
Trust Strategies for ART Testbed
Özgür Kafalı

Department of Systems & Control Engineering
Boğaziçi University,

TR-34342, Bebek, İstanbul, Turkey
ozgurkafali@gmail.com

Pınar Yolum
Department of Computer Engineering

Boğaziçi University,
TR-34342, Bebek, İstanbul, Turkey

pinar.yolum@boun.edu.tr

Abstract— Recently several trust models have been developed.
However, different trust models make different assumptions
about agents’ environments, making it difficult to evaluate and
compare different models. An accurate examination requires
different models to be tested on the same environment and
evaluated using precise metrics. For this reason, we adopt well-
known trust concepts and formulate them as agent strategies
that can be applied in the Agent Reputation and Trust (ART)
Testbed Simulation Environment. We devise trust strategies that
can be applied at different stages of agents’ interactions. We study
different metrics for each stage and compare various strategies
using these metrics.

I. INTRODUCTION

Trust is a crucial element in business dealings. The charac-
teristics of the business, the traits of the business participants,
the interactions they are involved in influence how trust is
engendered. In recent years, various trust models have been
developed [13], [9], [2]. However, comparing them with each
other have been difficult since each model makes different
assumptions about the environment or allows different set of
interactions.

Agent Reputation and Trust (ART) Testbed simulates a
business environment as a game [6]. Agents that participate
in the game are service providers that can offer information
services. The information they offer can be based on their
own knowledge or can be bought from other service providers.
The game is structured so that buying information from others
benefit a seller if the information sources are trustworthy but
may harm the seller if they are not. This raises the question
of whom to trust.

We study this question in three stages: modeling others,
requesting information, and responding to questions. The mod-
eling strategies study different ways to represent other agents
and their interactions. They also study the type of information
that should be maintained and how this information should be
interpreted or updated. The requesting strategies study when
and from whom the agent will request information. The main
question here is when does an agent decide that the other
party is trustworthy and request information? The responding
strategies are used to decide under which circumstances and to
whom the agent should sell information. The responding stage
is indirectly related to finding trustworthy parties, since other
agents may act in the agent’s interest only if the requester has
previously acted cooperatively.

To study different trust models systematically, we have
designed and implemented strategies for the three mentioned
stages of the ART game. At the end of each game, the
simulation environment provides us information about the
game such as the money earned, average error, and so on.
We use these values to devise metrics that can be used to
compare different strategies.

The rest of the paper is organized as follows: Section 2 is an
overview of the game architecture together with the simulation
environment and the agent model. Then, in Section 3 we pro-
pose strategies for the agent’s trust model by using references
to the implementation of the agent’s code introduced in Section
2. Section 4 shows the statistics collected from the games
simulated with the models proposed in Section 3 and makes
some observations about the overall performances. Then we
conclude the paper in Section 5 by comparisons to the existing
trust models used in this area of research.

II. BACKGROUND

The algorithms and methods proposed in this paper are
implemented in the ART Testbed software, which is also a
simulation platform for making test runs in order to compare
different strategies. The ART (Agent Reputation and Trust)
Testbed provides the researchers with an environment to model
and run their agents to collect statistics about how successful
their strategies are. Next, we explain the rules of the ART
game [5], the characteristics of the simulation environment
[7], and finally the implemented agent model.

A. The Game Overview

The game acts as a business environment where customers
come to buy opinions about paintings. Each agent participating
in the game is a service provider (i.e., appraiser) that is selling
its opinion when requested. Service consumers as well as other
service providers may be willing to purchase opinions about
a painting. For each painting, its era of expertise is known.
Each service provider starts the game with high expertise in
some eras. In addition, the service providers can query each
other to find out the reputations of other agents for some eras.
Throughout the simulation, there are no guarantees about the
correctness of replies. That is, a service provider may provide
wrong information about a provider or may provide inaccurate
information about the reputation of another service provider.
Similarly, since agents are heterogeneous (i.e., designed by

different parties), they may be following different strategies
for carrying out their tasks.

