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ABSTRACT
Current approaches to e-commerce treat service price as the pri-
mary construct for negotiation. However, negotiation on price pre-
supposes that other properties of the service have already been
agreed upon. For many real life situations, a service consumer and a
producer has a difficult time in understanding each other’s require-
ments and forming a consensus on the desired service. Accord-
ingly, this paper develops a theory for automating service negotia-
tion and provides the details of an implemented system. The theory
combines important ideas from inductive logic learning with ex-
pressive representation of ontologies. Both consumers and produc-
ers share an ontology about the service of interest. Through repeti-
tive interactions, producers learn consumers’ needs accurately and
can make better targeted counter offers. The developed system uses
the well-known Wine ontology to demonstrate the negotiation of
service needs.

1. INTRODUCTION
Traditional e-commerce applications are targeted for human users.

However, as the number and extent of transactions increase, there
is a tremendous demand for developing e-commerce applications
that can be flexibly used by machines. Agents have proven to be
successful paradigm for autonomous and intelligent software such
as those needed for flexible e-commerce applications. In a typical
e-commerce application, there are two basic but important roles:
producer and consumer. Producer advertises and provides a service
for which the consumer has interest, whereas the consumer requests
and possibly accepts the service. In this case, service can be selling
a book, reserving a hotel room, and so on.

Many times the service provider may not be offering the exact
requested service due to lack of resources, constraints in its busi-
ness policy, and so on. When this is the case, the producer and
the consumer need to negotiate the content of the requested ser-
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vice [15]. Most of the current studies related to negotiation assume
that the service content is fixed and thus focus on the price of the
service [10]. Other approaches assume that all parts of the ser-
vice are equally important and hence negotiate each service feature
one by one [7, 3]. However, usually each service feature is not
equally importance for a consumer. Moreover, importance of a ser-
vice feature may vary from consumer to consumer. For instance,
completion time of a service may be important for one consumer
whereas the quality of the service may be more important for a sec-
ond consumer. Thus, if a provider can learn the preferences of a
consumer, it can provide counter offers that are better targeted for
that particular consumer.

As an alternative to price-oriented negotiation approaches, we
propose an approach for automating the content negotiation of ser-
vices, where the producers learn the preferences of consumers over
time. We represent service requests as a vector of service features.
We use an ontology [8, 4] in order to capture the relations between
features and to construct the features for a given service. By us-
ing a common ontology, we enable the consumers and producers to
share a common vocabulary for negotiation. The producer models
the requests of the consumer and its counter offers to understand
which features are more important for the consumer. To enable
this learning, we need an incremental learning approach that can
be trained at run time and can revise itself with each new example.
We have used inductive learning [11] for this purpose and extended
the version space algorithms to take into account the needs of ser-
vice negotiation context.

The rest of this paper is organized as follows: Section 2 explains
our proposed architecture. Section 3 gives the technical details of
our approach including the algorithms for learning consumers’ ser-
vice needs and offering services accordingly. Section 4 provides
our experimental setup and our test case. Section 6 discusses and
compares our work with other related work.

2. ARCHITECTURE
Our main components are consumer and producer agents, which

communicate with each other to perform content-oriented negoti-
ation. To make the most of the communication, two requirements
have to be fulfilled. One, the language the agents speak should
be free from ambiguities. Two, the language should be expressive
enough for parties to understand and negotiate details. To achieve
both of these requirements, we use ontologies in our architecture. A
shared ontology provides the necessary vocabulary for agents and
hence enables a common language for agents. Further, since an
ontology can represent concepts, their properties and their relation-
ships semantically, the agents can reason the details of the service



that is being negotiated. Our architecture is independent of the on-
tology used. However, to make our discussion concrete, we use
the well-known Wine ontology [18] to illustrate our ideas and to
test our system. The wine ontology includes features such as color,
body, winery of the wine and so on. With this ontology, the service
that is being negotiated between the consumer and the producer is
that of wine.

Figure 1 depicts our architecture. The consumer agent repre-
sents the customer and hence has access to the preferences of the
customer. The consumer agent negotiates with the producer based
on these preferences. Similarly, the producer agent has access to
the producer’s inventory and knows which wines are available or
not. The inventory information is represented as a set of individual
classes in the ontology.

The architecture advances in a turn-taking fashion, where the
consumer agent starts the negotiation with a particular service re-
quest. The request is composed of significant features of the ser-
vice. In the wine example, these features include as color, winery
and so on. This is the particular wine that the customer is inter-
ested in purchasing. If the producer has the requested wine in its
inventory, the negotiation ends. Otherwise, the producer offers an
alternative wine from the inventory. When the consumer receives a
counter offer from the producer, it will evaluate it. If it is accept-
able, then the negotiation will end. Otherwise, the customer will
generate a new request (or stick to the previous request). This pro-
cess will continue until some service is accepted by the consumer
agent or all the possible offer are put forward to the consumer by
the producer.

3. TECHNICAL DETAILS
One of the crucial challenges of the content-oriented negotiation

is the automatic generation of counter offers by the service pro-
ducer. When the producer constructs its offer, it should consider
three important things: the current request, consumer preferences
and the producer’s available services. Both the consumer’s current
request and the producer’s own available service are accessible by
the producer. However, the consumer’s preferences in most cases
will not be. Hence, the producer will have to understand the needs
of the consumer from their interactions and generate a counter offer
that is likely to be accepted by the consumer. This challenge can be
studied in three stages:

� Representation: How do we represent the requests and counter
offers of the producer so that they can reason about each
other’s actions?

� Learning: How can the agents learn about each other’s pref-
erences based on requests and counter offers?

� Revision: How do the agents revise their requests or offers
based on incoming information?

3.1 Representation
The requests of the consumer and the counter offers of the pro-

ducer are represented as vectors, where each element in the vector
corresponds to the value of a feature. For instance, the customer
may prefer medium and strong red wine. This can be represented
with the following vector query [Medium, Strong, Red]. Or, if the
customer prefers light and delicate white wine, this can be repre-
sented with the following query [Light, Delicate, White].

