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Abstract. Information systems must establish trust to cooperate effectively in
open environments. We are developing an agent-based approach for establishing
trust, where information systems are modeled as agents that provide and consume
services. Agents can help each other find trustworthy parties by providing refer-
rals to those that they trust. We propose a graph-based representation of services
for modeling the trustworthiness of agents. This representation captures natural
relationships among service domains and provides a simple means to accommo-
date the accrual of trust placed in a given party. When interpreted as a lattice, it
enables less important services (e.g., low-value transactions) to be used as gates to
more important services (e.g., high-value transactions). We first show that, where
applicable, this approach yields superior efficiency (needs fewer messages) and
effectiveness (finds more providers) than a vector representation that does not
capture the relationships between services. Next, we study trade-offs between
various factors that affect the performance of this approach.

1 Introduction

We consider the problem of trust in large-scale, decentralized information systems that
are represented by autonomous agents. In simple terms, the key problem is how an
agent (or trustor) should trust another agent (or trustee). Trust is for a purpose. That
is, a trustor would (or would not) trust a trustee for a particular service. For this reason
and to relate our work to the recent interest on Web Services, we consider a setting
wherein different agents consume and provide information services to one another [1].
The agents offer varying levels of trustworthiness to others and are potentially interested
in finding trustworthy agents who provide the services that they need.

Trust can be established through three major means. Institutional trust or trust in
authoritative institutions or organizations is common in the off-line world. People trust
in the power of these institutions to stabilize their interactions [8, p. 26]. Current dis-
tributed trust management approaches can be thought of formalizing institutional trust,
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because they assume that digital certificates issued by various certificate authorities lead
to trust [4].

That is, these approaches usually assume that trust is established merely through a
chain of endorsements beginning with some trusted authority. However, only the most
trivial level of trust can be established through such a mechanism. For example, know-
ing that a web-site carries a digital certificate issued by another known site does not
guarantee that the web-site will act in a trustworthy manner.

For this reason, multiagent approaches seek to create trust based on local or so-
cial evidence. Social trust is built through information from others. This information
could be testimonies from individual witnesses regarding the trustee, or from a reputa-
tion agency. The context in which the ratings were given as well as the evaluation of
the services could vary by episode as well as by the parties that give the ratings. The
credentials of the information sources (witnesses or reputation agencies) are crucial for
interpreting this second-hand information correctly. Unless the agents that give the rat-
ings are established to be trustworthy, their aggregate ranking would not be sufficient
to create trust. That is, in order to create trust through second-hand information, the
trustworthiness of the information sources must be established as well [15, p. 74]. A
powerful way of ensuring that the sources themselves are trustworthy is by accessing
them through referrals [14]. Local trust means considering previous direct interactions
with a trustee, which often are the most valuable in creating trust for the following rea-
sons. One, since the trustor itself evaluates the interactions, the results are more reliable.
Two, the context in which the trustworthiness of the provider is evaluated is explicit and
relevant to the trustor.

Previous agent approaches for trust emphasize either its local or its social aspects.
By contrast, we develop an approach that takes a strong stance for both aspects. In our
approach, the agents track each other’s trustworthiness locally and can give and receive
referrals to others. This approach naturally accommodates the above conceptualizations
of trust: social because the agents give and receive referrals to other agents, and local
because the agents maintain rich representations of each other and can reason about
them to determine their trustworthiness. Further, the agents evaluate each other’s ability
to give referrals. Lastly, although this approach does not require centralized authorities,
it can help agents evaluate the trustworthiness of any such authorities as well.

This approach enables us to address two properties of trust that are not adequately
addressed by current approaches. One, trust often builds up over interactions. That is,
you might trust a stranger for a low-value transaction, but would only trust a known
party for a high-value transaction. Two, trust often flows across service types. That is,
you might assume that a party who is trustworthy in one kind of dealings will also be
trustworthy in related kinds of dealings.

