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Most models of neural associative memory have used networks with broad connectivity. However, this 
seems unrealistic from a neuroanatomical perspective. A simple model of associative memory with 
emergent properties was introduced by Hopfield [5]. We choose this widely known model to investigate 
the impact of connectivity on the storage capacity and the retrieval dynamics in artificial associative 
networks. In this paper, we use sparse topologies where only a small fraction of possible connections 
were actually active. For these diluted topologies, we test different kinds of architecture; namely, 
randomly connected networks, regularly connected networks, small-world networks, and modular 
networks. Computer experiments reveal that, among these diluted topologies, the modular architectures, 
that exhibit a relatively high clustering coefficient and whose characteristic path lengths and total 
physical wiring lengths are short, produce the far better results in terms of memory storage and 
generalization abilities. Theoretical implications and extensions to this work are discussed. 
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1. Introduction 
 
Neural networks of associative memory were intensively studied for the past twenty years [4, 5], 
and a lot of computer experiments, theoretical results and formal analyses were performed on them 
[1, 2, 6, 8-11]. However, these models used to be fully connected which is not a realistic structure 
of real biological associative memories in the brain. Available evidence suggests a sparse 
connectivity in the neocortex and in the hippocampus [12]. Moreover, the patterns of connectivity 
seem to be better captured by structured topologies and not by randomly connected graphs. In fact, 
some studies show that both the neocortex and hippocampal regions present modular architectures 
or, at least, a structured connectivity [7, 12]. In this paper, we want to investigate the impact of 
different diluted topologies on classical measures of networks’ performance; namely, the storage 
and the generalization capacities, the resistance to noise. In particular, we look at randomly 
connected, regularly connected, ‘small-world’, and modular networks. Each of these topologies will 
be described in details in the network model section. Our basic results show that the modular 
architectures yield the best results on the tested criteria and exhibit a relatively high clustering 
coefficient, a short characteristic path length and a short total physical wiring length. First, we 
present the background ideas underlying this work. Then we detail the different architectures we 
create and the methods to generate them. We explain the computer experiments performed and 
expose the results. We conclude by a discussion on the theoretical implications and on the potential 
future directions to follow. 
 

2. Background and Motivation 
 
The Hopfield model was designed to solve an important computational problem: the associative 
memory problem [4, 5]. The aim is to store a set of patterns in such a way that when presented with 



a new pattern, the network responds by producing one of the stored patterns that is the most similar 
to this new pattern. In other words, the goal is to develop a computational device that could act as a 
content-addressable memory, to complete patterns, to generalize correctly, and to be quite resistant 
to noise. For twenty years now, an amazing number of theoretical and empirical studies have 
dissected this model. Although this model offers an unrealistic and poor model of human memory, 
its simplicity offer insights to build new and more efficient models. However, the impact of 
structured connectivity has never been systematically investigated with the help of graph theory 
concepts. In the fifties, two Hungarian mathematicians, Erdös and Renyi have written seminal 
papers on random graphs [3]. Since then, random graphs have grown as a nearly independent field 
and have generated a massive literature. However, most works considered that graphs were either 
perfectly regular or totally random. Recently, some researchers [13] have shed lights on the nature 
of artificial and natural networks, revealing a structure far different from the supposed regular or 
random graphs. Then, many complex systems were inspected with this brand new flexible and 
expressive graph formalism, assuming that structure and organization might help to understand 
function, process, emergence, and eventually, give insightful views on the nature’s workings. The 
graph structure models entities and their relations to each other, properties of those relations, and 
allows higher-level properties to emerge as functions of the whole graph. Duncan and Watts 
showed that a particular set of high-level properties exist in many real systems that can be modeled 
with specific random graphs (small-worlds). Capturing these properties allows the models to come 
closer to the system under study, and some of the unrealistic assumptions that were historically 
attributed to the problem can be discarded. Our purpose is to discard one assumption in the 
Hopfield-type networks; the assumption that the underlying network topology is fully connected, 
and regular. The associative models are claimed to be biologically plausible, and it is desirable to 
reduce the artificial assumptions made to achieve good results. Our hypothesis is that connectivities 
similar to the actual brain connectivity work just as well, and we investigate it in a comparative 
way. 
 