3.2 Learning Phase
The producer agent tries to learn the consumer’s preferences us-

ing information obtained from the dialogues between the producer

and the consumer. The preferences denote the relative importance
degree of the features of the services demanded by the consumer
agents. For instance, the color of the wine may be so important
that the consumer insists on buying the wine whose color is “red”
and rejects all the offers involving the wine whose color is “white”
or “rose”. On the contrary, the winery may not be so important as
much as the color for this customer, so the consumer may have a
tendency to accept any offer, which meets the color requirement,
whose winery is different from the specified one in the request.

To tackle this problem, we propose to use inductive learning.
This technique is applied to learn the preferences as concepts. Ver-
sion Space [11] is one of the inductive learning approaches that
learns concepts from observed examples. The aim of version space
algorithm is to generate general rules or hypotheses, which involve
the positive examples and do not include any negative examples.
In fact, this general hypothesis represents the desired concept. To
understand how the Version Space approach works, we investigate
the Candidate Elimination Algorithm (CEA) that implements the
Version Space. Algorithm 1 gives the pseudo code [12].

Algorithm 1 Candidate Elimination Algorithm
1:
���

the set of maximally general hypotheses in H
2: � � the set of maximally specific hypotheses in H
3: For each training example, d
4: if d is a positive example then
5: Remove all hypotheses in G do not cover d
6: For each hypothesis s in S does not cover d
7: – Remove s from S
8: – Add to S all minimal generalizations h of s such that h

covers d and some members of G are more general than h
9: – Remove from S any hypothesis that is more general than

another hypothesis in S
10: end if
11: if d is a negative example then
12: Remove all hypotheses in S that cover d
13: For each hypothesis g in G does cover d
14: – Remove g from G
15: – Add to G all minimal specifications h of g such that h does

not cover d and some members of S are more specific than h
16: – Remove from G any hypothesis that is less general than

another hypothesis in G
17: end if

There are two kinds of sets representing the most general hy-
potheses (set

�
) and the most specific hypotheses (set � ). These

sets are used to capture the limits of the learned concept. That is, a
concept is at least as specific as the hypothesis that exist in set � and
at most as general as the hypothesis contained in set

�
. The bound-

aries of the most general hypotheses are as large as possible in that
they cover the entire positive training example and possible posi-
tive instances; whereas those of the most specific hypotheses are as
small as possible they minimally cover the observed positive sam-
ples. By using the most general hypotheses and the most specific
hypotheses, we can produce all possible hypotheses for the target
concept. As the algorithm receives positive and negative examples,
it revises the

�
and � such that eventually

�
and � intersect in

which case the concept has been learned.
At the beginning of the algorithm,

�
is initialized with the set

of maximally general hypotheses that cover everything, whereas �
is set with the set of maximally specific ones. During the interac-
tions, each request of the consumer can be considered as a positive
example and each counter offer generated by the producer and re-
jected by the consumer agent can be thought of as a negative exam-



Figure 1: Negotiation Architecture

ple. At each dialogue between the producer and the consumer, we
apply training over sets of the most specific and the most general
hypotheses.

EXAMPLE 1. Assume that our target concept, wine, has three
attributes: body, flavor and color.1 According to the scenario, as-
sume a wine with features (Full, Strong, White) is an acceptable
wine. Initially, G is simply initialized with the most general hy-
pothesis, (?, ?, ?) where � means this attribute can take any value.
On the other hand, � is initialized with the most specific hypothesis
consistent with the first positive observed training sample, in this
case (Full, Strong, White).

The negative samples enforce the specialization of some hypothe-
ses so that

�
does not cover any hypothesis accepting the negative

samples as positive.

EXAMPLE 2. Following the previous example, assume that (Full,
Delicate, Rose) is an unacceptable wine (i.e., a negative training
sample). The general set should be specialized in such a way that it
should not cover this instance but covers previously observed posi-
tive samples.

In the algorithm, there may be various ways to specialize the
general set

�
. One way is to compare the attributes of the negative

example with the specific set and to assign their difference to the
existing

�
. Also the algorithm eliminates the hypotheses that cover

the negative sample from � .

EXAMPLE 3. Assume that
�

contains (?,?,?) and � contains
(Full, Strong, White). If the negative example (Full, Delicate, Rose)
1Wine class has seven attributes in our implementation in Section 4.
In order to keep the examples simple, here we only include three
attributes.

comes in, then
�

needs to be specialized such that it becomes (?,
Strong, ?) and (?, ?, White).

When a positive sample comes, the most specific set � should be
generalized in order to cover the new training instance. Similarly,
the details of the generalization is not specified in CEA; but from
the illustration explained in [12], it can be performed by replacing
the different values between special set and current positive sample
with � . Further, the most general hypotheses in

�
that do not cover

the new positive sample are eliminated.

EXAMPLE 4. Assume that � contains (Full, Delicate, Rose).
If the next positive example is (Medium, Delicate, Rose), then the
generalization of specific set � will be (?, Delicate, Rose).

As a result, the most general hypotheses and the most special hy-
potheses cover all positive training samples but do not cover any
negative ones. Incrementally,

�
specializes and � generalizes until�

and � are equal to each other. When these sets are equal, the
algorithm converges by means of reaching the target concept.

Algorithm 1 is primarily targeted for conjunctive concept. On
the other hand, we need to learn disjunctive concepts in the negoti-
ation of a service. For instance, a consumer may want strong white
wine or delicate red wine but not want delicate white or moder-
ate red wine. In Table 1, the behavior of the algorithm is shown
clearly in accordance with the given samples. It can be seen that
the algorithm fails in learning concepts where disjunctive requests
exist. However, learning from such concepts is required when pro-
viding service to the consumer since consumer may have several
alternative wishes.

