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Boğaziçi University,
34342 Bebek,̇Istanbul (Turkey)

Abstract

The distinction between holistic and analytical (or
feature-based) approaches to face recognition is widely
held to be an important dimension of face recognition re-
search. Holistic techniques analyze the whole face in order
to recognize a subject, whereas analytical methodologies
are devoted to the processing of different local parts of the
face. This paper proposes a principled experimental com-
parison between these two approaches. Local and global
face processing architectures that have access to similar
feature representations and classifiers are implemented and
tested under the same training and testing conditions. The
analysis is performed with a recognition scenario on the
difficult BANCA dataset, containing images acquired in de-
graded and adverse conditions. Different classifiers of in-
creasing complexity are used in each scenario, and differ-
ent classifier fusion methods are used for combining the lo-
cal classifers. Our results show that holistic approaches
perform accurately only with complex classifiers, whereas
feature-based approaches work better with simple classi-
fiers. We were able to show a clear boosting effect by fusing
a large number of simple classifiers.

1. Introduction

Automatic analysis of face images is an active research
area, for both scientific and industrial reasons. A plethora
of techniques have been proposed in the past years to tackle
the difficult problems of face recognition (for a review
see [24]). These techniques can be grouped according to
different criteria, each taxonomy serving to highlight a dif-
ferent aspect of the problem.

Perhaps the most fundamental distinction is made be-

tween holistic and feature-based approaches. In the for-
mer approach, also calledglobal, configural, relational, and
monolithic faces are perceived as units, and the extracted
features pertain to the entire face. The most important al-
gorithm proposed for holistic face recognition is the eigen-
face methodology [20]. The second class of approaches
are called feature-based, but alsoanalytic, local, piecemeal,
part-based, componentialand fine grained. In these ap-
proaches, fragments of the face images are analysed, and
integrated. Typically, holistic approaches contain suitable
transformations to subspaces of managable dimensional-
ity, which is important when dealing with large databases.
Feature-based methods are less sensitive to variations in il-
lumination and viewpoint, but a part of the face may not
contain sufficient information for identification purposes.
These also require precise and reliable feature localization.
For a review of the most important methods in both classes,
see [24].

From a human perceptual point of view, both types of
processing are relevant, but the issue of their relative con-
tributions to human face recognition is an open problem. In
an early study demonstrating the so-calledinversion effect,
Yin showed that inverting faces impairs their recognition far
more than it would impair the recognition of any other ob-
ject [23]. Since the individual features of the face are not af-
fected too much by inversion, it is argued that inversion dis-
rupts the configural processing, which is of special impor-
tance in human face recognition. There are other findings
that support this claim; features of the face are much eas-
ier recognized in the presence of other facial features (face
superiority effect) [19], and inversion of isolated features
affects their recognition rates relatively less [14]. These
studies suggest that human face recognition is a holistic
process [19].

However, other experimental settings demonstrate that



feature-based processing co-exists with holistic processing.
In [22], an attempt has been made to single out the contri-
butions from the holistic and feature-based components of
human facial image processing. The configural processing
breaks down when the facial parts are scrambled, and the
feature based system breaks down when faces are blurred.
Ullman et al. note that small fragments of images corre-
sponding to simple features processed in the early to inter-
mediate stages of the visual system can be used for object
detection in general, and face detection in particular [21].

Comparing feature-based and holistic approaches in the
context of machine face recognition is therefore very inter-
esting. Although it may be possible to group existing results
(especially from recent face recognition competitions such
as FRGC, FRVT, BANCA) according to their processing
type and say something about the relative success of these
paradigms, the issue deserves a principled inspection. The
goal of this paper is to provide such a comparison, by imple-
menting local and global processing architectures that have
access to similar feature representations and classifiers, un-
der the same training and testing conditions.

Local and global features were previously compared for
face recognition in [9], where the main classifier was a Sup-
port Vector Machine. However, the choice of the classifier
has a bearing on the issue. In the present paper, we test sev-
eral classifiers of different complexity with local and global
features. The holistic approach attempts to analyse the face
as a whole, while the analytic approach fuses results ob-
tained from different local experts, each performing inde-
pendent classification by looking at a particular region of
the face.

