustering, where
we have partial information about the data; we know that
several data points belong to the same cluster, and several

�Corresponding author

Albert Ali Salah is with Perceptual Intelligence Laboratory, Bo�gazi�ci
University, 80815, Istanbul, Turkey. E-mail: salah@boun.edu.tr.
Stanislav Redman is with Economics Department,
St.Petersburg State University, St.Petersburg, Russia. E-mail:
stas@sr1983.spb.edu.
Gabriella Kov�acs is with Department of Mathematics and Computer
Science, North University of Baia Mare, 4800 Baia Mare, Str.
Victoriei 76, Romania. E-mail: kovacsg@univer.ubm.ro

data points must be in separate clusters [10]. An exam-
ple for the second case is the constraint that the clusters
should be balanced in size. This property pertains to the
whole assignment.
This type of clustering is similar to the knapsack prob-

lem, and GAs are frequently employed for NP-hard prob-
lems. There are however only a few instances where clus-
tering problems are solved with GAs (for example [3], [5],
[14], [17]), and the representations used in those cases are
not scalable to larger problem instances [5].
This paper is organized as follows. In the next section,

we formalize the problem in its general form. Then we
introduce the GA methodology, and give detailed consid-
erations on the representation and �tness issues. In the
fourth section, we introduce the case study, and describe
the aggregate �tness function we have used to solve it. The
�fth section brie
y summarizes our comparative results. In
the last section we conclude and give a glimpse of future
directions for this work.

II. Formalization of the Problem

In this section, we will give a formal de�nition of the
clustering problem, bearing in mind that it is going to be
used in GA. We begin by making two simplifying assump-
tions. Without loss of generality, we assume that all the
constraints are posed as maximization problems. The sec-
ond assumption looks more drastic, but changes little in
the actual implementation. We de�ne our problem to be
a free optimization problem, where all the solutions are
feasible. The aim is still to optimize the constraint func-
tions, but there are no �xed thresholds to make a possible
solution infeasible. We hope that the formulation of the
aggregate �tness function will be enough to deal with ac-
tual infeasibilities in the problem. One can always check
thresholds and add a large penalty to naturally eliminate
the infeasible solutions.
Given N multi-dimensional data items, and a numberM

to indicate the maximum number of clusters, the problem
is to �nd an assignment

�?
i;j =

�
1 if data item i belongs to cluster j
0 otherwise

(1)

with

i = 1 : : :N;

j = 1 : : :M

such that for C constraints,

f = ff1; f2; : : : ; fCg (2)

is Pareto optimal. fk are the individual constraints.



2 SANTA FE BUDAPEST COMPLEX SYSTEMS SUMMER SCHOOL 2002

III. The Genetic Algorithm

The genetic algorithm is a heuristic optimization tool
that works on a population of individual solutions. The
individuals are coded in chromosomes that are usually bi-
nary bit strings, and the search for a good individual is
performed on the chromosome space. The chromosome,
or the genotype of the individual, is decoded to reveal the
properties of the solution, also called the phenotype, and
the phenotype is used to evaluate a �tness function that
indicates the goodness of the solution.
There are several operators that guide the search in a

GA. Since the algorithm works with a population, main-
taining the diversity in the population is of great concern.
The unary operator mutation is used to randomly change
bits of the chromosomes with a small probability. The bi-
nary operator crossover is used to exchange parts of two
chromosomes, belonging to di�erent individuals. Crossover
is the most important operator in GA, as it can combine
the strengths of di�erent individuals to produce better so-
lutions [19]. Holland developed the schema theorem to ex-
plain why this selection of operators works, but his claims
do not go undisputed [11].
Most of the GA work in a generative way. Given a ran-

domly created initial population, the algorithm proceeds
by generating a new population from the old one at each
iteration. The selection operator can take many forms, usu-
ally it is an elitist strategy that allows better individuals to
be selected more over poor individuals, and thus the aver-
age �tness of the population increases steadily. One simple
and popular scheme is the roulette-wheel selection, where
each individual gets a slice on the probabilistic wheel pro-
portional to its �tness. Two individuals are selected with
replacement to be parents, they undergo crossover and mu-
tation with some probability, and new individuals are cre-
ated (called the children), and placed in the new popu-
lation. There are many di�erent selection strategies, but
the principle is the same [8]. There are also nongenerative
ways of proceeding in GA. At each iteration, the worst in-
dividual can be selected and replaced, instead of the whole
population [23].
The designer of a GA is faced with a number of ques-

tions. Apart from setting the parameters of the GA (pop-
ulation size, mutation and crossover probabilities, selection
scheme), the representation of solutions and the �tness
function that guides the search are of paramount impor-
tance.