Small-world networks are characterized by two mathematical values: the characteristic path length 
L and the clustering coefficient C. The former is the typical average measure of separation between 
every pair of nodes in a graph G. L is defined as: 
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where dij is the shortest path length between i and j, i.e. the minimum number of edges traversed to 
get from a vertex i to a vertex j. The latter is a local property of G measuring the average 
cliquishness of a node. If Gi defines the subgraph of the neighbors of a vertex i, C is defined as: 
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where Ci is the cliquishness of vertex i, and is defined as: 
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Small-world networks are in fact highly clustered, as regular lattices, yet having small characteristic 
path lengths, like random graphs. 
 

3. Network Models 
 
In order to investigate the effect of connectivity profiles on the properties of associative memories, 
we create networks of N neurons which accept bipolar states (either +1 or –1). The different neural 



interconnectivities we define are specified by an undirected graph G on the vertices [N]×[N] where 
a connection from neuron i to neuron j exists if {i,j} ∈ G. The training is made on P randomly 
generated unbiased patterns of length N and the connection strength between node i and node j is 
computed by a Hebbian learning rule: 
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The state of a neuron i is updated in discrete steps by the following rule: 
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where sgn( ) is the sign function and Sj(t) is the output activation of neuron j at time t. Updating the 
activations is done asynchronously by randomly picking a single neuron and evaluating whether its 
current state has to change or not. This guarantees the convergence of the network into a fixed point 
attractor (either the correct pattern or spurious attractors) after a sufficient number of iterations. 
 
The basic network topology we use is a one-dimensional ring lattice on which we place the neurons. 
This allows us to compute the Euclidean inter-neuron distances, and eventually the total wiring 
length of a given network. We define the degree k = αN, where k is the number of neurons which 
are connected to a given neuron, and α is the overall connectivity of the network. For each type of 
the diluted topologies, we construct different graphs G. We start from a regular ring lattice where 
each neuron is connected to its k neighbors. This constitutes the regular networks. Then, by keeping 
constant the overall connectivity α, we create increasingly random graphs using the procedure of 
Watts and Strogatz [13]. For each vertex, we rewire its edges, with probability p, to a randomly 
chosen vertex of the network. This progressively introduces long-range connections as p increases. 
The graphs change from regular connectivity at p = 0 to random connectivity at p = 1, by steps of 
0.1. As noted by Watts and Strogatz, relatively low probabilities (between p = 0.001 and p = 0.1) 
are sufficient to produce small-world graphs. Besides the single procedure to produce regular, 
small-world, and random graphs, we also create modular networks of equal overall connectivity. 
These networks consist of M modules. Each module consists of n neurons, each of which is 
connected to all n-1 neurons within the same module. Besides these intra-module connections, 
inter-module connections are randomly generated to keep constant the overall connectivity α, and 
to allow some fraction of shortcut connections. These are randomly distributed throughout the entire 
network. This kind of structure is supposed to mimic neocortical columns and some hippocampal 
regions (refs). It is important to note that all the sparse topologies we model in this paper do not 
have power-law degree distributions. Either the degree is constant for each node (in regular lattices) 
or the degree distribution is Poisson-like (in random, small-world, and modular topologies). 
 

4. Computer Experiments and Results 
 
The networks we create have N = 100 neurons, and P = 5 memories. The ratio is chosen largely 
below the theoretical storage limitation of 0.138N for fully connected Hopfield networks [4, 10] in 
order to avoid any catastrophic forgetting of memories. In fact, it was shown that, when a Hopfield 
network is trained on a proportion of memories above this criterion value, the entire set of 
memories is not learned and the memory model becomes useless. We choose different amounts of 
overall connectivity from α = 0.06 to α = 0.50 by steps of 0.04. For the modular architectures, we 
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build networks with either M = 10, n = 10 or M = 20, n = 5 or M = 25, n = 4. We compare the 
performances of fully connected nets and those of our sparse topologies. 
 
