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ABSTRACT
The process-driven composition of Web services is emerg-

ing as a promising approach to integrate business applica-
tions within and across organizational boundaries. In this
approach, individual Web services are federated into com-
posite Web services whose business logic is expressed as a
process model. The tasks of this process model are essen-
tially invocations to functionalities offered by the underly-
ing component services. Usually, several component services
are able to execute a given task, although with different lev-
els of pricing and quality. In this paper, we advocate that
the selection of component services should be carried out
during the execution of a composite service, rather than at
design-time. In addition, this selection should consider mul-
tiple criteria (e.g., price, duration, reliability), and it should
take into account global constraints and preferences set by
the user (e.g., budget constraints). Accordingly, the pa-
per proposes a global planning approach to optimally select
component services during the execution of a composite ser-
vice. Service selection is formulated as an optimization prob-
lem which can be solved using efficient linear programming
methods. Experimental results show that this global plan-
ning approach outperforms approaches in which the com-
ponent services are selected individually for each task in a
composite service.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Web-based services

General Terms
Management, Performance

Keywords
Web services, QoS, Service Composition

1. INTRODUCTION
Web services technologies are emerging as a powerful vehi-

cle for organizations that need to integrate their applications
Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

within and across organizational boundaries. In particular,
the process-based composition of Web services is gaining
a considerable momentum as an approach for the effective
integration of distributed, heterogeneous, and autonomous
applications [1]. In this approach, applications are encapsu-
lated as Web services and the logic of their interactions is
expressed as a process model. This approach provides an at-
tractive alternative to hand-coding the interactions between
applications using general-purpose programming languages.

A Web service is a self-described application that uses
standard Internet technologies to interact with other Web
services. An example of a Web service is a SOAP-based in-
terface to place bids in an auction house. Once deployed,
services can be aggregated into composite services. An ex-
ample of a composite service would be a “Travel Planner”
system that aggregates multiple component services for flight
booking, travel insurance, accommodation booking, car ren-
tal, and itinerary planning, which are executed sequentially
or concurrently.

The process model underlying a composite service identi-
fies the functionalities required by the services to be com-
posed (i.e., the tasks of the composite service) and their
interactions (e.g., control-flow, data-flow, and transactional
dependencies). Component services that are able to provide
the required functionalities are then associated to the indi-
vidual tasks of the composite services and invoked during
each execution of the composite service.

The number of services providing a given functionality
may be large and constantly changing. Consequently, ap-
proaches where the development of composite services re-
quires the identification at design-time of the exact services
to be composed are inappropriate. The runtime selection
of component services during the execution of a composite
service has been put forward as an approach to address this
issue [2, 6, 11]. The idea is that component services are se-
lected by the composite service execution engine based on
a set of criteria. However, previous approaches in this area
have not identified a set of criteria (other than price and
application-specific criteria) for selecting Web services. In
addition, existing service selection approaches adopt a local
selection strategy, meaning that they assign a component
service to an individual tasks, one at a time. As a result,
these approaches are not able to handle global user con-
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straints and preferences. For example, the overall duration
of the composite service execution should be minimized, or
a given budget constraint should be satisfied.

In this paper, we present quality-driven approach to se-
lect component services during the execution of a composite
service. The salient features of our approach are:

• A Web services quality model. We propose an exten-
sible multi-dimensional Web services quality model.
The dimensions of this model characterize non-functi-
onal properties that are inherent to Web services in
general: execution price, execution duration, reputa-
tion, reliability, and availability.

• Quality-driven service selection. In order to overcome
the limitations of local service selection outlined above,
we propose a global planning approach. In this ap-
proach, quality constraints and preferences are assigned
to composite services rather than to individual tasks
within a composite service. Service selection is then
formulated as an optimization problem and a linear
programming method is used to compute optimal ser-
vice execution plans for composite services. Experi-
mental results show that the proposed service selec-
tion strategy significantly outperforms local selection
strategies.

The rest of the paper is organized as follows. Section 2
presents the service composition model and defines some key
concepts used throughout the paper. Section 3 defines the
service quality criteria used for service selection and explains
how the values of these quality criteria can be computed for
a given service. Section 4 formulates the global service se-
lection problem and describes a linear programming method
to efficiently solve it. Section 5 presents a prototype imple-
mentation of the proposed approach, as well as a set of ex-
periments comparing the global planning approach with the
local selection approach. Finally, Section 6 discusses related
work, and Section 7 draws some conclusions.

2. WEB SERVICE COMPOSITION MODEL
In this section, we will present some basic concepts in

Web service composition first, then give some definitions on
composite service execution planning.

2.1 Composite services and communities
A composite Web service is an umbrella structure aggre-

gating multiple other elementary and composite Web ser-
vices, which interact with each other according to a pro-
cess model. Following our previous work [2], we choose to
specify the process model of a composite service as a stat-
echart [12]. The choice of statecharts for specifying com-
posite Web services is motivated by two main reasons: (i)
statecharts have a well-defined semantics; and (ii) they of-
fer the basic flow constructs found in contemporary process
modeling languages (i.e., sequence, conditional branching,
structured loops, concurrent threads, and inter-thread syn-
chronization). The first characteristic facilitates the applica-
tion of formal manipulation techniques to statechart models,
while the second characteristic ensures that the service com-
position mechanisms developed in the context of statecharts,
can be adapted to other process modeling languages like,

for example, those that are being designed by Web services
standardization efforts (e.g., BPEL4WS, WSCI, BPML)1.

