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Abstract

Consider a decentralized agent-based approach for service location, where agents provide and con-
sume services, and also cooperate with each other by giving referrals to other agents. That is, the agents
form a referral network. Based on feedback from their users, the agents judge the quality of the services
provided by others. Further, based on the judgments of service quality, the agents also judge the quality
of the referrals given by others. The agents can thus adaptively select their neighbors in order to im-
prove their local performance. The choices by the agents cause communities to emerge. According to
our definition, an agent belongs to a community only if it has been useful to the other members of the
community in prior interactions regarding a particular topic. Hence, the membership in different com-
munities is determined based on relationships among the agents. This paper compares topic-sensitive
communities of the above kind with communities as studied in traditional link analysis. It studies the
correlation between the two kinds of communities as they emerge in referral networks and evaluates the
two kinds of communities in terms of their effectiveness in locating service providers.

1 Introduction

The study of networked communities is natural. Since communities exist in the physical world, it is to be
expected that they will emerge in the virtual world as well. On the Web, communities can help us identify
interesting and important sites and topics. They can help us fine-tune the experience of each user by giving
us a basis for making recommendations [Zhong et al., 2002]. For these reasons, social network analysis and
community mining have garnered much research attention lately.

In order to understand existing results as well as to evaluate different approaches, it is important to under-
stand communities from a computational standpoint. Three main definitions of community are commonly
used. These are all graph based, but the vertices and edges are interpreted differently in each.

� Sociology. The original definition comes from social network analysis in sociology [Wasserman and
Faust, 1994; Scott, 1991]. The idea here is to understand social relationships of various kinds among
people and to analyze those relationships to determine the communities in which they participate.
The relationships between people are a given—they are determined by sociologists, e.g., through
ethnographic studies. That is, the vertices are people and the edges are the social relationships (e.g.,
kinship or friendship) observed between them.

� Static link analysis. Recently, several approaches have been developed to mine communities from
Web pages [Kumar et al., 1999; Flake et al., 2002]. These approaches view populations as graphs in
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which the edges are unlabeled and do not change (within the model). The vertices are Web pages and
the edges are hyperlinks from one page to another. A hyperlink from page � to page � is assumed
to be an endorsement from the author of page � to page � . There is no semantics of the links.
Communities are defined as patterns of self-similarity as in co-citations. Large corpora of pages can
thus be mined centrally to determine communities.

� Referrals and adaptivity. These approaches consider interactions among agents (or the people they
might represent) [Huhns et al., 1987; Kautz et al., 1997; Singh et al., 2001]. The agents maintain
models of each other and help each other find other useful agents by giving referrals. The agents
potentially learn about each and adaptively decide which other agents they wish to consider their
neighbors. Thus a system of interacting agents can be viewed as an evolving social network [Well-
man, 2001]. As a graph, its vertices are the agents and edges represent the neighborhood relation.
Communities can then be defined from these social networks.

The rest of this paper is organized as follows. Section 2 studies communities in more depth, with an analysis
of link-based community mining. Section 3 describes our referrals-based framework. Section 4.2 explains
our approach for mining communities and introduces metrics for evaluating effectiveness of communities.
Section 4 evaluates our approach by comparing it to a related approach. Section 5 discusses the relevant
literature and motivates directions for further work.

2 Understanding Communities

From a computational standpoint, it is important to understand the potential applications of communities.
There are two main classes of applications.

� Endogenous. The members of a community use the community to find services (including information
services). That is, the participants use a community somewhat as people might use their personal
network to decide what movie to watch or what house to buy. Their personal network involves a part
of the social network that is closely related to them. Since the boundaries of communities in real
life are amorphous, the participants may not be, do not need to be, and usually are not aware of the
specific community from which they happen to benefit.

� Exogenous. The community structure is used to make recommendations. For example, a recom-
mender system might use some features of a community to which a user belongs to recommend a
movie for the user to watch. Conversely, the recommendations might be made to the providers of
services so they can fine-tune their offerings for a particular community.

Let’s now consider how the above classes of research on communities would function in the context of the
above kinds of applications of communities.

