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A Selective Attention-Based Method for
Visual Pattern Recognition with Application
to Handwritten Digit Recognition
and Face Recognition

Albert Ali Salah, Ethem Alpaydin, and Lale Akarun

Abstract—Parallel pattern recognition requires great computational resources; it is
NP-complete. From an engineering point of view it is desirable to achieve good
performance with limited resources. For this purpose, we develop a serial model
for visual pattern recognition based on the primate selective attention mechanism.
The idea in selective attention is that not all parts of an image give us information.
If we can attend only to the relevant parts, we can recognize the image more
quickly and using less resources. We simulate the primitive, bottom-up attentive
level of the human visual system with a saliency scheme and the more complex,
top-down, temporally sequential associative level with observable Markov models.
In between, there is a neural network that analyses image parts and generates
posterior probabilities as observations to the Markov model. We test our model
first on a handwritten numeral recognition problem and then apply it to a more
complex face recognition problem. Our results indicate the promise of this
approach in complicated vision applications.

Index Terms—Selective attention, Markov models, feature integration, face
recognition, handwritten digit recognition.
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1 INTRODUCTION

PRIMATES solve the problem of visual object recognition and scene
analysis in a serial fashion [1], which is slower but less costly than
parallel recognition, which is NP-complete [2]. The idea in visual
selective attention is that not all parts of an image give us
information and analyzing only the relevant parts of the image in
detail is sufficient for recognition and classification.

The biological structure of the eye is such that a high-resolution
fovea and its low-resolution periphery provide data for recognition
purposes. The fovea is not static, but is moved around the visual
field in saccades. These sharp, directed movements of the fovea are
not random. The periphery provides low-resolution information,
which is processed to reveal salient points as targets for the fovea
[3], and those are inspected with the fovea. The eye movements are
a part of overt attention, as opposed to covert attention, which is
the process of moving an attentional “spotlight” around the
perceived image without moving the eye [4].

There are two broad categories of computational models of
selective attention. In the first category, we find models that are
motivated by the need to account for a large body of experimental
data collected from neurological and psychophysical experiments.
These are mainly descriptive models, with possible applications to
real-world problems. The second category consists of prescriptive
models that are inspired by the biological processes, but have some
computational problem in focus. We place the model we propose
into the latter category.

In a recent survey [5], Itti and Koch describe the essential
features of computational models of selective attention. These
models depend on the idea that massively parallel computation is
not the most efficient way of visual recognition. The idea that a fast
and broad parallel search should guide a slower and more elaborate
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serial search comes from Koch and Ullman [3]. The serial
recognition process gathers two types of information from the
image that are described by Grossberg [6] as being complementary:
the contents of the fovea window and the location to which the
fovea is directed. Following Ungerleider and Mishkin [7], we call
these “what” and “where” information, respectively. The object is
thus represented as a temporal sequence, where, at each time step,
the content of the fovea window and the fovea position are
observed. Usually, the parallel part is implemented with a saliency
map that indicates the informative spots on the image. We use a set
of problem-specific feature maps to compute a saliency map.

The saliency map is primarily bottom-up; the presence of various
salient features like oriented lines, edges, and corners indicate
salient spots. The selection and integration of features have been
explored by Treisman and Gelade in detail [8]. The contribution of
each feature is computed separately. Various ways of combining
features for the saliency map is inspected in Itti and Koch [9].

An alternative approach is to use a competitive scheme, where
the features compete for attention and one location emerges as the
winner through inhibition. Culhane and Tsotsos [10] use a Winner-
Take-All (WTA) network [3] instead of a saliency map, where a
parallel pruning of the processing hierarchy cuts the computa-
tional cost down. The WTA is commonly used in competitive
schemes [2], [11]. Another distributed approach to bottom-up
saliency calculation without a saliency map is presented in
Desimone and Duncan [12]. In their work, top-down influences
promote individual feature maps.

One approach to the target selection process involves using
information theoretic measures to minimize uncertainty. This
involves a saliency calculation based on the expected information
gain [13]. Legge et al. [14] use visual, lexical, and oculomotor
information in order to guide a saccadic search that minimizes
uncertainty about hypotheses in a reading task. Their computational
models show some of the phenomena that can be observed in
visually impaired people. Schill et al. [15] propose a scheme in which
each eye movement can support one or more hypotheses about the
scene. The expected information gain from a new saccade is
computed from the belief distribution derived from the previous
saccades.