A statechart is made up of states and transitions. In the
proposed composition framework, the transitions of a stat-
echart are labeled with events, conditions, and assignment
operations over process variables. States can be basic or
compound. Basic states are labelled with invocations to Web
services operations. Compound states contain one or several
statecharts within them. Specifically, compound states come
in two flavors: OR and AND states. An OR-state contains
a single statechart within it whereas an AND-state contains
several statecharts (separated by dashed lines) which are in-
tended to be executed concurrently. Accordingly, OR-states
are used as a decomposition mechanism for modularity pur-
poses, while AND-states are used to express concurrency:
they encode a fork/join pair. The initial state of a state-
chart is denoted by a filled circle, while the final state is
denoted by two concentric circles: one filled and the other
unfilled.

A simplified statechart W specifying a “Travel Planner”
composite Web Service is depicted in Figure 1. In this com-
posite service, a search for attractions is performed in par-
allel with a flight and an accommodation booking. After
these searching and booking operations are completed, the
distance from the hotel to the accommodation is computed,
and either a car or a bike rental service is invoked. Note that
when two transitions stem from the same state (in this case
the state t4), they denote a conditional branching, and the
transitions should therefore be labelled with disjoint condi-
tions.

Legend Initial State Final StateTransitionState And−state

AttractionSearching

FlightTicketBooking HotelBooking

DrivingTimeCalculation

BikeRental

CarRental

PSfrag replacements

ti
tf

tc
td

t1
t2

t3 t4

t5

t6

t7

t8

Ws1

Ws2

Ws3

Ws4

Ws5
(We1)
(We2)

⇐⇒

Figure 1: Statechart of a composite service “Travel
Planner”

A basic state2 of a statechart describing a composite ser-
vice can be labelled with an invocation to either of the fol-
lowing:

• An elementary Web service, i.e., a service which does
not transparently rely on other Web services.

• A composite Web service aggregating several other ser-
vices.

• A Web service community, i.e., a collection of Web
services with a common functionality although dif-
ferent non-functional properties (e.g., with different
providers, different QoS parameters, reputation, etc.)

The concept of Web service community addresses the is-
sue of composing a large and changing collection of Web
services. Service communities provide descriptions of a de-
sired functionality (e.g., flight booking) without referring to
any actual service (e.g., Qantas flight booking Web service).

1See http://dev2dev.bea.com/techtrack/standards.jsp
2Also called task in remainder of this paper.
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The set of members of a community can be fixed when the
community is created, or it can be determined through a reg-
istration mechanism, thereby allowing service providers to
join, quit, and reinstate the community at any time. When
a community receives a request to execute an operation,
this request is delegated to one of its current members. The
choice of the delegatee is done at execution time based on the
parameters of the request, the characteristics of the mem-
bers, the history of past executions, and the status of ongo-
ing executions. Sections 3 and 4 deal with the selection of
delegatees during the execution of a composite service whose
states are labelled with invocations to communities.

2.2 Execution paths and plans
In this section, we define two concepts used in the rest of

the paper: execution path and execution plan.

Definition 1 (Execution path). An execution path of a
statechart is a sequence of states [t1, t2, .. tn], such that t1
is the initial state, tn is the final state, and for every state
ti (1 < i < n), the following holds:

• ti is a direct successor of one of the states in [t1,...,ti−1 ]

• ti is not a direct successor of any of the states in
[ti+1,...,tn]

• There is no state tj in [t1, ..., ti−1] such that tj and ti

belong to two alternative branches of the statechart.

• If ti is the initial state of one of the concurrent regions
of an AND-state AST, then for every other concurrent
region C in AST, one of the initial states of C appears
in [t1, ..., ti−1, ti+1, ..., tn]. In other words, when an
AND-state is entered, all its concurrent branches are
executed.

�

This definition relies on the concept of direct successor of
a state. A basic state tb is a direct successor of another
basic state ta if there is a sequence of adjacent transitions3

going from ta to tb without traversing any other basic state.
In other words, the first transition in the sequence stems
from ta, the last transition leads to tb, and all intermediate
transitions stem from and lead to either compound, initial,
or final states, but are not incident to a basic state.

It is straightforward to see that an acyclic statechart has
a finite number of execution paths. To simplify the presen-
tation, we initially assume that all the statecharts that we
deal with are acyclic. If a statechart contains cycles, a tech-
nique for “unfolding” it into an acyclic statechart needs to
be applied beforehand. The method used to unfold the cy-
cles of a statechart is to examine the logs of past executions
in order to determine the average number of times that each
cycle is taken. The states appearing between the beginning
and the end of the cycle are then cloned as many times as
the cycle is taken in average. Details about this unfolding
process are omitted for space reasons.

Under the assumption that the underlying statechart is
acyclic, it is possible to represent an execution path of this
statechart as a Directed Acyclic Graph (DAG) as follows.

3Two transitions are adjacent if the target state of one is
the source state of the other.

Definition 2 (DAG representation of an execution path).
Given an execution path [t1, t2, .. tn] of a statechart ST,
the DAG representation of this execution path is a graph
obtained as follows:

• The DAG has one node for each task t1, t2, .. tn.

• The DAG contains an edge from task ti to task tj iff
tj is a direct successor of ti in the statechart ST.

�

If a statechart diagram contains conditional branchings,
it has multiple execution paths. Each execution path rep-
resents a sequence of tasks to complete a composite service
execution. Figure 2 gives an example of a statechart’s exe-
cution paths. In this example, since there is one conditional
branching after task t4, there are two paths, called We1 and
We2 respectively. In execution path We1, task t6 is executed
after task t5, while in execution path We2, task t7 is executed
after task t5.
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Figure 2: DAG representation of the execution
paths of the statechart of Figure 1.