The analysis is performed on the difficult BANCA
dataset [2], which contains images from 52 subjects ac-
quired in 12 sessions. The sessions are grouped into con-
trolled, degraded and adverse conditions. The graded and
adverse conditions provide an excellent way to determine
the generalization performance of a particular system. Our
results show that the choice of the classifier is relevant to
the choice between analytic and holistic processing. Local
approaches are better with simple classifiers, which are less
prone to overlearning. We were able to obtain a clear boost-
ing effect by employing a large number of simple classifiers.
Global approaches perform accurately only with complex
classifiers that can match the increased complexity of the
features. It is difficult to balance data complexity and model
complexity, consequently the analytic approaches seem to
be more promising.

2. Methodologies

In this section we present two architectures for compar-
ing holistic and analytic (feature-based) processing of faces.
The feature-based architecture is described in Section 2.1,

and the holistic architecture is described in Section 2.2, re-
spectively. The different classifiers we use in each method
are summarized in Section 2.3.

2.1. Feature-based architecture

The idea under the proposed feature-based architecture
is to create a set of local experts, each one devoted to a par-
ticular zone of the face. In the training phase, the face is
sampled in order to obtain a set of patches. Each local ex-
pert is then trained with the patches that belong to its zone,
with the aim of discriminating between subjects based on
that zone. In the testing phase, the unknown face is sampled
in a similar manner, and each patch is fed to the nearest lo-
cal expert. The number of patches determines the number
of local classification results for a particular face, which are
subsequently fused to obtain the final decision.

The first step of this method is the extraction of a set
of patches. There are many possibilities: picking them up
at random positions (like in patch-based image classifica-
tion [8, 5, 4] or image characterization [12]), or extracting
them at relevant points, such as edges [3] or ridge and val-
leys [1]; the technique adopted here follows [15, 16], in
which the face image is regularly sampled, extracting a set
of partially overlapped sub-windows positioned at the nodes
of a regular grid. The size of the patch is related to the size
of the image.

The second step is to assign each patch to a particular
local expert. The number of experts determines a trade-off
between complexity and robustness, but also changes the
representation for each expert. With a small number of ex-
perts, the input to the classifier comes from a broader area,
necessarily containing more variation. Based on prelimi-
nary studies, we have selected a grid of 16 points as the hy-
pothetical locations of local experts, and used the Euclidean
distance to the experts in deciding which expert is responsi-
ble from the classification of each patch. We are aware that
there are many other alternatives to define the local expert
positions. For example we can link them to precise facial
landmark positions, or we can extract salient points on the
training set and then perform a clustering. The advantage of
a regular grid is that we have uniform coverage, and similar
training conditions for all local experts.

Feature extraction is a far more important issue in this
architecture, as there are many possible candidate features
tested in the literature. We have examined simple gray level
features, Gabor wavelet coefficients, DCT coefficients, and
their feature-level combinations. A concatenation of gray
level features and the most important DCT coefficients is
selected as the more robust scheme [16].

In the training phase, one classifier is trained for each lo-
cal expert, using all the training patches belonging to that
expert. We summarize the classifiers we have used in the
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next section. The classifier is trained in a discriminative
manner, solving the fulln-class problem. Thus, each clas-
sifier attempts to decide on the identity of the subject from
a single patch, producing a set of posterior probabilities.
During testing, the maximum a posteriori (MAP) criterion
is used to select the class of the test image. Since the poste-
riors are at our disposal, fusion is possible at the score level
or at the decision level:

• Score level: The fused classifier combines the confi-
dence values (also called matching scores). We have
applied the SUM, MAX and PROD rules [13].

• Decision level: In this case the fusion result is obtained
by combining the decisions of each classifier. We have
applied simple voting and Borda count methods [10].
In the ordinary Borda count, the decision of each local
expert is used to rank the classes, and each class re-
ceives points from 1 toNC (number of classes) from
each local expert, depending on their rank. The highest
rank class receivesNC points, the next class receives
NC − 1 points, up to the last class, receiving 1 points.
The class with the highest final score is retained. In
a modified version of the Borda count, the scores are
proportional to1/r, wherer is the rank.