After a service provider consults whoever is necessary,
it forms a final opinion about the requested painting. After
submitting this final opinion, the true value of the painting
is revealed. This allows the service provider to compare its
opinion with the true painting value. The level of accuracy of
an opinion is determined by finding the difference between
the appraised and true values. The service provider earns a
certain amount of money for every answer it provides to
the requesting agents. The more accurate answers a service
provider generates, the more likely the service consumers buy
opinions from that provider. The main aim of the game is to
end with the maximum bank balance.

B. The Simulation Environment

The game architecture consists of a game simulation engine,
a game server and a database. The game simulation engine
runs the game by manipulating the communication of agents
through various types of messages and making the necessary
computations. The database is used to store information about
each game and view the statistics of a previously completed
game. The simulation environment works as follows.

The game can be thought as a series of discrete time steps
controlled by the simulation engine. The game parameters
are set at the beginning of each simulation run and some of
them are updated at each time step. Some parameters like the
expertise values of appraisers for different eras are assigned
randomly by the simulator and most of the other parameters
have predefined values which remain the same throughout the
game.

There are several actions that take place every time step.
Client shares are determined for each time step and clients
are assigned to the appraisers accordingly. After that, inter-
agent communications begin (opinion requests and responses,
reputation requests and responses). The opinion and reputation
transactions are handled by the simulator as a sequence of
incoming and outgoing messages. Each type of transaction,
together with the message types and related researcher-coded
methods is given in detail in the next section. After the
transactions are complete, the simulator collects data from
each agent (opinion values, weights, messages, and so on)
and makes the necessary final computations. At the end of the
time step, it gives the actual painting values to the agents as
feedback.

C. ART Agent Model

The agent model in the ART Testbed has been fixed in terms
of the operations that will be performed. Each agent’s model
is created by extending the abstract Agent class and filling
up the methods that describe the agent’s behavior and provide
inter-agent communication.

The public parameters of the game are revealed to all agents
that participate. The static parameters are: (1) Client Fee (the
money earned for evaluating a painting), (2) Opinion Cost (the
cost to request an opinion from another agent), (3) Reputation

Cost (the cost to request a reputation information from another
agent), and (4) Expertise Values (agent’s own expertise values
for all painting eras). The agent also has access to some of the
dynamic variables of the simulation such as (5) Bank Balance
(agent’s current money) and (6) Current Timestep (the round
that the game is currently simulating is revealed although the
total number of timesteps is unknown).

The following list gives the order of interactions of each
agent at each timestep. This sequence of actions is enforced
by the simulation environment.

1) prepareReputationRequests(): The agent determines
which agents to request reputation information about
other agents in this method and sends messages of type
ReputationRequestMsg for each request to the simulator.
The agent may use the messages of type Opinion-
ReplyMsg from the previous time step as additional
information.

2) prepareReputationAcceptsandDeclines(): The agent de-
termines whether to respond to reputation requests for
that round. It first empties its inbox of messages of type
ReputationRequestMsg and sends an accept or decline
message for each of them.

3) prepareReputationReplies(): According to the accept or
decline messages, the agent generates reply messages
for the agents that request reputation information.

4) prepareOpinionRequests(): Like the reputation transac-
tion case, the agent determines which agents to ask for
opinions about the paintings it has to evaluate in this
method. It may use the reputation information gathered
from the previous method.

5) prepareOpinionCreationOrders(): For each opinion re-
quest and the agent’s own appraisal assignments, the
agent has to order an opinion value from the simulator
via sending a message of type OpinionOrderMsg.

6) prepareOpinionCertainties(): After collecting the mes-
sages of type OpinionRequestMsg from its inbox, the
agent prepares certainties of its opinions if it wants to
respond to the requesting agent.

7) prepareOpinionRequestConfirmations(): According to
the certainty values that the responding agent sends,
the requesting agent sends a confirmation message if
it really wants to purchase its opinion about the already
made request.

8) prepareOpinionProviderWeights(): For each confirmed
opinion request, the agent sends the corresponding
weight of that opinion to the simulator as a message
of type WeightMsg (as the simulator have both the
opinion values and the weights, it can make the final
calculations).

9) prepareOpinionReplies(): According to the confirmation
messages, the agent creates messages of type Opinion-
ReplyMsg by finding the appropriate opinions that are
already sent to the simulator.