As stated before, the basic states of a statechart describ-
ing a composite service can be labelled with invocations to
communities. If this is the case, actual Web services (i.e.,
members of communities) need to be selected during the ex-
ecution of the composite service. Hence, it is possible to
execute a path in very different ways by allocating differ-
ent Web services to the states in the path. The concept of
execution plan defined below captures the various ways of
executing a given execution path.

Definition 3 (Execution plan). A set of pairs p = {<
t1, si1 >, < t2, si2 >, . . . , < tN , siN >} is an execution plan
of an execution path We iff:

• {t1, t2, ... tN} is the set of tasks in We.

• For each 2-tuple < tj , sij > in p, service sij is assigned
the execution of task tj .

�
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3. WEB SERVICE QUALITY MODEL
In a Web environment, multiple Web services may provide

similar functionalities with different non-functional property
values (e.g., different prices). In the composition model pre-
sented in the previous section, such Web services will typi-
cally be grouped together in a single community. To differ-
entiate the members of a community during service selec-
tion, their non-functional properties need to be considered.
For this purpose, we adopt a Web services quality model
based on a set of quality criteria (i.e. non-functional prop-
erties) that are transversal to all Web services, for example,
their pricing and reliability. Although the adopted quality
model has a limited number of criteria (for the sake of illus-
tration), it is extensible: new criteria can be added without
fundamentally altering the service selection techniques built
on top of the model. In particular, it is possible to extend
the quality model to integrate non-functional service char-
acteristics such as those proposed in [22], or to integrate
service QoS metrics such as those proposed by [25].

In this section, we first present the quality criteria in the
context of elementary services, before turning our attention
to composite services. For each criterion, we provide a defi-
nition, indicate its granularity (i.e., whether it is defined for
an entire service or for individual service operations), and
provide rules to compute its value for a given service.

3.1 Quality Criteria for Elementary Services
We consider five generic quality criteria for elementary

services: (1) execution price, (2)execution duration, (3) rep-
utation, (4) reliability, and (5) availability.

• Execution price. Given an operation op of a service
s, the execution price qprice(s, op) is the amount of
money that a service requester has to pay for executing
the operation op. Web service providers either directly
advertise the execution price of their operations, or
they provide means to enquire about it.

• Execution duration. Given an operation op of a ser-
vice s, the execution duration qdu(s, op) measures the
expected delay in seconds between the moment when a
request is sent and the moment when the results are re-
ceived. The execution duration is computed using the
expression qdu(s, op) = Tprocess(s, op) + Ttrans(s, op),
meaning that the execution duration is the sum of
the processing time Tprocess(s, op) and the transmis-
sion time Ttrans(s, op). Services advertise their pro-
cessing time or provide methods to enquire about it.
The transmission time is estimated based on past ex-
ecutions of the service operations, i.e., Ttrans(s, op) =
∑n

i=1
Ti(s,op)

n
, where Ti(s, op) is a past observation of

the transmission time, and n is the number of execu-
tion times observed in the past.

• Reliability. The reliability qrel(s) of a service s is
the probability that a request is correctly responded
within a the maximum expected time frame (which is
published in the Web service description). Reliabil-
ity is a technical measure related to hardware and/or
software configuration of Web services and the net-
work connections between the service requesters and
providers. The value of the reliability is computed
from historical data about past invocations using the

Table 1: Aggregation functions for computing the
QoS of execution plans

Criteria Aggregation function

Price Qprice(p) =
∑N

i=1 qprice(si, opi)
Duration Qdu(p) = CPA(qdu(s1, op1), ..., qdu(sN , opN ))

Reputation Qrep(p) = 1
N

∑N
i=1 qrep(si)

Reliability Qrel(p) = ΠN
i=1(e

qrel(si)∗zi)

Availability Qav(p) = ΠN
i=1(e

qav(si)∗zi)

expression qrel(s) = Nc(s)/K, where Nc(s) is the num-
ber of times that the service s has been successfully
delivered within the maximum expected time frame,
and and K is the total number of invocations.

• Availability. The availability qav(s) of a service s is
the probability that the service is accessible. The value
of the availability of a service s is computed using the
following expression qav(s) = Ta(s)/θ, where Ta is the
total amount of time (in seconds) in which service s is
available during the last θ seconds (θ is a constant set
by an administrator of the service community). The
value of θ may vary depending on a particular appli-
cation. For example, in applications where services
are more frequently accessed (e.g., stock exchange), a
small value of θ gives a more accurate approximation
for the availability of services. If the service is less fre-
quently accessed (e.g., online bookstore), using a larger
θ value is more appropriate. Here, we assume that
Web services send notifications to the system about
their running states (i.e., available, unavailable).

• Reputation. The reputation qrep(s) of a service s is
a measure of its trustworthiness. It mainly depends on
end user’s experiences of using the service s. Differ-
ent end users may have different opinions on the same
service. The value of the reputation is defined as the
average ranking given by to the service by end users,

i.e., qrep =
∑n

i=1
Ri

n
, where Ri is the end user’s ranking

on a service’s reputation, n is the number of times the
service has been graded. Usually, the end users are
given a range to rank Web services, for example, in
Amazon.com, the range is [0, 5].

Given the above quality criteria, the quality vector of a
service s is defined as follows:

q(s) = (qprice(s), qdu(s), qav(s), qre(s), qrep(s)) (1)

Note that the method for computing the value of the qual-
ity criteria is not unique. The global planning model pre-
sented Section 4 is independent of these methods.