The way the general set
�

is specialized and the special set �
is generalized is crucial for successfully learning the hypothesis.
Consider the following example:



Table 1: When Candidate Elimination Algorithm fails
Sample Type Sample The most general set The most specific set

+ (Full,Strong,White) � (?, ?, ?) � � (Full,Strong,White) �
- (Full,Delicate,Rose) � (?, Strong, ?),(?, ?, White ) � � (Full,Strong,White) �
+ (Medium,Moderate,Red) ��� � (?, ?, ?) �

EXAMPLE 5. The color feature of the wine product is allowed
to take three different values: white, red and rose. Assume the
first positive sample is (Light, Delicate, Red), denoting a red, light
and delicate wine. And, the second positive sample is (Light, Deli-
cate, White), denoting a white, light and delicate wine. According
to Algorithm 1, the special set � will be generalized to be (Light,
Delicate,?). However, now � also contains samples for (Light, Del-
icate, Rose) even though the consumer has not shown any interest
in rose wine so far. If the consumer now rejects an offer of rose,
light and delicate wine, the special set will be in violation with the
consumer’s preferences and the algorithm will end up learning the
preferences incorrectly.

Algorithm 2 Modified Candidate Elimination Algorithm
1:
� �

the set of maximally general hypotheses in H
2: � � the set of maximally specific hypotheses in H
3: For each training example, d
4: if d is a positive example then
5: Add d to S
6: if s in S can be combined with d to make one element then
7: Combine s and d into sd � sd is the rule covers s and d �
8: end if
9: end if

10: if d is a negative example then
11: For each hypothesis g in G does cover d
12: * Assume : g = (x1, x2, ..., xn) and d = (d1, d2, ..., dn)
13: – Remove g from G
14: – Add hypotheses g1, g2, gn where g1= (x1-d1, x2,..., xn),

g2= (x1, x2-d2,..., xn),..., and gn= (x1, x2,..., xn-dn)
15: – Remove from G any hypothesis that is less general than

another hypothesis in G
16: end if

We deal with this problem by extending our hypothesis language
to include disjunctive hypothesis in addition to the conjunctives and
negation. Each attribute of the hypothesis has two parts: inclusive
list which holds the list of valid values for that attribute and ex-
clusive list which is the list of values which cannot be taken for
that feature. For instance, if the most specific set is � (Light, Del-
icate, Red) � , it will be � (Light, Delicate, [White, Red]) � instead
of (Light, Delicate,?) after a positive example, (Light, Delicate,
White) comes. Only when all the values exist in the list, they will
be replaced by � .

We modify the CEA algorithm (Algorithm 1)to deal with this
change. The modified algorithm is given in Algorithm 2. The ini-
tialization phase is same with the original one (Lines 1, 2). If any
positive sample comes, we add the sample to the special set as be-
fore (Line 4). However, we do not eliminate the hypotheses in

�
that do not cover this sample since

�
now contains a disjunction

of many hypotheses, some of which will be conflicting with each
other. Removing a specific hypothesis from

�
will result in loss

of information, since other hypotheses are not guaranteed to cover
it. After a time, some hypotheses in � can be merged and can con-
struct one hypothesis (Lines 6, 7).

When a negative sample comes, we do not change � as before.
We only make the most general hypotheses not cover this negative
sample (Line 11–15).

EXAMPLE 6. Table 2 illustrates an example that works with the
modified version space algorithm. The initial request of the con-
sumer is same as the one in Table 1, so as the initial

�
and � . When

the counter offer from the producer comes (negative instance), we
specialize

�
since

�
should not cover any negative instances. We

replace (?, ?,?) by three disjunctive hypotheses; each hypothesis
being minimally specialized. In this process, at each time one at-
tribute value of negative sample is applied to the hypothesis in the
general set.

Note that in Example 6, we do not eliminate � (?-Full), ?, ? � from
the general set while having a positive sample such as (Full, Strong,
White ). This stems from the possibility of using this rule in the
generation of other hypotheses. For instance, if the example con-
tinues with a negative sample (Full, Strong, Red), we can specialize
the previous rule such as � (?-Full), ?, (?-Red) � .

By Algorithm 2, we do not miss any information. Later, we plan
to integrate ontology reasoning into the algorithm so that hierarchi-
cal information can be learned from subsumption hierarchy object
or subclass of relations. Further, by using relationships among fea-
tures, the producer can discover new knowledge from the existing
knowledge.

EXAMPLE 7. Using the wine ontology the following reasoning
can be made: Bordeaux is defined as a Wine, Medoc is defined as a
Bordeaux and Pauillac is defined as a Medoc. When the consumer
agent wants to buy wine, the producer agent can offer any instance
of Bordeaux, Medoc and Pauillac since it can reason that if Medoc
is a Bordeaux and Bordeaux is a Wine then Medoc is a Wine and
then if Pauillac is a Medoc and Medoc is a Wine then Pauillac is a
wine. Such reasoning makes our agent use the semantic informa-
tion related to the concepts.

3.3 Offering Service
Making the right service offers is the most important process in

content-oriented negotiation. To generate the best offer, the pro-
ducer agent uses its service ontology and the inductive learning via
the modified candidate elimination algorithm (Algorithm 2).

When producer receives any request from the consumer, the learn-
ing set of the producer is trained with this request as a positive sam-
ple. The learning components, the most specific set � and the most
general set

�
are actively used in offering service. The most gen-

eral set,
�

is used by the producer in order to avoid offering the
services, which will be rejected by the consumer agent. In other
words, it filters the service set from the undesired services, since�

contains hypotheses that are consistent with the requests of the
consumer. The most specific set, � is used in order to find best of-
fer, which is similar to the consumer’s preferences. Since the most
specific set � holds the previous requests and current request, esti-
mating similarity between this set and every service in the service
list is very convenient to find the best offer from the service list.
The algorithm used in offering a service to the consumer is called



Table 2: How Modified CEA works
Sample Type Sample The general sets The most specific set

+ (Full, Strong, White) � (?, ?, ?) � � (Full,Strong,White) �
- (Full, Delicate, Rose) � � (?-Full), ?, ? � , � ?, (?-Delicate), ? � , � ?, ?, (?-Rose) � � (Full,Strong,White) �
+ (Medium, Moderate, Red) � � (?-Full), ?, ? � , � ?, (?-Delicate), ? � , � ?, ?, (?-Rose) � � � (Full,Strong,White) � ,

� (Medium,Moderate,Red) � �

Similarity with Modified Version Space (SMVS) and is shown in
Algorithm3.

