
Learning Consumer Preferences Using Semantic
Similarity ∗

Reyhan Aydoğan
reyhan.aydogan@gmail.com

Pınar Yolum
pinar.yolum@boun.edu.tr

Department of Computer Engineering
Boğaziçi University

Bebek, 34342, Istanbul,Turkey

ABSTRACT
In online, dynamic environments, the services requested by con-
sumers may not be readily served by the providers. This requires
the service consumers and providers to negotiate their service needs
and offers. Multiagent negotiation approaches typically assume
that the parties agree on service content and focus on finding a
consensus on service price. In contrast, this work develops an ap-
proach through which the parties can negotiate the content of a ser-
vice. This calls for a negotiation approach in which the parties
can understand the semantics of their requests and offers and learn
each other’s preferences incrementally over time. Accordingly, we
propose an architecture in which both consumers and producers
use a shared ontology to negotiate a service. Through repetitive
interactions, the provider learns consumers’ needs accurately and
can make better targeted offers. To enable fast and accurate learn-
ing of preferences, we develop an extension to Version Space and
compare it with existing learning techniques. We further develop
a metric for measuring semantic similarity between services and
compare the performance of our approach using different similar-
ity metrics.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Experimentation

Keywords
Negotiation, Inductive Learning, Ontology, Semantic Similarity

∗This research is supported by Boğaziçi University Research Fund
under grant BAP06A103 and Turkish Research and Technology
Council CAREER Award under grant 105E073. This paper signif-
icantly extends a previous version that appeared in AAMAS 2006
BASeWEB Workshop. We thank Levent Akın, Çetin Meriçli, Na-
dia Erdoğan, and the anonymous reviewers for helpful comments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

1. INTRODUCTION
Current approaches to e-commerce treat service price as the pri-

mary construct for negotiation by assuming that the service content
is fixed [9]. However, negotiation on price presupposes that other
properties of the service have already been agreed upon. Neverthe-
less, many times the service provider may not be offering the exact
requested service due to lack of resources, constraints in its busi-
ness policy, and so on [3]. When this is the case, the producer and
the consumer need to negotiate the content of the requested service
[15].

However, most existing negotiation approaches assume that all
features of a service are equally important and concentrate on the
price [5, 2]. However, in reality not all features may be relevant and
the relevance of a feature may vary from consumer to consumer.
For instance, completion time of a service may be important for one
consumer whereas the quality of the service may be more important
for a second consumer. Without doubt, considering the preferences
of the consumer has a positive impact on the negotiation process.
For this purpose, evaluation of the service components with differ-
ent weights can be useful. Some studies take these weights as a
priori and uses the fixed weights [4]. On the other hand, mostly
the producer does not know the consumer’s preferences before the
negotiation. Hence, it is more appropriate for the producer to learn
these preferences for each consumer.

Preference Learning: As an alternative, we propose an archi-
tecture in which the service providers learn the relevant features
of a service for a particular customer over time. We represent ser-
vice requests as a vector of service features. We use an ontology
in order to capture the relations between services and to construct
the features for a given service. By using a common ontology, we
enable the consumers and producers to share a common vocabu-
lary for negotiation. The particular service we have used is a wine
selling service. The wine seller learns the wine preferences of the
customer to sell better targeted wines. The producer models the
requests of the consumer and its counter offers to learn which fea-
tures are more important for the consumer. Since no information is
present before the interactions start, the learning algorithm has to
be incremental so that it can be trained at run time and can revise
itself with each new interaction.

Service Generation: Even after the producer learns the important
features for a consumer, it needs a method to generate offers that
are the most relevant for the consumer among its set of possible
services. In other words, the question is how the producer uses the
information that was learned from the dialogues to make the best
offer to the consumer. For instance, assume that the producer has
learned that the consumer wants to buy a red wine but the producer
can only offer rose or white wine. What should the producer’s offer

1293

978-81-904262-7-5 (RPS) c©2007 IFAAMAS

contain; white wine or rose wine? If the producer has some domain
knowledge about semantic similarity (e.g., knows that the red and
rose wines are taste-wise more similar than white wine), then it can
generate better offers. However, in addition to domain knowledge,
this derivation requires appropriate metrics to measure similarity
between available services and learned preferences.

The rest of this paper is organized as follows: Section 2 explains
our proposed architecture. Section 3 explains the learning algo-
rithms that were studied to learn consumer preferences. Section 4
studies the different service offering mechanisms. Section 5 con-
tains the similarity metrics used in the experiments. The details of
the developed system is analyzed in Section 6. Section 7 provides
our experimental setup, test cases, and results. Finally, Section 8
discusses and compares our work with other related work.

2. ARCHITECTURE
Our main components are consumer and producer agents, which

communicate with each other to perform content-oriented negotia-
tion. Figure 1 depicts our architecture. The consumer agent repre-
sents the customer and hence has access to the preferences of the
customer. The consumer agent generates requests in accordance
with these preferences and negotiates with the producer based on
these preferences. Similarly, the producer agent has access to the
producer’s inventory and knows which wines are available or not.