With these methods, poor classes that do not have com-
petitive scores still influence the ranking. In this pa-
per we introduce a more intuitive scheme, where these
classes are trimmed from the scoring. In what we
call the trimmed Borda count, classes that have not
received a rank-1 result with any of the local classi-
fiers are trimmed. We have shown that this procedure
leads to better results with sufficient number of clas-
sifiers. The exact number of classifiers for which this
method produces better results than the ordinary Borda
count depends on the application, but our results show
that the trimmed version is better for a larger range
of models. For smaller number of experts, this method
can also be implemented by trimming the worst classes
after ordinary Borda count, and performing a second
scoring.

2.2. Holistic architecture

With this architecture the whole face is used for the
analysis. In particular the same type of features used for
the local analysis are extracted, namely DCT and graylevel
values. In order to alleviate the curse of dimensionality, a
principal component analysis (PCA) is applied to the gray
level features, and the projected features are concatenated
with the most important DCT coefficients as in the analyt-
ical architecture. When we consider the overlapping input
to the local classifiers, the total amount of input features fed

to the classifier architecture is smaller in the holistic archi-
tecture. However, the amount of features per classifier is
larger. The input dimensionality works two ways, on the
one hand, it allows more complex inferences that can draw
on more features, with the promise of better classification.
On the other hand, the increased model complexity neces-
sitates a proportionally larger training set, making learning
and generalization more difficult.

2.3. Classifiers

With these two architectures, the problem is cast in a
classification context, where any classifier could be used.
Since we are interested in isolating the effects of using
feature-based and holistic approaches, we will use the same
classifiers in both architectures. We have selected several
classifiers of different complexity [11, 6, 7]:

• Logistic Linear Classifier (LOGLC): This classifier
computes a linear discriminant between classes of the
dataset by maximizing the likelihood criterion using
the logistic (sigmoid) function.

• Linear Bayes Normal Classifier (LBNC): In this
method a linear classifier is implemented, where the
distribution of the data items falling under a class is
assumed to be isonormal Gaussian distributed. A joint
covariance matrix is computed by taking a weighted
(by a priori probabilities) average of the class covari-
ance matrices. The a priori probabilities are approx-
imated with the item frequencies of each class in the
training dataset.

• Perceptron (PERC): In this case the classes are dis-
criminated with a hyperplane, which is iteratively up-
dated as a function of the distances of the misclassified
patterns from it. A crucial parameter is the learning
rate, indicating how much impact the estimation error
should have on the update of parameters.

• Multi Layer Perceptron (MLP): We have used a feed
forward neural network, with a single hidden layer.
With an MLP, we can fit non-linear decision bound-
aries to the dataset. In this context, MLP is a com-
plex classifier, as the face recognition problem is high-
dimensional.

• Fisher Linear Classifier (FISHER): This classifier finds
the linear discriminant function between the classes by
minimizing the errors in the least square sense. Since
we have a multi-class problem, the Fisher discrimi-
nants are found for each class, separating the samples
of the class from all the other samples.
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Controlled Sessions Degraded Sessions Adverse Sessions

Figure 1. Examples from the BANCA Database: for each subject, one example for each session is
shown. The sessions are divided in three classes: controlled sessions, degraded sessions and
adverse sessions.

3. Experimental Evaluation

3.1. The database and the experimental
protocol

The experimental evaluation was performed using the
cropped faces from the English version of the BANCA
dataset [2]. This database contains 52 subjects (26 fe-
male and 26 male). For each subject, 12 different sessions
recorded under different conditions are available (four con-
trolled, four degraded, and four adverse). Some examples
are presented in Fig. 1, where one image from each of the
12 sessions of five different subjects is displayed. It is ap-
parent from these samples that especially for the adverse
conditions, the recognition is quite challenging.

The BANCA protocol, described in [2], defines different
configurations for testing, all nevertheless thought for the
authentication scenario, where the test image comes with a
claim, and is tested against the gallery image(s) of a sin-
gle class. Here we are interested in the recognition sce-
nario, which is a more difficult problem, in that one needs
to compare the test image against all the gallery images.
Consequently, we define a different protocol: The train-
ing is performed using images from the first three sessions,
whereas the test images come from the remaining sessions.
This enables us to test the behaviour of the algorithms under
controlled, degraded and adverse conditions with the largest
possible training set size.

