
Resolving Commitments Among Autonomous Agents?

Ashok U. Mallya1, Pınar Yolum2, Munindar P. Singh1

1 Department of Computer Science, North Carolina State University, Raleigh NC 27695-7535,
USA

2 Department of Artificial Intelligence, Vrije Universiteit Amsterdam, De Boelelaan 1081a,
1081 HV Amsterdam, The Netherlands

Abstract. Commitments are a powerful representation for modeling multiagent
interactions. Previous approaches have considered the semantics of commitments
and how to check compliance with them. However, these approaches do not cap-
ture some of the subtleties that arise in real-life applications, e.g., e-commerce,
where contracts and institutions have implicit temporal references. The present
paper develops a rich representation for the temporal content of commitments.
This enables us to capture realistic contracts and institutions rigorously, and avoid
subtle ambiguities. Consequently, this approach enables us to reason about whether
and when exactly a commitment is satisfied or breached and whether it is or ever
becomes unenforceable.

1 Introduction and Objectives

Protocols help streamline the complex interactions that can take place between au-
tonomous, heterogeneous agents in a multiagent system. A special application setting
is e-commerce, where the agents represent different parties that do business on-line.

The role of commitments in modeling such rich interactions is widely recognized,
because they enable the key content of an interaction to be represented and reasoned
about, especially in the face of opportunities or exceptions. Commitments are thus more
expressive than traditional formalisms such as finite state machines. Yolum and Singh
[1] show how to build and execute commitment-based protocols and to reason about
such protocols in the event calculus. Fornara and Colombetti [2] capture key aspects of
the commitment lifecycle and further advance the idea of commitments as a data struc-
ture. Some compliance aspects of commitment protocols in a branching-time temporal
logic with potential causality have also been studied by Venkataraman and Singh [3].

Motivation. The above approaches show that commitments provide a viable represen-
tational framework for designing, executing, and validating flexible protocols in multi-
agent systems. However, current approaches take a limited view of the temporal aspects
of commitments. This can prove to be a drawback for their use in real systems, since
business deals usually involve many clauses and have subtle time periods of reference.
The following is an informal list of some properties that are relevant in practice, but not
naturally handled by current approaches.
? We thank the anonymous referees for their comments and suggestions that helped improve the

text. We also thank Mario Verdiccio for his suggestions. This research was supported by the
National Science Foundation under grant DST-0139037.

– Time Intervals. Contracts often involve time bounds, which simplify decisions about
the satisfaction or breach of commitments, which is one of the reasons traditional
representations (e.g., paper documents) rely on them. Practical commitments often
must be satisfied either within a fixed, bounded interval or at a specified instant in
the future.

– Maintenance. Current work on commitments has concentrated on achievement con-
ditions, whereas real-life commitments are as likely to be about the maintenance of
certain conditions. For example, a typical service-level agreement (SLA) may in-
volve committing to maintaining network connectivity during business hours.

– Temporal anaphora. A particular variety of time bounds arise in the notion of tem-
poral anaphora, as introduced by Partee [4]. A promise such as “I will send you
the goods” or a claim such as “I tried to call you five times” involves an implicit
range of salient times within which the specified action occurred or will occur.
Although we are not concerned here with commonsense reasoning, our represen-
tational framework for commitments should be able to accommodate the results of
such reasoning.

Point-based temporal logics, which are commonly used in distributed system specifi-
cations, are inadequate to express the above requirements. Accordingly, we develop
an extension of the well-known branching-time logic, Computation Tree Logic (CTL)
developed by Emerson [5], which can capture the cases of interest here.

Challenges.We use examples from situations that arise in practical applications of web
services to motivate our study of temporal aspects of commitments. We consider the
example of a travel agent, who wishes to book an airline ticket to a certain destination,
a rental car to use while there, and also a hotel room to stay at.

Example 1.The travel agent wants the passenger to be able to fly on one particular day,
reserving the right to choose any flight on that day. If the airline is willing to offer such
a deal, it becomes committed to maintaining a condition – a booked ticket – over an
extended period of time. We need to be able to specify such maintenance conditions in
commitments.

Example 2.The car rental company might offer, for some reason, one weeks free rental
in the month of January. This is a maintenance condition within another time period.
We need to be able to capture such temporal intricacies without bloating the domain
language.

Example 3.Some commitments may violate constraints about time that commonsense
reasoning would have detected. Such a situation can arise, for example, when a hotel
offers an electronic discount coupon that expires today, but the coupon can be used only
in some future time period, say, a special spring break offer that expires much before
spring break.

Example 4.Another interesting example is when a warranty cannot be verified within
the period over which the warranty is valid. Consider a customer who rents a car from a
company which guarantees that the car will not break down for at least a two days, and
promises a replacement car if it does. However, if the car were rented on a Friday and
the company is closed on the weekends, then the customer is at a disadvantage.

Example 1 is solved in Section 4.1, Examples 2 and 3 in Section 4.2, and Example 4
in Section 4.3.

Contribution. Our main contribution is in applying a richer temporal representation
to commitments and showing how the satisfaction or breach of a commitment can be
detected. Further, the temporal aspects of commitments are independent of the domain-
specific semantics of the condition that the commitment is about, so that we can reason
about the temporal aspects of commitments in a domain-independent manner.