A shared ontology provides the necessary vocabulary and hence
enables a common language for agents. This ontology describes
the content of the service. Further, since an ontology can represent
concepts, their properties and their relationships semantically, the
agents can reason the details of the service that is being negotiated.
Since a service can be anything such as selling a car, reserving a
hotel room, and so on, the architecture is independent of the ontol-
ogy used. However, to make our discussion concrete, we use the
well-known Wine ontology [19] with some modification to illus-
trate our ideas and to test our system. The wine ontology describes
different types of wine and includes features such as color, body,
winery of the wine and so on. With this ontology, the service that
is being negotiated between the consumer and the producer is that
of selling wine.

The data repository in Figure 1 is used solely by the producer
agent and holds the inventory information of the producer. The
data repository includes information on the products the producer
owns, the number of the products and ratings of those products.
Ratings indicate the popularity of the products among customers.
Those are used to decide which product will be offered when there
exists more than one product having same similarity to the request
of the consumer agent.

The negotiation takes place in a turn-taking fashion, where the
consumer agent starts the negotiation with a particular service re-
quest. The request is composed of significant features of the ser-
vice. In the wine example, these features include color, winery and
so on. This is the particular wine that the customer is interested in
purchasing. If the producer has the requested wine in its inventory,
the producer offers the wine and the negotiation ends. Otherwise,
the producer offers an alternative wine from the inventory. When
the consumer receives a counter offer from the producer, it will
evaluate it. If it is acceptable, then the negotiation will end. Oth-
erwise, the customer will generate a new request or stick to the
previous request. This process will continue until some service is
accepted by the consumer agent or all possible offers are put for-
ward to the consumer by the producer.

One of the crucial challenges of the content-oriented negotiation
is the automatic generation of counter offers by the service pro-
ducer. When the producer constructs its offer, it should consider

Figure 1: Proposed Negotiation Architecture

three important things: the current request, consumer preferences
and the producer’s available services. Both the consumer’s current
request and the producer’s own available services are accessible by
the producer. However, the consumer’s preferences in most cases
will not be available. Hence, the producer will have to understand
the needs of the consumer from their interactions and generate a
counter offer that is likely to be accepted by the consumer. This
challenge can be studied in three stages:

• Preference Learning: How can the producers learn about
each customer’s preferences based on requests and counter
offers? (Section 3)

• Service Offering: How can the producers revise their offers
based on the consumer’s preferences that they have learned
so far? (Section 4)

• Similarity Estimation: How can the producer agent estimate
similarity between the request and available services? (Sec-
tion 5)

3. PREFERENCE LEARNING
The requests of the consumer and the counter offers of the pro-

ducer are represented as vectors, where each element in the vector
corresponds to the value of a feature. The requests of the consumers
represent individual wine products whereas their preferences are
constraints over service features. For example, a consumer may
have preference for red wine. This means that the consumer is
willing to accept any wine offered by the producers as long as the
color is red. Accordingly, the consumer generates a request where
the color feature is set to red and other features are set to arbitrary
values, e.g. (Medium, Strong, Red).

At the beginning of negotiation, the producer agent does not
know the consumer’s preferences but will need to learn them us-
ing information obtained from the dialogues between the producer
and the consumer. The preferences denote the relative importance
of the features of the services demanded by the consumer agents.
For instance, the color of the wine may be important so the con-
sumer insists on buying the wine whose color is red and rejects all

1294 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

Table 1: How DCEA works
Type Sample The most The most

general set specific set
+ (Full,Strong,White) {(?, ?, ?)} {(Full,Strong,White)}

{{(?-Full), ?, ? },
- (Full,Delicate,Rose) {?, (?-Delicate), ?}, {(Full,Strong,White)}

{?, ?, (?-Rose)}}
{{(?-Full), ?, ?}, {{(Full,Strong,White)},

+ (Medium,Moderate,Red) {?,(?-Delicate), ?}, {(Medium,Moderate,Red)}}
{?, ?, (?-Rose)}}

the offers involving the wine whose color is white or rose. On the
contrary, the winery may not be as important as the color for this
customer, so the consumer may have a tendency to accept wines
from any winery as long as the color is red.

To tackle this problem, we propose to use incremental learning
algorithms [6]. This is necessary since no training data is avail-
able before the interactions start. We particularly investigate two
approaches. The first one is inductive learning. This technique is
applied to learn the preferences as concepts. We elaborate on Can-
didate Elimination Algorithm (CEA) for Version Space [10]. CEA
is known to perform poorly if the information to be learned is dis-
junctive. Interestingly, most of the time consumer preferences are
disjunctive. Say, we are considering an agent that is buying wine.
The consumer may prefer red wine or rose wine but not white wine.
To use CEA with such preferences, a solid modification is neces-
sary. The second approach is decision trees. Decision trees can
learn from examples easily and classify new instances as positive
or negative. A well-known incremental decision tree is ID5R [18].
However, ID5R is known to suffer from high computational com-
plexity. For this reason, we instead use the ID3 algorithm [13] and
iteratively build decision trees to simulate incremental learning.

3.1 CEA
CEA [10] is one of the inductive learning algorithms that learns

concepts from observed examples. The algorithm maintains two
sets to model the concept to be learned. The first set is the most
general set G. G contains hypotheses about all the possible values
that the concept may obtain. As the name suggests, it is a gen-
eralization and contains all possible values unless the values have
been identified not to represent the concept. The second set is the
most specific set S. S contains only hypotheses that are known to
identify the concept that is being learned. At the beginning of the
algorithm, G is initialized to cover all possible concepts while S is
initialized to be empty.

