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Abstract. Consumers use service selection mechanisms to decide on a service
provider to interact with. Although there are various service selection mecha-
nisms, each mechanism has different strengths and weaknesses for different set-
tings. In this paper, we propose a novel approach for consumers to learn how to
choose the most useful service selection mechanism among different alternatives
in dynamic environments. In this approach, consumers continuously observe out-
comes of different service selection mechanisms. Using their observations and
a reinforcement learning algorithm, consumers learn to choose the most useful
service selection mechanism with respect to their trade-offs. Through the sim-
ulations, we show that not only the consumers choose the most useful service
selection mechanism using the proposed approach, but also the performance of
the proposed approach does not go below the lower-bound defined by the trade-
offs of the consumers.

1 Introduction

Fulfilling transactions with the help of agents is becoming an essential part of e-commerce.
A crucial role of agents in such transactions is to help consumers identify the parties that
they can interact with [1]. For example, a consumer that wants to buy a product needs
to decide which service provider to use for her transaction. The consumer’s agent can
help the consumer find the right service provider by interacting with other consumers
and exchanging relevant information such as their ratings [2] or their experiences [3]
with different service providers. The consumer’s agent can then use the information it
collects to reason and select the appropriate service provider for its needs.

In a real-life implementation of consumer agents, there should be at least one service
selection mechanism embedded in the agent. This service selection mechanism is used
by the agent to decide on a service provider to interact with. However, which service
selection mechanism to implement in an agent is a difficult task for an agent developer
for at least two reasons.

– Trade-offs among different mechanisms. Each mechanism has its own advan-
tages and disadvantages over the others under different settings. In our previous
research, we have observed that if the consumers in the environment have almost
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the same taste, providers satisfying one consumer tend to satisfy another consumer,
too. Further, rating-based mechanisms are simple and fast as well as effective in
terms of achieved satisfaction. On the other hand, if the tastes of consumers are
highly different, rating-based mechanisms may have a bad performance in terms
of achieved satisfaction [3, 4]. This means that when the environment is static and
consumers have similar preferences, rating-based mechanisms may give perfect re-
sults in a fast way in such an environment. On the other hand, an experience-based
mechanism may be preferable if the consumers’ preferences and tastes vary. Hence,
under different situations, the same service selection mechanism has highly differ-
ent utilizations for the same consumers.

– Trade-offs among different consumer agents. The expectations of consumers
from a service selection mechanism may vary. For example, one consumer may
trade off time for performance. That is, the consumer may prefer to find service
providers faster even when that means the best service provider will not be found.
On the other hand, another consumer may prefer the slower mechanism because of
the fact that its achieved satisfaction is higher.

Ideally, the consumer agent should be able to choose the service selection mechanism
to use based on its current trade-offs as well as its observation of the environment. To
accomplish this, we propose agents to learn the pros and cons of service selection mech-
anisms to use in dynamic environments and to decide on the mechanism at run time. As
a learning technique, we employ reinforcement learning (RL) since it allows agents to
learn from their actions in the environment [5]. Through simulations, we show that us-
ing our proposed approach, consumers can successfully learn to select the most useful
mechanisms for service selection under different configurations of the environment.

The rest of this paper is organized as follows: Section 2 explains the proposed ap-
proach, with necessary background knowledge. Section 3 gives a brief overview of
service selection mechanisms that are used in this work and provides their performance
evaluation. Section 4 provides our experimental results. Finally, Section 5 summarizes
our contribution and compares it to relevant literature.

2 Learning To Choose Among Service Selection Mechanisms

In real-life, given a number of service selection mechanisms, we expect service con-
sumers to pick a mechanism that is most suitable for their current situation. For exam-
ple, if the consumer is in a hurry, it might prefer a service selection mechanism that
will find it a service provider quickly; whereas at other times, the quality of the found
service provider may be more important. Making choices between service selection
mechanisms would be trivial if agents could observe and characterize their environ-
ment perfectly. However, this is rarely the case. Most often, agents are not aware of the
service demands of other agents, those agents’ past experiences, their expectations and
so on. Interestingly, the performance of most service selection mechanisms (time and
quality-wise) are dependent of these characteristics of the environment. Therefore, we
need to provide consumer agents with means to detect which mechanism to use in their
environment to satisfy QoS constraints such as the time required for service selection
or desired ratio of satisfaction.