The sociological work is not directly applicable in Web-based settings, because the underlying social re-
lationships are not explicit. However, if the underlying relationships can be acquired or inferred, it provides
a useful intellectual basis for the computational work. Specifically, sociologists have defined various metrics
to measure socially relevant properties of graphs, which can be adapted for analysis of computational com-
munities. An important result here, from our perspective, is of the empirically observed strength of weak ties
[Granovetter, 1973]. Weak ties are distant social relationships (i.e., acquaintanceship rather than friendship),
but prove effective in various purposes of matchmaking or locating information or services—e.g., helping
people find jobs.
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Link analysis operates on mined Web pages and so has access to millions of pages. Excellent algorithms
have been developed, generally based on assuming a “social” relationship among pages that link to the same
pages. However, these approaches have a soft underbelly: the lack of semantics. In simple terms, connection
between a link on one’s page and a social relationship is tenuous at best. For this reason, although graph
structures can be extracted, it is not automatically obvious that these structures correspond to communities
as we would intuitively consider them.

Link-based definitions of communities use a form of co-citation. Perhaps the best known of the existing
approaches is that of Kumar et al. [1999]. This is reminiscent of hubs and authorities in Hyperlink Induced
Topic Search (HITS), a well-known Web page ranking technique [Kleinberg, 1999]. The HITS algorithm
assigns an authority and a hubness value to each node in the graph. A node has high authoritativeness
if nodes with high hubness values point to it. Similarly, a node has a high hubness value if it points to
authoritative nodes. Reflecting a similar intuition, Kumar et al. define communities in terms of related
sets of fans, which ideally point at lots of centers, and centers, which are ideally pointed to by lots of fans.
Kumar et al. propose that any community structure should contain a bipartite core where the fans and centers
constitute the two independent sets. If all � fans point to a set of � centers, then they are likely to share a
common topic and therefore be a community. Especially in the case of high � and � , the likelihood of being
a community is assumed to be higher. In addition, all other nodes that are pointed by the fans, and all the
nodes that point to at least two centers are added. In their experiments, Kumar et al. use (3,3) bipartite cores.
For example, in the graph in Figure 1, the nodes

�
to � could denote a community, where the nodes

�
to � are

the fans, and the nodes � to � are the centers. These nodes constitute the bipartite core (shown in solid lines).
The node � is added because it points to two centers ( � and � ) and the node � is added because it is pointed
to by a fan (

�
). These expansions are shown in dotted lines. Even though there is a link between nodes �

and 	 , node 	 is not added to the community. We refer to these communities as bipartite communities.
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Figure 1: Nodes
�

to � form a bipartite community

The following are some of the limitations of link analysis as a basis for applying communities:

� The semantics of the links between the nodes is not defined. Consider three consumers (nodes
�

to
� ) interested in distinct three domains. Each one of them chooses the same three service providers
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(nodes � to � ), each of whom provides a service in one domain. They form a bipartite core since
all the consumers point at all these three providers. It is not clear why this structure would denote a
community, when the three service providers are not even providing the same service.

� Co-citation as a relationship almost seems to be incidental among the parties so related, whereas one
would expect that socially related parties to potentially traverse the network to each other. With co-
citation the participants are not aware of each other. For example, nodes � and � may not know they
are in the same community. Thus the endogenous applications are ruled out.

� The structures may be interpreted differently in different settings. For example, consider the two
application domains discussed in Section 3.1. An independent set of service providers is common in
commerce: the service providers are not looking for services themselves, so they do not point to each
other. In knowledge management, on the other hand, every agent is potentially looking for services
(i.e., knowledge in this case). Having an independent set of agents can have several implications, such
as different evaluation of services, being unaware of each other, and so on. Hence, the structures alone
may not be sufficient to accurately represent communities.

� Conceptually, communities are discovered in a central manner. This indicates a grave risk of vio-
lating the privacy of the potential participants. Clearly, mining can work best for only static Web
pages, which the participants have made available publicly. Each link is interpreted as an endorse-
ment. However, this approach fails to apply when participants decide not to reveal their endorsements
publicly. Conversely, the beneficiary of any recommendation may prefer these from the parties of
which it knows.