When the consumer starts the interaction with the producer agent,
producer agent loads all related services to the service list object.
This list constitutes the provider’s inventory of services. Upon re-
ceiving a request, if the producer can offer an exactly matching ser-
vice, then it does so. For example, for a wine this corresponds to
selling a wine that matches the specified features of the consumer’s
request identically. When the producer cannot offer the service as
requested, it tries to find the service that is the most similar to the
services that have been requested by the consumer during the ne-
gotiation. To do this, the producer has to compute the similarity
between the services it can offer and the services that have been
requested.

Algorithm 3 Offering Service Algorithm (SMVS)
Require: The learning algorithm is trained with the request as a

positive example
1: if it is the first time then
2: � �������	�
���
���
� � All related available services from service

ontology � the producer agent can provide �
3: end if
4: if any s in ServiceList is equal to the request then
5: Offer s to the consumer
6: else
7: Remove each s in ServiceList which is not covered by the

general sets in learning object
8: for all � in ServiceList do
9: Estimate similarity between � and the most specific set in

learning object
10: Hold the maximum similarity in ����� � ���
11: Hold the count of services owing the maximum similarity

in � �������	�
�����������
12: end for
13: if � �������	�
������� �!�#"%$ then
14: Find rating values of s whose similarity is equal to

���&� � �	�
15: Offer the services whose rate value is the biggest
16: else
17: Offer the service whose similarity is equal to ����� � ���
18: end if
19: end if

Similarity can be estimated with one of the similarity metrics.
There are several similarity metrics used in case based reasoning
system such as weighted sum of Euclidean distance, Hamming dis-
tance and other useful similarity metrics can be chosen [14]. We
have used Tversky’s similarity measure [17]. This metric compares
two vectors in terms of the number of exactly matching features.

In Equation 1, �'���(�)��� represents the number of matched at-
tributes whereas * �,+!+ ��������� represents the number of the different
attributes. For now, we assume - and . is equal to each other. In
the future, we will try different weight values and select the best

one by comparing them.

�
�0/'1�2 -43 �5���)�(���76
-43 �5���)�(���7698 .:3;* ��+!+ �������!�<6 (1)

This formula is for calculating the similarity between two feature
vectors. In our system while the list of services that can be offered
by the producer are each a feature vector, the most specific set �
is not a feature vector. � consists of hypotheses of feature vectors.
Therefore, we estimate the similarity of each hypothesis inside the
most specific set � and then take the average of the similarities.
Moreover, each hypothesis in S may involve a different number of
service instances.

EXAMPLE 8. Assume that � contains the following two hypoth-
esis: � � Light, Moderate, (Red, White) � , � Full, Strong, Rose � � .
Take service � as (Light, Strong, Rose). Then the similarity of the
first one is equal to 1/3 and the second one is equal to 2/3 in ac-
cordance with Equation 1. Normally, we take the average of it and
obtain (1/3+2/3)/2, equally 1/2. However, the first hypothesis in-
volves the effect of two requests and the second hypothesis involves
only one request. As a result, we expect the effect of the first hy-
pothesis should be greater than that of the second.

Therefore, we decide to calculate the average similarity by con-
sidering the number of samples that hypotheses cover. Let ��= de-
note the number of samples that hypothesis > can cover and
( �
�@? =BA CED,FHG5IKJ,D<L ) denotes the similarity of hypothesis > with the
given service s. We compute the similarity of each hypothesis with
the given service and weight them with the number of samples they
cover. We find the similarity by dividing the weighted sum of the
similarities of all hypotheses in � with the service by the number
of all samples that are covered in � .

M�N �%O �
�@? CEDEFPG5IKJ,D5A Q�L 2
P R Q RR = R 3 �
=�S �
� ? =BA C,DEFPG'ITJED<L 6

P R Q RR = R ��= (2)

EXAMPLE 9. For the above example, the similarity of (Light,
Strong, Rose) with the specific set is (2*1/3+2/3)/3, equally 4/9.
The possible number of samples that a hypothesis covers can be
estimated with multiplying cardinalities of each attribute. For ex-
ample, the cardinality of the first attribute is 2 and the others is
equal to 1 for the given hypothesis such as � Light, Moderate, (Red,
White) � . When we multiply them, we obtain two (2*1*1=2).

Offering a service is actually similar to case-based approach. We
select the feature values of the service vector in the service list ob-
tained from the ontology and filtered by the most general set G,
which is the most similar to the specific set in our learning algo-
rithm whereas in case-based approach, the most similar one to the
current the request is chosen by losing the past request information.
In other words, when we investigate the similarity, we do not only
look at the current request, but also look at the previous request
of the consumer by the help of the most specific set covering all
requests during the negotiation phase.



If there is more than one service with the maximum similarity,
the producer agent chooses one of them in accordance with the rat-
ing value of it; the higher rating is more attractive for the consumer
agent. After offering service, there are two options for consumer:
to accept or reject. If the consumer rejects, the producer trains the
learning set with the offer as a negative sample. This will continue
until the consumer takes a service or until a certain time interval.

4. DEVELOPED SYSTEM
We first give a brief overview of our setup and then discuss our

test cases.