3.2 Quality Criteria for Composite Services
The above quality criteria are also applied to evaluate the

QoS of composite services. Table 1 provides aggregation
functions for the computation of the QoS of a composite
service CS when executed using plan p = {< t1, si1 >, <
t2, si2 >, . . . , < tN , siN >}. A brief explanation of each
criterion’s aggregation function follows:
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• Execution price: The execution price Qprice(p) of an
execution plan p is a sum of every service si’s execution
price qprice(si, opi).

• Execution duration: The execution duration Qdu(p)
of an execution plan p is computed using the Critical
Path Algorithm (CPA) [23]. Specifically, the CPA is
applied to the the execution path of execution plan
p, seen as a project digraph. The critical path of a
project digraph is a path from the initial state to the
final state which has the longest total sum of weights
labelling its nodes. In the case at hand, the weights
labelling the nodes correspond to the maximum ex-
pected execution durations. A task that belongs to
the critical path is a critical task, while a service that
belongs to the critical path is a critical service.

Figure 3 provides an example of critical path. In this
example, the project digraph represents execution path
We1 and its execution plan p, where p={ < t2, s23 >,
< t3, s38 >, < t4, s45 >, < t5, s59 >, < t6, s62 > }.
Each task’s execution duration is given in the project
digraph. There are two project paths in this project
digraph, where project path 1 is < t2, t5, t6 > and
project path 2 is < t3, t4, t5, t7 >. The total execution
time of project path 1 (project path 2) is 37 seconds
(62 seconds). Since project path 2’s total execution du-
ration is longer than that of project path 1, the critical
path for the project digraph is project path 2. Thus,
the execution plan’s total execution duration is 62 sec-
onds. Task t3, t4, t5 and t7 are critical tasks. Services
s38, s45, s59 and s62 are critical services.

������������Legend: critical path of project digraph  critical task  critical service 
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Figure 3: Critical Path

• Reputation: The reputation Qrep(p) of an execution
plan p is the average of each service si’s reputation
qrep(si) in the execution plan p.

• Reliability: Reliability Qrel(p) of an execution plan p

is a product of eqrel(si)∗zi . In the aggregation function,
zi is equal to 1 if service si is a critical service in the
execution plan p, or 0 otherwise. If zi = 0, i.e., service
si is not a critical service, then eqrel(si)∗zi = 1, and
hence, the reliability of service si will not affect the
value of execution plan’s reliability.

• Availability: The availability Qav(p) of an execution

plan p is a product of eqav(si)∗zi , where qav(si) is ser-
vice si’s availability.

Using above aggregation functions, the quality vector of
a composite service’s execution plan is defined as:

Q(p) = (Qprice(p),Qdu(p),Qav(p), Qre(p), Qrep(p)) (2)

4. GLOBAL SERVICE SELECTION
As mentioned before, in existing approaches, the selec-

tion of component service to execute a task is determined
independently to other tasks of composite services [2, 11, 6].
More precisely, in our previous work [2], service selection
is done at each service community locally. The selection of
a service is based on a selection policy involving parame-
ters of the request, the characteristics of the members, the
history of past executions, and the status of ongoing execu-
tions. Although service selection can be locally optimized,
the global quality constraints may not be satisfied. For ex-
ample, a global constraint such as composite services’ exe-
cution price is less than 500 dollars can not be enforced. In
this section, we present a global planning based approach
for Web services selection. We first present an approach of
selecting an optimal execution plan for a composite service,
then present a novel linear programming based method for
optimal execution plan selection.

4.1 Selecting an Optimal Execution Plan
The basic idea of global planning is the same as query op-

timization in database management systems. Several plans
are identified and the optimal plan is selected. The fore-
going discussion makes it clear that a statechart has mul-
tiple execution paths and each execution path has its own
set of execution plans if the statechart contains conditional
branchings. In this subsection, we assume that the state-
chart does not contain any conditional branchings and has
only one execution path. We will discuss the case where a
statechart has multiple execution paths in Section 4.2.

We also assume that for each task tj , there is a set of
candidate Web services Sj that are available to which task
tj can be assigned. Associated with each Web service sij

is a quality vector (see equation 1). Based on the available
Web services, by selecting a Web service for each task in
an execution path, the global planner will generate a set of
execution plans P :

P = {p1, p2, ..., pn} (3)

n is the number of execution plans. After a set of execution
plans is generated, the system needs to select an optimal
execution plan. When selecting the execution plan, instead
of computing the quality vector of a particular Web service,
each execution plan’s global service quality vector needs to
be computed.

The selection of execution plan uses Multiple Attribute
Decision Making (MADM)[16] approach. Once the quality
vector for each execution plan is derived, by accumulating
all the execution plans’ quality vectors, we obtain matrix
Q, where each row represents an execution plan’s quality
vector.

Q =











Q1,1 Q1,2 . . . Q1,5

Q2,1 Q2,2 . . . Q2,5

...
...

...
...

Qn,1 Qn,2 . . . Qn,5











(4)
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A Simple Additive Weighting (SAW) [4] technique is used
to select an optimal execution plan. Basically, there are two
phases in applying SAW:

4.1.1 Scaling Phase
Some of the criteria used could be negative, i.e., the higher

the value is, the lower the quality is. This includes criteria
such as execution time and execution price. Other crite-
ria are positive criteria, i.e., the higher the value is, the
higher the quality is. For negative criteria, values are scaled
according to Equation 5. For positive criteria, values are
scaled according to Equation 6.

Vi,j =

{

Qmax
j −Qi,j

Qmax
j

−Qmin
j

if Qmax
j − Qmin

j 6= 0

1 if Qmax
j − Qmin

j = 0
j = 1, 2 (5)

Vi,j =

{

Qi,j−Qmin
j

Qmax
j

−Qmin
j

if Qmax
j − Qmin

j 6= 0

1 if Qmax
j − Qmin

j = 0
j = 3, 4, 5 (6)

In the above equations, Qmax
j is maximal value of a quality

criterion in matrix Q, i.e., Qmax
j = Max(Qi,j), 1 ≤ i ≤ n.