In different configurations of the environment, a service selection mechanism may
have different utilizations for a consumer. Therefore, if the agent finds out that its en-
vironment is changing, then the consumer should switch to another service selection
mechanism that has better utilization for that specific setting. For this purpose, the con-
sumer should continuously observe the environment and should learn the best service
selection mechanism for itself under different configurations of the environment. This
intuition becomes more concrete when we analyze the different parameters of an envi-
ronment.

2.1 Environment Characteristics

There are three important parameters related to service selection [3, 4, 6].
Variations in service demand: Each service consumer changes its demand charac-

teristics after receiving a service with a probability of PCD.
Variations in service satisfaction: Satisfaction criteria of different consumers may

vary significantly. Even though two consumers have similar or the same service de-
mands, their degree of satisfaction for the same supplied service may be highly differ-
ent. To formulate this, we use the parameter β. This parameter represents the ratio of
the consumers having similar demands but conflicting satisfaction criteria. For exam-
ple, a consumer C has a service demand and there are 40 consumers having a demand
similar to that of the consumer C. In the case of β = 0.1, we expect that 10% of the 40
consumers get dissatisfied with the supplied services that can satisfy the consumer C.

Variations in service quality: Some providers may supply marginally different
services at different points of time for the same service demand and conditions. To
simulate this, with a very small probability, providers deviate from their expected be-
havior in the simulations [3, 4]. This probability is called probability of indeterminism
(PI). Think of a provider who usually produces unsatisfactory services for a specific
service demand. If this provider produces a perfect service for this service demand in a
transaction with a consumer, it may mislead the consumers in their future decisions.

The variations in the service demand, service satisfaction, and service quality create
significant trade-offs between service selection mechanisms.

2.2 Reinforcement Learning

Reinforcement learning (RL) [5] is an ideal learning technique to enable agents to learn
the environment and thus decide on which strategy to use in that particular situation.
That is why we propose to use RL for choosing a service selection mechanism in dy-
namic environments.

Let us review the basic structure of an RL algorithm. In RL, there is a learning agent
and an environment that is observed by this agent. The environment has a set of discrete
states. At each state, there exists a set of available actions for the agent. When the agent
takes an action in a state, it receives a reward in turn and also the observed state of the
environment may change as a result of this action. The action to be taken in each state is
determined by the policy adopted by the agent. After a set of trial-and-error interactions
with the environment, the agent learns an optimal policy for choosing the best action in
a given state of the environment so that the total reward is maximized [5].



In RL, the environment is defined by a finite set of states S = {s1, s2, . . . , sN},
and the agent has a finite set of actions A = {a1, a2, . . . , aM}. In this setting, the
agent observes the state of the environment s t ∈ S in time t, and chooses an action
at ∈ A, and receives a scalar reward rt+1 after executing at. Each state has a value
in terms of the maximum discounted reward expected in that state. Value of a state is
formulated in Equation 1. Thus, the purpose of RL is to construct an optimal action
policy that maximizes the expected discounted reward in each state. In the equation, γ,
(0 < γ < 1), is a discount factor so that distant rewards are less important. The equation
expresses that expected value of a state, st, is the weighted sum of the rewards received
when starting in the state st and following the current policy.

V (st) = E

[ ∞∑
i=1

γi−1rt+1

]
(1)

The action selection at each step is based on Q-values, which are related to the good-
ness of the actions. The Q-value, Q(s, a), is the total discounted reward that the agent
would receive when it starts at a state s, performs an action a, and behaves optimally
thereafter. The Q-values can be estimated by Temporal Difference Learning (TD) [7]
methods such as Q-Learning [8] and SARSA [5]. In this work, we choose to use SARSA
reinforcement learning algorithm [5](shown in Algorithm 1). SARSA has two impor-
tant advantages compared to other approaches [9]. First, it has better convergence guar-
antees compared to other RL approaches such as Q-learning. Secondly, it learns much
more rapidly and in the early part of learning, its average policy is better than that of
the other RL approaches.