To test the networks, we probe them with patterns containing increasing amounts of corrupted bits 
in order to evaluate the generalization capacities of the networks and to roughly check the sizes of 
the basins of attraction. The amount of corruption is either 0 % (this tests how perfectly a network is 
able to recall the patterns, and is called the ‘memory’ condition) or 20 % (this tests how tolerant to 
noise a network is, and is called the ‘generalization’ condition) of the number of neurons. To test 
the quality of recall, we compute the Hamming distance between the expected attractor (the stored 
pattern) and the actual attractor reached by the network. A low average Hamming distance indicates 
a good recall and/or an accurate generalization. On the other hand, a high average distance is a sign 
of an inability to store patterns and/or a poor capacity to generalize (this might indicate the small 
size of the basins of attraction). We also record the retrieval dynamics by storing the change of 
activation states through time. However, we do not report any data related to these dynamics here. 
Results reported here are averaged on 50 runs performed on each type of simulation. Given the 12 
different amounts of overall connectivity, the 15 various architectures (one fully connected, one 
regular, one random, nine due to the random rewiring procedure, and three modular architectures), 
and the 2 different amounts of noise present in the probes, we therefore run more than 300 types of 
simulations. All the procedure (graph creation, learning, and recall) is done in a C++ program we 
specifically wrote for this project. 
 
In the ‘generalization’ condition, the Hamming distances as a function of average degree are shown 
in Figs. 1 and 2. The major results are: First, given the small number of patterns used in these 
simulations, fully connected networks give, on average, the best results, being able to recover most 
of the time the right attractors. That is why we do not report their performance on the figures. 
Second, independently of the structure, the higher is the average degree, the lower is the Hamming 
distance. In other words, the more connections present in a network, the better is its capacity to 
generalize. This relationship seems to be nonlinear: even a relatively small average degree, so 
sparsely connected networks, suffices to produce accurate generalizations. Third, random networks 
perform better than regular lattices. Fourth, the performance seems to be a nonlinear function of the 
probability of random rewiring. In fact, rewiring 10 % of the edges gives results that are already 
different from those exhibited by regular networks. With 30 % of rewiring, the performance is 
nearly at the same level than the one of random networks. Fifth, modular architectures generalize as 
good as random networks. The generalization performance as a function of physical wiring length is 
shown in Fig. 3 and 4. There seems to be no clear differences between all the simulated topologies. 
Actually, for a same level of overall connectivity, modular and regular architectures have physical 
wiring lengths far shorter than those of random nets. However, random nets with very short wiring 
lengths perform far worse than regular and modular nets of equivalent wiring lengths. This is due to 
the fact that random nets with short wiring lengths are too sparse and are not able to transmit 
accurately information for an accurate retrieval. So, too much sparseness prevents correct recalls. 
To sum up, modular architectures seem to offer the better trade-off for the generalization task. 
Using short wiring lengths, they generalize quite accurately, even with relatively sparse 
connectivities. 
 
In the ‘memory’ condition, the Hamming distances as a function of average degree are shown in 
Fig. 5. The important results are: First, the memory performance is better than the generalization 
performance for all the topologies. Second, as in the generalization task, independently of the 
topology, the higher is the average degree; the lower is the Hamming distance. In other words, too 
sparse connections impede a correct learning of the right attractors. Anyway, there is no need to use 
a full connectivity to achieve such a correct memorization; a relatively small average degree is 
sufficient to yield an accurate memorization. Third, random nets are better than regular lattices. 
Fourth, a small amount of random rewiring is sufficient to give results as good as those of totally 



random nets. Fifth, and this is the most important result, the modular architectures outperform 
random, regular, and small-world nets, especially with very small average degrees. Random, 
regular, and small-world networks need to have at least an average degree of 25-30 % of the 
number of neurons to give a reasonable performance. Modular architectures only need average 
degrees of 5-10 % of the number of neurons. The memory performance as a function of physical 
wiring length is shown in Fig. 6. This supports the preceding analysis. The modular architectures 
outperform all the other topologies. Even with incredibly short wiring lengths, they are able to 
correctly memorize patterns. 
 