III. THE PROPOSED STRATEGIES

The agent’s overall strategy is studied in three categories:
the modeling strategy of other agents (the environment), the
requesting strategy, and the response strategy. The requesting
strategy handles which and how many agents to ask for
opinions and reputation information, whereas the response
strategy deals with whom to give answers and in which way
to prepare the answers. We expect the response strategy of the
agent to influence its reputation. That is, if the agent responds
to queries correctly about a particular era, it will have a strong
reputation in that era. Both the requesting strategies and the
response strategies are directly related to and built on the
modeling strategy of the environment. In this paper, we present
several ways to keep track of the other agents’ past behavior as
far as the relations with the modeling agent are concerned. The
following subsections provide in depth knowledge about each
strategy and possible ways to implement them in the agent’s
algorithm.

A. The Modeling Strategy of Agents

An agent’s model of its environment is the collection of its
models of other agents as well as its observations about the
game. The observations about the game are already available
to each agent without further probing. This leaves modeling
of other agents as the main challenge for modelling strategies.

For the modeling of other agents, we capture the following
information:
• Name: The name of the agent, which will be used to

address the agent during interactions.
• Expertise: The expertise value keeps track of how well the

agent answers queries about paintings. Since the actual
expertise of agents differs based on eras, we record the
expertise as multidimensional.

• Sociability: The sociability of an agent denotes how
well the agent answers reputation requests [11]. The
higher the sociability, the better the agent is knowing the
reputation of others. Similar to the modelling of expertise,
sociability of an agent can vary based on era. Hence, we
again model the sociability of each agent for each era
separately.

• References: The references of an agent is a list of
agents that have been consulted to receive reputation
information. The references are important, especially for
distributing credit after agent’s answers are evaluated.

• Number of Opinions Asked: This value keeps the number
of times the agent is consulted for opinion transactions.
This information is useful to compute the confidence of
information that is gained from the agents. For example,
if the number of opinions asked is higher than a certain
number, our confidence in the information about the agent
may be stronger. In our previous research, we have seen
that the number of previous interactions with an agent
affects the level of trust between agents [12].

• Number of Reputations Asked: This value keeps the
number of times the agent is consulted for reputation

transactions. This value can be used in various ways.
In some cases it may be desirable to get reputation
information from agents whose opinions have not been
asked before. On the other hand, an agent may prefer to
only receive reputation information from those that have
been successful several times before.

• Number of Reputations Asked About: This value keeps
the number of times reputation information is gathered
about the agent. Again, this value may be used in different
ways. For example, if we have gathered the reputation of
an agent many times before, it may not be necessary to
query others about this agent again.

For each previously contacted agent, we maintain this infor-
mation in a complex data structure. As explained above, some
information about an agent vary based on era (i.e., expertise
and sociability), whereas some values about the agent are kept
independent of the era (number of opinions asked, number of
reputations asked, and so on).

At each round of the simulation, certain events trigger
update operations on some or all of the agents (again on some
fields of the agent structure) in the list. The following is the
list of these events and the types of update operations they
lead to:

• After Opinion Replies are gathered: For each opinion
reply message, the difference between the true painting
value and the value gathered from the agent is calculated
in order to update the agent’s expertise in the given era.
The agents that are consulted in the previous round to
gather reputation information about that agent (the agent’s
references) are also updated according to the appraisal
error. After all references of the agent are updated, they
are removed from the agent’s references list. The update
operation is proceeded as follows:

Agent.Expertise = Agent.Expertise× {1 + [(1−
Agent.Expertise)× UpdateMargin]}

RefAgent.Sociability = RefAgent.Sociability × {1 + [(1−
Agent.Sociability)× UpdateMargin]}

where UpdateMargin is positive if the difference between
the true painting value and the appraised value (appraisal
error) is smaller than a threshold and it is negative
otherwise. The above case shows the situation when the
appraisal error is small enough to update the agent’s
expertise upwards. The closer the expertise of the agent
to 1, the slower it progresses upwards after a successful
evaluation. In the above equations, Agent represents
the provider of the opinion and RefAgent represents a
reputation provider which is previously consulted to get
information about Agent.
When the appraisal error is more than the threshold value
(UpdateMargin is negative), the agent’s expertise and the
corresponding referencing agent’s sociability are updated
downwards as below:

Agent.Expertise = Agent.Expertise×
(1 + UpdateMargin)

RefAgent.Sociability = RefAgent.Sociability ×
(1 + UpdateMargin)

• After Reputation Accept or Declines are gathered: Ac-
cording to each reputation accept or decline message, the
sociability of the agent (which sent the reply) is updated
by a small multiplier which can be shown as follows:

Agent.Sociability = Agent.Sociability ×
(1 + SocMultiplier)

where SocMultiplier is positive for accepted queries and
it is negative for rejected queries.