During the interactions, each request of the consumer can be con-
sidered as a positive example and each counter offer generated by
the producer and rejected by the consumer agent can be thought of
as a negative example. At each interaction between the producer
and the consumer, both G and S are modified. The negative sam-
ples enforce the specialization of some hypotheses so that G does
not cover any hypothesis accepting the negative samples as posi-
tive. When a positive sample comes, the most specific set S should
be generalized in order to cover the new training instance. As a re-
sult, the most general hypotheses and the most special hypotheses
cover all positive training samples but do not cover any negative
ones. Incrementally, G specializes and S generalizes until G and
S are equal to each other. When these sets are equal, the algorithm
converges by means of reaching the target concept.

3.2 Disjunctive CEA
Unfortunately, CEA is primarily targeted for conjunctive con-

cepts. On the other hand, we need to learn disjunctive concepts in
the negotiation of a service since consumer may have several al-
ternative wishes. There are several studies on learning disjunctive
concepts via Version Space. Some of these approaches use multiple
version space. For instance, Hong et al. maintain several version
spaces by split and merge operation [7]. To be able to learn dis-
junctive concepts, they create new version spaces by examining the
consistency between G and S.

We deal with the problem of not supporting disjunctive concepts
of CEA by extending our hypothesis language to include disjunc-
tive hypothesis in addition to the conjunctives and negation. Each
attribute of the hypothesis has two parts: inclusive list, which holds
the list of valid values for that attribute and exclusive list, which is
the list of values which cannot be taken for that feature.

EXAMPLE 1. Assume that the most specific set is {(Light, Deli-
cate, Red)} and a positive example, (Light, Delicate, White) comes.
The original CEA will generalize this as (Light, Delicate, ?), mean-
ing the color can take any value. However, in fact, we only know
that the color can be red or white. In the DCEA, we generalize it as
{(Light, Delicate, [White, Red])}. Only when all the values exist
in the list, they will be replaced by ?. In other words, we let the
algorithm generalize more slowly than before.

We modify the CEA algorithm to deal with this change. The
modified algorithm, DCEA, is given as Algorithm 1. Note that
compared to the previous studies of disjunctive versions, our ap-
proach uses only a single version space rather than multiple version
space. The initialization phase is the same as the original algorithm
(lines 1, 2). If any positive sample comes, we add the sample to the
special set as before (line 4). However, we do not eliminate the hy-
potheses in G that do not cover this sample since G now contains a
disjunction of many hypotheses, some of which will be conflicting
with each other. Removing a specific hypothesis from G will result
in loss of information, since other hypotheses are not guaranteed
to cover it. After some time, some hypotheses in S can be merged
and can construct one hypothesis (lines 6, 7).

When a negative sample comes, we do not change S as before.
We only modify the most general hypotheses not to cover this neg-
ative sample (lines 11–15). Different from the original CEA, we
try to specialize the G minimally. The algorithm removes the hy-
pothesis covering the negative sample (line 13). Then, we generate
new hypotheses as the number of all possible attributes by using
the removed hypothesis.

For each attribute in the negative sample, we add one of them
at each time to the exclusive list of the removed hypothesis. Thus,
all possible hypotheses that do not cover the negative sample are
generated (line 14). Note that, exclusive list contains the values that
the attribute cannot take. For example, consider the color attribute.
If a hypothesis includes red in its exclusive list and ? in its inclusive
list, this means that color may take any value except red.

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 1295

Algorithm 1 Disjunctive Candidate Elimination Algorithm
1: G←the set of maximally general hypotheses in H
2: S ←the set of maximally specific hypotheses in H
3: For each training example, d
4: if d is a positive example then
5: Add d to S
6: if s in S can be combined with d to make one element then
7: Combine s and d into sd {sd is the rule covers s and d}
8: end if
9: end if

10: if d is a negative example then
11: For each hypothesis g in G does cover d
12: * Assume : g = (x1, x2, ..., xn) and d = (d1, d2, ..., dn)
13: – Remove g from G
14: – Add hypotheses g1, g2, gn where g1= (x1-d1, x2,..., xn),

g2= (x1, x2-d2,..., xn),..., and gn= (x1, x2,..., xn-dn)
15: – Remove from G any hypothesis that is less general than

another hypothesis in G
16: end if

EXAMPLE 2. Table 1 illustrates the first three interactions and
the workings of DCEA. The most general set and the most specific
set show the contents of G and S after the sample comes in. After
the first positive sample, S is generalized to also cover the instance.
The second sample is negative. Thus, we replace (?, ?, ?) by three
disjunctive hypotheses; each hypothesis being minimally special-
ized. In this process, at each time one attribute value of negative
sample is applied to the hypothesis in the general set. The third
sample is positive and generalizes S even more.

Note that in Table 1, we do not eliminate {(?-Full), ?, ?} from
the general set while having a positive sample such as (Full, Strong,
White). This stems from the possibility of using this rule in the gen-
eration of other hypotheses. For instance, if the example continues
with a negative sample (Full, Strong, Red), we can specialize the
previous rule such as {(?-Full), ?, (?-Red)}. By Algorithm 1, we
do not miss any information.