5. Discussion 
 
The computer experiments seem to indicate that a relatively small amount of randomness in the 
rewiring process produces a performance qualitatively similar to the one of random networks. 
However, contrary to the Bohland et al.’s claims [1], the probability of random rewiring (between 
0.25 and 0.30) that gives a performance as good as random nets is far higher than the very low 
probabilities (between 0.001 and 0.1) needed to generate small-world memories. Actually, with a 
probability of 0.25, the characteristic path length is obviously decreased but the clustering 
coefficient dramatically dropped, too. This is not a feature of small-world networks, as stated by 
Watts and Strogatz. Most importantly, the results clearly indicate the advantage of modular 
architectures. Their performances are impressive, especially with very low levels of connectivity, 
and better than random networks, yet exhibiting much shorter physical wiring lengths and a 
clustered structure virtually absent in random nets. Finally, among the topologies we test in this 
paper, the modular architectures seem to nicely fit with available neuroanatomical evidence. Four 
potentially interesting issues seem to be open to pursue this project. 
 
First, instead of examining, by trail and error, some specific topologies, it would be potentially 
fruitful to see the issue as an optimization problem. We could examine how a network is growing 
by itself through its interactions with the learning environment. Genetic algorithms seem to offer a 
reasonable alternative to see whether topologies emerge from the scratch. Moreover, GA techniques 
could support the results presented here if modular architectures were the most fitted topologies for 
associative problems. 
 
Second, time might be come to unite trends interesting in those issues. Neuroanatomical research on 
cortical connectivity might expand its knowledge by borrowing recent concepts from random graph 
theories and the study of network dynamics. Cognitive science could also take advantage of these 
different approaches to understand cognitive processes such as concept learning and memory with 
more biologically plausible models. 
 
Third, modular architectures we model here have high clustering coefficients and short 
characteristic path lengths as the Watts and Strogatz’s small-world networks do. That indicates that 
the Watts and Strogatz’s model might not be the only way to generate small-world nets. Building a 
classification of different small-world graphs might be a worthy project for the future. In the same 
vein, modeling architectures with a power-law distribution of degrees might yield insightful ideas 
about how associative memories actually behave. 
 
Finally, the development of spiking neuron models and integrate-and-fire models to test the effects 
of connectivities might give insightful results on the way real brains process information. Moreover, 
given the focus on temporal synchronies in these models, the real physical distances between 
neurons certainly play a key role in the temporal coding of information. This would support the 
hypothesis of a bias towards short connections given their reliability and economy to transmit 
signals. 
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Figures1 
 
Fig.1. Hamming distances as a function of average degree with 20 % corrupted bits (generalization task) 
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Fig.2. Hamming distances as a function of average degree with 20 % corrupted bits (generalization task) 
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Fig.3. Hamming distances as a function of total wiring length with 20 % corrupted bits (generalization task) 

0

5

10

15

20

25

30

1 10 100 1000 10000

Wiring Length

H
am

m
in

g
 d

is
ta

n
ce sw1

sw2

sw3

random

regular

 

                                                 
1 In the figures, “sw1” means 10 % of random rewiring, “sw2” means 20 % of random rewiring, “sw3” means 30 % of 
random rewiring, “mod10” means 10 modules of 10 neurons, “mod20” means 20 modules of 5 neurons, and “mod25” 
means 25 modules of 4 neurons. 



Fig.4. Hamming distances as a function of total wiring length with 20 % corrupted bits (generalization task) 
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Fig.5. Hamming distances as a function of average degree with no corrupted bits (memory task) 
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Fig.6. Hamming distances as a function of total wiring length with no corrupted bits (memory task) 
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