Correctness Requirements for
Multiagent Commitment Protocols

Pinar Yolum

Department of Artificial Intelligence, Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

pyolum@few.vu.nl

Abstract. Commitments are a powerful abstraction for representing the interac-
tions between agents. Commitments capture the content of the interactions declar-
atively and allow agents to reason about their actions. Recent work on multiagent
protocols define agent interactions as the creation and manipulation of commit-
ments to one another. As a result, commitment protocols can be executed flexibly,
enabling the agents to cope with exceptions that arise at run time.

We study the correctness requirements of commitment protocols that are neces-
sary to ensure correct specification and coherent execution. We analyze and for-
malize various requirements for commitment protocols and draw relations among
them. The main contribution of this analysis is that it allows protocol designers
to develop correct protocols by signaling possible errors and inconsistencies that
can possibly arise at run time. Since the requirements are formal, they can be
incorporated in a software tool to automate the design and specification of com-
mitment protocols.

1 Introduction

Multiagent systems consist of autonomous, interacting agents. To operate effectively,
the interactions of the agents should be appropriately regulated. Multiagent interaction
protocols provide a formal ground for enabling this regulation. However, developing
effective protocols that will be carried out by autonomous agents is challenging [8].
Similar to the protocols in traditional systems, multiagent protocols need to be speci-
fied rigorously so that the agents can interact successfully. Contrary to the protocols in
traditional systems, multiagent protocols need to be specified flexibly so that the agents
can exercise their autonomy to make choices as best suits them or to handle unexpected
situations that arise at run time. This basic requirement rules out many traditional for-
malisms, such as finite state machines (FSMs) or Petri nets. These formalisms only
specify sequences of actions and leave no room for the agents to act flexibly.

Recently, social constructs are being used to specify agent interactions. These ap-
proaches advocate declarative representations of protocols and give semantics to pro-
tocol messages in terms of social (and thus observable) concepts. Alberti et al. specify
interaction protocols using social integrity constraints and reason about the expectations
of agents [1]. Fornara and Colombetti base the semantics of agent communication on
commitments, such that the meanings of messages are denoted by commitments [6].
Yolum and Singh develop a methodology for specifying protocols wherein protocols

capture the possible interactions of the agents in terms of the commitments to one an-
other [14].

In addition to providing flexibility, these approaches make it possible to verify com-
pliance of agents to a given protocol. Put broadly, commitments of the agents can be
stored publicly and agents that do not fulfill their commitments at the end of the pro-
tocol can be identified as non-compliant. In order for these approaches to make use
of all these advantages, the protocols should be designed rigorously. For example, the
protocol should guarantee that, if an agent does not fulfill its commitment, it is not
because the protocol does not specify how the fulfillment can be carried out. The afore-
mentioned approaches all start with a manually designed, correct protocol. However,
designing a correct protocol in the first place requires important correctness properties
to be established and applied to the protocol. A correct protocol should define the nec-
essary actions (or transitions) to lead a computation to its desired state. Following a
protocol should imply that progress is being made towards realizing desired end condi-
tions of the protocol. The followed actions should not yield conflicting information and
lead the protocol to unrecoverable errors. That is, the protocol should at least allow a
safe execution.

This paper develops and formalizes design requirements for developing correct
commitment protocols. These requirements detect inconsistencies as well as errors dur-
ing design time. These requirements can easily be automated in a design tool to help
protocol designers to develop protocols.

The rest of the paper is organized as follows. Section 2 gives a technical background
on event calculus and commitments. Section 3 discusses commitment protocols. Section
4 develops correctness requirements for commitment protocols. Section 5 discusses the
recent literature in relation to our work.

2 Technical Background

We use event calculus to study commitment protocols and their design requirements.
Since event calculus can operate on actions well, it provides a useful way to manage
the creation and manipulation of commitments through actions. Next, we give a brief
overview of event calculus and then summarize our previous formalization of commit-
ments and their operations in event calculus [13].

2.1 Event Calculus

The event calculus is a formalism based on many-sorted first order logic [9]. The three
sorts of event calculus are time points (1'), events (E) and fluents (I"). Fluents are prop-
erties whose truth values can change over time. Initiating and termination of events
allow manipulation of fluents. Table 1 supplies a list of predicates to help reason about
the events in an easier form. Below, events are shown with a, b, . . .; fluents are shown
with f, g, .. .; and time points are shown with ¢, ¢1, and ¢,.