Our main contributions are as follows. One, we introduce a graph-based represen-
tation of services, and show how it enables us to address the above two properties of
trust. Two, we evaluate our graph-based representation by comparing it to a vector rep-
resentation used in previous work, which is itself more advanced than a simple scalar
representation. Graph representation enables trust to be propagated across service types,
whereas vector representation does not capture the relation between services at all. Our
results establish that the additional expressiveness of the graph representation helps:



a graph-based representation enables trustworthy service providers to be found more
effectively and efficiently. Three, we perform a sensitivity analysis of the graph-based
representation to identify factors that affect its performance further.

The rest of this paper is organized as follows. Section 2 introduces a graph-based
representation for agents to model services. Section 3 describes our referrals-based ap-
proach for trust and our experimental setup. Section 4 compares this graph-based repre-
sentation with a vector representation in terms of efficiency and effectiveness. Section 5
discusses and experimentally evaluates factors related to the performance of our rep-
resentation. Section 6 discusses the relevant literature and outlines some directions for
further study.

2 Graph-Based Representation

We consider a setting with a fixed number of service types. Service providers offer
one or more of these services. Some of these services may be related, i.e., being a
good provider for one may imply being a good provider for another. Conversely, some
services may be unrelated to each other.

One way of representing the set of services is through a vector space model, where
each element in the vector corresponds to a different domain and the weight of the
element denotes the fitness of the service for that domain [14]. This is similar to the
vector descriptions of documents in information retrieval. The vector representation is
simple and quite effective if the elements are independent, since a vector representation
does not capture any relationships between vector elements.

The second way is to represent the services as a graph, whose nodes map to ser-
vice types. The graph representation is more expressive in that it can capture relation-
ships between service types that a vector representation cannot. For example, a service
provider that has been found to be trustworthy for one type of service can be considered
for another type of service based on how well the services relate.
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Fig. 1. A totally-ordered service graph



Figure 1 shows a simple graph. Here, each node represents transactions of different
values. S1 denotes transactions worth $1, S2 denotes transactions worth $10, and so on.
The list next to each node represents the trustworthy providers for that node. The agents
trusted for a node are a subset of the agents trusted for the lower node. That is, if you
trust someone for a $10 transaction, you trust him for a $1 transaction as well (e.g., P3).
The reverse need not hold. You might trust many for transactions of $1 but probably
only a few for $1000 transactions (e.g., P1).
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Fig. 2. An example service graph with weights

Figure 2 illustrates a setting with partially ordered services. Any two services that
are related are joined by an edge. Here an edge 〈si, sj〉 indicates that a provider who
can perform si well may also be able to perform sj well.

When an agent needs a provider for a service for which it knows of no providers,
it can potentially ask others or promote a provider that it has used for another service.
Promotions provide a systematic way to reuse previous experiences with the service
providers. A provider is tried for a new service only if it has performed well for another
service, and if performing well in the first service indicates that the provider may per-
form well for the second service. The likelihood of a service provider in a lower node to
perform a service in the upper node is represented by weights on the edges. For exam-
ple, the weight 0.5 from S0 to S1 means that a provider of S0 will likely be providing
S1 half the time.

Notice that a service graph is maintained by each agent to autonomously capture its
experiences. Thus agents may have differing weights for the same pair of services. The
weights are adjusted independently by each agent. After delivering a service, a service
provider is rated by the consumer. The rating reflects the satisfaction of the consumer.
These ratings are used by the consumer to decide if this service provider will be used
again or referred to other consumers. Service providers with low ratings are replaced
with service providers that can potentially get higher ratings.



When promoting a provider from si to sj , two factors are considered: how trustwor-
thy the provider is for si and how related si and sj are. We calculate the trustworthiness
of the provider p at si (tpi) through its ratings at si and the number of interactions (for
si). The strength of the relation between si and sj are given by the edge weight, wij .

(wij × tpi) > θ (1)

The product of the edge weight with the average ratings projects how much the agent
can reproduce its ratings in sj . If this projected value is greater than a promotion thresh-
old θ, then the agent can be promoted to perform sj .

Notice that in the extreme case, if wij = 0 (the services are not correlated), then
the service provider is not expected to perform well in sj even if it performs well in si.
Conversely, if a provider is not trusted for si (tpi = 0), then the provider will never be
promoted to sj irrespective of how correlated the two services are.