Organization.Section 2 introduces background concepts, Section 3 develops our tech-
nical approach, Sections 4 explains our results on the resolution of commitments that
use temporally qualified propositions, and Section 5 summarizes our proposal and iden-
tifies directions of further research.

2 Background: Time and Commitments

We next briefly explain our model of time and our temporal logic, and introduce the
notion of commitments.

2.1 The Temporal Framework

We use a discrete, branching-time model, as shown in Figure 1. The temporal model
has the following features:

F1 The world is a set of discretemomentsin time.M is the set of all possible moments,
partially ordered by�. The past is linear, and the future branches.

F2 Each momentm is given a timestamp�(m) 2 T, totally ordered by<. If m0 �
m1 then�(m0) < �(m1).

F3 A scenarioS at a moment is a maximal set of moments containing the given mo-
ment and all moments along some branch in the future of the given moment.Sm

denotes the set of all scenarios at a momentm. A scenarioS 2 Sm has the follow-
ing properties:

–S is rooted; i.e.,m 2 S.
–S is linear; i.e., (8m1;m2 2 S : (m1 = m2 or m1 � m2 or m2 � m1) and
m � m1).

For example, in Figure 1, the pathm0m1m5 : : : 2 Sm0

We use an extension of Emerson’s Computational Tree Logic (CTL) [5]. We now
introduce the components of CTL.

1. Booleans. : and_ carry their usual meaning.true, false, !, and^ are obvious
abbreviations.

2. Linear time. These operators apply over a particular scenario.
U: A propositionpUq, readp until q, is true at a momentmi on a scenario, iffq
holds at some momentmx in the future on the given scenario andp holds at all
moments betweenmi andmx.

a
b

c

d

...

...

...

...

m
1

m
2

m
3

m4

m
0

...d
0

d1 d2
d

3
d4

q..

...

m5

m
6

d5

Fig. 1. A schematic representation of our model of time

F: A propositionFp, readeventually p, means thatp holds at some point in the
future in the given scenario.Fp abbreviatestrueUp.
G : A propositionGp, readalways p, means thatp always holds in the future on the
given scenario.Gp abbreviates:F:p

3. Branching quantifiers. The operatorA denotesin all scenariosat the present mo-
ment.

2.2 Temporal Qualification

The temporal commitment structure specified by Fornara and Colombetti [2] forms the
basis for our temporal commitment scheme. Every condition specified in the commit-
ment language has a time interval, a temporal quantifier, and a proposition in the domain
language.

We use timestamps to denote endpoints of time intervals. Two timestampsdl anddu
are used to represent an interval that begins atdl and ends atdu, both instants inclusive.
For any such time interval,dl � du. We introduce the followingtemporal quantifiersto
quantify over instants in the interval:

1. [] is an existential quantifier over a time interval.[d1; d2]p means the propositionp
has to hold at one or more instants in the interval beginning atd1 and ending atd2.

2. [] is a universal quantifier over a time interval. That is,[d1; d2]p means the propo-
sition p has to hold at every instant in the interval beginning atd1 and ending at
d2.

2.3 Commitments

Commitments are obligations that one agent has towards another, as Castelfranchi de-
scribes [6]. Formally, a commitmentC(id, x, y, p), relates a debtorx, a creditory, and a
conditionp in such a way thatx becomes responsible toy for satisfying the conditionp;
the commitment has a unique identifierid . The commitment is said to be satisfied when
the conditionp holds. There can be at most one commitment with a particular identifier
in our entire model.

Commitment Operations.Commitments are created, satisfied, and transformed in cer-
tain ways. According to Singh [7], the following operations can be performed on com-
mitments.

1. CREATE(x, c) establishes the commitmentc in the system. This can only be per-
formed byc’s debtorx.

2. CANCEL(x, c)cancels the commitmentc. This can only be performed byc’s debtor
x. Generally, cancellation is compensated by making another commitment.

3. RELEASE(y, c) releasesc’s debtorx from commitmentc. This only can be per-
formed by the creditory.

4. ASSIGN(y, z, c)replacesy with zasc’s creditor.
5. DELEGATE(x, z, c)replacesx with zas thec’s debtor.
6. DISCHARGE(x,c)c’s debtorx fulfills the commitment.

We note that a commitment has to be created using theCREATE operation for it
to exist. Further, we assume equivalence of the performance of aDISCHARGE opera-
tion and the satisfaction of the conditionp. That is, we assume that theDISCHARGE

operation brings aboutp, and conversely, ifp occurs, theDISCHARGE operation is as-
sumed to have happened. This assumption does not impoverish the theory, and we defer
a discussion on it to Section 5.

We also introduce two predicates in Section 3.1 that help us capture the notion of
fulfillment of a commitment rigorously.

Commitment Predicates.For every operation on commitments listed above, we intro-
duce a corresponding predicate which has the same name as the operation, but with
lowercase letters. The predicates, instantiated with proper parameters, are true at the
moment at which the corresponding operation is performed. For example, if an agent
x performs aCREATE(x,c)operation at a momentmi, then the predicatecreate(x,c)is
said to have the truth valuetrue at the momentmi.