A. The Representation

In GA, the �rst task of the coder is to represent the
problem. Usually the information that is contained in a
possible solution is coded into a binary string. However,
there are many ways of doing this (see for example [9]). A
good GA representation is:
1. Unambiguous. There should be no randomness in-
volved in decoding the chromosome, and each genotype
should map to a single phenotype.
2. Short. The search space and the computational com-
plexity are dependent on the chromosome length. If the

chromosome is k bits long, the size of the search space will
be 2k, and this number should be as close as possible to
the actual solution space of the problem. If the represen-
tation involves too much redundancy, the performance will
degrade. However, there is a trade-o�, and redundancy has
its own uses [12].
3. Smooth with respect to the �tness landscape.

If similar chromosomes have similar �tness values, the
changes due to genetic operators will move an individidual
on a smoother �tness landscape. This is valuable, because
such a landscape will have fewer peaks to explore, and lo-
cal search performs better on smooth landscapes than spiky
ones.
4. Robust to mutations. Some problems are hard to
represent with binary strings, and therefore not frequently
attempted with GA. For example in the travelling sales-
man problem, the aim is to �nd the shortest tour that
passes through all vertices of a graph once, and returns to
the starting vertex. Since a valid solution must be con-
nected and should connect all the vertices, many randomly
selected arc sets will not represent valid solutions. Given a
representation, if a mutation is able to produce a non-valid
solution from a valid solution, the representation is not ro-
bust; the �tness drops to zero with a small push. It is much
better if a bad mutation produces a valid individual with
low �tness value rather than a non-valid individual.
5. Free of preferential bias. The representation should
not favour parts of the search space more, unless informa-
tion about the problem domain is used speci�cally to bias
the representation.
6. Simple to decode. Since decoding will be performed
frequently, it should not be a performance bottleneck.

B. The Fitness Function

The �tness function guides the search, and has a huge
impact on the success of the algorithm. A good �tness
function is:

1. Complete. It should assign a value to each individual
on the search space.
2. Correct. The function should be a correct ordering
on the individuals with respect to their closeness to the
optimal solution, or a good approximation to it.
3. Informative. The function values should indicate the
relations between possible solutions as well. If the �tness
di�erence between a and b is much larger than the �t-
ness di�erence between b and c, this should indicate that
the goodness of these possible solutions is approximately
related proportional to their �tness di�erences. This is es-
pecially important if a �tness-based selection procedure is
used.
4. Pragmatic. Fitness functions are usually interpreted
probabilistically, and therefore created to produce �tness
values between zero and one. If the boundary conditions
are too far to the actual solutions, trying to stretch the
interval between 0 and 1 to span the search space can be
problematic. For example if a variable controls the �t-
ness, and the individuals are clustered around a small sub-
interval of the complete set of possible values for this vari-



SALAH, REDMAN, KOV�ACS 3

able, stretching will assign to individuals �tness values that
are very close to each other. If the selection operates on
�tness value probabilistically, the noise in the random pro-
cess will be greater than the �tness di�erences, and the
search will degenerate into random search. A good �tness
function will devote a greater interval to the range of actual
solutions, and care less about the boundaries.
5. Simple. Often, the calculation of �tness values involves
complex mathematical operations and simulations. For ex-
ample in a GA used to �nd a good strategy to play Pris-
oner's Dilemma, each chromosome codes a strategy, and
the �tness values are found by simulating games between
the individuals [1]. This has a huge computational load on
the system, and should be avoided if possible. Frequently,
complex �tness functions are replaced with simpler approx-
imations, with the assumption that the algorithm will make
good use of the gained time and will come up with a better
solution.