The weights that denote the relation between two services are estimated by each
agent, which can update the weights in its graph based on its experiences. Hence, two
agents can have different weights for the same edge. The graph weights are updated
after promoting a provider and testing it for the higher service. The weights are tuned
using a simple linear update mechanism. If a promotion from si to sj is successful, i.e.,
if the provider gets a good rating in sj as well, then wij is increased. Similarly, wij is
decreased when a promoted provider gets a bad rating in sj . The increase (or decrease)
in the weight is proportional to the new rating of the service provider in sj .

3 Experimental Setup

We investigate the properties of interest using agents who simulate requesting, pro-
viding, and evaluating services. The agents act in accordance with the following ab-
stract protocol [17]. When an agent desires a service, it begins to look for a trustworthy
provider for the specified service. The agent queries some other agents from among its
neighbors, which are a small subset of the agent’s acquaintances. A queried agent may
either answer giving the identifier of a service provider who can potentially perform the
desired service or may give referrals to other agents. The querying agent may accept a
service offer, if any, and may pursue referrals, if any.

The agents are autonomous and may not respond to another agent. When an agent
responds, there is no guarantee about the quality of the answer or the suitability of a re-
ferral. Likewise, no agent is necessarily trusted by others: an agent unilaterally decides
how to rate another agent.

Each agent maintains models of its acquaintances, which describe their expertise
(i.e., the quality of the answers they provide), and sociability (i.e., the quality of the
referrals they provide). Each agent is initialized with the same model for each neighbor,
but updates its models of its acquaintances based on interactions with them.

An agent that is generating a query follows Algorithm 1. Each agent starts by gener-
ating a query for a service (line 1). The distribution of requests for services captures the
following intuition. In real life, we would expect most requests to be for services with
intermediate risk rather than for services with little or too much risk. For this reason, we
use a normal distribution to model the frequency of the incoming requests. As a result,



Algorithm 1 Find-Provider()
1: Generate query for service type j
2: promotedProviders = promoteLocally(j)
3: if (promotedProviders != null) then
4: Add promotedProviders to providerSet
5: else
6: Send query to matching neighbors
7: while (!timeout) do
8: Receive message
9: if (message.type == referral) then

10: Send query to referred agent
11: Record referral
12: else
13: Add answer to providerSet {answer contains a provider id.}
14: end if
15: end while
16: end if
17: for i = 1 to |providerSet| do
18: Evaluate provider(i)
19: Update agent models
20: Update service graph
21: end for

the services S0 and S8 get the least number of requests, whereas services S3, S4, and
S5 get the most requests.

The agent promotes all the service providers that qualify to be promoted to perform
this new service (line 2). If there are no such providers, then the agent sends the query
to a subset of its neighbors (line 6). The main factor here is to determine which of its
neighbors would be likely to answer the query. An agent that receives a query can either
answer by returning the identifier of a service provider or giving a referral to another
agent who is likely know of a service provider for the requested service.

If an agent receives a referral to another agent, it sends its query to the referred agent
(line 10) and records the referral link (line 11). Simply put, the referrals generated for
each query are used to update acquaintance models based on the quality of the service
that is ultimately received from the providers found. After an agent receives a provider
identifier or promotes a provider within, it evaluates the provider (line 18). We simulate
this evaluation by looking up an evaluation value from a predefined table.

After the answers are evaluated, the agent uses its learning policy to update the
models of its neighbors (line 19). In the default learning policy, when a good answer
comes in, the modeled expertise of the answering agent and the sociability of the agents
that helped locate the answerer (through referrals) are increased. Similarly, when a bad
answer comes in, these values are decreased. Hence, the agents that give answers as well
as the agents that give referrals are rated. At certain intervals during the simulation, each
agent has a chance to choose new neighbors from among its acquaintances based on its
neighbor selection policy. Key factors include the expertise and the sociability of the
agents [18].