Commitment Identifiers.Every commitment is assumed to have a unique identifier that
helps to distinguish it from other commitments that may have the same debtor, the same
creditor, and the same condition. For example, if I promise to pay you $5 twice, then a
single payment of $5 should not suffice. The predicates in question also apply to specific
commitments, i.e., respecting their unique identifiers. For example, I may cancel one of
my two commitments to pay $5 without automatically canceling the other commitment.
The identifiers come from a domainD , which can be thought of as formed of the natural
numbers.

3 Technical Framework

This section introduces the concept of time intervals, describes the formal language for
our scheme, and introduces two key predicates dealing with the resolution of commit-
ments.

3.1 The Formal Language

The following is a grammar for our formal language,T , expressed in Backus-Naur
Form (BNF). Here, tokens begenning with an uppercase letter denote nonterminals,
tokens begenning with a lowercase letter denote lexical items that are not analyzed
by this grammar,agent stands for any agent symbol,�! and j are meta-symbols of
the BNF, and all other symbols are terminals.T is the unique starting symbol for the
language ofT .

G1 T �! AExpr j :AExpr
G2 Expr �! Prop j Oper

G3 Prop �! :Prop j Prop _ Prop j PropUProp j [I; I]Prop j [I; I]Prop j a
G4 I �! date j variable j date + duration j variable + duration

G5 Oper �! :Oper j Oper _ Oper j OperUOper j breached(C) j satis�ed(C) j
create(agent ; C) j cancel(agent ; C) j delegate(agent ; agent ; C)
j assign(agent ; agent ; C) j release(agent ; C) j discharge(agent ; C)

G6 C �! C(identi�er ; agent ; agent ;Prop)

In the grammar,a is an atomic proposition in the domain,identi�er is a unique com-
mitment identifier,date is a timestamp,date 2 T, variable is a time variable that is
bound to a timestamp , andduration is a length of time used to construct simple addi-
tive expressions with time variables. Section 3.2 explains how time variables are bound
to timestamps.

As a convention, we usep andq to denote simple propositions andpt andqt to
denote temporally qualified propositions.

New Predicates for Resolving Commitments.We propose two predicates,breached(c)
andsatisfied(c), indicating violation and fulfillment of the given commitment, respec-
tively.

3.2 Semantics

We now describe the semantics for the languageT . For a propositionp, M j=m p

means that a modelM satisfies propositionp at momentm. M j=S;m p means that
the modelM satisfiesp at momentm in the scenarioS. When resolving nested interval
expressions,M j=S;m;ml;mu;E pmeans thatM satisfiesp at a momentm in the scenario
S within the interval that begins atml and ends atmu, bothml andmu being in the
scenarioS. Two constantsE andU are used as subscripts to denote whether the interval
is to be interpreted as existentially or universally quantified, respectively.

An interpretationIlabels each moment with the atomic propositions and the ground
commitment predicates that are true at that moment. Ground commitment predicates

here refer tocreate(�; �), assign(�; �; �), delegate(�; �; �), cancel(�; �), release(�; �), and
discharge(�; �). In a practical system, these elements would be specified in some manner
external to the logic. For instance, a create operation might be taken to hold wherever a
user submits a form over the Web.

Let� be a set containing the atomic propositionsa and ground commitment predi-
cates. ThenI : M 7! '(�).

Let M = hA ;M ;�; I;Ti be a model for the formal languageT , whereM , T, and
� have the meaning as explained in Section 2,A is a set of agent symbols, andI is an
interpretation as defined above.

The semantics uses asubstitutionfor time variables that occur in the bounds of in-
tervals. Ifp is an expression, andx is a vector of all time-variables in the expression,
then,p jx

d
is the expression produced by a uniform, concurrent, and element-wise sub-

stitution ofx byd. An expression that has no time-variables is calledground. A ground
expression is evaluated through date arithmetic. In the following, ift is ground, then[[t]]
is the timestamp corresponding to it. The details of the arithmetic are not formalized
here.

The semantics ofT is given next. Here,c refers to a commitment of the form
C(id ; j; k; p) and di’s denote timestamps. Also,active(c) is an abbreviation for:(
cancel(j; c) _ delegate(j; �; c) _ assign(k; �; c) _ release(k; c) _ discharge(j; c)).

The semantic ruleR1 creates ground expressions of time-variables. RulesR2

throughR6 specify the meaning of the temporal and logical operators that are used.
RulesR7 andR8 specify the meanings of intervals, while rulesR9 andR10 begin
the evaluation of nested intervals. RulesR11 andR12 use the result of date arithmetic
applied to ground time-expressions.

R1 M j=S;m p iff 9d : M j=S;m p jx
d

, wherep 62 �, x is a vector of variables the
occur inp, d is a vector of timestamps, andjdj = jxj.