C. Fitness Functions in Multiobjective Optimization

In the multiobjective case, we have di�erent dimensions,
each of which contributing a �tness value. The task of the
designer is to combine these �tness functions in an aggre-

gate �tness function. The most important concern in this
process is to avoid domination by one �tness term, which
means only the dominating term is optimized at the end.
There are several approaches to aggregate �tness functions,
and the selection of any particular method over others de-
pends on the designers knowledge of the problem domain
and how much he or she is willing to trade-o� computa-
tional eÆciency with accuracy. We will list some of the
interesting methods of aggregation, the interested reader
should refer to [2].

1. Weighted sum. The individual �tnes terms are multi-
plied with weights that indicate their relative importance,
and then summed. If the �tness terms are between 0 and
1, and the weigths sum up to 1, the resulting total �tness
will be between 0 and 1 as well. The designer needs infor-
mation to set the weights, but this method is simple, and
computationally cheap.
2. Goal programming. The designer sets goal values for
the constraints. If the actual term deviates from the goal,
it is penalized in the �tness function. Also computationally
cheap, this method requires even more information about
the problem.
3. "-constraint method: In this method, one of the con-
straints is used as the �tness criterion, and the other con-
straints are �xed. This method is usually used in hybrid
schemes, where the GA is supported with a local, gradient-
based search algorithm.
4. VEGA. Vector Evaluated Genetic Algorithm is an in-
teresting method that modi�es the selection operator in
face of multiobjective constraints [21]. For each constraint,
a subgroup of the population is selected for generating in-
dividuals for the next generation. It is like running dif-
ferent, smaller roulette-wheels, where individuals are not
evaluated with their total �tness, but have di�erent slices
from each wheel, depending on their �tness terms. This

roughly corresponds to specialization, as individuals of the
nth subgroup have better values for the nth constraint.
This approach misses potentially valuable individuals with
above average values on most of the constraints, and special
heuristics should be used to deal with it.
5. Nongenerative techniques. In nongenerative tech-
niques, we can have a mixed selection criterion to decide
on the worst individual in the population. This individual
is going to be replaced [23]. The selection can be performed
by looking at the minimum, mean, average, or weighted �t-
ness values. A round-robin on the constraints can be used
to replace the individual with the worst �tness value on
each of the constraints.
6. Relative �tness. Fonseca and Fleming suggest a
scheme where each individual gets a rank based on the
number of individuals that dominates it on one or more �t-
ness terms [7]. The �tness assignment is then made based
on this rank.

Armed with the design considerations on representation
and �tness, we will introduce the problem in the next sec-
tion, and propose a GA to solve it.

IV. Case Study - Assignment of People to

Working Groups

A. Introducing the Problem

The problem that initiated the e�ort for the present
work was the assignment of students in the interdisci-
plinary Santa Fe Complex Systems Summer School into
working groups. The summer school had 52 students, com-
ing from di�erent disciplines, with di�erent interests and
skills. These people needed to be placed in groups so that
they can discuss and come up with project ideas that would
allow them to work together. One loose constraint was that
each group should not contain more than 10 persons. To
complicate matters, there were no general topics to assign
to groups in advance.

The manual solution to the problem consisted of asking
people to come up with ideas for discussion and projects,
gathering them under general titles, and checking whether
the present list of group titles ensures a fair distribution
of people into groups. Consequently, it required many it-
erations, resulted in unbalanced groups, and created an
uneven distribution of basic skills across groups.

If quantitative data about the skills and interests of the
students can be gathered in advance, this problem can be
solved o�ine to create an initial assignment of people into
groups. Although there are many constraints and variables
in the real problem that cannot be modeled for optimiza-
tion (how can an `attractive' student be modeled for in-
stance?), the computer generated solution may serve as a
basis for improvement. We propose to gather student data
with a questionnaire, and create the initial assignment us-
ing a GA.