Because of the above limitations, we advocate the referrals-based approach. Like the sociological ap-
proach, the referrals-based approach considers interactions among the agents participating in a community.
The agents help one another and evaluate each other’s effectiveness. Good interactions reinforce their social
relationships and bring them closer, whereas bad interactions weaken their social relationships. The agents
decide with whom to interact. Intuitively, agents base their decisions on specific feedback or generic policies
set by their users, but in terms of its interactions with other agents, each agent is autonomous.

We imagine that the agents are interested in locating suitable service providers. The agents initially
request their neighbors for a suitably described service. A queried agent may (1) offer to provide a service
in response to the request, (2) give referrals to some of its neighbors, or (3) ignore the request. A requesting
agent may follow some of the referrals it receives and ultimately select a service provider. Thus, in essence,
an agent explores its social network. Yu and Singh show that an adaptive referrals-based approach is superior
for searching a social network constructed from coauthorship data [2003].

The referrals approach has some natural advantages:

� Because agents maintain models of others, they are able to annotate their links to other agents in terms
of those models. For example, an agent � may believe that � is the best source for information on
travel and � is the best source for information on cooking.

� Referrals are generated dynamically. Thus, instead of merely looking at a static Web page, we can
model computations wherein (as it were) the page is produced on demand. The responder (acting
as the producer of a Web page) can consider its relationship with the requestor in deciding how to
respond. Importantly, the referrals approach, because it involves requests among the participants,
can apply on the so-called Deep Web [Raghavan and Garcia-Molina, 2001; Singh, 2002], whereas a
conventional mining approach would apply only to the static Web.
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Intuitively, link analysis definitions prove to be neither necessary nor sufficient to describe real communities.
No formal community needs to be identified for an agent to function correctly. Communities emerge around
each agent. Each agent automatically exploits them and evolves them as it goes about its business. No
central authority need know what the communities are. However, in order to perform our analysis, we mine
the communities. Doing so enables us to compare our approach to the link analysis approach.

Comparing referrals approaches with link analysis in quantitative terms is potentially tricky, because
link analysis is applied on static Web pages, whereas referrals apply between agents providing and seeking
services. There is no widespread practical deployment of such service location schemes. However, a com-
parison is possible when we consider how links are created. Conventional models of the Web function at a
gross level, statistically applying some rule such as preferential attachment [Barabási et al., 2000]. But, in
fact, the creation of links on the Web is based on micro evaluations and decisions by independent players.
This process of neighbor selection is mimicked well by adaptive referrals.

This paper accordingly proceeds with the following methodology. We simulate a referral network in
which the agents evolve a social network. From this network, we can infer link-analysis communities as
well as referrals-based communities. We must introduce our technical framework before giving the details,
but our main results are as follows. One, the two kinds of communities are mutually uncorrelated. Two,
referral-based communities yield greater utility both for endogenous and exogenous applications.

3 Technical Framework

The agents in a referral network act in accordance with the following abstract protocol. An agent begins to
look for a trustworthy provider for a specified service. The agent queries some other agents from among its
neighbors. A queried agent may offer to provide the specified service or may give referrals to other agents.
The querying agent may accept a service offer, if any, and may pursue referrals, if any. Each agent maintains
models of its acquaintances (i.e., agents that it interacts with), which describe their expertise (i.e., quality of
the services they provide) and sociability (i.e., quality of the referrals they provide). Both of these elements
are learned based on service ratings from its principal. Using these models, an agent applies its neighbor
selection policy to decide which of its acquaintances to keep as neighbors. Key factors include the quality of
the service received from a given provider, and the resulting value that can be placed on a series of referrals
that led to that provider. In other words, the referring agents are rated as well. An agent’s own requests go
to some of its neighbors. Likewise, an agent’s referrals in response to requests by others are also given to
some of its neighbors, if any of them match a given request. The neighborhood relation among the agents
induces the structure of the given society. In general, as described above, the structure is adapted through
the decisions of the different agents.

3.1 Applicable Domains

The above framework enables us to represent different application domains naturally. Two important do-
mains are commerce and knowledge management, which have differ in their notions of service and how the
participants interact.