R2 M j=S;m p iff p 2 I(m)wherep 2 �.
R3 M j=S;m :p iff M 6j=S;m p.
R4 M j=S;m p _ q iff (M j=S;m p orM j=S;m q).
R5 M j=S;m pUq iff (9m1 2 S : m � m1 andM j=S;m1

q and(8m2 : m � m2 �
m1)M j=S;m2

p)).
R6 M j=m Ap iff (8S : S 2 SmM j=S;m p).
R7 M j=S;m [dl; du]p iff M j=S;m;ml;mu;E p, where�(ml) = dl and�(mu) = du.
R8 M j=S;m [dl; du]p iff M j=S;m;ml;mu;U p, where�(ml) = dl and�(mu) = du.
R9 M j=S;m;ml;mu;E p iff 9mx 2 S : ml � mx � mu andM j=S;mx

p.
R10 M j=S;m;ml;mu;U p iff 8mx 2 S : ml � mx � ml andM j=S;mx

p.
R11 M j=S;m [tl; tu]p iff 9dl; du : dl = [[tl]] anddu = [[tu]] andM j=S;m [dl; du]p.
R12 M j=S;m [tl; tu]p iff 9dl; du : dl = [[tl]] anddu = [[tu]] andM j=S;m [dl; du]p.

The following rules apply to the results of rulesR9 andR10 .

R13 M j=S;m;ml;mu;E [dl; du]p iff 9mx : ml � mx � mu andM j=S;mx
[dl; du]p.

R14 M j=S;m;ml;mu;E [dl; du]p iff 9mx : ml � mx � mu andM j=S;mx
[dl; du]p.

R15 M j=S;m;ml;mu;U [dl; du]p iff 8mx : ml � mx � mu andM j=S;mx
[dl; du]p.

R16 M j=S;m;ml;mu;U [dl; du]p iff 8mx : ml � mx � mu andM j=S;mx
[dl; du]p.

R17 M j=S;m;ml;mu;E pUq iff 9mx : ml � mx � mu andM j=S;mx
pUq.

R18 M j=S;m;ml;mu;U pUq iff 8mx : ml � mx � mu andM j=S;mx
pUq.

R19 M j=S;m;ml;mu;E p _ q iff 9mx : ml � mx � mu andM j=S;mx
p _ q.

R20 M j=S;m;ml;mu;U p _ q iff 8mx : ml � mx � mu andM j=S;mx
p _ q.

R21 M j=S;m;ml;mu;E :p iff 9mx : ml � mx � mu andM 6j=S;mx
p.

R22 M j=S;m;ml;mu;U :p iff 8mx : ml � mx � mu andM 6j=S;mx
p.

Finally, we give the semantics for thebreached (�) andsatis�ed(�) predicates.

R23 M j=m breached (c) iff (9m3 : m3 � m andM j=m3
AG:discharge(j; c) and9m1 :

m1 � m3 andM j=m1
create(j; c) and(8m2 : m1 � m2 � m3) M j=m2

active(c))).
R24 M j=m satis�ed(c) iff (9m3 : m3 � m andM j=m3

discharge(j; c) and(9m1 :
m1 � m3 andM j=m1

create(j; c) and(8m2 : m1 � m2 � m3) M j=m2

active(c))))

Further, we impose the following constraints on the model to capture operations on
commitments.

C1 A commitment cannot be created more than once with a given identifier.
M j=m create(j;C(id ; j; k; p))) 8m1 : m � m1) (8j1; k1; p : M 6j=m1

create(j1;C(id ; j1; k1; p))).
C2 When a commitment is assigned, it is no longer active, but a new commitment with

the new creditor is created.
M j=m (assign(k; z; c)) AG:active(c)^create(j; c0)) wherec � C(id ; j; k; p)
andc0 � C(id 0; j; z; p).

C3 When a commitment is delegated, it is no longer active, but a new commitment
with a different debtor is created.
M j=m (delegate(j; z; c)) AG:active(c)^create(z; c0)) wherec � C(id ; j; k; p)
andc0 � C(id 0; z; k; p).

C4 When a commitment is first created, it is active and not impossible to discharge.
M j=m (create(c)) active(c) ^ :AG:discharge (c))

C5 After a commitment has been breached, no operation can be performed on it.
M j=m (breached (c)) active(c))

3.3 Commitment Life Cycle

Using the above semantics, we establish some simple but important lemmas indicating
the stability of thebreached (�) andsatis�ed(�) predicates.

When a commitment is first created, it is neither breached nor satisfied. Eventually,
it might be breached and thus remain breached forever; or it may be be satisfied and
remain satisfied forever. This has the effect of applying a three-valued logic for the
satisfaction commitments.

Lemma 1. M j=m (create(c)) :breached (c) ^ :satis�ed (c)).

Proof. By applying constraintC4 to the semantic definitionsR23 andR24

Lemma 2. M j=m breached (c) iff M j=m AGbreached (c).

Proof. By semantic definitionR23

Lemma 3. M j=m satis�ed(c) iff M j=m AGsatis�ed(c).

Proof. By semantic definitionR24

Lemma 4. M j=m (:satis�ed (c) 6) breached (c)).

Proof. By Lemma 1.

Lemma 5. M j=m (:breached (c) 6) satis�ed(c)).

Proof. By Lemma 1.