4.1 Architectural Setup
We have implemented our architecture in Java. To ease testing of

the system, the consumer agents has a user interface that allows us
to enter various requests. The producer agent fully automates the
learning and service offering operations explained before. We use
OWL[13] as our ontology language and KAON2[9] as our ontology
reasoner. As mentioned before, the system uses the well-known
wine ontology with an extension of WineProduct class. This class
is necessary for the producer to record the wines it sells; i.e., its
inventory information.

This ontology also includes the individuals of the classes which
are in the range of hasWine property and also involves the indi-
viduals of WineProduct classes. Following is an example of such
individuals.

<Beaujolais rdf:ID="ChateauMorgon">
<hasMaker rdf:resource="#ChateauMorgon" />
<madeFromGrape rdf:resource="#GamayGrape" />
<hasSugar rdf:resource="#Dry" />
<hasFlavor rdf:resource="#Delicate" />
<hasBody rdf:resource="#Light" />
<hasColor rdf:resource="#Red" />
<locatedIn rdf:resource="#BeaujolaisRegion"/>

</Beaujolais>
<WineProduct rdf:ID="WineProduct1">

<Year>1975</Year>
<Count>1</Count>
<Rating>4</Rating>
<hasWine rdf:resource= "#ChateauMorgon"/>

</WineProduct>

The year information has not been used to keep experiments sim-
ple. The count value keeps track of the number of products in in-
ventory and is used to check availability of the product. The rating
value is an indicator of the quality of the wine product. Among two
similar wines, the one with higher rating value is preferred over the
other. The price of the wine is deliberately left out to emphasize
that we are concerned with the value of the service. Table 3 shows$�� individuals of WineProduct, which are used in the testing phase.

4.2 Example
Consider a customer that is planning on buying wine. For the

customer, the color, location and winery of the wine are more im-
portant than the remaining features such as the body, flavor and so
on. In other words, the consumer can be convinced to buy a wine
product whose flavor is different from the one that the consumer
initially specifies in its request, but she cannot be convinced to buy
the wine whose color is different from her initial specification. Ob-
viously, these preferences are not known by the service provider
ahead of time.

Table 4 depicts the interactions between the consumer and the
producer. The consumer starts the negotiation by generating the

following request [Elyse, MerlotGrape, OffDry, Strong, Medium,
Red, NapaRegion] where Elyse is the name of winery, MerlotGrape
is the type of grape that wine is made from, OffDry indicates the
sugar level, Strong is the flavor of wine where Medium is an indi-
cator for the body of the wine, the color of wine is Red and Na-
paRegion is the region of the wine.

Table 5: Estimated Similarities for the Example
Product ID After Req.1 After Req.2 After Req.3

P1 0.143 0.143 0.190
P2 0.429 0.429 -
P3 0.571 - -
P4 0.286 0.286 0.238
P5 0.429 0.429 0.380
P6 0.286 0.286 0.286
P7 0.286 0.286 0.238
P8 0.143 0.143 0.143
P9 0.143 0.143 0.143
P10 0.143 0.143 0.095
P11 0.143 0.143 0.095
P12 0.0 0.0 0.0
P13 0.286 0.286 0.238
P14 0.143 0.286 0.333
P15 0.143 0.286 0.238
P16 0.143 0.143 0.143
P17 0.0 0.0 0.048
P18 0.429 0.429 0.429
P19 0.286 0.286 0.286

Max. Similarity: 0.571 0.4289 0.429

When this request is taken by the producer, it firstly trains its
learning set, treating this request as a positive sample as explained
before. Since this is the only positive example so far, it constitutes
the most specific set � in accordance with the modified CEA. Then,
it estimates the similarities of each available service in the service
list of the producer shown in Table 3 with the most specific set.
The output of the similarities estimated by the producer agent using
Equation 1 is displayed in Table 5.

According to the similarities of the first time, the most similar
product is selected as ��� having the maximum similarity value��� �
	 $ (= 4/7 = (common / (common + different)). This service
supplies the same color and location information with the initial
request. However, its winery is different from the one that the con-
sumer agent strictly wants. Therefore, the consumer rejects the
offer and makes another request, which is also in accordance with
the customer’s preferences (i.e., only the grape type is changed).
At this point, the producer inserts the rejected offer as a negative
example into its learning algorithm and removes it from the ser-
vice list. Following this, the producer recalculates the similarity
of the services in its service list with � , which is equivalent to �
(Elyse , [MerlotGrape, MalbecGrape], OffDry, Strong, Medium,
Red, NapaRegion) � . At this time, there are three products with the
maximum similarity value

��� ��
 � .

1. Similarity of P2 = (2* 3/7) /2 =0.429

2. Similarity of P5 = (2* 3/7)/2 =0.429

3. Similarity of P18 = (2* 3/7)/2 =0.429

The producer prefers to offer the second product since its rating
value is higher than the other products. However, the winery re-
quirement of the customer is not supported by this offer. Therefore,



Table 3: Available Services
WineProduct1 :ChateauMorgonBeaujolais Meta Data: � Year=1975, Count=1, Rating=4 �

� ChateauMorgon, GamayGrape, Dry, Delicate, Light, Red, BeaujolaisRegion �
WineProduct2 :WhitehallLaneCabernetFranc Meta Data: � Year=1985, Count=2, Rating=5 �

� WhitehallLane, CabernetFrancGrape, Dry, Moderate, Medium, Red, NapaRegion �
WineProduct3 :FormanCabernetSauvignon Meta Data: � Year=1985, Count=1, Rating=4 �

� Forman, CabernetSauvignonGrape, Dry, Strong, Medium, Red, NapaRegion �
WineProduct4 :MariettaCabernetSauvignon Meta Data: � Year=1985, Count=1, Rating=4 �

� Marietta, CabernetSauvignonGrape, Dry, Moderate, Medium, Red, SonomaRegion �
WineProduct5 :PageMillWineryCabernetSauvignon Meta Data: � Year=1976, Count=3, Rating=3 �

� PageMillWinery, CabernetSauvignonGrape, Dry, Moderate, Medium, Red, NapaRegion �
WineProduct6 :SantaCruzMountainVineyardCabernetSauvignon Meta Data: � Year=1989, Count=4, Rating=4 �
� SantaCruzMountainVineyard, CabernetSauvignonGrape, Dry, Strong, Full, Red, SantaCruzMountainsRegion �

WineProduct7 :BancroftChardonnay Meta Data: � Year=1991, Count=1, Rating=2 �
� Bancroft, ChardonnayGrape, Dry, Moderate, Medium, White, NapaRegion �

WineProduct8 :FormanChardonnay Meta Data: � Year=1975, Count=2, Rating=5 �
� Forman, ChardonnayGrape, Dry, Moderate, Full, White, NapaRegion �

WineProduct9 :MountadamChardonnay Meta Data: � Year=1985, Count=2, Rating=4 �
� Mountadam, ChardonnayGrape, Dry, Strong, Full, White, SouthAustraliaRegion �

WineProduct10 :MountEdenVineyardEdnaValleyChardonnay Meta Data: � Year=1989, Count=1, Rating=4 �
� MountEdenVineyard, ChardonnayGrape, Dry, Moderate, Medium, White, EdnaValleyRegion �

WineProduct11 :PeterMccoyChardonnay Meta Data: � Year=1991, Count=10, Rating=3 �
� PeterMccoy, ChardonnayGrape, Dry, Moderate, Medium, White, SonomaRegion �

WineProduct12 :FoxenCheninBlanc Meta Data: � Year=1981, Count=7, Rating=4 �
� Foxen, CheninBlancGrape, Dry, Moderate, Full, White, SantaBarbaraRegion �

WineProduct13 :VentanaCheninBlanc Meta Data: � Year=1976, Count=5, Rating=5 �
� Ventana, CheninBlancGrape, OffDry, Moderate, Medium, White, CentralCoastRegion �

WineProduct14 :WhitehallLanePrimavera Meta Data: � Year=1974, Count=3, Rating=5 �
� CongressSprings, MalbecGrape, Sweet, Delicate, Light, Rose, NapaRegion �

WineProduct15 :SelaksIceWine Meta Data: � Year=1984, Count=13, Rating=4 �
� Selaks, MalbecGrape, Sweet, Moderate, Medium, White, NewZealandRegion �

WineProduct16 :SchlossRothermelTrochenbierenausleseRiesling Meta Data: � Year=1987, Count=23, Rating=3 �
� SchlossRothermel, SangioveseGrape, Sweet, Strong, Full, Rose, GermanyRegion �

WineProduct17 :StGenevieveTexasWhite Meta Data: � Year=1991, Count=29, Rating=3 �
� StGenevieve, GamayGrape, Dry, Moderate, Light, White, CentralTexasRegion �

WineProduct18 :ElyseZinfandel Meta Data: � Year=1976, Count=7, Rating=4 �
� Elyse, ZinfandelGrape, Dry, Moderate, Full, Red, NapaRegion �

WineProduct19 :ChateauMargaux Meta Data: � Year=1981, Count=15, Rating=4 �
� ChateauMargauxWinery, MerlotGrape, Dry, Delicate, Light, Red, MargauxRegion �

the consumer agent will reject it. The next request, the consumer
changes the body attribute from strong to light. The producer re-
calculates the similarity with the most specific set which is equal to
� � Elyse,(MerlotGrape, MalbecGrape),OffDry, Strong, Medium,
Red, NapaRegion � , � Elyse, MalbecGrape,OffDry, Strong, Light,Red,
NapaRegion � � . At the third time, the maximum similarity is equal
to
��� ��
 � . Therefore, P18 is offered to the customer.

� ���)��� � ���;��������� A Q 2 3 
 S 3 ��	 	 678 �
	 	 6 	 � 2 ��� � 
 � (3)

Since this offer is consistent with the customer’s preferences, the
consumer agent accepts the offer. When we investigate the offers,
we can see that the producer agent learns that the winery is an im-
portant feature for the customer. In the third iteration, the producer
finds a wine product that matches the consumer’s preferences.

5. PERFORMANCE EVALUATION
After giving a detailed example, we evaluate the performance of

the proposed system (SMVS) by comparing it with the two other
approaches that do not use inductive learning. The first compared

system randomly generates counter offers by picking random prod-
ucts for the user. We call this approach Random Offering. The
second system we use (SCR) offers the most similar service to the
current request by ignoring the prior requests made.

We use five test cases for this evaluation process. Each test case
contains a list of preferences for the user and number of matches
from the product list. Also, the performance depends on the ini-
tial request, thus, we repeat our experiments with different initial
requests.

Consequently, for each case, we run the algorithms five times
with several variations of the requests. In each experiment, we
count the number of iterations that need to be made to reach an
agreement. We take the average of the this number in order to eval-
uate these systems fairly. As is customary, we start each test case
with the same initial request.

5.1 Scenario 1
The customer wants to buy any wine whose sweetness degree is

dry. There are 15 products in the inventory that meets this condi-
tion. Table 6 show the average of five runs for all three approaches.



Table 4: An Example Negotiation
REQUEST - 1 [Elyse , MerlotGrape, OffDry, Strong, Medium, Red, NapaRegion]

OFFER - 1 [Forman, CabernetSauvignonGrape, Dry, Strong, Medium, Red, NapaRegion]
REQUEST - 2 [Elyse, MalbecGrape, OffDry, Strong, Medium, Red, NapaRegion]

OFFER - 2 [WhitehallLane, CabernetFrancGrape, Dry, Moderate, Medium, Red, NapaRegion]
REQUEST - 3 [Elyse, MalbecGrape, OffDry, Strong, Light, Red, NapaRegion]

OFFER - 3 [Elyse, ZinfandelGrape, Dry, Moderate, Full, Red, NapaRegion]

Here, number of iterations represents the number of steps it takes
for the customer’s request to be fulfilled by the producer.