SARSA Algorithm In Algorithm 1, initial Q-values are set to zero and the current state
s is determined (Line 1). While the current state is not the terminal state of the agent
(Line 2-9), the agent selects an action a using a policy (π) derived from the Q-values
(Line 3). There may be different ways of deriving a policy from Q-values. One of the
most popular approaches is ε− greedy. In this approach, with probability ε, we choose
an action uniformly randomly among all possible actions. This is called exploration.
As well as, with probability 1 − ε, we choose the action having the maximum Q-value
(π(s) = maxaiQ(s, ai)) and this is called exploitation. We do not want to explore
indefinitely, so we start with a high ε value and continuously decrease it at each time
step (e.g., ε = 1/t). After determining a using π, a is executed (Line 3). As a result an
immediate reward is taken and a new state is observed s ′ (Line 4). SARSA algorithm is
different from other TD approaches such as Q-Learning in a way that it uses the current
policy to update Q-values. Therefore, in the algorithm, the action that should be taken in
state s′ is also determined using the policy π (Line 5). Then, s, a, r, s ′, and a′ are used
to update Q(s, a) (Line 7). In the update formula of Q-values, γ is the discount factor
and η is the learning rate (0 < η < 1). Discount factor is used to weight immediate
rewards more heavily than future rewards. The closer γ is to 1 the greater the weight
of future rewards. The learning rate controls how much weight we give to the recent
reward, as opposed to the old Q-value estimate. We typically start with a high learning
rate and lower the learning rate as time progresses. After updating Q-value, s and a are
updated properly for the next time step (Line 8).



Algorithm 1 [5]
1: Initialization: initialize all Q(s,a) value to zero and observe the current state s
2: while (s is not terminal state) do
3: Select an action a using policy derived from Q (e.g., using ε− greedy) and execute it.
4: Observe immediate reward r and the new state s′

5: Choose the action a′ in state s′ using policy derived from Q (e.g., using ε− greedy)
6: Update Q(s, a):
7: Q(s, a)← Q(s, a) + η × (r + γ ×Q(s′, a′)−Q(s, a))
8: s← s′, a← a′

9: end while

Reward Function The reward function (r) that we use with SARSA algorithm is given
in Equation 2. In the equation, E(Raction) and E(Taction) denote the expected ratio
of satisfaction and the expected time required for the chosen action, respectively. This
reward function reflects the trade-offs of the service consumers. According to the reward
function, a consumer is given a negative reward after choosing an action if there is
another action with an expected ratio of satisfaction that is at least 10% better than that
of the chosen action. Even though there is no such action, the consumer gets a negative
reward again if the chosen action is at least 10% slower than another action whose ratio
of satisfaction is at most 1% worse than that of the chosen action. If none of these cases
occurs, the agent gets a positive reward. Using this reward function, consumers learn
to choose fast service selection strategies without trading off the ratio of satisfaction
more than 10%. During its life-time, the consumer continuously computes and revises
E(Raction) and E(Taction). For each action, the consumer records the time required for
the action and the result of the action in terms of the degree of satisfaction. By simply
averaging these values over time, the consumer computes E(T action) and E(Raction),
respectively. In order to handle highly dynamic environments, the consumer uses only
the recent information in its computations (i.e., information from the last 20 time steps).

r(act) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 if ∃X | (E(RX)−E(Ract))
E(Ract)

> .1

−1 if ∃X |abs( (E(RX)−E(Ract))
E(Ract)

) < .01 ∧ (E(Tact)−E(TX)))
E(TX) > .1

+1 otherwise

(2)

2.3 Discretization of Continuous State Space

In our setting of RL, states of the environment are different configurations of the en-
vironment and the actions are different service selection strategies. We can model the
states of the environment using the PCD, β and PI parameters. However, agents cannot
observe these parameters directly, but they can observe the result of their actions. Intu-
itively, there is a correlation between the performance of the service selection strategies
and these parameters. This intuition enables us to describe states of the environment us-
ing the expected ratio of satisfaction of the different service selection strategies, instead
of the parameters like PCD, β, or PI . For example, if we consider two service selection



mechanisms A and B, a state can be characterized by a consumer using the expected
success of A and B. Therefore, the consumer observes the states of the environment as
the pairs of different E(RA) and E(RB) values. However, this state space is continuous
and needs to be converted into a discrete state space for RL.