The saccadic movements, called the scanpath by Noton and
Stark [1], have been used in Didday and Arbib [16] as a distinct
feature in classification. The scanpath for the memorized item is
stored in memory, and compared with novel items for recognition.
Hacisalihzade et al. [17] inspect how scanpath sequences can be
analysed for their similarity. They use a Markov model for the
sequences and inspect the sequences with the help of string editing
methods. Markov models were used in a human behavior model
for surveillance systems that is controlled by top-down and
bottom-up attention [18]. Rimey and Brown [19] have used a left-
to-right Augmented HMM to do classification based on the
scanpath information. Another important study that makes use
of the scanpath information is Rao et al. [20], where bottom-up and
top-down influences are considered to plan saccades. In a recent
study, Schill et al. [15] use the eye-movement vectors that indicate
relative position changes as features in a scene analysis task.

We present a selective attention model that combines fovea
contents with scanpath information for recognition. Alpaydin [21]
used recurrent multilayer perceptrons to learn both the fovea
features and the scanpath. In another neural network approach,
Fukushima incorporated selective attention into the Neocognitron
model [22]. Although good performance is reported on binary
recognition tasks, his approach is sensitive to parameters, requires
extensive computation, and very large networks.

In a study with aspects similar to ours, Rybak et al. [23] used
neural network classifiers to recognize patterns and combined the
information in a higher level. In their work, both the “what” and
“where” information is stored as feature vectors in memory and
combined in a behavioral recognition program. The information
flow has a bottom-up characteristic. A grid of context points serves
to determine the potential targets of attentional window shift. One
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Fig. 1. The selective attention model for visual recognition.

major drawback of their model is that the scanning of the
attentional window at each fixation involves a serial search among
all the stored retinal images in the sensory memory. However, this
increased computational cost has the benefit of allowing for shift,
rotation, and scale invariant recognition of patterns. Another
drawback is the use of experimentally tuned semantic significance
functions calculated in advance for each image, that decrease the
flexibility of the model.

Our aim is to design a scalable system based on selective
attention which is applicable to problems where the input data is
high-dimensional (e.g., face recognition), or not of fixed size.
Implementing a parallel scheme within reasonable complexity and
with good performance is not trivial in such cases.

The first task we use to test our scheme is handwritten digit
recognition. In our database [24], there are 10 classes (numerals from
zero to nine) with 1,934 training and 1, 797 test cases. Each sample is
a 32 x 32 binary image which is normalized to fit the bounding box.
There are parallel architectures to solve this problem in the literature
[25] and they have good performance, but they do not scale well.

To justify our approach, we test our model on a face recognition
task. We use the Olivetti Research Laboratory (ORL) database [26].
There are 400 grayscale images, divided into 40 classes. A class
corresponds to a person and there are 10 different images of each
face. The images are 92 x 112 bitmaps with a plain background,
positioned on the centre of the bounding box with up to 10 percent
scale variation. Lightning conditions, facial expressions, and details
(like glasses) are the allowed variations. The maximum tilt and
rotation variation is 20 degrees.

This paper is organized as follows: In Section 2, we describe our
model and its three levels. We report our simulation results on the
handwritten digit recognition in Section 3. In Section 4, we
comment on the application of our model to the face recognition
problem. In Section 5, we present a comparative complexity
analysis. In the last section, we conclude and discuss future work.
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2 THE MODEL

The block diagram of the system we propose is given in Fig. 1. It is
composed of the attentive level that decides on where to look, the
intermediate level that analyzes the content of the fovea, and the
associative level that integrates saccades in time.

2.1 Attentive Level

In the first step of the model, the bottom-up part of the visual
system is simulated. In constructing the saliency map, we use a
simple set of features to decrease the computational cost, namely,
line orientations. Line orientations are detected by different
primitive mechanisms in the visual cortex, operating in coarse,
intermediate and fine scales [27].

The feature maps are combined in a saliency map, which
indicates the interesting spots on the image. We simulate the fovea
by moving a window over the image. The saliency values of the
visited spots and their periphery are decreased and these spots are
not visited again. This process has a biological counterpart that is
termed the inhibition of return [28]. The saliency decrease of the
attended location is a commonly used method in computational
models of selective attention [5].

2.2 Intermediate Level

The simulation of saccades should provide us with “what” and
“where” information, but we want them to be sufficiently quantized
to be used in the associative level. We divide the image space into
uniform regions, in effect, performing a quantization on the
location information. We obtain a time-ordered sequence of visited
regions after the simulation of saccades. This constitutes the
“where” stream for the particular sample.