In a typical commerce setting, the service providers are distinct from the service consumers. The service
consumers lack the expertise in the services that they consume and their expertise doesn’t get any better over
time. However, the consumers are able to judge the quality of the services provided by others. For example,
you might be a consumer for auto-repair services and never learn enough to provide such a service yourself,
yet you would be competent to judge if an auto mechanic did his job well. Similarly, the consumers can
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generate difficult queries without having high expertise. For example, a consumer can request a complicated
auto-repair service without having knowledge of the domain.
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Figure 2: A schematic configuration for e-commerce

By contrast, in knowledge management, the idea of “consuming” knowledge services would correspond
to acquiring expertise in a given domain. A consumer might lack the ability to evaluate the knowledge
provided by someone who has greater expertise. However, agents would improve their knowledge by asking
questions; thus their expertise would increase over time. Following the same intuition, the questions an agent
generates would also depend on its expertise to ensure that the agent doesn’t ask a question whose answer it
already knows.

Figure 2 is an example configuration of service consumers and providers that corresponds to a com-
merce setting. The nodes labeled � denote consumers and the nodes labeled � denote service providers.
Consumers are connected to each other as well as to the service providers. These links are essentially paths
that lead to service providers with different expertise. In this model, the service providers are dead ends:
they don’t have outgoing edges, because they don’t initiate queries or give referrals. Thus, their sociability
stays low. Their true and modeled expertise may of course be high.

3.2 Evaluation Architecture

We have implemented a distributed platform using which adaptive referral systems for different applications
can be built. However, we investigate the properties of interest over a simulation, which gives us the nec-
essary controls to adjust various policies and parameters. The simulation involves ����� agents: � % of them
are service providers, and the remaining agents are service consumers looking for providers. Consumers
have high interest in getting different types of services, but they have low expertise, since they don’t offer
services themselves. Providers have high expertise but low sociability. The interests and expertise of the
agents as well as their modeled sociability are multidimensional and are represented as term vectors in the
vector space model (VSM), well-known from Information Retrieval [Salton and McGill, 1983]. Each term
corresponds to a different domain. The simulation uses these vector to generate queries and answers for the
various agents.

Each agent is initialized with the same model for each neighbor; this initial model encourages the agents
to both query and generate referrals to their neighbors. An agent that is generating a query follows Algo-
rithm 1. An agent generates a query by slightly perturbing its interest vector, which denotes that the agent
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Algorithm 1 Ask-Query()
1: Generate query
2: Send query to matching neighbors
3: while (!timeout) do
4: Receive message
5: if (message.type == referral) then
6: Send query to referred agent
7: else
8: Add answer to answerset
9: end if

10: end while
11: for ��� �

to � answerset � do
12: Evaluate answer( � )
13: Update agent models (expertise & sociability)
14: end for

asks a question similar to its interests (line 1). Next, the agent sends the query to a subset of its neighbors
(line 2). The main factor here is to determine which of its neighbors would be likely to answer the query.

An agent that receives a query acts in accordance with Algorithm 2. An agent answers a question if
its expertise matches a question. If the expertise matches the question, then the answer is the perturbed
expertise vector of the agent. When an agent does not answer a question, it uses its referral policy to decide
which of its neighbors, if any, to include in referrals to the requesting agent.

Algorithm 2 Answer-Query()
1: if hasEnoughExpertise then
2: Generate answer
3: else
4: Generate referrals to neighbors
5: end if

Back in Algorithm 1, if an agent receives a referral to another agent, it sends its query to the referred
agent (line 6). After an agent receives an answer, it evaluates the answer by computing how much the
answer matches the query (line 12). Thus, implicitly, the agents with high expertise end up giving the
correct answers. After the answers are evaluated, the agent updates the models of its neighbors (line 13).
When a good answer comes in, the modeled expertise of the answering agent and the sociability of the agents
that helped locate the answerer (through referrals) are increased. Similarly, when a bad answer comes in,
these values are decreased. At certain intervals during the simulation, each agent has a chance to choose
new neighbors from among its acquaintances. Usually the number of neighbors is limited, so if an agent
adds some neighbors it might have to drop some neighbors as well.