‘We introduce the subset of the EC axioms that are used here; the rest can be found
elsewhere [10]. The variables that are not explicitly quantified are assumed to be uni-
versally quantified. The standard operators apply (i.e., < denotes implication and A

Table 1. The Event Calculus Predicates

Initiates(a, f,t) f holds after event a at time ¢.
Terminates(a, f,t) |f does not hold after event a at time ¢.

Initiallyp (f) f holds from time 0.

Initiallyn (f) f does not hold from time 0.
Happens(a, t1,t2) |event a starts at time ¢1 and ends at t2.
Happens(a, t) event a starts and ends at time ¢.
HoldsAt(f,t) f holds at time ¢.

Clipped(t1, f,t2) |f is terminated between ¢1 and t2.
Declipped(t1, f,t2)|f is initiated between t; and t2.

denotes conjunction). The time points are ordered by the < relation, which is defined
to be transitive and asymmetric.

1. HoldsAt(f,ts) « Happens(a,t1,t2) A Initiates(a, f,t1) A (t2 < t3) A
~ Clipped(ty, f, t3)

2. Clipped(ty, f,t4) < Ta,to,ts [Happens(a,ta, t3) A (t1 < t2) A (t3 < t4) A
Terminates(a, f,t2)]

3. —HoldsAt(f,t) « Initiallyy (f) A —Declipped(0, f,t)

4. —HoldsAt(f,t3) < Happens(a,t1,t2) A Terminates(a, f,t1) A (t2 < t3) A
ﬁDecIipped(tl, f, t3)

2.2 Commitments

Commitments are obligations from one party to another to bring about a certain condi-
tion [3]. However, compared to the traditional definitions of obligations, commitments
can be carried out more flexibly [11]. By performing operations on an existing commit-
ment, a commitment can be manipulated (e.g., delegated to a third-party).

Definition 1 A unilateral commitment C(x, y, p) is an obligation of x to y to bring about
a condition p [11]. x is the debtor and y is the creditor of the commitment. I

When a commitment of this form is created, x becomes responsible to y for satisfying
p, i.e., p holds sometime in the future. Notice that we do not differentiate whether p
is brought about deliberately or accidentally. The condition p does not involve other
conditions or commitments.

Definition 2 A bilateral commitment CC(x, y, p, g) denotes that if the condition p is
satisfied, x will be committed to bring about condition q. |

Bilateral commitments are useful when a party wants to commit only if a certain
condition holds or only if the other party is also willing to make a commitment. It is easy
to see that a unilateral commitment is a special case of a bilateral commitment, where
the condition p is set to true. Thatis, C(x, y, ¢) is an abbreviation for CC(z, y, true, q).
Commitments are represented as fluents in the event calculus. Hence, the creation and

the manipulation of the commitments are shown with the Initiates and Terminates pred-
icates.

Operations We summarize the operations to create and manipulate commitments [12,
11]. In the following discussion, x, ¥, z denote agents, ¢, ¢’ denote commitments, and e
denotes an event.

1. Create(e, x, c): When x performs the event e, the commitment c is created.
Create(e, x, C(x,y, p)): {Happens(e,t) A Initiates(e, C(x,y,p), t)}

2. Discharge(e, x, c): When x performs the event e, the commitment c is resolved.
Discharge(e, x, C(x,y, p)): { Happens(e,t) A Initiates(e, p, t)}

3. Cancel(e, x, c): When z performs the event e, the commitment c is canceled. Usu-
ally, the cancellation of a commitment is followed by the creation of another com-
mitment to compensate for the former one.

Cancel(e, x, C(x,y, p)): {Happens(e,t) A Terminates(e, C(x,y,p), t)}

4. Release(e, y, c): When y performs the event e, x no longer need to carry out the
commitment c.

Release(e, y, C(x,y,p)): {Happens(e,t) A Terminates(e, C(x,y,p),t)}

5. Assign(e, y, z, ¢): When y performs the event e, commitment c is eliminated, and a
new commitment ¢’ is created where 2z is appointed as the new creditor.
Assign(e,y, z, C(z,y,p)): {Happens(e, t) A Terminates(e, C(z,y,p),t) A
Initiates(e, C(z, z,p), t)}

6. Delegate(e, x, z, c): When x performs the event e, commitment c is eliminated but
a new commitment ¢’ is created where z is the new debtor.