The semantic rulesR24 andR23 , and the Lemmas 2 and 3 are shown in Figures 2
and 3. Note that a commitment may be active even after it is breached. However, a
commitment cannot be active after it is satisfied. Both these observations follows from
the definition of theactive(�) predicate.

active(c)

create(x,c)

breached(c)

breached(c)

m1

m2 m3
active(c)

Fig. 2. Temporal behavior of thebreached (�) predicate

4 Resolving Temporal Commitments

A temporal commitment is resolvable if its satisfaction or breach can be determined
at some moment. Under certain conditions, the unresolvability of a temporal commit-
ment can be ascertained even before the specified time interval occurs. We now discuss
cases where a temporally quantified proposition is not resolvable, and develop meth-
ods to detect such cases. Based on the resolvability of such propositions, we can detect
satisfaction or breach of temporal commitments.

create(x,c)

satisfied(c)

satisfied(c)

discharge(x,c)

active(c)

m1

m2 m3

Fig. 3. Temporal behavior of thesatis�ed(�) predicate

4.1 Nested Interval Expressions

The language given in section 3.1 allows for propositions to be nested within multiple
levels of time intervals. Although there are many nested intervals whose interpretation
in common language does not make sense or induces redundancy, some nested time
intervals do make sense in real-life situations. We give examples of both meaningful
and meaningless nested interval propositions.

Allen [8] defines 13 possible temporal relationships between any two given time
intervals. Figure 4 shows these 13 relationships for the two intervals contained in the
proposition[d1; d2]([d3; d4]q); i.e., the intervals[d1; d2] and [d3; d4]. Here, time in-
creases from left to right. The shaded portions are intervals of the type[dl; du], and the
unshaded portions are of the type[dl; du]. 13 such cases can be constructedfor each
combinationof temporal quantifiers applied to each of the intervals, but we show only
one interval-quantifier combination pair as an example; i.e., the quantified intervals
[d1; d2] and[d3; d4].

If we consider nested temporally quantified propositions as being conditions of
commitments, we can see which kinds of nesting will make the success of the com-
mitment unresolvable. Cases 1.1, 3.1, 4.1, 5.1, and 6.1 are not resolvable, but cases 1.2,
2.1, 3.2, 4.2, 5.2, 6.2, 7.1, and 7.2 can be resolved for reasons listed below. The term
inner propositionis used to refer to the temporal proposition[d3; d4]p.

In cases 1.1, 3.1, 4.1, 5.1, and 6.1, the inner proposition’s time interval does not
complete until after the outer time interval completes. The inner interval has references
to instants in the future. Since the future cannot be seen in advance, these cases cannot
be resolved.

In cases 1.2, 2.1, 3.2, 4.2, 5.2, 6.2, 7.1, and 7.2 the inner proposition’s success can
be resolved at at least one instant within the interval of the outer proposition. Since
the outer proposition has an existentially quantified time interval[t1; t2] and we have at
least one instant of resolvability, these cases can be resolved.

d1 d 2 d3 d4 d3 d 4 d1 d2

case 1.1 case 1.2

d1
d3 d1

d2

d4
 [d1 ,d2] f [d 3 ,d4]

case 7.1

d3 d2

d4
 [d 1,d 2] fi [d 3 ,d4]

case 7.2

d3 d4

d1 d2

 [d1,d 2] = [d 3,d 4]

case 2.1

d3

d1 d2 d4

 [d1,d 2] m [d 3 ,d4]

case 3.1 case 3.2

d3 d1 d2 d4

 [d1 ,d2] d [d 3,d 4]

d1 d3 d4 d2

 [d1 ,d2] di [d 3,d 4]

case 4.1 case 4.2

d1 d3 d 2 d4

 [d1,d 2] o [d 3 ,d4]

d3 d1 d 4 d2

 [d1,d 2] oi [d 3 ,d4]

case 5.1 case 5.2

d1 d2 d4

 [d 1,d 2] s [d 3 ,d4]
d3 d1

d2d4

 [d 1,d 2] si [d 3,d 4]

d3

case 6.1 case 6.2

 [d1,d 2] < [d 3 ,d4] [d1,d 2] > [d 3 ,d4]

d3
d2d 4

 [d1 ,d2] mi [d3 ,d4]

d1

Fig. 4.Allen’s intervals for[d1; d2]([d3; d4]p)

A temporally quantified proposition can be used to represent events like that in
Example 1; i.e., the passenger using one ticket on a particular day, on any flight of her
choice.

Solution 1. If p represents the proposition that a ticket is on offer, then[d1; d2]p can be
used to denote that a ticket will be on offer for the period of time betweend1 andd2.
Hence a ticket valid for an entire day would be represented by[d1; d1 + 24hours]p

Nested temporal intervals can be used to denote maintenance conditions like the
one in Example 2.

Solution 2. If d1 denotes January 1 andt denotes a time variable, andp denotes that the
company will rent a car for free, then the proposition[d1; d1 + 31days][t; t+ 7days]p
denotes one week of free rental in the month of January.

Note that it only requires a simple extension of our language to be able to specify
timestamps in relation to one another.

We next formalize the notions of nested intervals and results about their resolution.
These results can be used to detect some commitment violations before they occur.

Definition 1. A temporally quantified proposition is positive-resolvable at an instant if
its value is known to be true at that instant; it is negative-resolvable at an instant if its
value is known to be false at that instant.

Definition 2. A temporal commitment is positive-resolvable at an instant if its satisfac-
tion can be known at that instant; it is negative-resolvable at an instant if its breach can
be known at that instant.

