
The VLDB Journal (2003) 12: 333–351 / Digital Object Identifier (DOI) 10.1007/s00778-003-0101-5

Composing Web services on the Semantic Web

Brahim Medjahed1, Athman Bouguettaya1�, Ahmed K. Elmagarmid2��

1 Department of Computer Science, Virginia Tech, 7054 Haycock Road, Falls Church, VA 22043 USA
e-mail: {brahim,athman}@vt.edu

2 Department of Computer Sciences, Purdue University, 250 N. University Street, West Lafayette, IN 47907 USA
e-mail: ake@cs.purdue.edu

Edited by V. Atluri, A. Joshi, and Y. Yesha. Received: December 15, 2002 / Accepted: April 16, 2003
Published online: September 23, 2003 – c© Springer-Verlag 2003

Abstract. Service composition is gaining momentum as the
potential silver bullet for the envisioned Semantic Web. It pur-
ports to take the Web to unexplored efficiencies and provide
a flexible approach for promoting all types of activities in to-
morrow’s Web. Applications expected to heavily take advan-
tage of Web service composition include B2B E-commerce
and E-government. To date, enabling composite services has
largely been an ad hoc, time-consuming, and error-prone pro-
cess involving repetitive low-level programming. In this pa-
per, we propose an ontology-based framework for the auto-
matic composition of Web services. We present a technique to
generate composite services from high-level declarative de-
scriptions. We define formal safeguards for meaningful com-
position through the use of composability rules. These rules
compare the syntactic and semantic features of Web services
to determine whether two services are composable. We pro-
vide an implementation using an E-government application
offering customized services to indigent citizens. Finally, we
present an exhaustive performance experiment to assess the
scalability of our approach.

Keywords: Semantic Web – Web services – Service compo-
sition – Ontology

1 Introduction

The Web was originally created to enable the sharing of in-
formation among scientists. It has since evolved to cater to
governments, businesses, and individuals to make their data
Web accessible. However, a large proportion of today’s data
on the Web are “understandable” only to humans or custom-
developed applications. The Semantic Web purports to address

� This author’s work is supported by the National Science Foun-
dation’s Digital Government Program under grant 9983249-EIA and
by a grant from the Commonwealth Information Security Center
(CISC).
�� This author’s work is supported by the National Science Foun-

dation’s Digital Government Program under grant 9983249-EIA.

this issue [5,6,43]. It is defined as an extension of the “exist-
ing” Web in which information is given a well-defined mean-
ing [43]. The ultimate goal of the Semantic Web is to transform
the Web into a medium through which data can be shared, un-
derstood, and processed by automated tools.

The development of enabling technologies for the Seman-
tic Web is the priority of various research communities. One
key technology is the emerging concept of Web services [5,
7]. Simply put, a Web service is a set of related functionali-
ties that can be programmatically accessed through the Web
[38]. Examples of Web services include stock trading, credit
check, and electronic tax filing. This powerful concept is grad-
ually taking root because of the convergence of business and
government efforts to making the Web the place of choice
for all types of activities. The widespread adoption of XML
standards including WSDL [46], SOAP [44], and UDDI [45]
has spurred intense activity in industry and academia to ad-
dress Web service research issues. One of the most important
issues is the use of the Web as a facilitator of service out-
sourcing [9,38]. This new model would enable companies to
significantly reduce their overhead, deploy business solutions
quickly, and open up new business opportunities. We identify
two types of services: simple and composite. Simple services
are Internet-based applications that do not rely on other Web
services to fulfill consumer requests. An example of a simple
service is a lemon check service that provides history informa-
tion about cars (e.g., whether the car has failed in a previous
emission/inspection test). A composite service is defined as a
conglomeration of outsourced services (simple and/or com-
posite) working in tandem to offer a value-added service. An
example of a composite service is a car broker that outsources
from car dealer, financing, and insurance services to provide
“complete” car sale solutions.