Delegate(e, x, z, C(x, y, p)): { Happens(e, t) A Terminates(e, C(x, y, p), t) A
Initiates(e, C(z,y,p), t)}

The following rules operationalize the commitments. Axiom 1 states that a commitment
is no longer in force if the condition committed to holds. In Axiom 1, when the event e
occurs at time ¢, it initiates the fluent p, thereby discharging the commitment C(z, y, p).

Commitment Axiom 1 Discharge(e, x, C(x, y, p)) — HoldsAt(C(x, y, p), t) A
Happens(e, t) A Initiates(e, p, t)

The following two axioms capture how a bilateral commitment is resolved based on
the temporal ordering of the commitments it refers to.

Commitment Axiom 2 Initiates(e, C(x, y, q), t) <
HoldsAt(CC(x, y, p, q), t) A Happens(e, t) A Initiates(e, p, t)
Terminates(e, CC(x, y, p, q), t) < HoldsAt(CC(x, y, p, q), t) A Happens(e, t) A
Initiates(e, p, t)

When the bilateral commitment CC(x, y, p, ¢) holds, if p becomes true, then the
original commitment is terminated but a new commitment is created, since the debtor x
is now committed to bring about q.

3 Commitment Protocols

A commitment protocol is a set of actions such that each action is either an operation
on commitments or brings about a proposition.

Definition 3 A commitment protocol P is a set of Initiates and Terminates clauses that
define which fluents in the protocol are initiated and terminated by each action. A pro-
tocol run is a set of Happens clauses along with an ordering of the referred time points

[131.1

Hence, following a protocol is executing actions which in return create or manipu-
late fluents. As said before, these fluents can be atomic propositions or commitments.
An agent can start a protocol by performing any of the actions that suits itself. The
transitions of the protocol are computed by applying the effect of the action on the cur-
rent state. In most cases this corresponds to the application of commitment operations.
Figure 1 gives an overview of the possible commitment transitions. Given a protocol
specification, actions of the protocol can be executed from an arbitrary initial state to
a desired final state. A protocol run can be viewed as a series of actions; each action
happening at a distinct time point.

To ease the explanation, we introduce the following notation. Let F' be the set of
fluents referred to with Initiates and Terminates clauses in the protocol. F' is C'S U
CCSUPS such that C'S is the set of unilateral commitments, CC'S is the set of bilateral
commitments and P.S is the set of propositions in the protocol. Let ¢ be a commitment
such that ¢ € C'S then O(c) is the set of operations allowed on the commitment ¢ in the
protocol. Since a commitment cannot be part of a protocol if it cannot be created, we
omit the create operation from the set. Hence, O(c) can at most contain five operations
in Section 2.2, namely, discharge, cancel, release, delegate, and assign. We assume
that all the propositions referred by the commitments in C'S and CC'S are in PS.

Example 1 We consider the Contract Net Protocol (CNP) as our running example [5].
CNP starts with a manager requesting proposals for a particular task. Each participant
either sends a proposal or a reject message. The manager accepts one proposal among
the submitted proposals and (explicitly) rejects the rest. The participant with the ac-
cepted proposal informs the manager with the proposal result or the failure of the pro-
posal.

Specifying a protocol in terms of commitments is significantly different from spec-
ifying a protocol in terms of an FSM. One major advantage of the commitment-based
approach is that the execution of the protocol becomes more flexible than the execution
of an FSM. Whereas in an FSM the execution is restricted to the predefined sequences,
with commitment protocols participants are free to execute actions as long as they fulfill
their commitments.