• After Reputation Replies are gathered: For each repu-
tation reply message, the expertise of the agent (about
which the reputation information is gathered) is updated
according to the sociability of the referencing agent and
the referencing agent is added to the references of the
updated agent. The formula for the update operation is
as follows:

Agent.Expertise = Agent.Expertise× [1 + (Difference

×RefAgent.Sociability)]

where Difference is obtained by subtracting the agent’s
current expertise value from the value gathered via the
reputation reply message.

B. The Requesting Strategy

The requesting strategy determines the quantity and quality
of queries to be prepared. The term quantity stands for
the number of agents to be consulted both for opinion and
reputation requests, and the term quality is used to represent
the reputation of the agents to request from (from whom to
request data from). We propose two requesting strategies.
• Liberal: The agent gathers reputation information about

other agents from the environment via preparing rep-
utation request queries. To whom the agent will ask
for reputation information and how it will interpret the
incoming information is discussed below.

• Conservative: The agent does not get any reputation
information from the environment and builds a trust
model only on its past experiences with the agents in
contact.

Both strategies use the data structures built by the modeling
strategy of the agent, but the update process of the data struc-
tures for the Conservative request strategy is much simpler
than the Liberal request strategy. The following paragraph
describes the process of how agents are selected to request
opinions and reputation information.

The opinion transactions are used by both strategies and
the procedure of finding agents to get opinions is simpler than
the one to prepare reputation queries. In each round of the
simulation, the agent checks the paintings assigned to it and
makes an ordering of agents according to their expertise values
stored in the agent structure for each era that it has to evaluate
a painting. After the sorting operation is complete, the agent
selects the top n agents from the ordered list and directs the
opinion request queries to them. We allow the agent to vary
the value of n according to the agent’s own expertise value in
that era. That is, if the agent itself is already an expert in the
era in which it needs to evaluate a painting, then it may only
ask a few other agents for opinion. However, if the agent has
no idea about the era, it may choose to ask a large number of
agents for their opinions.

There are two ends to prepare a reputation request: one is
to find the set of agents to get information from and the other
is to find the set of agents to gather information about. The
first question is related to the sociability of the agents. The
question can be rephrased as this: who would know others best
to provide reputation information about a particular agent. The
second question is more subtle. When does an agent decide
that it needs to gather reputation information about a particular
other agent?

To answer the first question, i.e., to decide which agents
to consult, an ordering of agents is made according to their
sociability values stored in the agent structure. The agents with
the top sociability values are asked for reputation information.
To answer the second question, i.e., to decide about which
agents to gather information, an ordering based on available
agent information is made. That is, the less we know about an
agent, the more likely we would need reputation information.
Hence, the agent has to figure out how much information it
has about other agents. We measure the amount of information
we have about an agent in terms of the number of previous
interactions (asking opinions and asking reputations). This can
be checked with the below condition:

OpinionsAsked + ReputationsAskedAbout ≤ T imesAskedMax

where TimesAskedMax is a threshold value which determines
whether enough information about the agent is gathered be-
fore.

Satisfaction of this condition ensures that we know little
about that particular agent. However, there can be many agents
in the system whom we know little about. Hence, it would be
unfeasible to try to know everyone equally well. Conversely,
we only want to know more about agents who have already
shown their expertise by answering some queries correctly.
For this reason, we also require that agents should have an
expertise between a certain range. This can also be defined by
the following condition:

AskingExpertiseMin ≤ Agent.Expertise ≤ AskingExpertiseMax

C. The Response Strategy

The response strategy of the agent decides to whom and
in what way the agent responds to the queries directed to it.
The response strategy determines the reputation of the agent
within its environment. We present two different response
strategies of the agent: a reciprocity based response strategy
and a respond all requesting type of strategy. In both strategies,
the quality of the response is kept the same (reply all queries
as accurate as the past knowledge allows), but the quantity of
responses (the number of agents to respond) differs.