Qmax
j is minimal value of a quality criterion in matrix Q,

i.e., Qmin
j = Min(Qi,j), 1 ≤ i ≤ n.

In fact, we can compute Qmax
j and Qmin

j without gen-
erating all possible execution plans. For example, in order
to compute the maximum execution price (i.e., Qmax

price) of
all the execution plans, we select the most expensive Web
service for each task and sum up all these execution prices
to compute Qmax

price. In order to compute the minimum ex-

ecution duration (i.e., Qmin
du ) of all the execution plans, we

select the Web service that has shortest execution duration
for each task and use CPA to compute Qmin

du . The compu-
tation cost of Qmax

j and Qmin
j is polynomial.

After the scaling phase, we obtain the following matrix

Q
′

:

Q
′

=











V1,1 V1,2 . . . V1,5

V2,1 V2,2 . . . V2,5

...
...

...
...

Vn,1 Vn,2 . . . Vn,5











4.1.2 Weighting Phase
The following formula is used to compute the overall qual-

ity score for each execution plan:

Score(pi) =
5
∑

j=1

(Vi,j ∗ Wj) (7)

where Wj ∈ [0, 1] and
∑5

j=1 Wj = 1. Wj represents the

weight of each criterion. In (7), end users can give their
preference on QoS (i.e., balance the impact of the differ-
ent criteria) to select a desired execution plan by adjusting
the value of Wj . The global planner will choose the exe-
cution path which has the maximal value of Score(pi) (i.e.,
max(Score(pi))). If there are more than one execution plans
which have the same maximal value of Score(pi), then an
execution plan will be selected from them randomly.

4.2 Handling Multiple Execution Paths
In Section 4.1, we assume that the statechart only has

one execution path. In this subsection, we discuss the case

where statecharts have multiple execution paths. Assume
that a statechart has n execution paths. For each execution
path, an optimal execution plan can be selected. So, the
global planner has n selected execution plans. Since each
selected optimal execution plan only covers a subset of the
entire statechart, then the global planner needs to aggregate
these n execution plans into an overall execution plan to
covers all the tasks in the statechart. This overall execution
plan will be used to execute the statechart. For example,
for travel planner statechart W (see Figure 1), there are
two execution paths We1 and We2. The optimal execution
plans p1 and p2 of these two execution paths are selected.
From the Figure 2, it can be seen that both execution paths
We1 and We2 are subsets of W . Thus neither p1 nor p2

covers all tasks in W . Since the global planner conducts
planning before the execution time, it does not know which
execution path will eventually be used for the composite
service. Therefore it needs to aggregate p1 and p2 into an
overall execution plan which covers all the tasks in W .

Assume that statechart W has k tasks (i.e., t1, t2, ..., tk)
and n execution paths (i.e., We1, We2,..., Wen). Thus, for
each execution path, the global planner selects an optimal
execution plan. Consequently, we obtain n optimal execu-
tion plans (i.e., p1, p2, ..., pn) for these execution paths. The
global planner adopts the following approach to aggregate
multiple execution plans into an overall execution plan.

1. Given a task ti, if ti only belongs to one execution
path (e.g., Wej), then the global planner selects Wej ’s
execution plan pj to execute the task ti. We denote
this as ti(pj). For example, in trip planning statechart,
task t7 (i.e.,CarRental ) only belongs to execution path
We2. In this case, We2’s execution plan p2 is used to
execute t7, i.e., t7(p2).

2. Given a task ti, if ti belongs to more than one exe-
cution paths (e.g., Wej , Wej+1, ..., Wem), then there
is a set of execution plans (i.e., pj , pj+1, ..., pm) that
can be used to execute Wsi. In this case, the global
planner needs to select one of the execution plans from
pj , pj+1, ... , pm. The selection can be done by iden-
tifying the hot path for task ti. Here, the hot path
of a task ti is defined as the execution path that has
been most frequently used to execute task ti in the
past. For example, in travel planner statechart, task
t3 (FlightTicketBooking) belongs to both execution
path We1 and We2. Assume that the statechart W
has been used to execute the composite service for 25
times. Also assume that, in 20 times the execution of
the composite service follows the execution path We1;
while in 5 times, the execution of the composite service
follows the execution path We2. This indicates that
execution path We1 has been more frequently used
to execute task t3 (i.e., We1 is the hot path for t3).
Thus, We1’s execution plan p1 is used to execute t3,
i.e., t3(p1).

The system keeps composite service execution traces in
an execution history [10]. This allows the global planner to
identify hot path for each task.

4.3 Linear Programming Solution
The approach of selecting an optimal execution plan given

in the previous section requires the generation of all possible
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execution plans. Assume that there are N tasks in a state-
chart and there are M potential Web services for each task.
The total number of execution plans is MN . The computa-
tion cost of selecting an optimal execution plan is O(MN ).
Such an approach is impractical for large scale composite
services, where both the number of tasks in the composite
services and the number of candidate Web services in com-
munities are large. For example, assume that a composite
service has one execution path and 10 tasks, and for each
task, there are 10 candidate Web services. Then the to-
tal number of execution plans is 1010. It is very costly to
generate all these 1010 plans and select an optimal one. In
this subsection, we present a method based on linear pro-
gramming (LP) [15], which can be used to select an optimal
execution plan without generating all the possible execution
plans.