B. Formalization

The problem can be posed as a clustering problem with
the following properties:



4 SANTA FE BUDAPEST COMPLEX SYSTEMS SUMMER SCHOOL 2002

1. Each data point (student) is represented as a multidi-
mensional vector. The dimensions are integer valued, and
represent the knowledge level and interests of the student.
2. The clusters are the working groups, and their number
is �xed a priori.
3. In addition to the distance minimization, the clustering
will take account of a number of di�erent constraints. In
the absence of constraints, the problem degenerates into
k-means clustering [13].

We have identi�ed the following constraints to be of im-
portance for our problem:
1. The interests of each student must be as close as possible
to the average interest vector of the working group the
student belongs to.
2. The working groups should be balanced in the number
of students.
3. There are basic (for the present context, of course) skills
that will be needed in each group. The maximum level of
competence for each of these skills should be maximized
for each group. This means that there will be at least
one competent person in each group for any given basic
skill. We have identi�ed four basic skills: mathematics,
programming, English, and statistics.
4. Each group should have enough domain knowledge on
the areas of its interest. The skills and interests are treated
in di�erent terms, as it is possible for a neuroscientist to be
interested in doing a project on �nancial time series analy-
sis. But the group that contains the neuroscientist should
contain at least one other person that is experienced in �-
nance, if possible. The �elds of interests were chosen to
be anthropology, biology, cognitive science, computer sci-
ence, economics, evolution, information theory, multi-agent
systems, neural networks and simulation, neuroscience, op-
timization, philosophy, physics, psychology, quantum con-
sciousness (out of sheer curiosity), self-organization, and
social networks.

C. Representation

We have considered two possibilities for the representa-
tion. The problem with clustering representations in GA
is that they don't scale to large data sets, but since our
problem is small, this is no obstacle.
In the �rst representation, we use three bits for each in-

dividual, and the bits code the binary number that is the
label of the cluster the individual is assigned to. We �x
the number of clusters to be 8, for simplicity. The length
of the chromosome is 156 bits. The advantage of this rep-
resentation is that it's simple. A mutation relocates an
individual, so the e�ect is not very drastic. However, it is
not very smooth, there is no useful redundancy, and it is
diÆcult to preserve structure in crossover.
Considering these drawbacks, we considered another pos-

sibility (that didn't work for reasons we will explain). Sup-
pose we code the labels of two data points consecutively in
the chromosome, indicating that they belong to the same
cluster. We can code a �xed number of these pairs (or
rather edges), and the result will be a clustering, with ar-
bitrary number of clusters.

We have analyzed the clustering behaviour of this repre-
sentation. As the number of edges are increased, the num-
ber of clusters drop, as expected (Fig 1). Following this
regime, the number of edges necessary for a targeted num-
ber of clusters can be determined. However, a look at the
size of the greatest cluster reveals that a giant component
is created very early in the process (Fig 2).

30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

#Edges vs. Number of clusters

Number of edges

N
um

be
r 

of
 c

lu
st

er
s

Fig. 1. Number of Clusters vs Number of Edges

30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

#Edges vs. Size of greatest cluster

Number of edges

S
iz

e 
of

 g
re

at
es

t c
lu

st
er

Fig. 2. Size of the Greatest Cluster vs Number of Edges

We have also tried a two-level scheme, where in addition
to the chromosome piece that codes edges between data
points, we have edges that connect the �rst-level edges.
This way, more structure can be preserved as clusters can
be joined or separated. Also, the mutations can change
the genotype without a�ecting the phenotype. This type
of redundancy can be useful in preserving information.



SALAH, REDMAN, KOV�ACS 5

D. Fitness Terms

We have decided to use the weighted-sum aggregate �t-
ness function for our problem. Assume f1; f2; : : : ; fC are
the individual �tness functions that order the solutions ac-
cording to individual constraints. The total �tness function
is

f =

CX
i=1

�ifi (3)

where

CX
i=1

�i = 1; �i � 0 (4)

We have four �tness terms that were explained previ-
ously. Now we derive the exact formulations.