Respond All: An agent aiming a high reputation value will
try to respond as accurate as possible to all requests without
any elimination of some sort. After all, if the agent answers
more questions correctly, there is a higher chance of being
identified as an expert and thus be trusted. To realize this
strategy, whenever a query comes in, first the main model of
the environment is consulted for each incoming query, then the
response is generated and finally the response is sent according
to the information gathered from the model.

Reciprocity: Note that the game does not offer any explicit
advantages to those agents that are considered reputable by
others. Hence, there may be times when an agent may not care
to have a good reputation. Moreover, when an agent answers
queries of others, it is helping other agents to earn money since
the agent’s answer may help others to respond to customer
requests correctly. A realistic exchange of opinions that take
place in real life businesses are those of reciprocity where
agents only respond to requests coming from the agents that
respond to its requests correctly. This is kind of a reciprocity
relation in which both agents are supposed to benefit from, if
they’re correct in their responses.

A reciprocity based method will allow the agent to have a
high reputation value among the agents that the agent itself
requests queries from, but the overall reputation of the agent
may be noticeably lower than that of a more sociable agent
who answers every query directed to it. In order to implement
a reciprocity relation, the agent has to keep track of (1) the
agents that respond to its queries and (2) how well the agents
have answered the queries. Using this data, the agent can
decide which agents have answered its queries correctly.

IV. METRICS

The experimental simulations are run with the variety of
ways explained in the previous section and the following
metrics are used in order to compare them. For each separate
strategy, we propose some statistical parameters to calculate:

In order to compare the distinction between an agent build-
ing up its model on reputation information gathered from the
environment and a relatively unsociable agent which does not
prepare its trust model to depend on other’s evaluations, we
generate the following metrics:
• Bank balance: Used to evaluate the overall success of

the agent. It can be thought separately as income and
expenses

• Average appraisal error: Another measure of success
which is directly related to the client share

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

A
ve

ra
ge

 A
pp

ra
is

al
 E

rr
or

Timestep

Liberal
Conservative

MixedLiberalConservative

Fig. 1. Average Appraisal Error

Like the requesting strategy, we’ve proposed two methods
on how the agent will manage the responses that it will give
to the queries directed to it. The following metrics are used
to compare the two methods:
• Bank balance: This time, it is mostly used to see how

much income the agent makes out of the information it
provides.

• Percentage of responses: Used to see how many responses
are sent out of all queries directed to the agent.

Figures 1, 2, and 3 show the distribution of the above param-
eters with respect to the discrete timesteps of the simulation.
Each simulation is run three times with 100 agents and the
averages are reported. The simulations employ a variety of
societies that differ in the strategies used.

First, we look at three societies that differ in their requesting
strategy. As explained in Section III-B, we compare a society
of Liberals with a society of Conservatives and a mixture of
the two. All populations use the Respond All strategy for an-
swering queries. We first study how these strategies affect the
average appraisal error; that is the average of the differences
between the paintings’ true values and the agents’ appraised
values. Figure 1 plots this error for increasing timesteps. The
Liberal strategy is more effective in the beginning of the
simulation. The obvious explanation for this is that agents
initially know few agents around and sharing information
about each other helps them make fewer mistakes. However,
with the Conservative strategy, agents ask others their opinions
and thus learn how trustworthy other agents are on their
own. As the simulation continues, agents with both strategies
learn about the experts in the environment so that they start
to make fewer mistakes. Meanwhile, the society with agents
that employ Conservative as well as Liberal strategy generally
make fewer mistakes than the other two strategies.