We use the following notation to denote some important instants with respect to an
interval. Below,pt is a temporal proposition, andr denotes resolvability. Given an in-
terval,
r+
?
(pt) represents the earliest instant at whichpt is positive-resolvable;

r+
>
(pt) represent the latest instant in that interval at whichpt is positive-resolvable.

r�
?
(pt) represents the earliest instant at whichpt is negative-resolvable;

r�
>
(pt) represents the latest instant in that interval at whichpt is negative-resolvable.
The following observations form the base cases for detecting resolvability of propo-

sitions that have intervals nested to any arbitrary depth and the resolvability of temporal
commitments. Here,p is a proposition.

r+
?
([dl; du]p) = dl; r

+

>
([dl; du]p) = du.

r�
?
([dl; du]p) = du; r

�

>
([dl; du]p) = du.

r+
?
([dl; du]p) = du; r

+

>
([dl; du]p) = du.

r�
?
([dl; du]p) = dl; r

�

>
([dl; du]p) = du.

These observations imply thatpt is not positive-resolvable at any instant beforer+
?
(pt),

not negative-resolvable at any instant beforer�
?
(pt), positive-resolvable at any instant

afterr�
>
(pt), and negative-resolvable at any instant afterr�

>
(pt).

4.2 Resolving Nested Interval Expressions

Using the rules in Section 4.1, we can now see why some of the two-level interval
nesting cases shown in Figure 4 were determined to be unresolvable.

In cases 1.1, 3.1, 4.1, 5.1, and 6.1, the earliest instant at which the satisfaction of
[d3; d4]q can be determined isd4, which is beyondd2, the latest instant for the sat-
isfaction of [d1; d2]p. As a consequence, the expression[d1; d2]([d3; d4]q) cannot be
resolved, which is why commitments whose conditions are propositions of this type are
disadvantageous for the creditor.

Solution 3.To model Example 3, the hotelH makes a commitment to a customerc. The
commitment isC(d;H ; c;A[d1; d1 + 24hrs]([d2; d2 + 7days]q), whered1 + 24hrs <

d2 because it is not spring break yet,[d1; d1 + 24hrs] denotes the interval “today”
(say, a day in July),[d2; d2 + 7days] denotes the interval when spring break happens,
andq is an atomic proposition that denotes some offer that the coupon offers. In this
case,[d2; d2 + 7days]q cannot be resolved at least untild2 + 7days , and [d1; d1 +
24hrs](�) hasto be resolved at most byd1+24hrs . But sinced1+24hrs < d2+7days ,
this condition cannot be resolved. Hence the commitment cannot satisfied. Formally,
r+
>
([d1; d1 + 24hrs](�)) < r+

?
([d2; d2 + 7days]q).

To summarize, the following conditions are necessary to ensure resolvability of a
temporally quantified proposition:
A temporally quantified proposition of the form[dl; du]pt must have at least one instant

in the intervaldl; du, at whichpt is resolvable. A temporally quantified proposition of
the form[dl; du]pt must havept resolvable at all instants in the intervaldl; du.

For a commitmentc, the following lemmas indicate the three valued logic of satis-
faction due to thesatis�ed(�) and thebreached (�) predicates.

Lemma 6.

M j=m (create(x; c)) AF(satis�ed(c)) :active(c)) :

Proof. By the definition of the predicateactive(�) and the semantic ruleR24 .

Lemma 7.

M j=m (create(x; c)) A(breached (c)) Gactive(c))) :

Proof. By the constraintC5 and Lemma 2.

We have shown how unresolvable commitments can be detected. Such resolution re-
sults will enable earlier detection of protocol violations, and are of practical importance
where an unresolvable commitment is as good (or as bad) as one that is breached.

4.3 Disjunctive Forms

Another important aspect of resolution concernsdisjunctive commitmentswhose con-
ditions are disjunctions of temporally-quantified propositions.

Disjunctive commitments regularly arise in common business interactions and can
sometimes lead to what we callthe warranty paradox— a situation where some subtle
clauses render the warranty void before the customer can ascertain the quality of the
good. This can happen, for instance, if ascertaining the quality of the good takes more
time than the life of the warranty.

Intuitively, we reason as follows about the satisfiability of a disjunction of temporal
propositions:A disjunction of temporal propositions can potentially be satisfied if it has
not already been satisfied, and at least one of the disjuncts is still resolvable.

Let p1; p2; : : : pn be temporally quantified propositions that occur in a disjunctive
commitment of the formC(id ; x; y;A((p1 _ p2 : : : _ pi) _ (pi+1 _ pi+2 _ : : : _ pn)).
Here,p1 _ p2 : : : _ pi represents some quality that the good satisfies, as claimed by the
merchantx, andpi+1 _ pi+2 _ : : :_ pn represents the replacement for the good that the
merchant promises to the customery. If the quality assured by the merchant becomes
false at some moment, then the replacement proposition should be positive-resolvable
at that moment. Otherwise, the warranty is unfavorable for the customer.