Example 1 Figure 3 shows an example network, where the nodes denote agents. Agent
�
’s neighbors are

agents � and � , agent � ’s neighbors are agents � and � , and agent � ’s neighbors are agents � and � . Agent
�

poses its query to its neighbors, agents � and � . Agent � provides an answer, while agent � gives a referral
to one of its own neighbors, agent � . Agent

�
then sends its query to agent � . Even though Figure 3 shows

only � agents, our actual experiments contain ����� agents.
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Figure 3: An example search through referrals

4 Results

We evaluate our approach by comparing it to bipartite communities. To generate bipartite communities, we
find bipartite cores of size (6,3). We expand each core by adding all the nodes pointed by the fans and all
the nodes that point to at least two centers. Then, we run the HITS algorithm (mentioned in Section 2) to
find the authorities and hubs. A node has high authoritativeness if nodes with high hubness values point to
it. Similarly, a node has a high hubness value if it points to authoritative nodes.

4.1 One-size doesn’t fit all

We study the authorities of a community in terms of how well they serve the query needs of the community
members. For a bipartite community, we rank the members based on their authority from the HITS algo-
rithm. From the community, we make five agents generate queries and pose them to the top four authorities
in the given community. For a referrals-based community, we make the agents look for answers to the same
queries through a referral process, as shown in Figure 4.

Figure 5 plots the number of good answers for each agent. Four of the five agents get more good answers
by following referrals, than by posing their query to the authorities. The last agent gets an equal number of
answers with both approaches. The striking, but perhaps obvious, result here is that the authorities identified
by link-based methods are not always effective for individual needs. That is, authorities chosen by others
may not serve the needs of every agent. Further, when agents follow referrals from their personal network,
they can find more useful answers than otherwise. Agents choose their neighbors based on their previous
interactions. A neighbor of an agent has either given good answers or useful referrals. Hence, by following
referrals from its neighbors, each agent finds more answers that suit its needs.

This is an especially important result for endogenous settings, where the community is used by the
members (as opposed to by external entities) to find desired services. Naturally, how easily agents find
useful providers is affected by the agents’ own policies [Yolum and Singh, 2003].
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Figure 4: Consider the community of Figure 1. After running HITS, agents � and � are found to be authori-
ties. In the case for bipartite communities, agent

�
generates a query and asks it to � and � . For the referral

communities, it asks the query to its choice of neighbors; in this case only to agent � who gives a referral to
agent 	 (bold lines).
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Figure 5: Comparison of good answers for � agents
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4.2 Community Mining

For endogenous applications, communities can be used without being mined. In general, as we explained
above, considerations of privacy preclude the mining of communities by a central entity. That is, most users
will not be willing to expose their links publicly to a search engine to reveal to others; instead, users will
often just give referrals to suitably trusted parties.

However, there are two reasons why communities may be mined. First, communities would need to
be mined for purely scientific purposes, specifically, to compare our approach to bipartite communities.
Second, in some environments (e.g., in trusted enterprise settings), it may be possible to mine communities
for certain exogenous applications.

Based on the above motivations, we now present an approach for mining referral communities in a
manner that facilitates comparison with bipartite communities. In mining communities, especially referral
communities, two properties are worth considering.

� Communities may not have clear-cut boundaries. Previous approaches view communities as crisp
structures in that an agent is either a member of a community or not. On the other hand, a community
may have many members who differ in their level of belonging to the community. Accordingly, our
approach is based on ranking members of a community based on their level of membership. An agent
may belong to several communities in varying levels.

� Strength of the links matter. For instance, in some cases, to conclude that the agent is part of a
community, it might be enough to show that it has one strong link to a member of a community,
whereas if the agent has weaker links to the community members, more links might be required.

We consider mining communities of service consumers for different domains. As an example consider
the travel domain. There are several travel agents represented as service providers. Some service consumers
are interested in finding travel agents and query other service consumers to locate the providers. The service
consumers who help find the travel agents are found to be sociable by the travelers, since the sociable
agents’ referrals help in locating the providers. Since sociable agents are more influential in locating the
service providers, we use sociability of the agents to rank their involvement in the community. A consumer
belongs more to a community if more consumers find it to be sociable. Note that sociability is subjective.
For instance, agent � may view agent � as sociable, whereas a third agent may not. When this is the case,
the agent who is part of the community has a bigger say. In other words, if � is part of the community,
it can judge � ’s contribution better than someone outside the community, or someone less involved in the
community. In this regard, members of the community decide who should be in the community. This
recursive definition is inspired by the PageRank algorithm.