In order to efficiently analyze the content of the fovea, we train
neural network experts at each region of the image. The experts are
single-layer perceptrons that are trained in a supervised manner.
Their input is the fovea content vector. The output of the experts
are class posterior probability vectors, which are treated as the
“what” information stream.



422 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 3, MARCH 2002

We select single-layer perceptrons over multilayer perceptrons
for a number of reasons. Multilayer perceptrons overlearn the
training data quickly and perform worse on the cross-validation
set. The number of parameters we need to store for the multilayer
perceptron is larger and the training time is significantly longer.
These properties make the single-layer perceptron the better choice
of expert in the final model.

2.3 Associative Level

In the associative level, the two types of quantized information are
combined with a discrete, observable Markov model (OMM). We
treat the regions visited by the fovea as the states of a Markov
model and the quantized output of the local neural network
experts as the observations from each state. We simulate a number
of saccades for each sample in the training set, obtain the “where”
and “what” streams, and adjust the probabilities of the single
Markov chain of the corresponding class to maximize the
likelihood of the training data. The number of saccades depends
on the application. Recognition is achieved by selecting the class
that maximizes the posterior probability.

Training an observable Markov model is much faster than
training a Hidden Markov Model [29]. In the observable model, the
model parameters are directly observed from the data. Since we
know the states, we can count the state transitions and normalize
the count to find the state transition probabilities a;;, as well as the
initial state distribution probabilities 7;. Similarly, we count the
occurrences of the observation symbols (quantized outputs of the
local neural networks) at each state and normalize them to find the
observation symbol probability distribution b;(k). Finding the
probability of the observation sequence is much simpler in the
observable Markov model since the states are visible. We just
multiply the corresponding state transition probabilities and the
observation probabilities:

P(0,S|\) = m5,bs,(01) [ [ as. 15.b5.(0), 1)
=2

where S is the state sequence, O is the observation sequence, and
X = {m;,a;j,b;(k)} stands for the parameters of the Markov model.
i,j=1...N are indices for states, k =1... M is the index for the
observation symbols. There are as many Markov models as there
are classes and, in classification, we choose the class C. that has the
highest observation probability:

P(O, S|\.) = max P(0, S|\)). 2)

2.4 Dynamic Fovea

One important advantage of using a Markov model is the ease with
which we can control the number of saccades necessary for
recognition. In the training period, our model simulates a
predetermined number of saccades, which represents an upper
bound for the particular application. After each saccade, the Markov
model has enough information to give a posterior probability for
each class. We may calculate the probability a:(c) of the partial
sequence in the Markov model, which reflects the probability of the
sample belonging to a particular class, given the “where” and “what”
information observed so far. Using (1), we have

ay(c) = P(Oy,..

04, 51,..., 51 A), (3)

where Oy,...,0, is the observation sequence up to time ¢,
S1,...,5; is the state sequence, and A. are the parameters of the
Markov model for class C,. with c=1... K.

We can use this probability to stop our saccades whenever we
reach a sufficient level of confidence in our decision. Let us define
a;(c), the posterior probability for class C, at time ¢:

o (@

PCCO g . -
(Clon >E i)

081, 8) =af(e) =

Let 7 be the threshold we use as our stopping criterion:
a(c) 2, (5)

where the value of 7 is in the range [0,1]. If we assume that
absolute certainty is not reached anywhere in the model and «; (1)
is always below 1.0, selecting 7 = 1.0 is equivalent to treating all
samples as equally difficult and looking at all possible locations.
Conversely, selecting 7 =0 is equivalent to looking at the first
salient spot and classifying the sample. Selecting a large value for
7 trades speed for accuracy. With a well selected value, we devote
more time for difficult samples, but recognize a trivial sample in a
few saccades.

3 HANDWRITTEN DIGIT RECOGNITION

3.1 Methodology

The digits are 32 x 32 binary images, but we work on 12 x 12
downsampled images to simulate a low-resolution resource. This
slightly decreases the classification accuracy, but speeds up the
computation considerably. Convolving the digit image with 3 x 3
line orientation kernels produces four line orientation maps in 0°,
45°,90°, and 135° angles. With a Gaussian low-pass filter, these are
combined in a saliency master map [30], which indicates the
presence of aligned lines on the image.