Service composition has recently taken a central stage as
an emerging research area. Several techniques have been pro-
posed in this area [3,4,10,21,29,34]. However, they gener-
ally require dealing with low-level programming details, thus
making the process of composing services demanding for non-
expert users. Composers need to identify the way operations
are interconnected, services invoked, and messages mapped
to one another. For example, assume that the car broker pro-
vides an operation insuranceQuote that requests quotes

334 B. Medjahed et al.: Composing Web services on the Semantic Web

from an insurance service. Assume that insuranceQuote
sends the following information to the insurance service:
firstName,lastName,SSN (social security number), and
dateOfBirth. To enable interactions between both ser-
vices, the composer would have to select the insurance ser-
vice operation to invoke and ensure that this operation does
not require additional information (e.g., customer’s address)
to process the request. Additionally, the composer needs to
check that the types of data expected by the insurance ser-
vice operation are compatible with the types of data sent by
insuranceQuote.

The automatic composition of Web services is a recent
trend to deal with the aforementioned problems [6,23]. This
would include the automatic selection and interoperation of
Web services. Automatic composition is slated to play a ma-
jor role in enabling the envisioned Semantic Web [48]. Com-
posers would specify the what part of the desired composition
(i.e., the actions to be performed), but will not concern them-
selves with the how part (services to be outsourced, how to
interact with those services, etc). The process of composing
Web services (selecting Web services, plugging their opera-
tions, mapping their messages, etc.) must be transparent to
users. Detailed descriptions of composite services would be
automatically generated from composers’ specifications.

The semantics of Web services is crucial to enabling au-
tomatic service composition. It is important to insure that se-
lected services for composition offer the “right” features. Such
features may be syntactic (e.g., number of parameters included
in a message sent or received by a service). They may also be
semantic (e.g., the business functionality offered by a service
operation or the domain of interest of the service). To help
capture Web services’ semantic features, we use the concept
of ontology. An ontology is a shared conceptualization based
on the semantic proximity of terms in a specific domain of in-
terest [23]. Ontologies are increasingly seen as key to enabling
semantics-driven data access and processing [7]. They are ex-
pected to play a central role in the Semantic Web, extending
syntactic service interoperability to semantic interoperability
[16].

In this paper, we propose a framework for the auto-
matic composition of Web services. Combining the emerg-
ing concepts of Web service and ontology is at the core of
our approach. Two case study applications are used: B2B E-
commerce and E-government. The B2B application (car deal-
ership) is used to illustrate the proposed framework for Web
service composition. The E-government application is show-
cased in our implementation. More precisely, this paper’s con-
tribution focuses on the following:

– Composability model for Web services: A major issue
in the automatic composition of Web services is whether
those services are composable [5]. Composability refers
to the process of checking if Web services to be com-
posed can actually interact with each other. We propose a
composability model for comparing syntactic and seman-
tic features of Web services.

– Automatic generation of composite services: We pro-
pose a technique to generate composite service descrip-
tions while preserving the aforementioned composability
rules. The proposed technique uses as input a high-level
specification of the desired composition. This specifica-

tion contains the list of operations to be performed through
composition without referring to any component service.

– Prototype implementation and experiments: We pro-
vide a prototype implementation of our approach using
emerging Web service standards including WSDL, UDDI,
and SOAP. We also conduct a set of experiments to eval-
uate the performance and scalability of our approach.

The remainder of this paper is organized as follows. In
Sect. 2, we present our approach for the semantic description
of Web services. In Sect. 3, we describe the proposed compos-
ability model for Web services. In Sect. 4, we present a novel
technique for the automatic generation of composite service
descriptions. In Sect. 5, we use an E-government application
to showcase the implementation of the proposed approach. In
Sect. 6, we discuss the performance of the proposed approach.
In Sect. 7, we give a brief survey of the related work. Finally,
we provide concluding remarks in Sect. 8.