Algorithm 2 promoteLocally(j)
1: for i = 1 to |nodes| do
2: for k = 1 to |providers(i)| do
3: p = providers(i)(k)
4: if (tpi × wij > θ) then
5: if (numberOfInteractions(p)≥ λ) then
6: Add p to promotedProviders
7: end if
8: end if
9: end for

10: end for
11: return promotedProviders
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Fig. 3. Distributions of the service providers

The experiments use 100 service consumers and 32 service providers for nine types
of services. Each agent has three randomly picked neighbors. Each agent generates 50
queries and may change its neighbors after every 5 queries. Each query denotes the
desired service type; e.g., S0, S1, and so on. Notice that not all 32 service providers
offer all the services. The key property we want to capture in modeling the distribution
of the service providers is that in real life, we would expect more service providers to
offer easier services than harder ones. Hence, the number of providers would decrease
as the service gets more specialized. With this intuition, the experiments are set up
such that most of the 32 service providers can perform services that are lower down
the graph, whereas only a few of them can perform harder services, say, S8, the most
specialized service. We capture this intuition by decreasing the number of providers
approximately by half between two consecutive nodes. For example, while 15 service
providers offer service S1, only 7 of them provide S3. The number of service providers
for each type of service is given in Figure 3.
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Fig. 4. The distribution of the agents for different values of effectiveness (After 10 queries)

4 Comparison of representations

Using this experimental setup, we compare the service graphs with the vector represen-
tation in terms of effectiveness and efficiency. A representation is effective if it allows
agents to find the desired service providers. A representation is efficient if it allows the
service providers to be found with as few messages as possible. In order to compare
the effectiveness and the efficiency of the two approaches, the simulation is run with
the same initial setup, same number of queries per consumer, and the same number of
neighbors. After getting an answer, each consumer evaluates the service provider in the
answer. The service providers that get a rating above a threshold are considered use-
ful. For these experiments, the service providers provide services consistently. That is,
a service provider that has provided a service will again perform the same quality of
service.

To measure effectiveness, we find the percentage of the queries that have resulted in
finding a useful service provider. That is, the ratio of queries that lead to useful service
providers to all the generated queries is calculated. We look at the effectiveness after
every five queries for the graph-based representation and the vector representation. We
look at two cases of the vector approach: one with referrals, two without referrals.

Both in Figure 4 and in Figure 5, the x axis is the effectiveness percentage and the y
axis is the number of agents. Both graphs plot the number of agents that achieve greater
than or equal to the effectiveness percentage. The first graph shows the distributions
after the 10th query and the second graph shows them after the 20th query.

In Figure 4, agents that employ service graphs achieve higher effectiveness than
both of the vector approaches. The agents that use a vector with referrals generally do
better than the agents without the referrals, except for one effectiveness value 90. That
is, there are more agents that achieve at least 90 percent effectiveness in the vector
approach without referrals, though the difference is minor.

The agents with the service graph achieve higher effectiveness rates in the second
graph (Figure 5), too, though now the difference between the vector (with referrals)
and the service graph approach is smaller. The performance of the vector approach
increases as the agents learn about their neighbors and change their neighbors accord-
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ingly. After the 30th query, both approaches achieve an effectiveness rate of 99%, thus
we do not show that in a different graph. However, when referrals are not employed, the
effectiveness of the agents barely increases (Figures 4 and 5, solid lines). The average
effectiveness for the no-referral case oscillates between 63% and 73%. Having no refer-
rals causes two disadvantages to the agents. One, obviously they can pose their queries
only to their neighbors, and incompetent neighbors cannot provide answers. Two, since
there are no referrals, the agents interact with few other agents and learn only a small
part of the society. Hence, when they change their neighbors, the set of agents they
choose from is small and pseudo-random. Figure 6 plots the average effectiveness of
all 100 agents after every five queries. We conclude that the consumers can locate trust-
worthy service providers more effectively with a graph-based representation than with
a vector representation.
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Next, we compare the average number of agents contacted per query (over 30
queries). Figure 7 plots this efficiency value for both approaches. The average value for
the vector approach (with referrals) is 3.1, for the vector approach (without referrals)



2.81, and 0.45 for the service graph approach. In other words, the addition of referrals
increases the number of contacted agents for the benefit of increased effectiveness. The
service graph approach, on the other hand, yields a higher efficiency than both of the
vector approaches as well as higher effectiveness.
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Recall that initially, each agent knows of two service providers for possibly different
services. For the results reported above, the initial distribution guaranteed that at least
one agent in the system knows of a provider for each service. Consider a case, where
none of the agents initially knew of a provider for S8. In the vector approach, no matter
how hard each agent searches for the provider through its neighbors, it will not be able
to locate a provider for S8. Whereas in the service graph approach, if an agent knows of
a provider for S6 or S7, then it can promote the service provider to S8. Thus, whereas
the vector approach will definitely not find a provider, the service graph approach may
find a provider through promotions from lower services.