SMVS score is slightly better than the SCR Technique. During
the test, we see that both SMVS and SCR techniques offer the same
service at the beginning of the negotiation phase since the most spe-
cific set of the modified version space is equal to the initial request
at the first time. However, in the following interaction their behav-
iors change. Furthermore, for this scenario, Random Offering is
as good as SMVS since the inventory involves a large number of
available services that are consistent with customer’s preferences
and the probability of offering a convenient service is very high.
This probability is equal to 15/19 at the beginning of the negotia-
tion and increases over time.

Table 6: Number of iterations for Scenario 1
SMVS SCR Random Offering

R1 2 3 1
R2 1 1 1
R3 1 1 2
R4 1 1 1
R5 1 1 1

Average: 1.2 1.4 1.2

In order to see the performance differences between the SMVS
and SCR in detail, we give a comparative run-time example. Ta-
ble 7 indicates the request-offer pairs of SMVS whereas Table 8
shows those of the SCR Technique.

The consumer starts with the request [Ventana, MalbecGrape,
Dry, Delicate, Light, Rose, CotesDOrRegion]. The similarities es-
timated for both SMVS and SCR is shown in Table 9. It is seen
that the similarity values are the same for both system after ini-
tial request. The maximum similarity is calculated as 4/7, equally
0.5714. As a result, both systems offer the product P14. After
second request, maximum similarity is estimated for SCR as 2/7,
equally 0.2857. This similarity is based on only current request.
Then, the product P13 is offered by SCR system but not accepted
by the consumer agent. On the other hand, the similarity calcu-
lation for SMVS is based on the most specific set, which is equal
to � Ventana, MalbecGrape, Dry, Delicate,(Light, Medium), Rose,
CotesDOrRegion � . According to this calculation, the similarity of
product P19 is equal to 3/7, whereas the similarity of product P13
is 2/7. Consequently, SMVS offers product P19 and it will be ac-
cepted by the consumer agent. The third offer will be product P3
for SCR technique. In this example, it is obvious that considering
the most specific set involving all previous requests in the inter-
action is beneficial for offering closer services to the customer’s
preferences.

5.2 Scenario 2
The customer wants to buy any wine, which is red and dry. There

are eight products (out of 19) in the stock that meets this condition.
When we look at the results of SMVS, SCR and Random Offering,

the performance of SMVS and SCR is equal and better than that
of Random Offering (Table 10). At the beginning of the negotia-
tion, the probability of offering an acceptable service for Random
Offering is equal to 8/19. Therefore, the number of iterations is
increased with respect to the first case.

Table 10: Number of iterations for Scenario 2
SMVS SCR Random Offering

R1 2 2 3
R2 2 2 1
R3 1 1 1
R4 1 1 3
R5 1 1 5

Average: 1.4 1.4 2.6

5.3 Scenario 3
The customer wants to buy any wine, which is red, dry and mod-

erate. There are four products meeting this condition. The test re-
sults in Table 11 indicates that SMVS shows the best performance
and the worst performance belongs to Random Offering. When the
number of available service that match the customer’s preferences
decrease, the performance difference between the SMVS and other
techniques becomes clear.

Table 11: Number of iterations for Scenario 3
SMVS SCR Random Offering

R1 2 2 3
R2 1 1 10
R3 1 1 4
R4 1 1 2
R5 2 4 3

Average: 1.4 1.8 4.4

5.4 Scenario 4
The customer wants to buy any wine, which is strong and red.

There are only two products in the inventory that meets this con-
dition. Again, we look at the average of five runs for three ap-
proaches. Table 12 shows that SMVS approximately finds the suit-
able offer at 2.2 iterations whereas SCR finds the convenient counter-
offer at 2.8 iterations. The performance of the Random Offering is
comparatively low.

5.5 Scenario 5
The customer wants to buy any wine whose flavor is strong and

color is red or rose. There are three products meeting this condi-
tion. This case is good to see the effect of learning the disjunctive
concept such as (Color = Red or Rose) with the conjunctives (and
Flavor= Strong). In some situation, SCR technique can find the
convenient service sooner than SMVS and in some situation SMVS



Table 7: Running of Scenario 1 using SMVS
REQUEST - 1 [Ventana, MalbecGrape, Dry, Delicate, Light, Rose, CotesDOrRegion]

OFFER - 1 P14 = [CongressSprings, MalbecGrape, Sweet, Delicate, Light, Rose, NapaRegion]
REQUEST - 2 [Ventana, MalbecGrape, Dry, Delicate, Medium, Rose, CotesDOrRegion]

OFFER - 2 P19 = [ChateauMargauxWinery, MerlotGrape, Dry, Delicate, Light, Red, MargauxRegion]

Table 8: Running of Scenario 1 using SCR
REQUEST - 1 [Ventana, MalbecGrape, Dry, Delicate, Light, Rose, CotesDOrRegion]

OFFER - 1 P14 = [CongressSprings, MalbecGrape, Sweet, Delicate, Light, Rose, NapaRegion]
REQUEST - 2 [Ventana, MalbecGrape, Dry, Delicate, Medium, Rose, CotesDOrRegion]

OFFER - 2 P13 = [Ventana, CheninBlancGrape, OffDry, Moderate, Medium, White, CentralCoastRegion]
REQUEST - 3 [Ventana, MalbecGrape, Dry, Strong, Medium, Rose, CotesDOrRegion]

OFFER - 3 P3 = [Forman, CabernetSauvignonGrape, Dry, Strong, Medium, Red, NapaRegion]

Table 12: Number of iterations for Scenario 4
SMVS SCR Random Offering

R1 2 4 16
R2 4 4 6
R3 1 1 11
R4 1 1 10
R5 3 4 5

Average: 2.2 2.8 9.6

can show better performance. This depends on the requests. Aver-
age performance of SMVS over five runs is better than that of SCR
as seen in Table 13.