There are three inputs in LP: variables, an objective func-
tion and constraints on the variables, where both the objec-
tive function and constraints must be linear. LP attempts
to maximize or minimize the value of the objective function
by adjusting the values of variables based on the constraints.
The output of LP is the maximum (or minimum) value of
the objective function as well as the values of variables at
this maximum or minimum point.

In order to use LP to select an optimal execution plan, we
model the selection of an optimal execution plan as an LP
problem. The variables of the LP problem are yij represent-
ing the participation of service sij in the selected execution
plan. The value of each variable yij is 1 if service sij is in
the selected plan, 0 otherwise. The objective function of the
LP problem, which is based on equations 5,6, and 7, is:

Max

(

2
∑

l=1

(

Qmax
l − Qi,l

Qmax
l

− Qmin
l

∗ Wl

)

+
5
∑

l=3

(

Qi,l − Qmin
l

Qmax
l

− Qmin
l

∗ Wl

))

(8)

where Wl ∈ [0, 1] and
∑5

j=1 Wj = 1. Wl is the weight
assigned to quality criteria l.

In the following subsections, we discuss the constraints on
the variables of the LP problem.

4.3.1 Constraints on Execution Duration and
Execution Price

In this subsection, we consider constraints on the execu-
tion duration and the execution price of an execution plan.
Assume that A is the set of all tasks (i.e., basic states) of the
statechart. For each task tj , there is a set of Web services Sj

that can be assigned to this task, but on the end, for each
task tj , only one Web service should be selected. Given that
yij (yij = 0 or 1) denotes the participation of Web service
sij in the selected plan, this latter fact is captured by the
following constraints:

∑

i∈Sj

yij = 1, ∀j ∈ A (9)

For example, there are 100 potential Web services that
can execute task j, since only one of them will be selected
to execute the task j, then we have

∑100
i=1 yij = 1.

Assume that variable xj represents the earliest start time
of task tj , variable pj represents the execution duration for
task j, and variable pij represents the execution duration
for task tj by service sij . We use the notation tj → tk to
denote that task tk is task tj ’s direct successor task. We

have the following constraints:
∑

i∈Sj

pij yij = pj , ∀j ∈ A (10)

xk − (pj + xj) ≥ 0, ∀tj → tk, j, k ∈ A (11)

Qdu − (xj + pj) ≥ 0, ∀j ∈ A (12)

Constraint 10 indicates that the execution duration of a
given task tj is equal to the execution duration of one of
the Web services in A. Constraint 11 captures the fact that
if task tk is a direct successor of task tj , the execution of
task tk must start after task tj has been completed. Con-
straint 12 indicates that the execution of a composite service
is completed only when all its tasks are completed.

Assume that zij is an integer variable that has value 1 or
0: 1 indicates that Web service sij is a critical service and
0 indicates otherwise. We have the following constraint on
execution plan’s execution duration Qdu:

Qdu =
∑

j∈A

∑

i∈Sj

pijzij (13)

For execution price, assume that variable cij represents
the execution price of Web service sij , then we have the
following constraint on total execution price of composition
service:

Qprice =
∑

j∈A

∑

j∈Sj

cij yij (14)

An alternative of constraint 14 is as follows:

∑

j∈A

∑

j∈Sj

cijyij ≤ B, B > 0 (15)

where B is the budget constraint given by the user. This
constraint indicates that the entire composite service’s ex-
ecution price can not be greater than B. By introducing a
budget constraint the above problem needs to be explicitly
solved as an integer programming problem. This problem
is a special case of the knapsack problem and hence it is
NP-hard [19]. Notice that constraints on other criteria can
be easily incorporated into LP if the aggregation function
is a linear function. For example, assume that variable rij

represents the reputation of Web service sij , we can have
the following constraint on the execution plan’s reputation:

Qrep =
∑

j∈A

∑

j∈Sj

rijyij (16)

4.3.2 Constraints on Reliability and Availability
In this subsection, we consider constraints on criteria where

the aggregation function is not a linear function. Among
the criteria that are used to select Web services, both the
availability’s and the reliability’s aggregation functions are
non-linear (see Table 1). We can linearize them using a log-
arithm function as shown below. Assume that variable aij

represents the reliability of Web service sij . Since zij indi-
cates whether Web service sij is a critical service or not, the
reliability of execution plan is:

Qrel = Πj∈A





∑

j∈Sj

eaijzij
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By applying the logarithm function ln, we obtain:

ln(Qrel) =
∑

j∈A

ln





∑

j∈Sj

eaijzij





Since
∑

j∈A zij = 1 and zij = 0 or 1, we obtain:

ln(Qrel) =
∑

j∈A





∑

j∈Sj

aijzij





Let Q
′

rel = ln(Qrel), we have the following constraint on the
execution plan’s reliability:

Q
′

rel =
∑

j∈A

∑

j∈Sj

aijzij (17)

Similarly, assuming that bij represents the availability of the
Web service sij , the following constraint is introduced:

Q
′

av =
∑

j∈A

∑

i∈Sj

bijzij (18)

where Q
′

av = ln(Qav).
Criteria that can be introduced into the LP problem are

not limited to what we defined in Section 3. Other criteria
can be added once the aggregation functions are given.