Our experiments showed that adding other feature detectors
like corner maps, Canny edge detector, and further line orienta-
tion maps in higher resolutions increased the classification
accuracy only slightly (i.e., less than one percent), whereas the
increase in the computational cost was significant. This results
from the simple nature of the problem, more complex tasks like
scene analysis would require more complex bottom-up feature
detectors [31], [32].

We use a 4 x 4 fovea window over the 12 x 12 downsampled
image. We divide the image into nine regions for the experts. Since
the images are small, we use a second set of overlapping windows to
reduce the effect of window boundaries. We obtain a time-ordered
sequence of visited regions after the simulation of saccades. This
constitutes the “where” stream for the particular sample.

As fovea contents, we extract 64-dimensional real-valued
vectors. These vectors are produced by concatenating the corre-
sponding 4 x 4 windows on four oriented line maps. We prefer
using the concatenated line maps to inspecting the original bitmap
image, because the line maps indicate the presence of features more
precisely. Furthermore, since they were constructed in the attentive
level, they come at no additional cost but because of their high
dimension, they cannot be used directly in the Markov model.

In order to efficiently quantize this information, we train neural
network experts at each region of the image. The experts are single-
layer perceptrons that are trained in a supervised manner. Their
input is the 64-dimensional fovea content vector. The local experts
provide the associative level with 10-dimensional class posterior
probabilities. Since we need a small and discrete number of
observation symbols for the Markov model, we use k-means
clustering and, from the 10-dimensional vector, obtain a single
observation value between 1 and 30 corresponding to the fovea
content.

We simulate eight saccades to train the system. The Markov
model is trained with a limited training set and, if the number of
states and observation symbols is large, there will be connections
that are not visited at all. Since the model is probabilistic, having a
transition or observation probability of zero is not desired. Instead,
the transitions that have not occurred within the training set are set
to a low probability (0.0001) in the model. Then, we normalize the
probabilities once more.

We have also tried fully connected, discrete Hidden Markov
Models where the states are not visible and where the concate-
nated where-what information is the observation, but this structure
performed worse than the observable Markov model because of
the larger number of free parameters.
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TABLE 1

Handwritten Digit Recognition Results

Accuracy
Method Training | Test
Voting over regions 93.85 73.89
Markov model (OMM) 94.37 87.37
Dynamic fovea 91.41 84.63
All-parallel MLI? 99.92 94.54

3.2 Simulation Results

We summarize the results we obtain in Table 1. The first column of
the table shows the method employed. The successive columns
indicate the classification accuracy on the training and test sets.

In voting, we do eight saccades, generate the posterior
probabilities of classes by the local neural network experts, and
take a vote without treating them as a sequence. Comparing this
result with the OMM result where eight saccades are done, shows
that the order information which is lost during voting but used in
OMM is useful. The dynamic fovea, where the number of saccades
is not fixed but depends on the certainty of the Markov model (4)
and (5), has a lower classification accuracy, but it only needs
3.2 saccades on the average, instead of the previous eight. Finally,
the last row indicates the accuracy of an all-parallel scheme, where
we use a multilayer perceptron (MLP) with 32 x 32 binary input
and 10 hidden units. Although the MLP has good accuracy in this
problem, it is not scalable due to the curse of dimensionality.

When we simulate the dynamic fovea with a fixed threshold of
7 = 0.95, the classification accuracy on the test set is 84.63 percent,
and the average number of saccades is 3.37, which corresponds
roughly to seeing one third of the image in detail. This justifies our
claim that analysing only a small part of the image is enough to
recognize it.

As the threshold is increased, the accuracy of classification
increases because a higher threshold means making more saccades
to get a more confident answer. A lower threshold means that a
quick response is accepted. What happens is that the average
number of saccades increase sharply if the threshold is set to a
value very close to 1.0. In this case, the classifier cannot exceed the
threshold probability with eight saccades and selects the highest
probability class without doing any more saccades.

4 FACE RECOGNITION

4.1 Methodology

Applying the model to face recognition necessitates a number of
adaptations related to the size of the problem. We can summarize
these changes as the selection of new feature maps, a bigger

fovea window, more local experts, and the elimination of the
k-means clustering from the intermediate level.

In the attentive level, we use Gabor wavelet filters as our feature
maps [33]. These are frequently used in face recognition tasks [34],
[35] and they resemble the biological Impulse Response Functions
[9]. We use filters with spatial frequency k, =% in four angle
orientations (0, 15 and %"‘) to generate a 32 x 32 saliency master
map. We have trained classifiers for a range of frequency and filter
size parameters, and selected the most informative combination.