3.3 ID3
ID3 [13] is an algorithm that constructs decision trees in a top-

down fashion from the observed examples represented in a vector
with attribute-value pairs. Applying this algorithm to our system
with the intention of learning the consumer’s preferences is appro-
priate since this algorithm also supports learning disjunctive con-
cepts in addition to conjunctive concepts.

The ID3 algorithm is used in the learning process with the pur-
pose of classification of offers. There are two classes: positive and
negative. Positive means that the service description will possibly
be accepted by the consumer agent whereas the negative implies
that it will potentially be rejected by the consumer. Consumer’s re-
quests are considered as positive training examples and all rejected
counter-offers are thought as negative ones.

The decision tree has two types of nodes: leaf node in which the
class labels of the instances are held and non-leaf nodes in which
test attributes are held. The test attribute in a non-leaf node is one of
the attributes making up the service description. For instance, body,
flavor, color and so on are potential test attributes for wine service.
When we want to find whether the given service description is ac-
ceptable, we start searching from the root node by examining the
value of test attributes until reaching a leaf node.

The problem with this algorithm is that it is not an incremen-
tal algorithm, which means all the training examples should exist

before learning. To overcome this problem, the system keeps con-
sumer’s requests throughout the negotiation interaction as positive
examples and all counter-offers rejected by the consumer as neg-
ative examples. After each coming request, the decision tree is
rebuilt. Without doubt, there is a drawback of reconstruction such
as additional process load. However, in practice we have evaluated
ID3 to be fast and the reconstruction cost to be negligible.

4. SERVICE OFFERING
After learning the consumer’s preferences, the producer needs to

make a counter offer that is compatible with the consumer’s prefer-
ences.

4.1 Service Offering via CEA and DCEA
To generate the best offer, the producer agent uses its service

ontology and the CEA algorithm. The service offering mechanism
is the same for both the original CEA and DCEA, but as explained
before their methods for updating G and S are different.

When producer receives a request from the consumer, the learn-
ing set of the producer is trained with this request as a positive
sample. The learning components, the most specific set S and the
most general set G are actively used in offering service. The most
general set, G is used by the producer in order to avoid offering the
services, which will be rejected by the consumer agent. In other
words, it filters the service set from the undesired services, since
G contains hypotheses that are consistent with the requests of the
consumer. The most specific set, S is used in order to find best of-
fer, which is similar to the consumer’s preferences. Since the most
specific set S holds the previous requests and the current request,
estimating similarity between this set and every service in the ser-
vice list is very convenient to find the best offer from the service
list.

When the consumer starts the interaction with the producer agent,
producer agent loads all related services to the service list object.
This list constitutes the provider’s inventory of services. Upon re-
ceiving a request, if the producer can offer an exactly matching
service, then it does so. For example, for a wine this corresponds
to selling a wine that matches the specified features of the con-
sumer’s request identically. When the producer cannot offer the
service as requested, it tries to find the service that is most similar
to the services that have been requested by the consumer during the
negotiation. To do this, the producer has to compute the similarity
between the services it can offer and the services that have been
requested (in S).

We compute the similarities in various ways as will be explained
in Section 5. After the similarity of the available services with the
current S is calculated, there may be more than one service with
the maximum similarity. The producer agent can break the tie in a
number of ways. Here, we have associated a rating value with each
service and the producer prefers the higher rated service to others.

4.2 Service Offering via ID3
If the producer learns the consumer’s preferences with ID3, a

similar mechanism is applied with two differences. First, since ID3
does not maintain G, the list of unaccepted services that are clas-
sified as negative are removed from the service list. Second, the
similarities of possible services are not measured with respect to S,
but instead to all previously made requests.

4.3 Alternative Service Offering Mechanisms
In addition to these three service offering mechanisms (Service

Offering with CEA, Service Offering with DCEA, and Service Of-
fering with ID3), we include two other mechanisms..

1296 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

• Random Service Offering (RO): The producer generates a
counter offer randomly from the available service list, with-
out considering the consumer’s preferences.

• Service Offering considering only the current request (SCR):
The producer selects a counter offer according to the similar-
ity of the consumer’s current request but does not consider
previous requests.

5. SIMILARITY ESTIMATION
Similarity can be estimated with a similarity metric that takes

two entries and returns how similar they are. There are several simi-
larity metrics used in case based reasoning system such as weighted
sum of Euclidean distance, Hamming distance and so on [12].

The similarity metric affects the performance of the system while
deciding which service is the closest to the consumer’s request. We
first analyze some existing metrics and then propose a new seman-
tic similarity metric named RP Similarity.

5.1 Tversky’s Similarity Metric
Tversky’s similarity metric compares two vectors in terms of

the number of exactly matching features [17]. In Equation (1),
common represents the number of matched attributes whereas
different represents the number of the different attributes. Our
current assumption is that α and β is equal to each other.

SMpq =
α(common)

α(common) + β(different)
(1)

Here, when two features are compared, we assign zero for dis-
similarity and one for similarity by omitting the semantic closeness
among the feature values.