D.1 Interest Term

The aim of the interest term is to ensure that the group
members have similar interests. The interests are integer
valued between 1 and 4. If the number of interests is S,
and the number of students is N , the maximum interest
di�erence on any dimension is 9SN . Using the maximum
to scale the di�erence between zero and one, we get

f1 =
9SN �

PN

i=1

PM

j=1 (pi � gj)
2
�i;j

9SN
(5)

where M is the number of clusters, pi is the interest vector
of student i, gj is the mean interest vector of group j, and
�i;j is the Kronecker delta, de�ned in Eq 1.
The problem with this formulation is that it does not

take the nature of the data into consideration. It is desir-
able to give the �tness function a little elbow room around
the empirical mean value of the average distance parame-
ter, as the success of each individual in the population de-
pends linearly on its �tness. The roulette-wheel selection of
parents requires the �tness di�erences between individuals
to be as large as possible to overcome the noise in random
selection. The function we propose is equal to 1 if the in-
terests of the individual are equal to the group mean, and
it decreases rapidly after a certain value of di�erence:

f1 = 0:8
1

SN

P
N

i=1

P
M

j=1
(pi�gj)

2�i;j (6)

D.2 Balance Term

We want to have the groups balanced in number of stu-
dents. Assuming the average number of students per group
is N=M , the �tness term looks like:

f2 =
N2 �

PM

j=1

��PN

i=1�i;j

�
� N

M

�2
N2

(7)

D.3 Skill Term

We want each group to have students who could provide
expertise in basic skills. The basic skills are integer valued

between 1 and 4. We will try to maximize the maximum
of existing basic skills in each group:

f3 =
9MB �

PM

j=1

PB

k=1

�
4� argmax

i
(bi;k�i;j)

�2
9MB

(8)

where B is the number of basic skills, and bi;k is the kth

basic skill of student i.

D.4 Knowledge Term

The knowledge terms are integer valued between 1 and
4. We consider the three main interests of each group, and
require that they have enough expertise on these areas:

f4 =
27M �

PM

j=1

PS

k=1

�
4� argmax

i
(hi;k�i;j�j;k)

�2
27M

(9)

where hi;k is the kth knowledge term of student i and �j;k

is 1 if the kth interest term is among the �rst three interests
of group j, 0 otherwise.

V. Results

We have compared the results obtained from the GA
with several clustering techniques. Since traditional clus-
tering doesn't allow for multiobjective optimization, we
used the most straightforward optimization criterion - the
interests of the people in the same group had to be as sim-
ilar as possible. We will give the distance function used in
each clustering, and then we present our results without
much comment, except stating that the GA works good
for a problem of this size (See Table I). The GA we have
selected has a population size of 100, mutation probabil-
ity 0:001, single-point crossover with probability 0:4, equal
�i coeÆcients, and 20 generations. We have also obtained
statistics about the interests and knowledge areas of the
students of the Santa Fe School in the process. Interested
readers can check [16] for these results.

A. Clustering Methods

We have used four di�erent clustering techniques.
In each method, the Euclidean distances between 17-
dimensional interest vectors was calculated �rst. Then the
clustering was carried out according to a rule of measuring
distance d(r; s) between clusters r and s. In the following
equations, nr and ns stand for the number of students in
clusters r and s, �xr and �xs are the mean interest vectors
of the clusters, and dist(x; y) is the Euclidean distance be-
tween vectors x and y. The ward linkage performed best
amongst them, although the GA outperforms it. We indi-
cate the distance functions used for each algorithm.

A.1 Nearest Neighbour

This rule ensures that if two students in di�erent groups
have similar interests, those groups are likely to merge.
According to this rule, 45 out of 52 students were assigned
to the same group, and the rest of the groups consisted of
individuals. Distance measure is:

d (r; s) = min (dist (xri; xsj)) (10)



6 SANTA FE BUDAPEST COMPLEX SYSTEMS SUMMER SCHOOL 2002

with

i = 1 : : : nr

j = 1 : : : ns

A.2 Furthest Neighbour

This rule makes sure that the individuals with opposite
interests never get into the same group. The distance mea-
sure is:

d (r; s) = max (dist (xri; xsj)) (11)

A.3 Average Linkage

Average linkage rule takes into account all individuals in
a considered group, and uses the average distance.