3.2. Results

We have tested each architecture with a range of para-
meter settings. Due to space constraints, some of our pre-
liminary results are omitted here. The final presented re-
sults have the following parameters: In the feature-based
approach, patches were of dimension11×11, extracted with
a 50 per cent horizontal and vertical overlap. We have used
10 coefficients for the DCT analysis. Regarding the holistic
approaches, the PCA space was calculated using the train-
ing images and the BANCA World model, retaining the 99
per cent of the variance. Also in this case 10 coefficients
were retained from the DCT transformation. Regarding the
classifiers, the learning parameters (if applicable, e.g. the
number of hidden units, learning rate, and convergence cri-
teria in the neural network models) were optimized on a
subset of the training set. The test set is only used after
these parameters are determined once and for all. One third
of the training dataset was used as a validation set to con-
trol the complexity of the trained model during the actual
training.

The results derived from the application of the proposed
approaches are shown in Table 1. In particular, results
are divided by sessions, grouped after the test condition
as “controlled,” “degraded,” and “adverse”. For the local
schemes, only the best fusion result is displayed.
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Controlled Degraded Adverse
Classifier Local Global Local Global Local Global
LOGLC 97.88% 100% 28.12% 59.81% 36.20% 60.24%
LBNC 97.12% 66.92% 31.39% 9.47% 36.20% 4.18%
PERC 99.62% 94.42% 67.50% 27.36% 53.22% 29.18%
MLP 91.92 % 95.19% 25.72% 52.64% 21.59% 44.52%
FISHER 99.62% 97.69% 62.74% 41.25% 60.43% 43.27%

Table 1. Recognition accuracies for different classifiers, with local and global architectures, for dif-
ferent testing conditions.

3.3. Discussion

Looking at our results, we have several observations.

• From the presented results, it is not possible to decide
on a clear supremacy of either local or global architec-
tures. The choice of classifier obviously has a bearing
on this issue. For complex classifiers (such as Loga-
rithmic Classifiers and Multi Layer Perceptrons), the
global approach is better than the local approach. This
means that the complex classifier is actually able to
harness the holistic information, and the associations
between different dimensions of the data. On the other
hand, simple classifiers (such as the linear perceptron
or Fisher’s discriminant) are more suitable for local
approaches. A simple classifier can only learn sim-
pler, e.g. local associations, and the fusion succeeds
most when the classifiers in the ensemble have differ-
ent error patterns. Combination of complex local ex-
perts quickly leads to overtraining. This is consistent
with the basic idea of the boosting approach [17, 18].
On the average, the local architectures show a slight
supremacy over the global architectures. The LBNC
classifier has a very poor generalization performance
in both architectures, we are currently investigating the
reasons.

• Looking at the best performers in the three class of ses-
sions, we can notice that the feature-based approach
with Fisher’s linear classifier and the holistic approach
with the logistic classifier are the best in the controlled
and adverse sessions (with comparable accuracies). In
the degraded scenario, the best technique is the local
architecture with the perceptron classifier.

• Looking at the general classification rates, it is clear
that the classification task is quite difficult. In order
to have a baseline result, we have also computed the
accuracy of the eigenface method with the same con-
figurations. The accuracies were 95.77 per cent for the
controlled, 40.57 per cent for the degraded, and 32.31
per cent for the adverse conditions, respectively.

• Regarding the local architectures, we have observed
that the best results are produced by the trimmed ver-
sion of the Borda count fusion scheme.

4. Conclusions

In this paper a principled experimental evaluation of
holistic versus feature-based approaches for face recogni-
tion has been proposed. The aim of our evaluation was to
estimate differences in the classification accuracies in a dif-
ficult datasets, constraining holistic and analytic approaches
to use exactly the same classifier and the same feature rep-
resentation. The results show that the performances strictly
depend on the classifier complexity: holistic approaches
work properly with complex methodologies that are able to
properly model complicated features, whereas local meth-
ods are better with simple models, showing a clear boost-
ing effect when fusing the results. A novel fusion scheme
called thetrimmed Borda countis proposed for score fu-
sion, with which we have obtained the best results for the
feature-based architecture.
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