2 Semantic description of Web services

Composing Web services requires the description of each ser-
vice so that other services can understand its features and learn
how to interact with it. An emerging language for describ-
ing operational features of Web services is WSDL (Web Ser-
vices Description Language) [46]. WSDL is being standard-
ized within the W3C consortium. Major industry leaders are
supporting and participating in WSDL development. Hence
WSDL will likely gain considerable momentum as the lan-
guage for Web service description. However, WSDL provides
little or no support for semantic description of Web services.
It mainly includes constructs that describe Web services from
a syntactic point of view. To cater to Semantic Web-enabled
Web services, we extend WSDL with semantic capabilities.
This would lay the groundwork for the automatic selection
and composition of Web services. We define an ontology for
Web services and specify it using the emerging DAML+OIL
language (Fig. 1). DAML+OIL adopts an object-oriented ap-
proach, describing ontologies in terms of classes, properties,
and axioms (e.g., subsumption relationships between classes
or properties) [16]. DAML+OIL builds on earlier Web ontol-
ogy standards such as RDF and RDF Schema and extends
those languages with richer modeling primitives (e.g., cardi-
nality). Other Web ontology languages such as OWL [42] may
also be used to specify the proposed ontology.

We model the proposed ontology using a directed graph
(Fig. 1). Nodes represent the ontology’s concepts. Unfilled
nodes refer to WSDL concepts (e.g., name, binding, input).
Gray nodes refer to extended features introduced to augment
WSDL descriptions with semantic capabilities. Edges repre-
sent relationships between the ontology’s concepts. They are
labeled with the cardinality of the corresponding relationship.
For example, the edge service → operation states that a ser-
vice has one or more operations. The edge operation → input
states that an operation has at most one input message. A Web
service is defined by instantiating each ontology concept.

We consider three types of participants in our approach:
providers, composers, and consumers. Providers are the
entities (e.g., credit reporting agency) that offer simple
Web services (e.g., Credit History service). The provider

B. Medjahed et al.: Composing Web services on the Semantic Web 335

Fig. 1. Ontology-based description of Web services

is responsible for describing its Web service by assigning
a value to each ontology concept. Composers (e.g., car
broker’s company) are responsible for specifying composite
services. Once generated, composite service descriptions are
advertised in a service registry so that they can be discovered.
Consumers may be end users (e.g., car broker’s customers)
or other Web services that invoke a Web service (simple or
composite).

Example 1. As a running example, we consider the car bro-
kerage application (Fig. 2). Assume that a company provides
a car broker (CB) composite service that offers car sale pack-
ages. The company’s customers submit their requests to CB.
CB outsources from other Web services to handle each re-
quest. Examples of outsourced services include insurance
(IN), car dealer (CD), lemon check (LC), financing (FI), and
credit history (CH). A typical scenario would be of a cus-
tomer using CB service to buy a car having a specific model,
make, and mileage. The customer would start by invoking
CB’s sendMePriceQuote operation to get a price quote
(step 1). To get a quote, CB would transparently interact with
a car dealer via CD’s priceQuote operation (step 1.1). If
interested in a used car, the customer would check its his-
tory report by invoking CB’s askForProblemCheck op-
eration (step 2). This operation is processed by outsourcing
from LC’s problemCheck operation (step 2.1). The cus-
tomer would then apply for financing by invoking the op-
eration applyForFinancing provided by CB (step 3).
Before accepting a financing plan, CB would check the cus-
tomer’s credit by invoking CH’s payingHistory opera-
tion (step 3.1). If the credit is positive, CB would invoke
the financingQuote operation offered by the financ-

ing service (step 3.2). Finally, the customer would request
an insurance quote through CB’s insuranceQuote op-
eration (step 4). CB would transparently invoke the opera-
tion applyforInsurance offered by the insurance ser-
vice (step 4.1). This service would outsource from DH’s
drivingRecord operation before issuing insurance quotes
(step 4.2). ♦