Service graphs are most useful when the services are related, though even if the
services are orthogonal the service graph would be equivalent to a vector representa-
tion. Thus, the service graph would in the worst case perform as well as the vector
representation. There might only be one potential disadvantage. Following the previous
scenario, assume that none of the service providers are trustworthy for service S8. In
this case, the service graph approach will promote service providers up only to find that
they cannot fulfill S8. Neither approaches will find a service provider, but the vector ap-
proach will use less time, whereas the service graph approach will try several providers
(through promotions) and fail later.

5 Evaluation

We study how the initial setting, promotion threshold, and the number of previous in-
teractions affect promotion accuracy and effectiveness of finding trustworthy service
providers. For each experiment, we report averages from three simulation runs (addi-
tional runs yield similar results).



5.1 Control Variables

Initial Setting The initial environments can differ in two main ways. The first fac-
tor is how much the neighbors can help each other in finding service providers, since
providers can be found through referrals as well as through promotions. To study the
performance of the service graph representation, we seek to reduce the effect of refer-
rals and prior knowledge of an agent. Therefore, we use a setting where each agent only
knows of two providers for service S0, the lowest service. This setting forces agents
to promote the providers and test them for higher services. In addition, at least in the
beginning, agents cannot give well-targeted referrals for higher services, since none of
them knows of a trustworthy provider for higher services.

The second factor is related to how much the agents are initially willing to try new
service providers. This factor, termed trust prejudice, captures whether an agent is will-
ing to trust newcomers [6]. We capture this intuition through the initial graph weights.
For example, if initially all the weights are 1, then the agents are willing to try out all
new service providers in all types of services. Conversely, when the weights are all 0,
the agents have the prejudice that no agents can be trusted.

We evaluate our approach using three initial settings. In the homogeneous setting,
each agent starts with the graph shown in Figure 2. In the trusting setting, the graph
edges are the same but the weights are higher (meaning the agents trust others more).
In the heterogeneous setting, each agent starts with random weights on random edges
of its own.

Promotion Threshold The estimated weight between two services is adjusted based
on previous promotions between the two services. Intuitively, the promotion threshold
denotes how much risk an agent is willing to take in its promotions. If the threshold for
promoting up is low, then the agents will promote more providers, but might find out
that more of these providers cannot perform the service. On the other hand, if the agents
are reluctant to promote, then they might miss a chance to find a provider for a desired
service. In Algorithm 2, θ refers to the promotion threshold.

Number of interactions The overall rating of a provider at the previous service should
be reliable. It is widely accepted that the number of previous interactions increases the
accuracy of the trust assessment [5]. That is, the average rating may not be representa-
tive if the total number of interactions are few. In other words, a service provider with a
ranking of 0.7 over three interactions might be trusted more than a provider with a rank-
ing of 0.8 over one interaction. In our approach, agents use the number of interactions
as a gating factor so that only those providers that have proved sufficiently trustworthy
in another service, which is sufficiently closely related to the service under considera-
tion, and such that the agent has interacted with these providers often enough to trust
them adequately. In Algorithm 2, λ refers to the required number of interactions.

5.2 Results

Promotion Accuracy Intuitively, high promotion accuracy captures the fact that only
trustworthy service providers are promoted up the graph. Promotion errors are measured
by the average number of wrong promotions performed by the agents.
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Figure 8 plots the promotion error for varying promotion thresholds. For all three
curves, the error drops when the promotion threshold increases. That is, when agents
take fewer risks, they make fewer mistakes. The heterogeneous setting has higher weights
for more edges than the other two setups, and hence allows more promotions. For this
reason, it is more prone to errors.