By dividing continuous state space to discrete states, we are trying to map different
configurations of the environment to a number of discrete states. If the number of dis-
crete states is too small, then highly different configurations of the environment will be
mapped to the same discrete state. This will decrease the accuracy of the RL algorithm
considerably. If the number of states is set to a number that is much bigger than the
optimal number of states, then it will take too much time to train the RL algorithm and
at the end, some states will have almost identical Q-values, because of the redundancy
of the states. To tackle this problem, we propose to decide on the number of discrete
states dynamically. Initially, we start with only one discrete state. We continuously ob-
serve the environment and try to estimate the possible states that the environment may
be in. Then, we group these possible states into clusters by using k-means clustering
algorithm. Each cluster is represented by one discrete state. If any cluster of the possi-
ble states is too diverse to be represented by only one discrete state, then this cluster is
divided into two clusters and a new discrete state is created to represent the new cluster
of possible states. Q-values of the discrete state representing the divided cluster is used
as the initial estimates of the new state’s Q-values. This way, we incrementally increase
the number of discrete states only if it is required. This approach has several advantages.
First, it prohibits the introduction of redundant states. Second, this approach does not
require the knowledge of maximum number of states. Third, this approach increases the
convergence rate of Q-values by incrementally introducing the new states and by using
pre-computed Q-values as the initial estimates of these states’ Q-values. Algorithm 2
presents a modified version of SARSA algorithm with the proposed discretization of
continuous state space.

wcvi =

∑
L∈ci

[∑n−1
j=0 |L[j] − centeri[j]|

]
|ci| (3)

In this algorithm, every state has a label. This label is an n-tuple, where n is the
number of available service selection mechanisms and each element of the n-tuple is
of (E(RXi ): the expected ratio of satisfaction of the service selection mechanism X i.
Initially we have only one state and its label is set to (0, . . . , 0) (Line 1). During the
life time of the agent, it continuously computes expected ratio of satisfaction for each
action and creates a label Labelt at time t using computed E(RXi) values (Lines 5–6).
Labelt is added to state-space set (Line 7). This set is initiated as an empty set (Line 1)
and populated with Labelt at each time step. Labels of the states and Labelt are used
to determine the next state after taking an action. After taking an action, the distance
between computed Labelt and the labels of the states are compared. The state hav-
ing a label closest to Labelt is set as the current state, s′ (Line 9). With a probability
Pupdate, we update state labels by running k-means algorithm [10] on state-space set.
We initiate k-means algorithm with k centers (k is the number of states). These initial
centers are the current labels of the states (Line 15). New clusters and cluster centers
are defined after running k-means algorithm. Each state s i has a corresponding cluster



ci. We compute within-cluster variance, (wcvi) for each cluster ci using the center of
the cluster and the labels within the cluster (see Equation 3). If, for any cluster c i, wcvi

exceeds a predefined threshold (Line 16), a new state is created (snew) (Line 17). One
of the labels in ci is set as the label of snew (Line 18) and Q-values of si is copied
to snew’s Q-values (Line 19). After creation of new states, we run k-means algorithm
again (Line 21). This procedure is repeated until wcv for each cluster is below the
threshold. Then, we set the center of each cluster as the new label of the corresponding
state (Lines 23–25). Using this approach, we increase the number of states only it is re-
quired. Furthermore, increasing the number of states does not affect the performance of
the RL algorithm much, because we initialize Q-values of new states with the Q-values
of the most similar states. As time advances, Q-values of new states are differentiated
by SARSA algorithm.

Algorithm 2
1: Initialization: Create sinit with Label {0, . . . , 0}, initialize all Q(sinit, a) values to zero,

States← {sinit}, StateSpace← {}
2: s = sinit

3: while (alive()) do
4: Select an action a in state s using policy derived from Q, and execute it
5: Update E(RXi) for all of n mechanisms using the data in the last N time steps

6: Labelt ←
{

E(RX0), . . . , E(RX(n−1))
}

7: add Labelt to StateSpace
8: r ← getReward()
9: s′ ← minsi

∑n−1
j=0 |si.Label[j]− Labelt[j]|

10: Choose the action a′ in state s′ using policy derived from Q
11: Update Q(s, a):
12: Q(s, a)← Q(s, a) + η × (r + γ ×Q(s′, a′)−Q(s, a))
13: s← s′, a← a′

14: if (Rand() < Pupdate) then
15: KMeans(StateSpace,States)
16: while (∃ci|wcvi > Threshold) do
17: Create new state snew

18: select one label from ci and assign it as the Label of snew

19: snew.QV alues← si.QV alues
20: add snew to States
21: KMeans(StateSpace,States)
22: end while
23: for each si ∈ States do
24: si.Label← ci.center
25: end for
26: end if
27: end while



3 Service Selection Mechanisms

To evaluate our proposed approach, we perform simulations using four service selection
mechanisms that the agents can choose from at run time. The first two mechanisms are
rating-based and the second two mechanisms are experience-based.