d (r; s) =
1

nrns

nrX
i=1

nsX
j=1

dist (xri; xsj) (12)

A.4 Ward Linkage

Ward linkage favors relatively balanced groups. This rule
produced the best results among the considered clustering
techniques.

d (r; s) =
nrnsdist (�xri; �xsj)

2

(nr + ns)
(13)

TABLE I

Values of Fitness Terms with Different Methods

Interests Balance Skills Knowledge
Nearest

Neighbour 0.85 0.37 0.72 0.93

Furthest

Neighbour 0.89 0.93 0.96 0.96

Average

Linkage 0.88 0.82 0.90 0.95

Ward

Linkage 0.89 0.97 0.97 0.97

GA 0.85 0.99 0.99 0.98

VI. Conclusion and Future Directions

We have used GA to solve a multiobjective optimization
problem that has the additional handicap of being a clus-
tering problem. This is a novel combination, and there is a
lot to investigate. We barely scratched the surface because
of time constraints. In this section we attempt to indicate
possibilities for further research.
The weights of the individual terms e�ect the solu-

tion found by the algorithm. One interesting question is
whether we can observe the behaviour and characteristics
of the individual �tness terms as the algorithm is running
and change the weigths on the 
y to obtain a better solu-
tion. This resembles a continuous version of switching from
one highly biased �tness function to a tighter �tness func-
tion after a pre-determined number of generations (called

the switching time) [18]. Our initial aim was to use a sec-
ond level GA to select the weights. Each weight assignment
takes the GA on clustering to some other solution, possi-
bly on the Pareto front. The problem turned out to be too
small for that scheme, a good solution is quickly found by
the single level GA. A two-level GA can be employed for
larger problems, but it may rather be necessary to consider
a faster weight optimization algorithm, as a two level GA
is computationally expensive.

It seems essential to select a larger problem as a testbed.
Only on the larger problem can the representational hur-
dles of clustering with GA be attacked. We believe that a
multi-level link representation with regulation on the giant
component can be a solution, but this needs investigation.

One simple heuristic which may be useful in determining
the weights can be a random sampling of the chromosomes
to derive a statistical approximation to the behaviour of
the individual �tness terms. If their spread can be de-
termined, they can be normalized without manual inter-
vention, according to some simple principles. Whether a
random sample will work or not should be determined by
simulation.

In almost all GA applications special care is given to en-
sure diversity in the population. In small problems, it is
almost impossible to distinguish between fast convergence
and premature convergence, as the algorithm usually �nds
a good solution. We have yet to test our scheme in a large
problem to see whether special measures are needed to en-
sure diversity.

References

[1] Axelrod, R., \The Evolution of Strategies in the Iterated Pris-
oner's Dilemma", in L.D. Davis (ed.) Genetic Algorithms and
Simulated Annealing, Morgan Kaufmann, 1987.

[2] Coello, C.C.A., \A Comprehensive Survey of Evolutionary-
Based Multiobjective Optimization Techniques," Knowledge
and Information Systems, vol.1(3), pp.129-156, 1999.

[3] Cucchiara, R., \Genetic Algorithms for Clustering in Machine
Vision", Machine Vision and Applications, vol.11, pp.1-6, 1998.

[4] Deb, K., \Multi-objective Genetic Algorithms: Problem DiÆ-
culties and Construction of Test Problems", Evolutionary Com-
putation, vol.7(3), pp.205-230, 1999.

[5] Demiriz, A., Bennett, K.P., and Embrechts, M.J., \Semi-
Supervised Clustering Using Genetic Algorithms", in Proc. Ar-
ti�cial Neural Networks in Engineering, 1999.

[6] Eiben, G., and van Hemert, J., \SAW-ing EAs: Adapting
the Fitness Function for Solving Constrained Problems", in D.
Corne, M. Dorigo, and F. Glover (eds.) New Ideas in Optimiza-
tion, McGraw-Hill, 1999.

[7] Fonseca, C.M., and Fleming, P.J., \Genetic Algorithms for Mul-
tiobjective Optimization: Formulation, Discussion and General-
ization," in Proc. 5th Int. Conf. on Genetic Algorithms, pp.416-
423, Morgan Kaufmann, 1993.