2.1 Mode and messages

The functionalities provided by a Web service are accessible
through operation invocations. We consider four operation
modes: notification, one-way, solicit-response, and request-
response. A notification operation sends an output message
but does not expect to receive any response message. In a
one-way operation, the service receives an input message,
consumes it, but does not produce any output message.
In a solicit-response operation, the service generates an
output message and receives an input message in return.
In a request-response operation, the service receives an
input message, processes it, and sends a correlated output
message. CB::sendMePriceQuote is an example of
solicit-response operation. The input of this operation in-
cludes a VIN (vehicle identification number) and price.
Its output message contains four parameters: make, model,
year, and mileage. FI::paymentCalculator is an
example of a request-response operation. Its input includes a
purchasePrice, downPayment, and loanTerm. The
output message of this operation contains interestRate
and monthlyPayment. CD::specialOffers
is a notification operation whose output includes a
make, model, color, year, mileage, and price.

336 B. Medjahed et al.: Composing Web services on the Semantic Web

Fig. 2. Scenario: car brokerage application

CH::receiveCustomerCredit is a one-way operation
whose input contains a firstName, lastName, SSN,
dateOfBirth, and creditInformation.

An operation has an input and/or output message depend-
ing on its mode. Request-response and solicit-response opera-
tions have both input and output messages. Notification (with
respect to one-way) operations have only output (with respect
to input) messages. Each message contains one or more pa-
rameters (called parts in WSDL). A parameter has a name and
data type. The data type gives the range of values that may be
assigned to the parameter. We use XML Schema’s built-in data
types as the typing system [41]. Built-in types are predefined
in the XML schema specification. They can be either primitive
or derived. Unlike primitive types (e.g.,string,decimal),
derived types are defined in terms of other types. For example,
integer is derived from the decimal primitive type.

While data types are important for the automatic match-
ing of message parameters, they do not capture the seman-
tics of those parameters. For example, the price parame-
ter may be in US dollars, yen, or euro. Additionally, it may
represent a total price or price without taxes. To model such
constraints, we associate a unit and a business role to each
parameter. We use standard measurement units (length, area,
weight, money code, etc.) to assign values to parameter units.
If a parameter does not have a unit (e.g., firstName), its
unit is equal to “none”. The business role gives the semantics
of the corresponding parameter. It takes its value from a pre-
defined taxonomy for business roles. Every parameter would
have a well-defined semantics according to that taxonomy. An
example of such taxonomy is RosettaNet’s business dictio-

nary [25]. It contains a common vocabulary that can be used
to describe business properties. For example, if theprice pa-
rameter has an “extendedPrice” role (defined in RosettaNet),
then it represents a “total price for a product quantity”. For
flexibility purposes, different Web services may adopt differ-
ent taxonomies to specify their parameters’business roles. We
use XML namespacesto prefix business roles with the taxon-
omy in which they are defined:1

Definition 1 – Message. A message M is defined as a tuple
(P,T ,U ,R) where:

– P is a set of parameter names.
– T : P −→ DataTypes is a function that assigns a data type

to each parameter. DataTypes is a set of XML data types.
– U : P −→ Units is a function that gives the unit of mea-

surement used for each parameter. Units is a taxonomy for
measurement units.

– R: P −→ Roles is a function that assigns a business role
to each parameter. Roles is a taxonomy for business roles.
♦

2.2 Purpose and category

Each operation is semantically described through its purpose
and category. The purpose contains three attributes: function,
synonyms, and specialization. The function gives the business

1 XML namespaces provide a method for qualifying element and
attribute names used in XML documents by associating them with
URI references.

B. Medjahed et al.: Composing Web services on the Semantic Web 337

functionality provided by the operation. Examples of functions
include “request for quotation”, “purchase order”, and “deliv-
ery order”. As for parameters’ business roles, a wide range of
taxonomies may be used to define the function attribute. Ex-
amples of such taxonomies include RosettaNet, cXML (com-
merce XML), and EDI (electronic data interchange) [25]. Each
purpose is prefixed with an XML namespace that points to the
corresponding taxonomy. For example, an operation’s pur-
pose may be preceded by a namespace that points to Roset-
taNet’s taxonomy for business transactions. Another opera-
tion’s purpose may be preceded by cXML taxonomy’s names-
pace. The synonyms attribute contains the set of alternative
function names for the operation. For example, “quotation”
is a synonym of “request for quotation”. The specialization
attribute defines a set of characteristics of the current func-
tion. For example, a “request for quotation” may be “for your
information” or “legally binding”. It may also include “desti-
nation charge” or not, be “valid until a specific date”, etc. We
summarize below the notion of operation purpose:

Definition 2 – Purpose. The purpose of an operation opik

is defined by a tuple (Function, Synonyms, Specialization)
where Function is opik’s business functionality defined within
a given taxonomy, Synonyms is a set of alternative function
names, and Specialization is a set of characteristics of opik’s
function. ♦

The category of an operation is defined in the same way as
its purpose. Each category contains three attributes: domain,
synonyms, and specialization. The domain gives the area of in-
terest for the current operation. Examples of domains include
“automobile dealers” and “insurance”. Taxonomies such as
NAICS (North American Industry Classification System) and
UNSPSC (Universal Standard Products and Services Classi-
fication) may be used to define the domain attribute. Synonyms
and Specialization attributes work just as they do in the oper-
ation’s purpose. Synonyms of the domain “automobile deal-
ers” include “car dealers” and “car sellers”. An example of a
specialization attribute associated with “insurance” is {“car”,
“home”}. This means that the corresponding operation pro-
vides both car and home insurance. We define below the notion
of operation category:

Definition 3 – Category. The category of an operation opik is
defined by a tuple (Domain, Synonyms, Specialization) where
Domain is opik’s area of interest defined within a given tax-
onomy, Synonyms is a set of alternative domains, and Special-
ization is a set of characteristics of opik’s domain. ♦

2.3 Operation quality

Several Web services may provide “similar” operations in
terms of their mode, message, purpose, and category. It is
thus important to define qualitative properties that help com-
posers select the “best” Web services [35]. We identify three
qualitative properties for operations: fees, security, and pri-
vacy. Other properties such as time, availability, and latency
may also be added. The fees property indicates the dollar
amount required to execute the operation. Security and pri-
vacy are two important requirements of Web services [33].
Businesses collect, store, process, and share information about
millions of users who have different preferences regarding the

privacy and security of their information. Privacy and secu-
rity are particularly important in E-government applications
where citizens are sensitive about their personal information.
The security property is a boolean that indicates whether the
operation’s messages are securely exchanged (e.g., using en-
cryption techniques) between servers and clients. The privacy
property contains the input and output parameters that should
not be divulged to external entities (i.e., other than the ser-
vice provider). If a parameter does not belong to the privacy
set, then no privacy constraint is specified on that parame-
ter.Assume that privacy = {SSN,Credit Card Number}
whereSSN,Credit Card Number are two input parame-
ters. This property states that those parameters are kept private
by the service provider. Based on the aforementioned proper-
ties, we define below the notion of operation quality:

Definition 4 – Quality. The quality of an operation opik is
defined by a tuple (Feesik, Securityik, Privacyik). Feesik is
the dollar amount needed to execute opik. Securityik is a
boolean that specifies whether opik’s messages are securely
exchanged. Privacyik is the set of input and output parameters
that are not divulged to external entities. ♦

2.4 Defining operations and Web services

Web services are accessible via operations. Each operation is
identified by a name and a text description that summarizes
the operation’s features. It also has a mode, input and/or output
messages, purpose, and category. We present below a defini-
tion of a service operation:

Definition 5 – Operation. An operation opik is defined
by a tuple (Descriptionik, Modeik, Inik, Outik, Purposeik,
Categoryik, Qualityik) where:

– Descriptionik is a text summary about the operation fea-
tures.

– Modeik ∈ {“one-way”, “notification”, “solicit-response”,
“request-response”}.

– Inik and Outik are the input and output messages, respec-
tively. Inik = (∅,T ik) and Outik = (∅,T ik) for notification
and one-way operations, respectively.