Tversky’s similarity metric is designed to compare two feature
vectors. In our system, whereas the list of services that can be of-
fered by the producer are each a feature vector, the most specific
set S is not a feature vector. S consists of hypotheses of feature
vectors. Therefore, we estimate the similarity of each hypothesis
inside the most specific set S and then take the average of the sim-
ilarities.

EXAMPLE 3. Assume that S contains the following two hypoth-
esis: { {Light, Moderate, (Red, White)} , {Full, Strong, Rose}}.
Take service s as (Light, Strong, Rose). Then the similarity of the
first one is equal to 1/3 and the second one is equal to 2/3 in ac-
cordance with Equation (1). Normally, we take the average of it
and obtain (1/3 + 2/3)/2, equally 1/2. However, the first hypoth-
esis involves the effect of two requests and the second hypothesis
involves only one request. As a result, we expect the effect of the
first hypothesis to be greater than that of the second. Therefore,
we calculate the average similarity by considering the number of
samples that hypotheses cover.

Let ch denote the number of samples that hypothesis h covers
and (SM(h,service)) denote the similarity of hypothesis h with the
given service. We compute the similarity of each hypothesis with
the given service and weight them with the number of samples they
cover. We find the similarity by dividing the weighted sum of the
similarities of all hypotheses in S with the service by the number
of all samples that are covered in S.

AV G−SM(service,S) =

∑|S|

|h| (ch ∗ SM(h,service))
∑|S|

|h| ch

(2)

Figure 2: Sample taxonomy for similarity estimation

EXAMPLE 4. For the above example, the similarity of (Light,
Strong, Rose) with the specific set is (2 ∗ 1/3 + 2/3)/3, equally
4/9. The possible number of samples that a hypothesis covers can
be estimated with multiplying cardinalities of each attribute. For
example, the cardinality of the first attribute is two and the others
is equal to one for the given hypothesis such as {Light, Moderate,
(Red, White)}. When we multiply them, we obtain two (2 ∗ 1 ∗ 1 =
2).

5.2 Lin’s Similarity Metric
A taxonomy can be used while estimating semantic similarity be-

tween two concepts. Estimating semantic similarity in a Is-A tax-
onomy can be done by calculating the distance between the nodes
related to the compared concepts. The links among the nodes can
be considered as distances. Then, the length of the path between the
nodes indicates how closely similar the concepts are. An alterna-
tive estimation to use information content in estimation of semantic
similarity rather than edge counting method, was proposed by Lin
[8]. The equation (3) [8] shows Lin’s similarity where c1 and c2
are the compared concepts and c0 is the most specific concept that
subsumes both of them. Besides, P (C) represents the probability
of an arbitrary selected object belongs to concept C.

Similarity(c1, c2) =
2 × log P (c0)

log P (c1) + log P (c2)
(3)

5.3 Wu & Palmer’s Similarity Metric
Different from Lin, Wu and Palmer use the distance between the

nodes in IS-A taxonomy [20]. The semantic similarity is repre-
sented with Equation (4) [20]. Here, the similarity between c1 and
c2 is estimated and c0 is the most specific concept subsuming these
classes. N1 is the number of edges between c1 and c0. N2 is the
number of edges between c2 and c0. N0 is the number of IS-A
links of c0 from the root of the taxonomy.

SimWu&Palmer(c1, c2) =
2 × N0

N1 + N2 + 2 × N0
(4)

5.4 RP Semantic Metric
We propose to estimate the relative distance in a taxonomy be-

tween two concepts using the following intuitions. We use Figure
2 to illustrate these intuitions.

• Parent versus grandparent: Parent of a node is more simi-
lar to the node than grandparents of that. Generalization of

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 1297

a concept reasonably results in going further away that con-
cept. The more general concepts are, the less similar they
are. For example, AnyWineColor is parent of ReddishColor
and ReddishColor is parent of Red. Then, we expect the sim-
ilarity between ReddishColor and Red to be higher than that
of the similarity between AnyWineColor and Red.

• Parent versus sibling: A node would have higher similarity
to its parent than to its sibling. For instance, Red and Rose
are children of ReddishColor. In this case, we expect the
similarity between Red and ReddishColor to be higher than
that of Red and Rose.

• Sibling versus grandparent: A node is more similar to it’s
sibling then to its grandparent. To illustrate, AnyWineColor
is grandparent of Red, and Red and Rose are siblings. There-
fore, we possibly anticipate that Red and Rose are more sim-
ilar than AnyWineColor and Red.

As a taxonomy is represented in a tree, that tree can be traversed
from the first concept being compared through the second concept.
At starting node related to the first concept, the similarity value is
constant and equal to one. This value is diminished by a constant
at each node being visited over the path that will reach to the node
including the second concept. The shorter the path between the
concepts, the higher the similarity between nodes.

Algorithm 2 Estimate-RP-Similarity(c1,c2)

Require: The constants should be m > n > m2 where m, n ∈
R[0, 1]

1: Similarity ← 1
2: if c1 is equal to c2 then
3: Return Similarity
4: end if
5: commonParent ← findCommonParent(c1, c2)

{commonParent is the most specific concept that covers
both c1 and c2}

6: N1← findDistance(commonParent, c1)
7: N2← findDistance(commonParent, c2) {N1 & N2 are

the number of links between the concept and parent concept}
8: if (commonParent == c1) or (commonParent == c2) then
9: Similarity ← Similarity ∗m(N1+N2)

10: else
11: Similarity ← Similarity ∗ n ∗m(N1+N2−2)

12: end if
13: Return Similarity

Relative distance between nodes c1 and c2 is estimated in the
following way. Starting from c1, the tree is traversed to reach c2.
At each hop, the similarity decreases since the concepts are getting
farther away from each other. However, based on our intuitions,
not all hops decrease the similarity equally.