[8] Goldberg, D.E., Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley, Reading, Mass, 1989.

[9] Goldberg, D.E., Deb, K., Kargupta, H., and Harik, G., \Rapid,
Accurate Optimization of DiÆcult Problems Using Fast Messy
Genetic Algorithms", in Proc. 5th Int. Conf. on Genetic Algo-
rithms, Morgan Kaufmann, 1993.

[10] Gordon, A.D., \A Survey of Constrained Classi�cation", Com-
putational Statistics & Data Analysis, vol.21, pp.17-29,1996.

[11] Holland, J.H., Adaptation in Natural and Arti�cial Systems,
University of Michigan Press, Ann Arbor, 1975.

[12] Kargupta, H., \SEARCH, Polynomial Complexity, and the Fast
Messy Genetic Algorithm", Doctoral Dissertation, University of
Illinois at Urbana-Champaign, 1995.



SALAH, REDMAN, KOV�ACS 7

[13] MacQueen, J., \Some Methods for Classi�cation and Analysis
of Mulivariate Data", in 5th Berkeley Symposium, vol.1, pp.281-
297, 1967.

[14] Murthy, C.A., and Chowdhury,N., \In Search of Optimal Clus-
ters Using Genetic Algorithms", Pattern Recognition Letters,
vol.17, pp.825-832, 1996.

[15] Pareto, V., Cours D'Economie Politique, vols.I & II, F. Rouge,
Lausanne, 1896.

[16] Salah, A.A., Redman, S., Kovacs, G., \Cluster-
ing under Constraints with Genetic Algorithms",
http://www.cmpe.boun.edu.tr/~salah/santafe/presentation.ppt,
2002

[17] Sarkar, M., Yegnanarayana, B., and Khemani, D., \A Cluster-
ing Algorithm Using an Evolutionary Programming-Based Ap-
proach", Pattern Recognition Letters, vol.18, pp.975-986, 1997.

[18] Sastry, K., and Goldberg, D.E., \Genetic Algorithms, EÆciency
Enhancement, and Deciding Well with Di�ering Fitness Bias
Values", IlliGAL TR-2002003, University of Illinois at Urbana-
Champaign, January 2001.

[19] Sastry, K., and Goldberg, D.E., \Analysis of Mixing in Genetic
Algorithms: A Survey", IlliGAL TR-20022012, University of
Illinois at Urbana-Champaign, April 2002.

[20] Scha�er, J.D., \Some Experiments in Machine Learning Using
Vector Evaluated Genetic Algorithms", Doctoral Dissertation,
Vanderbilt University, Nashville, Tennessee, 1984.

[21] Scha�er, J.D., \Multiple Objective Optimization with Vector
Evaluated Genetic Algoritmhs", in Genetic Algorithms and
their Applications: Proc. 1st Int. Conf. on Genetic Algorithms,
pp.93-100, Lawrence Erlbaum, 1985.

[22] Tamaki, H., Kita, H., and Kobayashi, S., \Multi-Objective Op-
timization by Genetic Algorithms: A Review", in Proc. 1996
Int. Conf. on Evolutionary Computation, pp.517-522, Nagoya,
1996.

[23] Valenzuela-Rend�on, M., and Uresti-Charre, E., \A Non-
Generational Genetic Algorithm for Multiobjective Optimiza-
tion", in Proc. 7th Int. Conf. on Genetic Algorithms, pp.658-
665, San Mateo, California, 1997.

[24] Van Veldhuizen, D., and Lamont, G.B., \Multiobjective Evolu-
tionary Algorithm Research: A History and Analysis", Technical
Report Number TR-98-03. Wright-Patterson AFB, Department
of Electrical and Computer Engineering, Air Force Institute of
Technology, Ohio, 1998.

[25] Zitzler, E., Deb, K., and Thiele, L., \Comparison of Multiobjec-
tive Evolutionary Algorithms: Empirical Results", Evolutionary
Computation, vol.8(2), pp.173-195, 2000.