We use the saliency map to select locations, and sample a
10 x 10 fovea window from each location. As in the previous
section, we concatenate the feature map contents to cut down
the computational cost of the process. Since the images are
larger, we use 36 local neural network experts on a 6 x 6 grid.
Single-layer perceptrons are used as experts.

The input vectors fed to the experts are Z-normalized by
subtracting the mean and dividing by the standard deviation,
which are obtained during the training phase. Since the number
of classes (people) is large, we have eliminated the k-means
clustering stage in the intermediate level, and calculated an
observation symbol probability distribution at each state by
summing up and normalizing the corresponding local perceptron
outputs for each class.

4.2 Simulation Results

We present our results in Table 2. Since we had a restricted data
set, all the results are obtained by 10-fold cross-validation. The
training set is classified with perfect accuracy. The first row is the
accuracy of the model after the maximum number of saccades
were performed. The performance of our model on the face
recognition data is on the average 92 percent, which shows that the
model scales to this problem. Our results are comparable to the
results previously published on the ORL database. Turk and
Pentland [36] report 90 percent accuracy with the eigenface
method they employ. A higher classification accuracy was
reported by Lawrence et al. [37]. They use convolutional neural
networks and obtain 96.2 percent accuracy.

The second row of Table 2 is the dynamic fovea simulation,
where an average of 4.81 (£1.71) saccades were made for the test
samples, as opposed to 15 saccades in the previous case. We have
selected 7 = 0.999 in the dynamic fovea simulation. Note that there
are 36 possible locations and doing 4.81 saccades corresponds to
making a decision after analysing less than one-seventh of the
image. Accuracy increases by increasing the confidence threshold
and making more saccades.

In the MLP scheme (Row 3 of Table 2), we concatenate four
64 x 64 vectors obtained by Gabor filters with the same frequency
and four directions. Thus, the system is trained with 16, 384 input
dimensions and 150 hidden units were used.

5 TiME AND SPACE COMPLEXITY ANALYSIS

We compare the time and space complexity of our model with the
all-parallel scheme of a multilayer perceptron. The processing in
our model starts with creating the saliency map. After the

TABLE 2
Face Recognition Results
Method Accuracy on Time Requirement Space Requirement
Test Set
OMM 92.00(£ 7.98) 102,400+240,000+21,600=364,000 | 576,000+110,880=686,880
Dynamic fovea 88.50(£ 12.37) 102,4004-76.960+6,926=186,286 | 576,000+110,880=686,880)
MLP 88.25(+ 7.27) 409,600+2.463,600=2,873.200 2,463,600
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determination of salient locations, the fovea contents are processed
by the local expert and the expert output is used to generate a
partial observation sequence probability for each class using the
OMM. If the selected confidence level is not reached, the process is
repeated. Assuming that on the average ¢* fovea shifts are made,
with a fovea size of v? and the saliency map size D?, the time
complexity is

DX fx G4 x P xC+1" x Cx M, (6)
N ) N——————
saliency map local experts OMM

where f denotes the number of features used and G? denotes the
Gabor filter size. The time complexity of the MLP is

IxgxG?
—_——

Gabor preprocessing

+(Ixg)+C)xh, (7)
—————
perceptron
where I (width x height) is the image size, g is the number of
orientations used, and h is the number of hidden units.

The space complexity of our model is the combined parameters
stored for the local expert weights and the parameters of the OMM:

MxvPxC+Cx Mx (M+N+1), (8)

local experts

OMM

whereas the space complexity of the MLP is
(I xg)+C)x h. 9)

We typically expect the number of input dimensions to the MLP to
be much greater than the local experts we use. Table 2 gives the
calculated values for the face recognition problem where we see
that, for comparable accuracy, our proposed method has a space
complexity 4 and time complexity 7 of the all-parallel multilayer
perceptron.

6 DiISCUSSION AND FUTURE WORK

The selective attention mechanism exploits the fact that real images
often contain vast areas of data that are insignificant from the
perspective of recognition. A low-resolution, downsampled image
is scanned in parallel to find interesting locations through a
saliency map, and complex features are detected at those locations
by means of a high-resolution fovea. Recognition is done serially as
the location and feature information is combined in time. By
keeping the parallel part of the method simple, we can speed-up
the recognition process considerably.

The first application we chose for our system, namely, digit
classification, does not show the full benefits of the model since the
ratio of the fovea area to the image is not high enough. Although
the accuracy is lower than the state-of-the-art parallel approaches
in the literature (e.g., the MLP result in Table 1), the selective
attention mechanism is much more appropriate for applications
where parallel processing is too cumbersome to use and the
number of input dimensions is high.