Example 2 By sending a proposal to the manager, a participant creates a bilateral com-
mitment such that if the manager accepts the proposal, then the participant will deliver
the result of the proposal (e.g., CC(participant, manager, accepted, result). If the man-
ager then sends an accept message, this bilateral commitment will cease to exist but the
following unilateral commitment will hold: C(participant, manager, result). Since the
commitments can be easily manipulated, the participant can manipulate its commitment
in the following ways: (1) it can discharge its commitment by sending the result as in
the original CNP (discharge), (2) it can delegate its commitment to another participant,
who carries out the proposal (delegate), or (3) it can send a failure notice as in the

initiates(a, q, t)

create(x, C(X, ¥, P)) delegate(x, z, C(X, ¥, P))

assign(y, X,
C(x. y. P)

release(y,
Cx, ¥y, P

cancel(x,
Cx, ¥, P)

discharge(x,
CCxs Y, P

initiates(a, p, t)

Fig. 1. Transitions in commitment protocols

original protocol (cancel). Meanwhile, if for some reason, the manager no longer has a
need for the proposed task, (1) it can let go of the participant (release) or (2) let another
agent benefit from the proposal (assign).

4 Protocol Correctness

Analyzing a commitment protocol is significantly more difficult than analyzing an FSM.
First, the states of a commitment protocol are not given a priori as is the case with
FSMs. Two, the transitions are computed at run time to enable flexible execution. To
study a commitment protocol, we study the possible protocol runs that can result. A
protocol run specifies the actions that happen at certain time points. We base the defi-
nition of a protocol state on these time points. More specifically, a state of the protocol
corresponds to the set of propositions and commitments that hold at a particular time
point.

Definition 4 A protocol state s(t) captures the content of the protocol with respect
to a particular time point ¢. A protocol state s(t) is a conjunction of HoldsAt(f,t)
predicates with a fixed ¢ but possibly varying f. Formally, s(t) = A ;¢ p HoldsAt(f,1).
|

Two states are equivalent if the same fluents hold in both states. Although the two states
are equivalent, they are not strictly the same state since they can come about at different
time points.

Definition 5 The = operator defines an equivalence relation between two states s(t)
and s(t') such that s(t) = s(t’) ifand only if Vf € F : (HoldsAt(f,t) = HoldsAt(f,t'))
andVf € F : (HoldsAt(f,t') = HoldsAt(f,t)).1

Protocol execution captures a series of making and fulfilling of commitments. Intu-
itively, if the protocol executes successfully, then there should not be any open uni-
lateral commitments; i.e., no participant should still have commitments to others. This
motivates the following definition of an end-state.

Definition 6 A protocol state s(t) is a proper end-state if no unilateral commitments
exist. Formally, Vf € F : HoldsAt(f,t) = f ¢ CS. 1

Generally, if the protocol ends in an unexpected state, i.e., not a proper end-state,
one of the participants is not conforming to the protocol. However, to claim this, the
protocol has to ensure that participants have the choice to execute actions that will ter-
minate their commitments. What are the requirements to establish this? The following
analysis derives the requirements for correct commitment protocols.

Holzmann labels states of a protocol in terms of their capability of allowing progress
[7]. Broadly put, a protocol state can be labeled as a progressing state if it is possible
to move to another state. For a protocol to function correctly, all states excluding the
proper end-states should be progressing states. Otherwise, the protocol can move to
a state where no actions are possible, and hence the protocol will not progress and
immaturely end.

Definition 7 A protocol state s(t) is progressing if

— s(t) is not a proper end-state (e.g., s(t) = 3f € CS : HoldsAt(f,t)), and
— there exists an action that if executed creates a transition to a different state. (e.g.,
sit) =3t <t As(t) £ st')). 1

At every state in the protocol, either the execution should have successfully com-
pleted (i.e., proper end-state) or should be moving to a different state (i.e., progress
state).

Definition 8 A protocol P is progressive if and only if each possible state in the proto-
col is either a proper end-state or a progressing state. I

This follows intuitively from the explanation of making progress. A progressive
protocol exhibits the liveness property of traditional network protocols. Lemma 1 for-
malizes a sufficient condition for ensuring that a commitment protocol is progressive.

Lemma 1 Let P be a commitment protocol and ¢ be a unilateral commitment. If

Ve e CS : O(c) # 0, then P is progressive.