PageRank. PageRank is a metric used by Google to rank Web pages that are returned for a query [Brin and
Page, 1998]. The PageRank of a Web page measures its authoritativeness. Informally, a Web page has a high
PageRank only if it is pointed to by Web pages with high PageRanks, i.e., if other authoritative pages view
this page as authoritative. We use the same metric to measure the authoritativeness of agents. The PageRank
of an agent is calculated using Equation 1, where ��� ��� denotes the PageRank of agent � , ��� denotes agents
that have � as a neighbor, and �
	 denotes the agents that are neighbors of � . The PageRanks are normalized
using a constant � , where � is taken to be �� � � as in the original paper [Brin and Page, 1998].

��� ��� �����	������
�������
� ��	 ��� � ��� � � (1)
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Referral Communities. The PageRank calculations for the Web are performed on a directed unlabeled
graph. Here, we build on this idea to mine communities. As mentioned above, the neighborhood relation
among the agents induces a directed graph, where each node denotes an agent. An edge ��������� exists if agent
� values agent � ’s expertise, sociability, or both. This valued expertise or sociability may be in one or more
domains. First, the graph structure is enhanced by adding labels to the edges of the graph, where the label
on an edge ������� � denotes agent � ’s sociability from agent � ’s point of view (in our notation, this is ���
	 � )
for one domain. Agent � may model agent � ’s sociability for different domains. In other words, agent �
might find agent � sociable for one domain, but not sociable for many other domains. The edges are labeled
with the sociability values because sociability denotes how useful the other agent has been for locating
services. Second, the sociability rank for each agent is calculated per domain as given in Equation 2. Below,
� � ��� denotes the sociability rank of agent � , � � denotes agents that have agent � as a neighbor, � 	 denotes
neighbors of agent � , � 	�	  denotes the sociability of

�
for � .

� � ��� ��� �	������ � � ��� ���
��	�	 ��

 ����� � 	�	  � � � ��� � � (2)

In PageRank calculations, at each iteration, each node distributes its PageRank to its neighbors equally.
Here, on the other hand each agent distributes its sociability rank based on the sociability weights on the
edges.

Example 2 Consider an agent � with neighbors � , � , and � such that � 	�	 � � �� � , � 	�	  � �� � , and � 	�	 � � �� � .
Then, � will contribute ��� �

��� ������� ������� �
� �� � � to � ’s sociability rank, whereas only ��� �

��� ������� ������� �
� �� � � to

�
and

� each.

The above definition of communities captures two important notions. One, members of the communities
decide on the other members. Two, the members are chosen based on how helpful they have been to others.
This implies that an agent may belong to a community more than a second agent even though both agents
have the same neighbors.
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Figure 6: Agent
�

is ranked higher than agent �
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Example 3 The graph in Figure 6 shows part of a referral network, where agents
�

and � are pointing at
the same set of agents � , � , and � . However, agent

�
is being pointed to by more agents because it has

been found sociable by more agents. Therefore, the ranking of agent
�

is higher than that of agent � , which
denotes that agent

�
is more in the community than agent � .

Whereas bipartite communities have a bipartite core, referral communities do not have any predefined
structure. Unless the communities are mined, the members of the communities would not know the whole
structure of the community. That is, each agent would follow referrals from its neighbors to locate useful
agents. However, it would not specifically be able to identify the community from which it has benefitted.
If information about each agent’s neighbors is combined in a central repository, then the communities can
be mined. Different mined communities may have different structures.

4.3 Correlation

Since the communities are targeted for locating services, the nodes with high hubness values are expected
to be most useful to others. For this reason, we use the hubness values to rank the nodes of a bipartite
community. While a bipartite community is a subset of the population, a referral community is a ranking
of all the members of the population. When comparing a bipartite community with a referral community,
the community size � is taken to be the size of the bipartite community found. The top � agents from the
ranking of a referral community is then taken for comparison.

First, we calculate the correlation between communities found by both approaches using Spearman
correlation, given in Equation 3 [Kendall, 1975]. Below, � and � denote two communities, consisting of
the same members. � � and � � denote the rank of agent � in communities � and � , respectively, and �
denotes the size of the communities.

A correlation value of
�

shows that the members of the communities are ranked the same in both ap-
proaches, whereas a correlation value of

� �
shows that the members of the two communities are ranked in

reverse order. Correlation values around � denote that the rankings are not correlated.