3.1 Rating-Based Mechanisms

For a new service demand, a service consumer can select a service provider using rat-
ings from other consumers. A rating is a numerical evaluation (usually between 0 and
1) of a service provider. Ratings are easy to exchange. On the other hand, it is important
that ratings are evaluated within their scope. Scope of a rating is the context in which
the rater has experienced the service. The two rating-based mechanisms below mainly
differ in representing context information with ratings.

– Selective Ratings (SPSSR): In this mechanism, a consumer requests ratings only
from those consumers who have similar demands with respect to similarity criteria
of the consumer. For example, if a consumer wants to buy a bicycle, she asks ratings
from other consumers who have bought a bicycle in the past.

– Context-Aware Ratings (SPSCAR): A consumer may evaluate the same service
provider differently in different contexts. To deal with this, we have previously
proposed to enrich the rating information with the context information using an
ontology to represent the context [6]. For each service demand in the past, con-
sumers keep a context-aware rating. When a service consumer needs a new ser-
vice, it first defines the context of its service demand using context ontology, and
then propagates this definition to its neighborhood. Upon receiving this definition,
the neighbors return their context-aware ratings related to a similar context. After-
wards, the consumer aggregates received ratings considering the similarity between
their contexts and the context of its service demand.

3.2 Experience-Based Mechanisms

By using context-aware ratings, consumers can explicitly express the scope of ratings.
However, ratings still reflect the subjective opinion of the raters. In order to minimize
the subjectiveness of rating-based mechanisms, experience-based mechanisms are pro-
posed [3, 4]. In these service selection mechanisms, experience of a consumer with a
provider is represented using an experience ontology. This representation contains the
requested service and the supplied service in detail. Actually, an experience expresses
the story between the consumer and the provider regarding a specific service demand.
So, any consumer receiving an experience can evaluate the service provider according
to its own criteria using the detailed data in the experience. This approach removes the
subjectiveness of the rating-based mechanisms [3].

In experience-based mechanisms, consumers collect experiences instead of ratings.
In order to collect experiences, a consumer defines what kind of experiences it is inter-
ested in and propagates this definition over its neighborhood. When a neighbor receives
this definition, it returns its related experiences to the consumer. The consumer can use



different reasoning techniques to make sense of the information it collects. We analyze
two versions: a parametric classification method using Gaussian Model (GM), and a
non-parametric method using case-based reasoning (CBR).

– Using Gaussian Model (SPSGM ): In this approach, a service consumer models
each service provider by building a multidimensional Gaussian model using the
collected experience data [3]. Demand information in each experience is repre-
sented as a vector. Each field in this vector is extracted from the experience ontol-
ogy. These fields may correspond to property values in experience ontology such
as service price. Then, supplied service for this demand is classified as satisfied or
dissatisfied with respect to satisfaction criteria of the consumer. The (vector, class)
pairs are used as training set for building models of the providers. Then, for each
of the models, a discriminant function is defined to compute the probability of sat-
isfaction [10]. The service consumer performs this computation for every service
provider and chooses the provider with the highest satisfaction probability.

– Using Case-Based Reasoning (SPSCBR): In this approach, a consumer regards
each of the collected experiences as a case and gives a score for each experience.
Computation of this score depends on several factors: the similarity between the
demand within the experience and the current demand of the consumer, desirability
of the supplied service within the experience and lastly the age of the experience.
After computing a score for each experience, the consumer picks the experience
with the highest score and selects the provider supplying the service within this
experience. This approach depends on the assumption that if a provider satisfies a
service demand which is very similar to or the same as the current demand of a
consumer, the provider will probably satisfy the consumer’s demand, too.

3.3 Performance Comparisons of Service Selection Mechanisms

We review performances of the aforementioned service selection mechanisms in terms
of achieved satisfaction [3, 4, 6] and present their performances in terms of time require-
ments. For this purpose, we conducted various simulations. The simulation environment
is setup with 20 service providers and 400 service consumers. Simulations are run for
100 epochs. In our simulations, there are two metrics to evaluate each strategy. Our
first metric is the average ratio of decisions resulted in satisfaction (R), which is called
as the ratio of satisfaction in short. This metric measures the performance of a service
selection mechanism in terms of the achieved satisfaction. For example, RSR = 0.6
means that, on the average, only 60% of the service decisions results in satisfaction if
SPSSR is used. Our second metric is the average time required for selecting a service
provider (T ).