Next, we compare three populations that use Respond All,
Reciprocity, and both strategies, respectively. All of these three
populations use the Liberal strategy for requesting reputations.
Figure 2 displays the Percentage of Responses versus the
timesteps of the simulation. The results for the RespondAll and

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

Pe
rc

en
ta

ge
 o

f
R

es
po

ns
es

Timestep

RespondAll
Reciprocity

MixedResponse

Fig. 2. Percentage of Responses

 0

 10000

 20000

 30000

 40000

 50000

 0 5 10 15 20

T
ot

al
 B

an
k

B
al

an
ce

Timestep

RespondAll-Liberal
Reciprocity-Liberal

MixedResponse-Liberal
RespondAll-Conservative

RespondAll-MixedLiberalConservative

Fig. 3. Bank Balance

Reciprocity cases are trivial where in an environment with all
agents using reciprocity, none of the agents reply each other
(at least one starter response has to be triggered). With the
Respond All strategy, we have the opposite effect, since agents
respond to all queries the percentage of replies is fixed at
100%. For the MixedResponse case, the number of responses
made out of all incoming requests increase in time which
can be explained by the existence of agents using RespondAll
strategy. At every timestep, there is an increasing probability
that the Response List of the agents using Reciprocity grow
wider, which leads to getting more responses from those.
Note that, the agents in the system are telling the truth.
When the agents deliberately hide information from each
other, we expect the percentage of responses to drop for the
MixedResponse strategy.

Finally, we examine how the combination of these strategies
affect the total bank balance of the populations. Figure 3 plots
Total Bank Balance distribution throughout the simulation.
This plot is very much related with the Appraisal Error as
fewer errors in evaluations lead to more customer share in
the long run. When agents engage in more transactions by

responding all requests and requesting reputation information
(RespondAll-Liberal) they achieve the highest Total Bank
Balance. On the other hand, when agents employ Reciprocity-
Liberal strategy combination, they ask others for reputation in-
formation but do not themselves provide any answers. Hence,
the society cannot share each others’ findings. When this is
the case, the society ends up with the smallest Total Bank
Balance.

V. RELATED WORK

Several methods and the ways how they can be combined
into agent models are proposed in this paper after inspecting
various trust models, comparing their advantages and disad-
vantages and determining their compatibility and integration
to the ART testbed domain. These models vary from defining
the social dimension and importance of trust [4] to the more
applicable methods based on reputation in multi-agent systems
[14]. The following describe some of these models.

While constructing the proposed model in this paper, some
supplementary concepts are considered as well as taking into
account existing trust models directly. One of these concepts
is the idea of a PageRank system [3], which is used in
search engines for ranking of Web sites. The idea can be
integrated into the ART domain to keep the reputation of
agents as PageRank values which will help manipulate the
agent selection algorithm. Another approach is the concept of
unsupervised learning which in some ways can be appropriate
to utilize in the ART domain as the duration of the simulation
runs is unknown. This prevents the agent from spending much
time on training and modeling the environment.

Some existing trust models are not directly applicable to
ART game. In FIRE [9], four types of trust and reputation
are presented and the innovation comes from the concept of
certified reputations in which the agent itself offers reputation
information about its past behavior. However, such interactions
are not expected in the ART game.

The SPORAS trust model treats different types of trust
ratings (individual and social trust) equally as opposed to FIRE
and gives more weight to more recent ratings (rather than
experiences from the past) [15]. It also takes into account
the deviation of rating values concerning an agent, which
dramatically affects the reputation of the agent.

REGRET puts more emphasis on the social dimension of
trust and presents the idea of an ontological structure to
model the reputation of agents [10]. According to the model,
reputation is a combination of different pieces of information
and the overall value is computed after assigning weights to
the individual components. This idea can be integrated into
the ART domain up to some point as the reputation of an
agent may be constructed from the ratings of the agent in
different eras via certain weights which will be determined by
the concerned agent, i.e., the agent that wants to learn about
the other’s reputation.

The existence of reciprocal agents in a multi-agent system
brings some well-known challenges into the competition like
zero-cost identity, free-riding, and collusion [1]. However, this

is not the case for the ART domain. As it is not an open
system, agents remain in the environment until the end of
the simulation with the same identity. Also, free-riding is
not an issue, because every request has a cost to be paid.
Collusion in the ART domain is not allowed by the nature
of the competition, but it can be created in an experimental
environment where a group of agents knows each others’
identity and behave accordingly throughout the game.