� � � ��� � � � � �
�������� � ��� � � � � �

� � � �
� � � (3)

To reduce manual work, we arbitrarily choose
� � communities for further comparison. The chosen

communities vary in size such that the smallest community has � � members and the largest community has
� � � members (out of possible ����� agents). The average correlation among the communities is

� �� � � , with
the correlation values varying from

� �� � to
� �� 	 . The fact that there is no positive correlation between the

communities means that the rankings of the two communities do not agree. Based on preliminary studies on
the distribution of the correlations, we conjecture that as the size of the communities increase, the ranking
of the communities become less correlated; i.e., the absolute value of � � � ��� � approaches � .

4.4 Utility

We evaluate the effectiveness of a community through its utility in finding service providers.

Capability. The capability of an agent for another agent measures how similar and how strong the expertise
of the agent is for the second agents’ interests [Singh et al., 2001]. Capability resembles cosine similarity
but also takes into account the magnitude of the expertise vector. That is, expertise vectors with greater
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magnitude are more capable for the given interest vector. In Equation 4, � ( � � �    � ��� ) is an interest vector,�
( ��� �   �� ��� ) is an expertise vector and � is the number of dimensions these vectors have.

�	� � �
� �


��� � � 
 � 
 ��
�
���


��� �


�

(4)

Utility. The PageRank of a node depends only on its incoming edges, but ends up considering paths of
length greater than one. In HITS, the hubness value of a node depends on its outgoing edges whereas the
authority value of a node depends on its incoming edges. Although long undirected paths may be considered,
the directed paths are limited to length of one. Hubs may have low authority values, and a hub that points at
a hub gets credit only for the authority value of the hub being pointed at.

The utility of an agent denotes how easily it can access the information it needs. Like the HITS hubness
value and unlike PageRank, the proposed utility metric considers the outgoing edges of an agent. Unlike
HITS and like PageRank, it applies recursively. Unlike either of them, it is grounded via the capability
metric introduced above. Further, whereas both HITS and PageRank ignore the strength of a link, utility
works with edge weights, which capture the strength of a link. Edge weights are not obvious in traditional
Web settings and traditional approaches (especially PageRank) implicitly assume that all outgoing edges
are equally valuable. However, in a referral system, edge weights are learned by the agents and determine
which edges would actually be followed.
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Figure 7: An example network labeled with utility values

Equation 5 is used to calculate the utility of an edge, � ��	 	 . An edge has a high utility, if (1) the outgoing
edges lead to service providers whose expertise match the agent’s interests or (2) if the edges lead to other
agents with high values. The first part of the equation is straightforward as defined by the capability metric.
For the second part, the agent � can lead to high-valued agents by giving a referral to a agent

�
among its

neighbors. Intuitively, agent � will give a referral to the agent that provides most utility to agent � itself; i.e.,
the agent

�
that maximizes the utility of � 	�	  . The usefulness of

�
for � is then calculated again by � ��	  . In

other words, � will contribute to � by providing answers � ���� � 	 � or by giving a referral. The utility of an
agent is then defined as the sum of the utilities of its outgoing edges.

� ��	 	 ����� � ��� � 	 � � � � � ����� ��	  (5)

where � ������������� ��� 	�	  � ��� �! � 	 (6)
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Example 4 Consider the example in Figure 7 where the labels denote the utility of the edges and solid lines
denote neighborhood relations. To calculate the utility of edge � � � � � � ��	 � , first � � � � � is calculated. Among
agent � ’s neighbors, agent � yields highest utility since the edge � � � � � has the highest utility. Hence, if agent

� cannot answer agent
�
’s query, it would give a referral to agent � . The contribution of agent � to agent

�
is

then � ��	 � . Hence, � ��	 � � � � � � � �
� � � � � � � ��� ��	 � .