For different values of the parameters PCD, β, and PI , Table 1 and Table 2 show the
performance of each mechanism in terms of the achived satisfaction and time require-
ments, respectively. Table 1 reveals that service decisions of a consumer usually results
in satisfaction of the consumer if the consumer uses SPSGM . Moreover, the perfor-
mance of SPSGM in terms of ratio of satisfaction does not change much with different
values of PCD, β, and PI . On the other hand, as shown in Table 2, time requirements
of SPSGM is much more than that of other mechanisms. Performance of each service



selection mechanism is equally good in terms of the achieved satisfaction when P CD,
β, and PI are set to zero. However, increasing PCD results in a serious decrease in
the performance of SPSSR in terms of the ratio of satisfaction. Performance of the
mechanisms other than SPSSR is not affected by PCD considerably. Performances of
SPSSR and SPSCAR in terms of the ratio of satisfaction decrease considerable as
β increases. SPSSR is faster than SPSCAR in all cases, because SPSCAR requires
reasoning of the context information. Unlike the experience-based mechanisms, the
rating-based mechanisms achieve a low ratio of satisfaction as β increases [3], because
satisfaction criteria of the consumers get more differentiated as β increases. Table 2
reveals that time requirements of the rating-based mechanisms are much less than that
of the experience-based mechanisms, because aggregation of experiences is much more
costly than aggregation of ratings in terms of time. Performance of SPS CBR in terms of
the ratio of satisfaction is quite well for PI = 0 and does not change significantly when
PCD or β changes. Furthermore, in terms of time performance, SPS CBR outperforms
SPSGM , because the modeling service providers using experiences as in SPSGM re-
quires much more time than examining experiences one by one as in SPS CBR. On the
other hand, the performance of SPSCBR in terms of the ratio of satisfaction signifi-
cantly decreases if indeterminism is observed (PI > 0).

In summary, SPSGM is the best service selection mechanism when the ratio of
satisfaction is concerned. Unlike the performance of SPSGM , performance of other
mechanisms in terms of the ratio of satisfaction is badly affected as PCD, β, or PI in-
creases. PCD affects the performance of SPSSR, β affects the performances of SPSSR

and SPSCAR, and lastly PI affects the performance of SPSCBR. Order of the mech-
anisms from the fastest one to the slowest one is SPSSR, SPSCAR, SPSCBR, and
SPSGM . This order does not change as PCD, β, or PI changes.

Table 1. The ratio of service selection decisions resulted in satisfaction for different mechanisms.

PCD β PI RSR RCAR RGM RCBR

0 0 0 0.9682 0.9708 0.9708 0.9708
0.2 0 0 0.6028 0.9730 0.9730 0.9730
0 0.5 0 0.5147 0.7813 0.9666 0.9666
0.2 0.5 0 0.3216 0.4970 0.9710 0.9710
0 0 0.01 0.9734 0.9759 0.9757 0.6635
0.2 0 0.01 0.6172 0.9767 0.9767 0.6046
0 0.5 0.01 0.5196 0.7359 0.9684 0.4768
0.2 0.5 0.01 0.3221 0.5161 0.9719 0.4877

4 Experimental Evaluation

In this section, we evaluate our approach for choosing the most suitable service se-
lection mechanisms in different configurations of the environment using simulations.
Simulation settings are explained in the previous section. In the simulations, there are



Table 2. Average time required for service selection mechanisms in milliseconds.

PCD β PI TSR TCAR TGM TCBR

0 0 0 0.89 7.89 1107.74 363.10
0.2 0 0 1.22 13.13 3540.71 588.71
0 0.5 0 0.90 6.01 902.54 247.10
0.2 0.5 0 1.06 12.97 3575.03 581.66
0 0 0.01 0.73 7.30 1108.58 304.64
0.2 0 0.01 0.85 15.90 4566.01 723.28
0 0.5 0.01 0.74 7.81 1269.63 321.99
0.2 0.5 0.01 0.78 14.14 3393.09 850.16

400 consumer agents. Each consumer agent is given four different service selection
mechanisms, which are shortly described in Section 3. These consumers use the pro-
posed approach to learn how to choose the most profitable service selection mechanism
in their environment. In order to make our evaluations easily understandable, we as-
sume that consumers have the same trade-offs between the time requirements and ratio
of satisfaction. These trade-offs are embedded in the reward function that is explained
in Section 2.2.