Proof. By Definition 8, every state in P should be a proper end-state or a progress
state. If a state does not contain open commitments then it is a proper end-state
(Definition 6). If the state does contain a unilateral commitment, then since at least one
operation exists to manipulate it, the protocol will allow a transition to a new state.
Thus, the state is a progressing state (Definition 7). I

Example 3 If a participant has a commitment to the manager to deliver the result
(C(participant, manager, result)), then there needs to be at least one operation on this
commitment so that the commitment can be terminated.

Ensuring a progressing protocol is the first step in ensuring correctness. If a protocol
is not progressing, then the participants can get stuck in an unexpected state and not
transition to another state. However, progress by itself does not guarantee that the inter-
actions will always lead to a proper end-state. This is similar in principle to livelocks in
network protocols, where the protocol can transition between states but never reach a
final state [7, p.120].

Example 4 Consider a participant = whose proposal has been accepted. Hence, C(x,
manager, result) holds (state 1). Next, the participant delegates its commitment to an-
other participant z C(z, manager, result) (state 2). Next, participant z delegates the
commitment back to participant z and thus the protocol moves back to the previous
state where C(x, manager, result) holds. Participants = and z delegate the commitment
back and forth infinitely.

Obviously, the situation explained in Example 4 is is not desirable. It is necessary to
ensure progress but this is not sufficient to conclude that the protocol is making effective
progress.

Definition 9 A cycle in a protocol refers to a non-empty sequence of states that start
and end at equivalent states. A cycle can be formalized by the content of the beginning
and ending states. That is, an execution path is a cycle if: 3¢,/ ¢ € T : (s(t) =
s A<t <t')A(st) £ st)). 1

Definition 10 An infinitely repeating cycle is a cycle with progressive states such that
if the protocol gets on to one of the states then the only execution sequence is to move
to a state in the cycle [7].1

In Example 4, the two delegate actions form an infinitely repeating cycle. Once the
protocol gets into state 1 or state 2, it will always remain in one of these two states.

Lemma 2 An infinitely repeating cycle does not contain any proper end-states.
Proof. By Definition 10 an infinitely repeating cycle only contains progressing states
and by Definition 7, a progressing state cannot be an end-state. il

Given a cycle, it is easy to check if it is infinitely repeating. Informally, for each
state in the cycle, we need to check if there is a possible transition that can cause a
state outside the cycle. This can be achieved by applying all allowed operations (by the
proposition) to the commitments that exist in that state. As soon as applying a com-
mitment operation to a state in the cycle yields a state not included in the cycle, the
procedure stops, concluding that the cycle is not infinitely repeating.

Lemma 3 Let [be a cycle. Let ¢ € C'S be a commitment that holds at a state s(¢) on
this cycle at any time ¢. If discharge, cancel or release € O(c) then cycle [is not
infinitely repeating.

Proof. A cycle is not infinitely repeating if there is a path from a state in the cycle to
a state outside the cycle. Discharging, canceling, or releasing a commitment will lead
the protocol to go to a proper end-state. Since no proper end-state is on an infinitely
repeating cycle, the cycle will not repeat (Lemma 2). B

Example 5 In Example 4, if either participant could discharge the commitment or
could have been released from the commitment, then there need not have been an in-
finitely repeating cycle.

Definition 11 A protocol P is effectively progressive if and only if and only if (1) P is
progressive and (2) P does not have infinitely repeating cycles. I

Theorem 1 Let P be commitment protocol such that for all the commitments
¢ € CS, discharge€ O(c) or cancele O(c) or release€ O(c). Then, P is effectively
progressive.
Proof. By Lemma 1, any one of the commitment operations is sufficient to make the
protocol progressive. By Lemma 3, any of the three operations will avoid infinite
cycles. Bl

Note that we are not concerned about the choices of the agents in terms of which
actions to take. Looking back at Example 4, assume that agent x could also execute
an action that could discharge its commitment (to carry out the proposal), but choose
instead to delegate it to agent z. The protocol then would still loop infinitely. However,
our purpose here is to make sure that agent x has the choice of discharging and dele-
gating. The protocol should allow an agent to terminate its commitment by providing at
least one appropriate action. It is then up to the agent to either terminate it or delegate
it as best suits it.