We compare referral and bipartite communities in terms of their total utility (Equation 5). Figure 8
gives a histogram of this comparison. The � axis shows the communities, labeled with letters ( � through�

). The � axis shows the total utility of the communities. The solid lines denote bipartite communities
and the dashed lines denote referral communities. Nine of the referral communities outperform bipartite
communities in their utility. Only referral community � receives a slightly worse utility than the bipartite
community.
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Figure 8: Comparison of utilities for some example communities

An agent with a high utility is either close to an expert, or close to another agent who will give a referral
to the expert. Thus, the communities with higher utility can locate service providers more easily. Finding
higher utility communities is especially important for exogenous applications [Domingos and Richardson,
2001]. For example, if a service provider is promoting a new product, the set of customers that are likely to
use it are the ones that can actually locate the provider in the first place. Hence, the new product should be
targeted to the community that yields the higher utility in terms of locating providers.

5 Discussion

The main difference between bipartite and referral communities lies in the importance assigned to referrals.
Intuitively, it is only natural that referrals would prove valuable in a distributed environment. However, the
practical payoffs are not obvious. This paper makes the following contributions. First, in Section 4.1, we find
that when referrals are considered, more good answers are found. Second, in Section 4.4, based on the same
motivation, we compare communities based on utility. Utility recursively captures the value of different
members to each other. Because members in referral communities are selected based on their usefulness in
providing answers or referrals, referral communities yield greater utility. Further, we develop an approach
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to compare bipartite communities with referral communities. We also show that the communities are not
correlated with respect to the importance they assign to different members.

Next, we review some related literature. In real life, people use referrals to seek information [Nardi et al.,
2000]. This is an important motivation for referral systems. Multiple Intelligent Node Document Servers
(MINDS) was the earliest agent-based referral system [Huhns et al., 1987]. Each node in the MINDS system
is allocated a set of documents. Nodes help each other find documents in the network. Gradually, nodes
learn how the documents are distributed in the network as well as the relevance preferences of individual
users.

Kautz et al. develop ReferralWeb, an application that mines documents on the Web to uncover the social
network of people [1997]. This social network is then used to find paths between any two people. Whereas
the ReferralWeb models the relationships statically, we can model the relationship of agents dynamically by
allowing them to adapt through neighbor changes.

Yu and Singh study referral networks in the context of scientific collaborations [2003]. They show that
increasing neighbor set size and referral graph depth improve the accuracy of locating agents. Yu and Singh
use weighted graphs to maintain referrals received for a single query. The nodes as well as the edges of the
graphs are given weights, based on how valuable they are to the query originator. Yu and Singh develop an
algorithm to minimize referral graphs such that agents follow only the most promising referrals.

The literature on social networks [Wasserman and Faust, 1994; Scott, 1991] views communities as
cohesive subgroups. It takes three directions to find communities. The first set of approaches exploit the
reachability of subgroup members. The main idea is that members of the subgroup should be able to reach
each other in as few steps as possible. The second set of approaches exploit the frequency of ties among
members, such that removing any member of the subgroup should affect the connectedness of the subgroup
as little as possible. The third set of approaches focus on the frequency of ties among the subgroup members
versus the frequency of the ties to nonmembers.

The intuition for this last set of approaches underlies Flake et al.’s definition of a web community [2002].
Flake et al. define a web community as a collection of Web pages where each page has more links to the
members of the community than to pages outside. They model the graph as a maximum flow problem, as
follows. First, some seed pages are assumed to be in the community. These pages form the source of the
maximum flow. A set of portal sites (such as Yahoo!, because of their high in-degree) are then connected
into a virtual sink node. The minimum cut of the graph separates a community from the rest of the graph
and the component that contains the source nodes constitute the community. There are two major drawbacks
to defining communities this way. First, by this definition, each page can only belong to one community.
Second, even if a page has only one link to a community and no links to pages outside the community, it is
considered part of the community, although its connection to the community may be tenuous at best.

Alani et al. develop a method to identify communities of practice based on traversing ontologies [2003].
The relations in the ontologies are assigned a weight (automatically or manually) and the ontology is tra-
versed for a specified number of links in the relations graph. Each node has a default weight that is updated
based on the weights of its incoming edges. The nodes are then ranked based on their final weights.

The main advantages of our approach are that it seeks to capture intuitions behind communities in a
direct manner, preserves the privacy of the participants, lets them to decide how to value endorsements, and
enables endogenous applications. Our approach provides opportunities for further research. In future work,
we plan to consider richer sociological ideas such as the ones in social networks as well as compare our
approach to other definitions of Web communities.
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