Tojustify our approach, we apply our model to a face recognition
problem and show that the resulting model is more efficient
compared to an all-parallel classifier. In a face, there is much more
redundancy and small regions of the face like eyes, nose, and mouth
give us information. The saliency scheme is modified for this
purpose, as facial features necessitate different and more complex
feature detectors. Details of our simulation on the two applications
can be found in [38]. Our proposed method based on selective
attention is as accurate as the all-parallel multilayer perceptron, but
is four times simpler and 15 times faster.

The associative level in our model allows the calculation of an
expected information gain [15] for future saccades that can be
incorporated into the saliency map as a top-down influence. We
consider this as an interesting future direction for top-down and

bottom-up integration in our model. We are also considering to
apply our model in a real-time scene analysis application.
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Real-Time Epipolar Geometry
Estimation of Binocular Stereo Heads

Marten Bjérkman and Jan-Olof Eklundh, Member,
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Abstract—Stereo is an important cue for visually guided robots. While moving
around in the world, such a robot can use dynamic fixation to overcome limitations in
image resolution and field of view. In this paper, a binocular stereo system capable
of dynamic fixation is presented. The external calibration is performed continuously
taking temporal consistency into consideration, greatly simplifying the process. The
essential matrix, which is estimated in real-time, is used to describe the epipolar
geometry. It will be shown, how outliers can be identified and excluded from the
calculations. An iterative approach based on a differential model of the optical flow,
commonly used in structure from motion, is also presented and tested towards the
essential matrix. The iterative method will be shown to be superior in terms of both
computational speed and robustness, when the vergence angles are less than
about 15°. For larger angles, the differential model is insufficient and the essential
matrix is preferably used instead.

Index Terms—Epipolar geometry, active vision, real-time stereo, dynamic
vergence.

+
1 BACKGROUND

STEREO vision can be used for several tasks in the area of robotics.
For applications, such as visually guided manipulation, stereo is a
valuable cue in order to recognize shapes and pose. Stereopsis has
also been used for visual navigation and obstacle detection [11],
[18]. Such systems typically consist of two or more small cameras
located in parallel with relatively short baselines, since they are
expected to work for various distances. Objects located close to the
observer might otherwise only be seen by one of cameras, greatly
complicating depth estimation and making the system useless for
behaviors such as obstacle avoidance. However, for manipulation,
accuracy is crucial and a wider baseline is desired.

This discussion leads us to believe that a mobile platform
would benefit from an active stereo vision system with dynamic
vergence. Based on the activity at hand, an active system can
control its gaze in such a way that the visual system is always used
at its full potential. Ballard [1] gave a number of reasons how active
vision can be used to overcome limitations in resolution and field
of view, making the visual computations much less expensive than
that of a passive system. Using fixation, many visual operations,
such as visual navigation, 3D motion estimation, and figure-
ground segmentation can further be simplified. Fermiiller and
Aloimonos [6] used normal-flow in conjunction with fixation to
solve problems such as ego-motion recovery, 3D motion, and time-
to-impact estimation. Daniilidis [5] decoupled the optical flow and
found the translation of an observer through two one-dimensional
searches, radically simplifying the ego-motion estimation process.

One of the reasons why dynamic vergence has seldom been used
in practical robotics is the problem of external calibration. The
relative orientation of the cameras has to be known, in order for the

o The authors are with the Computational Vision and Active Perception
Laboratory (CVAP), Department of Numerical Analysis and Computing
Science, Royal Institute of Technology (KTH), S-100 44 Stockholm,
Sweden. Email: {celle, joe)@nada.kth.se.

Manuscript received 03 May 2000; revised 04 Jan. 2001; accepted 24 Feb.
2001.

Recommended for acceptance by A. Shashua.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 112044.

0162-8828/02/$17.00 © 2002 IEEE



Associative Level

Another
Saccade?

Observable

Classification «No Markov Model

Yes | 1
: I
l Where : What :
Information | Information :
! I
I
. B “ I
Saliency | Intermediate !
Decrease I !
1 Level |
! I
I
S ! |
= ! Local '
@® ! I
& ! Expert I
(@) ! 1
: I
_______________ J
N |
Attentive Level

content Intermediate

Fovea Processing

Saliency
Master Map Feature ‘ Image
Maps

Figure 1. The selective attention model for visual recognition
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