Let m represent the factor for hopping from a child to a parent
and n represent the factor for hopping from a sibling to another
sibling. Since hopping from a node to its grandparent counts as
two parent hops, the discount factor of moving from a node to its
grandparent is m2. According to the above intuitions, our constants
should be in the form m > n > m2 where the value of m and n
should be between zero and one. Algorithm 2 shows the distance
calculation.

According to the algorithm, firstly the similarity is initialized
with the value of one (line 1). If the concepts are equal to each other
then, similarity will be one (lines 2-4). Otherwise, we compute the

common parent of the two nodes and the distance of each concept
to the common parent without considering the sibling (lines 5-7).

If one of the concepts is equal to the common parent, then there
is no sibling relation between the concepts. For each level, we
multiply the similarity by m and do not consider the sibling factor
in the similarity estimation. As a result, we decrease the similarity
at each level with the rate of m (line9). Otherwise, there has to be
a sibling relation. This means that we have to consider the effect of
n when measuring similarity. Recall that we have counted N1+N2

edges between the concepts. Since there is a sibling relation, two of
these edges constitute the sibling relation. Hence, when calculating
the effect of the parent relation, we use N1+N2−2 edges (line 11).

Some similarity estimations related to the taxonomy in Figure 2
are given in Table 2. In this example, m is taken as 2/3 and n is
taken as 4/7.

Table 2: Sample similarity estimation over sample taxonomy

Similarity(ReddishColor,Rose) = 1 ∗ (2/3) = 0.6666667
Similarity(Red,Rose) = 1 ∗ (4/7) = 0.5714286

Similarity(AnyWineColor,Rose) = 1 ∗ (2/3)2 = 0.44444445
Similarity(White,Rose) = 1 ∗ (2/3) ∗ (4/7) = 0.3809524

For all semantic similarity metrics in our architecture, the taxon-
omy for features is held in the shared ontology. In order to evaluate
the similarity of feature vector, we firstly estimate the similarity for
feature one by one and take the average sum of these similarities.
Then the result is equal to the average semantic similarity of the
entire feature vector.

6. DEVELOPED SYSTEM
We have implemented our architecture in Java. To ease testing

of the system, the consumer agent has a user interface that allows
us to enter various requests. The producer agent is fully automated
and the learning and service offering operations work as explained
before. In this section, we explain the implementation details of the
developed system.

We use OWL [11] as our ontology language and JENA as our
ontology reasoner. The shared ontology is the modified version of
the Wine Ontology [19]. It includes the description of wine as a
concept and different types of wine. All participants of the nego-
tiation use this ontology for understanding each other. According
to the ontology, seven properties make up the wine concept. The
consumer agent and the producer agent obtain the possible values
for the these properties by querying the ontology. Thus, all possi-
ble values for the components of the wine concept such as color,
body, sugar and so on can be reached by both agents. Also a vari-
ety of wine types are described in this ontology such as Burgundy,
Chardonnay, CheninBlanc and so on. Intuitively, any wine type de-
scribed in the ontology also represents a wine concept. This allows
us to consider instances of Chardonnay wine as instances of Wine
class.

In addition to wine description, the hierarchical information of
some features can be inferred from the ontology. For instance,
we can represent the information Europe Continent covers West-
ern Country. Western Country covers French Region, which covers
some territories such as Loire, Bordeaux and so on. This hierarchi-
cal information is used in estimation of semantic similarity. In this
part, some reasoning can be made such as if a concept X covers Y
and Y covers Z, then concept X covers Z. For example, Europe
Continent covers Bordeaux.

1298 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

For some features such as body, flavor and sugar, there is no
hierarchical information, but their values are semantically leveled.
When that is the case, we give the reasonable similarity values for
these features. For example, the body can be light, medium, or
strong. In this case, we assume that light is 0.66 similar to medium
but only 0.33 to strong.

WineStock Ontology is the producer’s inventory and describes
a product class as WineProduct. This class is necessary for the
producer to record the wines that it sells. Ontology involves the in-
dividuals of this class. The individuals represent available services
that the producer owns. We have prepared two separate WineStock
ontologies for testing. In the first ontology, there are 19 available
wine products and in the second ontology, there are 50 products.

7. PERFORMANCE EVALUATION
We evaluate the performance of the proposed systems in respect

to learning technique they used, DCEA and ID3, by comparing
them with the CEA, RO (for random offering), and SCR (offering
based on current request only).

We apply a variety of scenarios on this dataset in order to see the
performance differences. Each test scenario contains a list of pref-
erences for the user and number of matches from the product list.
Table 3 shows these preferences and availability of those products
in the inventory for first five scenarios. Note that these preferences
are internal to the consumer and the producer tries to learn these
during negotiation.