4.3.3 Constraints on Uncertainty of Execution
Duration

In the previous sections, we assume that the execution du-
rations pij of Web services are deterministic. In reality, the
execution duration of a Web service sij may be uncertain.
For example, Service s may advertise that the execution du-
ration is 5 seconds, but the actual execution duration may
be 4.5, 4.6, or 5.2 seconds. To address this issue, we model
each pij using a normal distribution. Variable pij has there-
fore the following probability function:

f(x) =
1√
2πσ

exp

[

− 1

2

(x − µ

σ

)2
]

,−∞ < x < ∞

where the mean µ and the std. deviation σ are given by:

µ =
1

n

n
∑

i=1

xi (19)

σ2 =
1

n − 1

n
∑

i=1

(xi − µ)2 (20)

By applying formulas 19 and 20 to the execution logs of
a Web service sij , we can obtain µij and σij for this Web
service. Since

∑

i∈A

∑

i∈Sj
pijzij = Qdu, the total execu-

tion duration Qdu must follow a normal distribution4 whose
deviation σdu is:

σ2
du =

∑

i∈A

∑

i∈Sj

σ2
ijzij (21)

So in order to consider the deviation of the total execution
duration in the LP problem, we should adopt the following
objective function:

4A detailed proof can be found in [26].

Max

(

2
∑

l=0

(

Qmax
l − Qi,l

Qmax
l

− Qmin
l

∗ Wl

)

+

5
∑

l=3

(

Qi,l − Qmin
l

Qmax
l

− Qmin
l

∗ Wl

))

(22)

where Q0 = σ2
du and W0 ∈ [0, 1] is the weight assigned to

the deviation of the total execution duration.

Given the above inputs for the LP problem, the output of
the LP solver will be a set of values for variables yij , which
indicate the selection or exclusion of Web services sij . The
selected Web services compose an optimal execution plan.

5. VALIDATION
In this section, we present the implementation of the QoS-

driven selection of services and some experimental results to
evaluate the proposed approach.

5.1 Implementation
The proposed QoS-driven selection technique is imple-

mented in the SELF-SERV prototype. Detailed description
of SELF-SERV can be found in [24]. In this section, we
briefly overview the prototype architecture and discuss its
extension to support the service selection approach. The
prototype architecture (Figure 4) features an interface, a
service manager and a pool of services. Services communi-
cate via Simple Object Access Protocol (SOAP) messages.

The service manager consists of four modules, namely the
service discovery engine, the service editor, the composite
service orchestrater and the global planner. The service dis-
covery engine facilitates the advertisement and location of
services. It is implemented using the Universal Description,
Discovery and Integration (UDDI), the Web Service Descrip-
tion Language (WSDL), and SOAP. In the implementation,
we make extensive use of the IBM Web Services Toolkit 2.4
(WSTK2.4) [14], which is a showcase package for Web ser-
vices emerging technologies.

The service editor provides facilities for defining new ser-
vices and editing existing ones. A service is edited through
a visual interface, and translated into an XML document
for subsequent analysis and processing by the service or-
chestrater. The orchestrater is responsible for scheduling,
initiating, and monitoring the invocations to the tasks of
a composite service during its execution, and for routing
events and data items between these components.

Finally, global planner is the module that plans the execu-
tion of a composite service using the global planning based
approach. The global planner is implemented as a linear
programming solver based on IBM’s Optimization Solutions
and Library (OSL) [13]. It should be noted that QoS in-
formation is retrieved via pre-defined operations of services
(e.g., getExecutionTime()).

5.2 Experimentation
We conducted experiments using the implemented proto-

type system to evaluate our approach. In the experiments,
a cluster of PCs were used to run the prototype system. All
PCs have the same configuration of Pentium III 933MHz
with 512M RAM. Each PC runs Windows 2000, Java 2 Edi-
tion V1.3.0, and Oracle XML Developer Kit (Oracle XDK,
for XML parsing). They are connected to a LAN through
100Mbits/sec Ethernet cards. This section presents two ex-
perimental results. The first experiment compares the QoS
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Figure 4: Architecture of the prototype.

metrics of the execution of composite services using the
global planning and local selection approaches. The sec-
ond experiment shows the system costs (i.e., computation
cost and bandwidth cost) of these two approaches.

5.2.1 QoS Metrics
The purpose of this experiment is to compare the QoS

values of the global planning approach with that of the lo-
cal selection. The comparison was done by measuring price
and execution time of the composite services using both ap-
proaches. In the experiment, we created several composite
services with different number of basic states. The services
were created by randomly adding states to the composite
service shown in Figure 1. The number of states ranges over
the values 10, 20, 30, 40, 50, 60, 70, and 80. For each com-
posite service, we executed the service 12 times and recorded
the price and execution time. Since we obtained similar ex-
perimental results for all created composite services, only
the result of one composite service (with 20 states) is shown
(see Table 2) for clarity reasons.

From the table, we can see that for every instance of the
composite service, the global planning approach gives bet-
ter QoS than local selection approach. For example, for
the instance 7 of Table 2, the time required to execute the
composite service is: (i) 6451 seconds in the global plan-
ning approach, (ii) 9480 seconds in the local selection ap-
proach. Similarly, the execution price spends for execut-
ing this composite service is: (i) 1231 dollars in the global
planning approach, (ii) 1789 dollars in the local selection
approach. Overall, the average execution time (resp., ex-
ecution price) is: (i) 6627.2 seconds (resp., 1191 dollars)
in the global planning approach, (ii) 9305.9 seconds (resp.,
1753 dollars) in the local selection approach.

5.2.2 System Costs
The aim of this experiment is to investigate the system

costs of executing composite services using the LP-based
global planning and local selection approaches. The exper-
iment was done by measuring: (i) computation cost (i.e.,
time used for selecting a Web service for each task of the
composite service); (ii) bandwidth cost (i.e., network band-
width consumed between global planner and Web services).