Next, we study the effect of number of interactions on promotion error. For each
value of the promotion threshold, we plot the average promotion error. Figure 9 shows
three plots for the homogeneous setting, corresponding to one, two, and three required
interactions prior to promotion. The promotion error decreases with the number of pre-
vious interactions. For a threshold of 0.25, for example, when the required number of
previous interactions is just one, the promotion error is almost 6. When the number of
interactions is increased to two, the error drops below 4. When the number of inter-
actions is further increased to three, the error becomes less than 2. In all three curves,
increasing the promotion threshold decreases the promotion error, though the improve-
ment is more significant for fewer interactions.
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Effectiveness Recall that effectiveness measures how often consumers find trustwor-
thy providers for the desired services. Thus, achieving a high promotion accuracy is not
enough for good performance. The agents should also achieve high effectiveness.

20

30

40

50

60

70

80

90

100

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Ef
fe

cti
ve

ne
ss

 P
er

ce
nt

ag
e

Promotion threshold

Effectiveness (Homogenous)
Effectiveness (Trusting)
Effectiveness (Heterogenous)

Fig. 10. Effect of initial setting

Again, we first look at the effect of initial setting on the effectiveness. Figure 10
plots three effectiveness curves for the three initial settings. This time the random setup
achieves higher effectiveness than the other two setups. Since the random setup assigns
weights to many edges, and hence allows more promotions, many providers—useful or
not—are promoted and tested, resulting in almost always finding a provider.
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Figure 11 plots three effectiveness curves for varying values of the promotion thresh-
old using homogeneous initial setting. Again, each curve corresponds to a case where
different number of previous interactions is required. Independent of the number of in-
teractions, if the threshold is high, the effectiveness is very low. Interestingly, for smaller



values of the threshold, we see agents achieve a higher level of effectiveness (find more
trustworthy agents to interact with) if the number of interactions are fewer. This is the
opposite of the curves for the promotion accuracy, where we saw that the number of in-
teractions decrease the promotion error. In other words, high promotion accuracy rarely
coexists with high effectiveness. For example, in Figure 9 when the number of previous
interactions is set to three (with threshold 0.35), the promotion error is below 1. But,
effectiveness for the same setup is not even 50%.

Performance = Effectiveness × Accuracy The reason for the inverse relation be-
tween promotion accuracy and the effectiveness is that if the consumers are cautious
and promote reluctantly up the graph, they might miss many useful promotions, lead-
ing to sub-optimal effectiveness.
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Figure 12 plots this performance value based on Figure 9 and Figure 11. Neither ex-
tremes of the promotion threshold (0.05 and 0.45) achieve high performance. The lower
threshold suffers from high promotion error, while the high thresholds lacks effective-
ness. Optimal performance lies in the middle values of the promotion threshold. Among
these, the performance is always better when the number of interactions is either 1 or
2. This suggests that the third interaction does not add much value to the performance.
Among the 1 and 2 interaction cases, except for one value of the threshold (0.25), 2
interaction case outperforms the 1 interaction case. In general, this result suggests that
it is better to be less cautious, trust more, and make some mistakes to be able to exploit
a wider range of promotions.

6 Discussion

Lattice-based access control models have been used in computer security to regulate
information flow [12]. Each node in the lattice denotes a different set of security priv-
ileges, called security classes. The more sensitive security classes are placed upper in
the lattice. The information flow is only allowed from the lower security classes to the



higher ones. Thus, even though the less confidential information from lower security
classes can be carried to the upper security classes, no confidential information flows
down. This is similar to how we handle service types. Providers that can perform ser-
vices higher up the lattice can also perform lower services. In addition, we promote
providers from lower service types to higher ones based on the providers performance
on the lower services.

Wille use concept lattices for knowledge discovery in databases [16]. The data ob-
jects are classified into meaningful concepts based on common attributes. The concepts,
then are arranged in a line diagram, which represents the concepts and the subconcept
relationships among concepts. This representation is a structured way to visualize and
analyze information.