Table 3: Availability of wines in different test scenarios

ID Preference of consumer Availability (out of 19)
1 Dry wine 15
2 Red and dry wine 8
3 Red, dry and moderate wine 4
4 Red and strong wine 2
5 Red or rose, and strong 3

7.1 Comparison of Learning Algorithms
In comparison of learning algorithms, we use the five scenarios

in Table 3. Here, first we use Tversky’s similarity measure. With
these test cases, we are interested in finding the number of itera-
tions that are required for the producer to generate an acceptable
offer for the consumer. Since the performance also depends on the
initial request, we repeat our experiments with different initial re-
quests. Consequently, for each case, we run the algorithms five
times with several variations of the initial requests. In each experi-
ment, we count the number of iterations that were needed to reach
an agreement. We take the average of these numbers in order to
evaluate these systems fairly. As is customary, we test each algo-
rithm with the same initial requests.

Table 4 compares the approaches using different learning algo-
rithm. When the large parts of inventory is compatible with the
customer’s preferences as in the first test case, the performance of
all techniques are nearly same (e.g., Scenario 1). As the number of
compatible services drops, RO performs poorly as expected. The
second worst method is SCR since it only considers the customer’s
most recent request and does not learn from previous requests.
CEA gives the best results when it can generate an answer but can-
not handle the cases containing disjunctive preferences, such as the
one in Scenario 5. ID3 and DCEA achieve the best results. Their
performance is comparable and they can handle all cases including
Scenario 5.

Table 4: Comparison of learning algorithms in terms of average
number of interactions

Run DCEA SCR RO CEA ID3
Scenario 1: 1.2 1.4 1.2 1.2 1.2
Scenario 2: 1.4 1.4 2.6 1.4 1.4
Scenario 3: 1.4 1.8 4.4 1.4 1.4
Scenario 4: 2.2 2.8 9.6 1.8 2
Scenario 5: 2 2.6 7.6 1.75+ No offer 1.8

Avg. of all cases: 1.64 2 5.08 1.51+No offer 1.56

7.2 Comparison of Similarity Metrics
To compare the similarity metrics that were explained in Sec-

tion 5, we fix the learning algorithm to DCEA. In addition to the
scenarios shown in Table 3, we add following five new scenarios
considering the hierarchical information.

• The customer wants to buy wine whose winery is located in
California and whose grape is a type of white grape. More-
over, the winery of the wine should not be expensive. There
are only four products meeting these conditions.

• The customer wants to buy wine whose color is red or rose
and grape type is red grape. In addition, the location of wine
should be in Europe. The sweetness degree is wished to be
dry or off dry. The flavor should be delicate or moderate
where the body should be medium or light. Furthermore, the
winery of the wine should be an expensive winery. There are
two products meeting all these requirements.

• The customer wants to buy moderate rose wine, which is lo-
cated around French Region. The category of winery should
be Moderate Winery. There is only one product meeting
these requirements.

• The customer wants to buy expensive red wine, which is lo-
cated around California Region or cheap white wine, which
is located in around Texas Region. There are five available
products.

• The customer wants to buy delicate white wine whose pro-
ducer in the category of Expensive Winery. There are two
available products.

The first seven scenarios are tested with the first dataset that con-
tains a total of 19 services and the last three scenarios are tested
with the second dataset that contains 50 services.

Table 5 gives the performance evaluation in terms of the number
of interactions needed to reach a consensus. Tversky’s metric gives
the worst results since it does not consider the semantic similarity.
Lin’s performance are better than Tversky but worse than others.
Wu Palmer’s metric and RP similarity measure nearly give the same
performance and better than others. When the results are examined,
considering semantic closeness increases the performance.

8. DISCUSSION
We review the recent literature in comparison to our work. Tama

et al. [16] propose a new approach based on ontology for negoti-
ation. According to their approach, the negotiation protocols used
in e-commerce can be modeled as ontologies. Thus, the agents can
perform negotiation protocol by using this shared ontology without
the need of being hard coded of negotiation protocol details. While

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 1299

Table 5: Comparison of similarity metrics in terms of number
of interactions

Run Tversky Lin Wu Palmer RP
Scenario 1: 1.2 1.2 1 1
Scenario 2: 1.4 1.4 1.6 1.6
Scenario 3: 1.4 1.8 2 2
Scenario 4: 2.2 1 1.2 1.2
Scenario 5: 2 1.6 1.6 1.6
Scenario 6: 5 3.8 2.4 2.6
Scenario 7: 3.2 1.2 1 1
Scenario 8: 5.6 2 2 2.2
Scenario 9: 2.6 2.2 2.2 2.6

Scenario 10: 4.4 2 2 1.8
Average of all cases: 2.9 1.82 1.7 1.76

Tama et al. model the negotiation protocol using ontologies, we
have instead modeled the service to be negotiated. Further, we have
built a system with which negotiation preferences can be learned.

Sadri et al. study negotiation in the context of resource alloca-
tion [14]. Agents have limited resources and need to require miss-
ing resources from other agents. A mechanism which is based on
dialogue sequences among agents is proposed as a solution. The
mechanism relies on observe-think-action agent cycle. These dia-
logues include offering resources, resource exchanges and offering
alternative resource. Each agent in the system plans its actions to
reach a goal state. Contrary to our approach, Sadri et al.’s study is
not concerned with learning preferences of each other.