Table 13: Number of iterations for Scenario 5
SMVS SCR Random Offering

R1 2 6 7
R2 1 1 10
R3 3 2 13
R4 3 3 6
R5 1 1 2

Average: 2 2.6 7.6

5.6 Comparison over Scenarios
Table 14 compares the three approaches over all scenarios. The

results indicate that SMVS performance is higher than both of the
other systems. When the number of possible services is decreas-
ing, the time interval for offering an acceptable service gets longer
in Random Offering. When the large parts of inventory is com-
patible with the customer’s preferences as in the first test case, the
performance of all techniques are nearly same.

Table 14: Average Number of Iterations for Five Scenarios
SMVS SCR Random Offering

Scenario 1: 1.2 1.4 1.2
Scenario 2: 1.4 1.4 2.3
Scenario 3: 1.4 1.8 3.7
Scenario 4: 2.2 2.8 7.8
Scenario 5: 2 2.6 6.3

Average of all cases: 1.64 2 4.26

6. DISCUSSION
We review the recent literature in comparison to our work. Deben-

ham [5] studies the management of the single-issue and multi-issue
negotiation processes using the market data and information over
the Internet. Each transaction such as request and offer is con-
sidered as a business process and have some constraints such as
time. A negotiation should be completed up to a certain time. Br-
zostowski and Kowalczyk propose an approach in order to select
an appropriate negotiation partner by investigating previous multi-
attribute negotiations [2]. For achieving this, they use case-based
reasoning. They emphasize the positive effect of finding the right
partner. Their approach is probabilistic since the behavior of the
partners can be changed by the next time. In our approach, we are
interested in negotiation the content of the service. After the con-
sumer and producer agree on the service, price-oriented negotiation
mechanisms can be used to agree on the price.

Tama et al. [16] propose a new approach based on ontology
for negotiation. According to their approach, the negotiation pro-
tocols used in e-commerce can be modeled as ontologies. Thus,
the agents can perform negotiation protocol by using this shared
ontology without the need of being hard coded of negotiation pro-
tocol details. This shared ontology provides the vocabulary of the
negotiation process for the agents, which can behave dynamically.
However, Tama et al. do not provide a method for learning prefer-
ences during negotiation as we have done here.

Ontology can be used in service discovery for better results than
that based on syntactic matching. Broens et al. [1] propose a
context-aware, ontology-based service discovery. Matching capa-
bilities can be increased by using the semantic information. For
instance, when the user requests for selling music, selling CD will
be valid since the CD is a subtype of music. They classify the
services according to their properties and model the service and
service types in an ontology. To find a service, they consider con-
textual information in addition to inputs and outputs.

Faratin et al. propose a multi-issue negotiation mechanism based
on trade-offs [6]. The service variables for the negotiation process
such as price, quality of the service, delivery time and so on are
considered traded-offs against each other (i.e., higher price for ear-
lier delivery). They generate a heuristic model for trade-offs in-
cluding fuzzy similarity estimation and a hill-climbing exploration
for possibly acceptable offers. Although we address a similar prob-
lem, our main target is to learn the preference of the customer by
the help of inductive learning and generate counter-offers in accor-
dance with these learned preferences. Faratin et al. only use the
last offer made by the consumer in calculating the similarity for
choosing counter offer. Unlike them, we also take into account the



Table 9: The Estimated Similarities for Scenario 1
Similarities for SMVS Similarities for SCR

Product ID After Request-1 After Request-2 After Request-1 After Request-2 After Request-3

P1 0.4286 0.4286 0.4286 0.2857 0.1429
P2 0.1429 0.2857 0.1429 0.2857 0.2857
P3 0.1429 0.2857 0.1429 0.2857 0.4286
P4 0.1429 0.2857 0.1429 0.2857 0.2857
P5 0.1429 0.2857 0.1429 0.2857 0.2857
P6 0.1429 0.1429 0.1429 0.1429 0.2857
P7 0.1429 0.2857 0.1429 0.2857 0.2857
P8 0.1429 0.1429 0.1429 0.1429 0.1429
P9 0.1429 0.1429 0.1429 0.14295 0.2857

P10 0.1429 0.2857 0.1429 0.2857 0.2857
P11 0.1429 0.2857 0.1429 0.2857 0.2857
P12 0.1429 0.1429 0.1429 0.1429 0.1429
P13 0.1429 0.2857 0.1429 0.2857 -
P14 0.5714 - 0.5714 - -
P15 0.1429 0.2857 0.1429 0.2857 0.2857
P16 0.1429 0.1429 0.1429 0.1429 0.2857
P17 0.2857 0.2857 0.2857 0.1429 0.1429
P18 0.1429 0.1429 0.1429 0.1429 0.1429
P19 0.4286 0.4286 0.4286 0.2857 0.1429

Maximum Similarity: 0.5714 0.4286 0.5714 0.2857 0.4286

previous requests of the consumer using Modified Version Space.
In their experiments, Faratin et al. assume that the weights for ser-
vice variables are fixed a priori. On the contrary, we aim to learn
these preferences through inductive learning.

Our approach is open for improvements. First, the preferences
of the consumer agent may change during the negotiation. It would
be interesting to extend the learning algorithm to deal with dynamic
changes in the requests of the consumer agent. The preferences can
be enriched with subtle relations on price. Second, semantic close-
ness among the feature values can be used in the estimation of the
similarity of the services with the most specific set in the learning
phase in order to obtain better results. Up to now, when we compare
two attributes, we assign

�
for dissimilarity and $ for similarity.

However, we can use intermediate values to express the closeness
of the attributes. For example,

��� �
can be used for red and rose

whereas
��� 


can be used for white and rose. Third, currently, the
producer only tries to learn the consumer’s demand without consid-
ering its own preferences. Incorporating the business strategies of
the producer will allow more realistic scenarios to be tested. These
are interesting directions that we will pursue in our future work.
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