Referrals capture the manner in which people normally help each other find trust-
worthy parties [9]. MINDS, based on the documents used by each user, was an early
agent-based referral system [3]. Kautz et al. model social networks statically as graphs
and study some properties of these graphs, e.g., how the accuracy of a referral to a
specified individual relates to the distance of the referrer from that individual [7].

Yu and Singh [19] develop an approach for distributed reputation management
where a reputation of an agent is computed based on testimonies of the witnesses us-
ing the Dempster-Shafer theory of evidence. They show how this model can be used to
detect agents that are non-cooperative or agents that abuse their reputation by slowly de-
creasing their level of cooperativeness. Since the witnesses are found through referrals,
Yu and Singh’s approach captures social trust. Local evaluations are captured through
belief functions, but relationships among service types are not captured.

Barber and Kim [2] propose an approach wherein agents use a belief revision al-
gorithm to combine evidence they receive from other agents. In addition to provid-
ing evidence, each agent specifies its level of confidence in the evidence. Barber and
Kim’s approach captures social trust, but contrary to our approach, the trustworthiness
of agents who provide evidence are not considered. Their approach does not consider
local evidence, i.e., the previous interactions of the trustor with the trustee.

Pujol et al. [10] develop an algorithm to find the reputation of an agent based on its
position in a social network. The Web pages of users are taken as a basis to come up
with the social network. If an agent is pointed to by agents with high reputation, then
the agent is also considered to have high reputation, similar to the notion of authority
exploited in search engines such as Google. Pujol et al. use their approach to find the
reputations of authors where the reputation of an author is defined as the number of
citations received. Even though each agent can calculate its own reputation based only
on local information (i.e., the agents that point at it), a central server is needed to access
others’ reputations. This approach does not capture local trust, since direct interactions
are not taken into account. It captures social trust since the reputation of an agent is
derived through how other agents have linked to it, but has no means to correct it based
on local observations of an agent. In other words, the link structure is static and the
positions of the agents do not change based on their interactions. In our approach, we
allow agents to change neighbors using the neighbors’ ability to give referrals as a
heuristic. This allows us to rate the sources.



Sabater and Sierra [11] develop a system for reputation management where rep-
utations are derived based on direct interactions as well as the social relations of the
agents. They use the number of interactions and the variance in ratings to derive the the
trustworthiness of the agent through direct interactions. To assess the trustworthiness
through indirect interactions, Sabater and Sierra use fuzzy inference to combine evi-
dence from multiple witnesses. In this regard, their approach captures both social and
local trust. On the other hand, Sabater and Sierra do not offer a mechanism to propagate
trust across related services as we have done here.

Sen and Sajja [13] develop a reputation-based trust model used for selecting proces-
sor agents for processor tasks. Similar to our notion of service providers, each proces-
sor agent can offer varying performance. Agents are looking for trustworthy processor
agents to interact with using only evidence from their peers. Sen and Sajja propose a
probabilistic algorithm to find the number of agents to query to guarantee finding a trust-
worthy party. In our framework, we model the peers based on their prior performance
and choose whom to ask for help based on these models. Thus, agents also decide the
trustworthiness of the information source. However, in Sen and Sajja’s framework, these
models are not captured. All peers are treated the same independent of their previous
behavior. This approach does not handle local trust, since previous interactions of an
agent with processor agents are not taken into account.

The above approaches derive the trustworthiness of agents based on direct or indi-
rect previous interactions. Our approach emphasizes the propagation of trust to related
contexts as seen fit by an agent. In this respect, our graph-based representation com-
plements the above approaches. Once the trustworthiness of an agent is derived, our
approach can decide how this can be reused in other contexts.

7 Directions

Currently, we propagate trust based on a provider’s trustworthiness for a single service.
However, sometimes it would help to combine the trustworthiness of the provider in
several services. For example, if a service is composed of several smaller services, the
trustworthiness of the provider in all the subservices will affect the trustworthiness of
the provider in the composed service. This problem is also acknowledged by Sabater
and Sierra [11]. In future work, we plan to study such improvements to our model as
well as evaluate our model with respect to different distributions for requesting and
providing services.
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