Formally, this requirement is stated as

M j=m :(p1 _ p2 : : : _ pi)) (M j=m (pi+1 _ pi+2 _ : : : _ pn) _

(�(m) < r+
>
(pi+1 _ pi+2 _ : : : _ pn) ^

(M 6j=m :(pi+1 _ pi+2 _ : : : _ pn)))

If none of the warranty disjuncts are resolvable at an instant at which the promise
has not yet been satisfied, then the warranty is unfavorable to the customer.

Applying this requirement to Example 4 of Section 1 gives us the following.

Solution 4.Example 4 can be modeled by the commitmentC(id ;R; c;A([d1; d2] good
car _ [d1; d3]replace car)), where “good car ” means the the car hasn’t broken down,

“replace car ” represents the warranty that the rental company gives on the quality of
the car,R represents the rental company, andc the customer.d1 represents the time
at which the car is rented on Friday,d2 is the time at which the car should be re-
turned on Monday, andd3 denotes the closing of the rental company on Friday. Hence
d3 < d2. We see that there exists a moment in betweend1 andd3, at which the lit-
eral ([d1; d3]replace car) is beyond the upper bound of its positive-resolution. If the
car breaks down on Saturday, then the only proposition that has not yet been resolved
at that moment is the guarantee by the renter to replace it. However, the upper bound
of positive resolvability of this proposition has passed. Formally,9m : d1 < d3 <

�(m) < d3 andM j=m :([d1; d2]great car) andM 6j=m ([d1; d3]replace car) and
r+
>
([d1; d3]replace car) < �(m).

Figure 5 shows Example 4.

d
2d3d1

Fig. 5. Unfavorable warranty in Example 4

Thus we have shown how the warranty paradox can be captured in our scheme of
temporal commitments.

5 Discussion

The concept of deadlines in commitments is doubtless necessary for practical uses of
commitments. Traditionally, deadlines are hidden within the atomic propositions. How-
ever, an explicit formulation of temporal commitments, as developed above, is highly
desirable. It offers a uniform treatment of operational characteristics across domains.
We have shown how such a system of commitments with deadlines can be developed
and used to reason about the possibility of satisfaction. Our approach not only allows
for the expression of statements that involve deadlines, but also decouples the temporal

quantification from the proposition itself, thus allowing us to reason about the temporal
aspect without regard to the meaning of the propositions. We now discuss related issues.

In Section 2.3, we assumed that all commitments are fulfilled by theDISCHARGE

operation, and not just by the conditionp holding. This assumption helps simplify the
theory because it excludes a situation where a commitmentC(d1; x; y; p) is satisfied by
p being brought about by some agentz rather than by agentx. However, the assumption
does not weaken the scope of the commitment operations. We may require that only
agentx bring aboutp. The domain language used to specifyp should be rich enough to
incorporate such constraints.

For instance, the conditionp might be “ turn the lights on”, in which case any agent
could turn the lights on to fulfill the commitmentC(d1; x; y; p). In fact, we might want
to allow such a fulfillment. On the other hand, if the condition were subjective, like
“teach a graduate course”, we might want to make sure that only the intended party
brings about the condition. We would therefore have to have a language for specifying
p that can express that “x will teach a graduate course”.

5.1 Literature

Literature related to our work can be classified according to two main orthogonal fields:

– The semantics of agent interaction protocols.
– The semantics and implementation of business processes.

A middle ground, where our work lies, is the operational aspects of commitments. Our
work embodies desirable aspects of both the semantics and the business processes.

Semantics.Dignumet al. [9] describe a temporal deontic logic that helps specify obli-
gations and constraints. The work focuses on specifying deadlines, so that a planner can
take deadlines into account while generating plans. Their approach, however, is based
on the notion of obligations, and no operational methods for obligations are given. Once
a deadline has passed, and a certain rule has been violated, the logic has nothing to say
about the effects on the system. This work, although semantically rich, has not been de-
signed with an operational framework in mind. Nevertheless, Dignumet al.’s approach
is detailed in the kinds of deadlines and constraints that it allows to be modeled. For
example, deadlines like. . . as soon as possible, which cannot be modeled in our gram-
mar, can be modeled using theirs. We have, however, a system that is closer to being
operationalized than theirs.

Business Protocols.Grosofet al. [10] develop semantics for systems that represent
business rules usingCourteous Logic Programs. Their approach uses explicit rules to
use to decide between conflicting rules, and the emphasis is on the implementation and
application of CLP to real businesses. The work however does not define the seman-
tics for the grammar they use. Business rules are represented by general if-then clauses.
Hence, all concepts beyond the structure of the if-then rules are domain specific, includ-
ing the temporal references. Their work, however, has been applied to actual business
systems, and proves the value of intelligent agents in business processes.

From the standpoint of real-world implementation, theBusiness Transaction Proto-
col proposed by the OASIS [11] addresses the need for long-lived interactions among
web services as opposed to short-lived transactions in the classical sense of the word.
This protocol also recognizes that many of the offers made in real-world businesses
involve deadlines. For example, an airline participating as a web service provider in a
BTP run could specify how long it is willing to hold an offer open when it agrees to
take part in a transaction [12].

Commitment Operations.Our scheme for temporal quantification is related to a similar
notion presented by Fornara and Colombetti [2]. Their approach seeks to operationalize
commitments and define the life cycle of a commitment, but does not pay attention to
the issue of deadlines and temporally sensitive commitments, whereas our approach de-
velops interesting results about the resolution of fulfillment of commitments. Although
Fornara and Colombetti have taken a good first step towards the operationalization of
commitments in agent interaction, they stop short of developing a semantics for tempo-
ral commitments as we have done here.