5 Discussion

We review the recent literature with respect to our work. Fornara and Colombetti de-
velop a method for agent communication, where the meanings of messages denote com-
mitments [6]. In addition to unilateral and bilateral commitments, Fornara and Colom-
betti use precommitments to represent a request for a commitment from a second party.
They model the life cycle of commitments in the system through update rules. However,
they do not provide design requirements on correctness as we have done here.

Artikis et al. develop a framework to specify and animate computational societies
[2]. The specification of a society defines the social constraints, social roles, and social
states. Social constraints define types of actions and the enforcement policies for these
actions. A social state denotes the global state of a society based on the state of the
environment, observable states of the involved agents, and states of the institutions. Our
definition of a protocol state is similar to the global state of Artikis et al.. The framework
of Artikis et al. does not specify any design rules.

Alberti et al. specify interaction protocols using social integrity constraints [1].
Given a partial set of events that have happened, each agent computes a set of expecta-
tions based on the social integrity constraints; e.g., events that are expected to happen
based on the given constraints. If an agent executes an event that does not respect an
expectation, then it is assumed to have violated one of the social integrity constraints.
Alberti et al. does not provide any design rules to ensure the correctness of their inter-
action protocols.

Endriss et al. study protocol conformance for interaction protocols that are defined
as deterministic finite automaton (DFA) [4]. The set of transitions of a DFA are known

a priori. If an agent always follows the transitions of the protocol, then it is compliant
to the given protocol. Hence, the compliance checking can be viewed as verifying that
the transitions of the protocol are followed correctly. DFAs have been analyzed exten-
sively and many correctness properties have been formalized. However, DFAs represent
sequences of actions and thus does not allow the agents to flexibly execute a protocol.

In our future work, we plan to work on other design requirements for commitment
protocols, such as those for avoiding deadlocks. Identifying and formalizing these re-
quirements will facilitate correct commitment protocols to be designed.

6 Acknowledgments

I have benefited from discussions with Munindar Singh and Ashok Mallya on commit-
ments. The reviewers’ comments have greatly improved the paper.

References

1. M. Alberti, D. Daolio, and P. Torroni. Specification and verification of agent interaction
protocols in a logic-based system. In Proc. ACM Symp. on Applied Computing (SAC). 2004.
To appear.

2. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational societies. In
Proc. Intl. Joint Conf. on Autonomous Agents and MultiAgent Syst. (AAMAS), pages 1053—
1061. 2002.

3. C. Castelfranchi. Commitments: From individual intentions to groups and organizations. In
Proc. Intl. Conf. on Multiagent Systems, pages 41-48, 1995.

4. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-based agents.
In Proc. Intl. Joint Conf. on Artificial Intelligence (IJCAI), pages 679-684. 2003.

5. Foundation for Intelligent Physical Agents (FIPA). Contract net interaction protocol specifi-
cation, 2002. Number 00029.

6. N. Fornara and M. Colombetti. Operational specification of a commitment-based agent com-
munication language. In Proc. Intl. Joint Conf. on Autonomous Agents and MultiAgent Syst.
(AAMAS), pages 535-542. 2002.

7. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, NJ, 1991.

8. N. R. Jennings. On agent-based software engineering. Artificial Intelligence, 177(2):277-
296, 2000.

9. R.Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation Computing,
4(1):67-95, 1986.

10. M. Shanahan. Solving the Frame Problem: A Mathematical Investigation of the Common
Sense Law of Inertia. MIT Press, Cambridge, 1997.

11. M. P. Singh. An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law, 7:97-113, 1999.

12. M. Venkatraman and M. P. Singh. Verifying compliance with commitment protocols: En-
abling open Web-based multiagent systems. Autonomous Agents and Multi-Agent Systems,
2(3):217-236, Sept. 1999.

13. P. Yolum and M. P. Singh. Flexible protocol specification and execution: Applying event
calculus planning using commitments. In Proc. Intl. Joint Conf. on Autonomous Agents and
MultiAgent Systems (AAMAS), pages 527-534. 2002.

14. P. Yolum and M. P. Singh. Reasoning about commitments in the event calculus: An approach
for specifying and executing protocols. Annals of Math. and Al, 42(1-3), 2004. To appear.