Brzostowski and Kowalczyk propose an approach to select an ap-
propriate negotiation partner by investigating previous multi-attribute
negotiations [1]. For achieving this, they use case-based reasoning.
Their approach is probabilistic since the behavior of the partners
can change at each iteration. In our approach, we are interested in
negotiation the content of the service. After the consumer and pro-
ducer agree on the service, price-oriented negotiation mechanisms
can be used to agree on the price.

Fatima et al. study the factors that affect the negotiation such as
preferences, deadline, price and so on, since the agent who devel-
ops a strategy against its opponent should consider all of them [5].
In their approach, the goal of the seller agent is to sell the service
for the highest possible price whereas the goal of the buyer agent
is to buy the good with the lowest possible price. Time interval af-
fects these agents differently. Compared to Fatima et al. our focus
is different. While they study the effect of time on negotiation, our
focus is on learning preferences for a successful negotiation.

Faratin et al. propose a multi-issue negotiation mechanism, where
the service variables for the negotiation such as price, quality of
the service, and so on are considered traded-offs against each other
(i.e., higher price for earlier delivery) [4]. They generate a heuris-
tic model for trade-offs including fuzzy similarity estimation and a
hill-climbing exploration for possibly acceptable offers. Although
we address a similar problem, we learn the preferences of the cus-
tomer by the help of inductive learning and generate counter-offers
in accordance with these learned preferences. Faratin et al. only
use the last offer made by the consumer in calculating the similar-
ity for choosing counter offer. Unlike them, we also take into ac-
count the previous requests of the consumer. In their experiments,
Faratin et al. assume that the weights for service variables are fixed
a priori. On the contrary, we learn these preferences over time.

In our future work, we plan to integrate ontology reasoning into
the learning algorithm so that hierarchical information can be learned

from subsumption hierarchy of relations. Further, by using rela-
tionships among features, the producer can discover new knowl-
edge from the existing knowledge. These are interesting directions
that we will pursue in our future work.

9. REFERENCES
[1] J. Brzostowski and R. Kowalczyk. On possibilistic

case-based reasoning for selecting partners for
multi-attribute agent negotiation. In Proceedings of the 4th
Intl. Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 273–278, 2005.

[2] L. Busch and I. Horstman. A comment on issue-by-issue
negotiations. Games and Economic Behavior, 19:144–148,
1997.

[3] J. K. Debenham. Managing e-market negotiation in context
with a multiagent system. In Proceedings 21st International
Conference on Knowledge Based Systems and Applied
Artificial Intelligence, ES’2002:, 2002.

[4] P. Faratin, C. Sierra, and N. R. Jennings. Using similarity
criteria to make issue trade-offs in automated negotiations.
Artificial Intelligence, 142:205–237, 2002.

[5] S. Fatima, M. Wooldridge, and N. Jennings. Optimal agents
for multi-issue negotiation. In Proceeding of the 2nd Intl.
Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), pages 129–136, 2003.

[6] C. Giraud-Carrier. A note on the utility of incremental
learning. AI Communications, 13(4):215–223, 2000.

[7] T.-P. Hong and S.-S. Tseng. Splitting and merging version
spaces to learn disjunctive concepts. IEEE Transactions on
Knowledge and Data Engineering, 11(5):813–815, 1999.

[8] D. Lin. An information-theoretic definition of similarity. In
Proc. 15th International Conf. on Machine Learning, pages
296–304. Morgan Kaufmann, San Francisco, CA, 1998.

[9] P. Maes, R. H. Guttman, and A. G. Moukas. Agents that buy
and sell. Communications of the ACM, 42(3):81–91, 1999.

[10] T. M. Mitchell. Machine Learning. McGraw Hill, NY, 1997.
[11] OWL. OWL: Web ontology language guide, 2003.

http://www.w3.org/TR/2003/CR-owl-guide-20030818/.
[12] S. K. Pal and S. C. K. Shiu. Foundations of Soft Case-Based

Reasoning. John Wiley & Sons, New Jersey, 2004.
[13] J. R. Quinlan. Induction of decision trees. Machine Learning,

1(1):81–106, 1986.
[14] F. Sadri, F. Toni, and P. Torroni. Dialogues for negotiation:

Agent varieties and dialogue sequences. In ATAL 2001,
Revised Papers, volume 2333 of LNAI, pages 405–421.
Springer-Verlag, 2002.

[15] M. P. Singh. Value-oriented electronic commerce. IEEE
Internet Computing, 3(3):6–7, 1999.

[16] V. Tamma, S. Phelps, I. Dickinson, and M. Wooldridge.
Ontologies for supporting negotiation in e-commerce.
Engineering Applications of Artificial Intelligence,
18:223–236, 2005.

[17] A. Tversky. Features of similarity. Psychological Review,
84(4):327–352, 1977.

[18] P. E. Utgoff. Incremental induction of decision trees.
Machine Learning, 4:161–186, 1989.

[19] Wine, 2003. http://www.w3.org/TR/2003/CR-owl-guide-
20030818/wine.rdf.

[20] Z. Wu and M. Palmer. Verb semantics and lexical selection.
In 32nd. Annual Meeting of the Association for
Computational Linguistics, pages 133 –138, 1994.

1300 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