For different configuration of the environment, actions of a consumer are rewarded
differently. For example, in case of β = 0 and PCD = 0, a consumer should choose
SPSSR. In this configuration of the environment, SPSSR is much faster than other
mechanisms, even though performance of other mechanisms in terms of ratio of sat-
isfaction is not significantly better than that of SPSSR. Therefore, the consumer gets
a positive reward if it chooses SPSSR; otherwise it gets a negative reward. However,
if the value of PCD increases to 0.2, performance of SPSSR in terms of ratio of sat-
isfaction decreases significantly. In this case, SPSSR is still much faster than other
mechanisms, but there are other mechanisms that have a ratio of satisfaction at least
10% better than that of SPSSR (see Table 1 and Table 2). Therefore, choosing SPSSR

results in a negative reward.

The best of the four service selection mechanisms in terms of the ratio of satisfac-
tion is SPSGM . Hence, we measure the performance of our approach in terms of the
performance of SPSGM . When a consumer has a service demand, it uses the proposed
approach to chooses a service selection mechanism using the computed policy as ex-
plained in Section 2. Then, the consumer selects a service provider using the chosen
mechanism. We measure the average ratio of satisfaction (RRL) and the average time
required for service selection (TRL) when the proposed approach is used. We also mea-
sure the average ratio of satisfaction (RGM ) and the average time required for service
selection (TGM ) if the consumers had used only the SPSGM in their service selections.

Table 3 shows the results of our simulations. The first three columns refer to the pa-
rameters that are used to configure the simulation environment. Next two columns are
the average ratio of satisfaction for SPSGM and the proposed RL approach, respec-
tively. The last column is the ratio of TGM to TRL. In the first eight rows, there is only
one environment configuration during the simulations. On the other hand, in the last



row, environment gradually changes starting from the first configuration to the eighth
configuration during the simulation.

Table 3. Performance of Reinforcement Learning in selecting right service selection strategies.

Configuration ID PCD β PI RGM RRL TGM/TRL

1 0 0 0 0.9708 0.9705 114.6
2 0.2 0 0 0.9730 0.9420 46.24
3 0 0.5 0 0.9666 0.9293 14.51
4 0.2 0.5 0 0.9710 0.9185 6.14
5 0 0 0.01 0.9757 0.9706 94.73
6 0.2 0 0.01 0.9767 0.9223 48.75
7 0 0.5 0.01 0.9684 0.9194 2.98
8 0.2 0.5 0.01 0.9719 0.8761 1.12
9 0-0.2 0-0.5 0-0.01 0.9731 0.9213 32.17

In the first configuration of the environment (PCD = 0, β = 0, PI = 0), all of
the service selection mechanisms have almost the same ratio of satisfaction. Therefore,
the proposed approach chooses SPSSR and SPSCAR most of the time, because perfor-
mance of these two mechanisms are very good in terms of both the achieved satisfaction
and the time required for service selection. In this setting, using the proposed approach,
the consumers can make as satisfactory service selections as they do using SPSGM .
Moreover, using the proposed approach the consumers make service selections 114.6
times faster than they do using SPSGM .

In the second configuration of the environment (PCD = 0.2, β = 0, PI = 0),
SPSSR is not as good as other strategies any more. Hence, the proposed approach
does not prefer SPSSR. Although SPSCAR, SPSCBR and SPSGM have almost the
same performance in terms of achieved satisfaction, the proposed approach chooses
SPSCAR most of the time. This is due to the fact that SPSCAR is much faster than
SPSCBR and SPSGM . As a result, using the proposed approach, consumers select
satisfactory services in 94.2% of their service selections. This is achieved in a way that
46.24 times faster than SPSGM .

In the third and fourth configurations, performances of SPS SR and SPSCAR are
worse than that of SPSCBR or SPSGM in terms of achieved satisfaction, because both
of them are badly influenced as β increases. As a result, the proposed approach chooses
either SPSCBR or SPSGM in service selection. The primary choice of our approach is
SPSCBR, because it is much faster than SPSGM . As a result, the proposed approach
achieves satisfaction in 93% and 92% of the cases in a way 14.52 and 6.14 times faster
than SPSGM , respectively for these two configurations.