Instance Qtime(W ) (second) Qprice(W ) (dollar)
No Global Local Global Local
1 6523.2 8322.4 1023 1642
2 6634.4 9123.9 1117 1728
3 6843.2 9234.5 1123 1825
4 6432.5 9292.2 1132 1824
5 6347.3 8943.3 1121 1723
6 6512.3 9902.8 1185 1888
7 6451.2 9480.4 1231 1789
8 6440.5 9470.5 1275 1787
9 6970.4 9920.4 1324 1625
10 6890.3 9628.3 1235 1759
11 6590.3 9520.3 1267 1852
12 6890.3 8920.5 1250 1599

Average: 6627.2 9305.9 1191 1753

Table 2: The QoS of a composite service with 20
states

In the experiment, we created several composite services
with different number of tasks. The services were created
by randomly adding states to the composite service shown
in Figure 1. The number of tasks ranges over the values 10,
20, 30, 40, 50, 60, 70, and 80. In addition, we created a set
of Web services which were assigned to tasks of composite
services as the candidate Web services. For each task, the
number of candidate Web services we used varies as follows:
5, 10, 20, and 40 services. We executed composite services
with different number of states and candidate Web services.
The computation and bandwidth costs for selecting Web
services were recorded. The results for composite services
with 40 candidate Web services of each state are shown in
figures 5 and 6 respectively. Similar results were obtained
for other cases.

From Figure 5, we can see that for both global and local
selection approaches, the computation cost increases when
the number of tasks and the number of candidate Web ser-
vices increases. As expected, the computation cost of global
planning approach is a little bit higher than that of local
selection approach. For example, a composite service with
40 tasks spends: (i) 1.6 seconds for selecting Web services in
global planning approach, (ii) 0.7 seconds in local selection
approach.
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Similar observations are found regarding bandwidth cost.
More specifically, for both approaches, the linear increase
of the number of tasks and the number of candidate Web
services leads almost a linear increase of bandwidth cost
(see Figure 6). The bandwidth cost in global planning is
slightly higher than that of local selection approach. For
example, a composite service with 40 tasks consumes about
2080 KBytes of network bandwidth for selecting Web ser-
vices in global planning approach, while it consumes 1910
KBytes in local selection approach.

6. RELATED WORK
In this section, we briefly discuss the relationships be-

tween our work and existing Web service standards, Web
service composition approaches, and QoS-driven workflow
management.

Several standardisation proposals aiming at providing in-
frastructure to support Web services composition have re-
cently emerged including SOAP, WSDL, UDDI, and BPEL-
4WS. SOAP defines an XML messaging protocol for com-
munication among services. WSDL is an XML-based lan-
guage for describing web service interfaces. UDDI provides
the directory and a SOAP-based API to publish and dis-
cover services. Finally, BPEL4WS provides a language for

process-based service composition. Other proposed nota-
tions for service description and composition include ebXML
and DAML-S. The above proposals however are complemen-
tary to ours. Indeed, our proposal aims at leveraging the
above standards (e.g., SOAP, UDDI) to provide a quality-
driven and dynamic service composition model.

Web service composition is a very active area of research
and development [1, 7, 8]. Previous efforts in this area such
as CMI [11] and eFlow [6] have investigated dynamic service
selection based on user requirements. In particular, CMI’s
service definition model features the concept of a placeholder
activity to cater for dynamic composition of services. A
placeholder is an abstract activity replaced at runtime with
a concrete activity type. A selection policy is specified to
indicate the activity that should be executed in lieu of the
placeholder. In eFlow, the definition of a service node con-
tains a search recipe represented in a query language. When
a service node is invoked, a search recipe is executed in or-
der to select a reference to a specific service. Both CMI
and eFlow focus on optimizing service selection at single
task level (i.e. local selection). In addition, no QoS model
is explicitly supported. In contrast, our approach focuses
on optimizing service selection at a composite service level,
based on a generic QoS model, and using established linear
programming techniques.

Related work on QoS has been conducted in the area of
workflow. In particular, there are a number of research pro-
posals addressing the specification and verification of tempo-
ral constraints in workflows [9, 3]. Other proposals such as
METEOR [5] and CrossFlow [18, 17] have considered QoS
models with other parameters than time. Specifically, [5]
considers four quality dimensions, namely time, cost, reli-
ability and fidelity. However, it does not consider the dy-
namic composition of services. Instead, it focuses on analyz-
ing, predicting, and monitoring QoS of workflow processes.
Similarly, [18] proposes the use of continuous-time Markov
chain to estimate execution time and cost of a workflow.
Closer to our proposal is the one reported in [17], which ex-
plores the issue of dynamically selecting several alternative
tasks within a workflow, based on quality parameters, in a
similar way as eFlow does using search recipes. As stated
before, this local selection strategy contrasts with the global
planning approaches that we advocate.

Other related research proposals include [20, 21], which fo-
cus on data quality management in cooperative information
systems. They investigate techniques to select best avail-
able data from different service providers based on a set of
data quality dimensions such as accuracy, completeness, and
consistency.

7. CONCLUSION
Dynamic selection of component services is an important

issue in Web services composition. In this paper, we have
presented a general and extensible model to evaluate QoS
of both elementary and composite services. Based on the
QoS model, a global service selection approach that uses
linear programming techniques to compute optimal execu-
tion plans for composite services has been described.

We have conducted experiments to compare the proposed
technique with the local selection approach. The results
show that the proposed approach effectively selects high
quality execution plans (i.e., plans which have higher overall
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QoS). Our ongoing research includes the support for excep-
tion handling during composite service executions. For ex-
ample, after an execution plan has been built and while it is
being executed, an exception may occur (e.g., unavailability
of a component service). We will explore the possibility of
performing dynamic plan revision during composite service
execution, as a means to respond to runtime exceptions.
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