Verdiccio and Colombetti [13] develop a theory of the evolution of commitments
over time. Their work is closest to ours among all others discussed in this section. It
specifies constraints on the creation and satisfaction of temporal commitments using
a variant of CTL that has a branching past and a branching future as opposed to our
linear-past, branching-future temporal structure. Our scheme is simpler in the temporal
structure used, more general in the examples we can model, and easier to understand.

McBurney and Parsons [14] define thePosit Spaces Protocol, which is an agent
interaction protocol. This protocol uses a central repository for storing all the commit-
ments that have been made. The idea is simple and corresponds to the concept of the
Sphere of Commitmentthat was proposed by Singh [15]. This work does not relate
to our results directly, but is yet another demonstration of the use of commitments in
modeling and building multiagent systems.

5.2 Directions

Our work on temporal aspects of commitments is far from complete. One direction for
further research is to investigate ways to do away with rigid protocols by having agents
commit to each other by taking small risks at a time to finally arrive at a state where
both parties are committed so that there is no risk of a loss to one party. This is just an
intuitive notion, and further work is required to assess the viability of this approach.

Another direction is to describe agent interaction protocols using the theory of uni-
versal causation developed by Giunchigliaet al. [16], so that commitment machines
that exploit nonmonotonic reasoning can be automatically generated. A commitment
machine, proposed by Yolum and Singh [1], is a novel way of representing interaction
protocols using commitments. It specifies the states that are allowed in the interaction
in terms of the commitments that hold in those states. A commitment machine allows
greater flexibility in the enactment of a protocol since interacting agents have many
ways of reaching final states. Nonmonotonic reasoning in commitment machines would
allow greater flexibility as compared to the incremental inferencing approach used by

Yolum and Singh [1]. Chopra and Singh [17] present this idea in greater detail and
clarity.

Venkataraman and Singh [3] develop a vector-clock based scheme to verify agents’
compliance to a commitment protocol. However, they do not consider rich temporal
structures as we have done here. It will be interesting to apply the theory developed
here to their scheme of compliance checking.

References

1. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event calcu-
lus planning using commitments. In: Proceedings of the 1st International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), ACM Press (2002)

2. Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent com-
munication language. In: Proceedings of the International Joint Conference on Autonomous
Agents and MultiAgent Systems, ACM Press (2002) 535–542

3. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols: Enabling
open Web-based multiagent systems. Autonomous Agents and Multi-Agent Systems2
(1999) 217–236

4. Partee, B.: Nominal and temporal anaphora. Linguistics and Philosophy7 (1984) 287–324
5. Emerson, E.A.: Temporal and modal logic. In van Leeuwen, J., ed.: Handbook of Theoretical

Computer Science. Volume B. North-Holland, Amsterdam (1990) 995–1072
6. Castelfranchi, C.: Commitments: From individual intentions to groups and organizations. In:

Proceedings of the AAAI-93 Workshop on AI and Theories of Groups and Organizations:
Conceptual and Empirical Research. (1993)

7. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law7 (1999) 97–113

8. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM
26 (1983) 832–843

9. Dignum, F., Weigand, H., Verharen, E.: Meeting the deadline: On the formal specification
of temporal deontic constraints. In Ras, Z.W., Michalewicz, M., eds.: Foundations of Intelli-
gent Systems, 9th International Symposium, (ISMIS ’96). Volume 1079 of Lecture Notes in
Computer Science., Springer (1996) 243–252

10. Grosof, B.N., Labrou, Y., Chan, H.Y.: A declarative approach to business rules in contracts:
Courteous logic programs inXML . In Wellman, M.P., ed.: Proceedings 1st Annual ACM
Conf. on Electronic Commerce, EC’99, Denver, CO, USA, 3–5 November 1999, ACM Press
(1999)

11. OASIS: Business transaction protocol (2002) www.oasis-open.org/committees/business-
transactions/documents/specification/2002-06-03.BTPctteespec1.0.pdf.

12. Dalal, S., Temel, S., Little, M., Potts, M., Webber, J.: Coordinating business transactions on
the web. IEEE Internet Computing7 (2003) 30–39

13. Verdicchio, M., Colombetti, M.: A logical model of social commitment for agent commu-
nication. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), ACM Press (2003)

14. McBurney, P., Parsons, S.: Posit spaces: A performative model of e-commerce. In: Proceed-
ings of the International Joint Conference on Autonomous Agents and MultiAgent Systems.
(2003) To appear.

15. Singh, M.P.: Multiagent systems as spheres of commitment. In: Proceedings of the Interna-
tional Conference on Multiagent Systems (ICMAS) Workshop on Norms, Obligations, and
Conventions. (1996)

16. Giunchiglia, E., Lee, J., McCain, N., Lifschitz, V., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence (AIJ) (2003) To Appear.

17. Chopra, A., Singh, M.: Nonmonotonic commitment machines. In Dignum, F., ed.: Advances
in Agent Communication. LNAI, Springer Verlag (2003) in this volume