In the fifth configuration (PCD = 0, β = 0, PI = 0.01), SPSCBR has a low
ratio of satisfaction, because SPSCBR is badly influenced as PI increases. Therefore,
our approach chooses between SPSSR, SPSCAR and SPSGM , which have almost
the same ratio of satisfaction in this setting. Most of the time, SPSSR is chosen by
our approach, because it is much faster than SPSCAR and SPSGM . As a result, the



proposed approach achieves almost the same ratio of satisfaction as SPSGM does in a
way 94.73 times faster than SPSGM .

In the sixth configuration of the environment (PCD = 0.2, β = 0, PI = 0.01),
only SPSCAR and SPSGM have a desirable performance in terms of the ratio of sat-
isfaction. In this case, the proposed approach chooses the faster mechanism, SPS CAR,
rather than SPSGM . Hence, the proposed approach achieves satisfaction in 92% of the
cases. In this setting, the proposed approach results in service selections that are 48.75
times faster than that of SPSGM .

In the seventh and eighth configurations, the performance of SPS SR, SPSCAR

and SPSCBR are much worse than that of SPSGM in terms of the ratio of satisfac-
tion. As a result, our approach chooses mostly SPSGM . In these settings, the proposed
approach achieves satisfaction in 91.9% and 87.6% of the cases, respectively for these
two configurations.

We lastly conduct simulations in which configuration of the environment is changed
from the first configuration to the eighth configuration. In this challenging case, using
the proposed approach, consumers select satisfactory services in 92.1% of their service
selections in a way 32.17 times faster than SPSGM .

The worst performance of the proposed approach in terms of achieved satisfaction
is in the eighth configuration. In this case, RGM is around 10% better than RRL. In any
configuration of the environment, performance of any service selection mechanism in
terms of the ratio of satisfaction does not exceed RRL more than 10%. This is the trade-
off exactly stated in the reward function. Moreover, we have confirmed this argument
by running simulations for different trade-off values.

5 Discussion

Service selection mechanisms vary in their success rate as well as time requirements.
Existence of different service selection mechanisms gives rise to a major problem: how
to choose the most appropriate service selection mechanism among a range of alter-
natives. This problem is amplified when the environment is dynamic. Our proposed
approach allows agents to learn how to choose the most useful service selection mech-
anism among different alternatives in dynamic environments. The proposed approach
examines the environment and learns to differentiate between different service selection
mechanisms with respect to the trade-offs of the consumers. Our experimental results
show that consumers choose the most useful service selection mechanism using the
proposed approach. The performance of the proposed approach does not go below the
lower-bound defined by the trade-offs of the consumers. Even in the case that the envi-
ronment changes dramatically, the proposed approach exhibits a good performance in
terms of both the ratio of satisfaction and the time required for service selection.

To the best of our knowledge there is no approach for choosing one selection mech-
anism among different alternatives. However, there are various service selection mecha-
nisms proposed in the literature. Yolum and Singh study properties of referral networks
for service selection, where referrals are used among the service consumers to locate
the service providers [1]. Like the other applications of referral networks, their approach
rely on exchanging ratings. Sen and Sajja [11] develop a reputation-based trust model



that is used for selecting processor agents for processor tasks. Each processor agent can
vary its performance over time. Agents are looking for processor agents to send their
tasks to using only evidence from others. Sen and Sajja propose a probabilistic algo-
rithm to guarantee finding a trustworthy processor. These approaches are stand alone
approaches and do not concern choosing a useful service selection mechanism among
different alternatives as we do in this work.

Techniques for combining different classifier exist in the literature. Ortega et. al.
propose an approach that takes a collection of existing classifiers and learning algo-
rithms and creates a combined classifier that takes advantage of all of these classi-
fiers [12]. The basic idea of their approach is that each classifier has a particular sub-
domain for which it is most reliable. By combining different classifiers, Ortega et. al.
create a classifier that is reliable for a range of different sub-domains. Although this
type of approaches are similar to our approach in a sense that they combine different
mechanisms to come up with a better one, they are specifically proposed for the classi-
fication problems and they cannot be used directly in the service selection problem that
we are addressing in this paper.

As a future work, we plan to enable online addition of new service selection mech-
anisms to the proposed approach. We also want to add our work a social dimension
so that the consumers can recommend each other new service selection mechanisms.
Then, the recommended mechanisms can be added to the learning algorithm on the fly.
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