Collaboration in multi-agent systems is another interesting
concept as experimented in the SPIRE system [8]. As opposed
to the ART domain, agents in the SPIRE framework are more
group-oriented (working for the sake of the whole society)
than being self-interested. The collaborative side of the system
weighs more than the competitiveness encouraged in the ART
testbed simulation environment.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we’ve tried to implement well-known trust
strategies and integrate them into the ART testbed simulation
environment. By developing some useful metrics, we mea-
sured how successful they perform among each other. While
constructing the agent societies that the simulations run on,
we restricted the agents to respond honestly (as far as they’re
able to) to all queries.

In our future research, we’re aiming to consider cases where
the society consists of both honest, dishonest and totally
random agents, in order to see how the parameters are affected.
We’re also eager to create environments within the ART
testbed simulation where we can experiment the phenomenon
of collusion in multi-agent systems and recommend suitable
deterrences to the problem.

ACKNOWLEDGEMENT

This research is supported by Boğaziçi University Research
Fund under grant BAP05A104. We are indebted to the ART
Development Team, especially Karen Fullam, Jordi Sabater
and Tomas Klos for helping us with the testbed software and
the anonymous referees for their comments.

REFERENCES

[1] D. Banerjee, S. Saha, S. Sen, and P. Dasgupta. Reciprocal resource
sharing in P2P environments. In AAMAS, pages 853–859, 2005.

[2] K. S. Barber and J. Kim. Belief revision process based on trust: Agents
evaluating reputation of information sources. In R. Falcone, M. Singh,
and Y.-H. Tan, editors, Trust in Cyber-societies, LNAI 2246, pages 73–
82. Springer-Verlag, 2001.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1–7):107–
117, 1998.

[4] C. Castelfranchi and R. Falcone. Principles of trust for MAS: Cognitive
anatomy, social importance, and quantification. pages 72–79, Paris,
France, 1998. Proceedings of Third International Conference on Multi-
Agent Systems.

[5] K. Fullam, T. B. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol, and
K. S. Barber. The agent reputation and trust (ART) testbed competition
game rules. Laboratory for Intelligent Processes and Systems Technical
Report TR2004-UT-LIPS-028.

[6] K. Fullam, T. B. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol, K. S.
Barber, J. S. Rosenschein, L. Vercouter, and M. Voss. A specification
of the agent reputation and trust (ART) testbed: experimentation and
competition for trust in agent societies. In AAMAS, pages 512–518,
2005.

[7] K. Fullam, T. B. Klos, G. Muller, J. Sabater, Z. Topol, K. S. Barber, J. S.
Rosenschein, and L. Vercouter. The agent reputation and trust (ART)
testbed architecture. pages 50–62. The Workshop on Trust in Agent
Societies at The Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, July 2005.

[8] A. Glass and B. J. Grosz. Socially conscious decision-making. Au-
tonomous Agents and Multi-Agent Systems, 6(3):317–339, 2003.

[9] T. D. Huynh, N. R. Jennings, and N. Shadbolt. Fire: An integrated trust
and reputation model for open multi-agent systems. In Proceedings of
16th European Conference on Artificial Intelligence, pages 18–22, 2004.

[10] J. Sabater and C. Sierra. Regret: reputation in gregarious societies.
In AGENTS ’01: Proceedings of the fifth international conference on
Autonomous agents, pages 194–195, New York, NY, USA, 2001. ACM
Press.

[11] P. Yolum and M. P. Singh. Emergent properties of referral systems. In
Proceedings of the 2nd International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), pages 592–599, 2003.

[12] P. Yolum and M. P. Singh. Service graphs for building trust. In
CoopIS/DOA/ODBASE (1), pages 509–525, 2004.

[13] P. Yolum and M. P. Singh. Engineering self-organizing referral networks
for trustworthy service selection. IEEE Transactions on Systems, Man,
and Cybernetics. Part A, 35(3):396–407, 2005.

[14] B. Yu and M. P. Singh. Detecting deception in reputation management.
In Proceedings of AAMAS ’03, July 2003.

[15] G. Zacharia and P. Maes. Trust management through reputation
mechanisms. Applied Artificial Intelligence, 14:881–907, 2000.