– Purposeik describes the business function offered by the
operation (cf. Definition 2).

– Categoryik describes the operation’s domain of interest
(cf. Definition 3)

– Qualityik gives the operation’s qualitative properties (cf.
Definition 4). ♦

Example 2. The operation CB::sendMePriceQuote is
defined by the tuple (Desc, Mode, In, Out, P, C, Q) where:

– Desc = “this operation returns the price quotation for a
given car”; Mode=“solicit-response”.

– In = (P,T ,U ,R), so that P = {VIN, price}; T (VIN) =
“positiveInteger”; T (price) = “float”. U(VIN) = “none”;
U(price) = “US dollar”; R(price) = “extendedPrice”.

– Out = (P, T) so that P = {make, model, year,
mileage}; T (make) = “string”; T (model) = “string”;
T (year) = “gYear”; T (mileage) = “positiveInteger”;
U(mileage) = “mile”.

338 B. Medjahed et al.: Composing Web services on the Semantic Web

– P is the operation purpose defined as follows: P.Function
= “request for quotation”; P.Specialization = {“for your
information”}; and P.Synonyms = {“quotation”}.

– C is the operation category defined as follows: C.Domain
= “automobile dealers”; C.Synonyms = {“car dealers”};
and C.Specialization = {“used cars”}.

– Q is the operation’s quality defined as follows: Q.Fees = 0;
Q.Security = “false”; and Q.Privacy = ∅ (i.e., no sensitive
information is exchanged). ♦

A Web service is identified by a name and a text descrip-
tion that summarizes the service features. Interactions with
the service are performed according to a specific binding [46].
The binding defines message format and protocol details for
service operations and messages. Examples of bindings in-
clude SOAP (Simple Object Access Protocol), HTTP Get/Post
and MIME (Multipurpose Internet Mail Extensions). A ser-
vice may have several bindings associated with it. For each
Web service, we also associate a purpose and category. The
purpose describes the business functionalities offered by the
service operations. Each element in the service purpose refers
to the business functionality offered by a specific operation.
The category describes the service domain of interest. It in-
cludes the categories of all operations provided by the service.
It also contains an element that corresponds to the category of
the service. Indeed, the domain of interest of a composite ser-
vice may be different from the domains of interest of its opera-
tions. For example, the car dealer composite service is related
to the “automobile dealers” industry.Yet it includes operations
related to “insurance” (e.g., insuranceQuote) and “mort-
gage and nonmortgage loan” (e.g., financingQuote) in-
dustries. Below we give a formal definition of a Web service
(composite or simple):

Definition 6 – Web service. A Web service WSi is defined by
a tuple (Descriptioni, OPi, Bindingsi, Purposei, Categoryi)
where:

– Descriptioni is a text summary about the service features.
– OPi is a set of operations provided by WSi.
– Bindingsi is the set of binding protocols supported WSi.
– Purposei = {Purposeik(opik) | opik ∈ OPi} is a set of WS

operations’ purpose.
– Categoryi = {Categoryik(opik) | opik ∈ OPi} ∪

{Categoryi(WSi)} is a set of WSi operations’ categories.
♦

Example 3. We consider the car dealer (CD) service de-
picted in Fig. 2. This service is defined by the tuple (Desc,
OP, B, P, C), where OP = {priceQuote, testDrive,
specialOffers}, and B = {“SOAP”}. P is the service
purpose defined by the set {purpose(priceQuote), pur-
pose(testDrive), purpose(specialOffers)}. C is the
service category defined by the set {category(priceQuote),
category(testDrive), category(specialOffers)} ∪
{category(CD)}. Operation purposes and categories are de-
fined in the same way as in Example 2. The category(CD) ele-
ment is defined as follows: category(CD).domain = “automo-
bile dealers”; category(CD).synonyms = {“car dealers”, “car
sellers”}; and category(CD).specialization = {“used cars”}.
♦

Fig. 3. Composability model for Web services

3 Composability model for Web services

A major issue when defining a composite service is whether
its component services are composable [5]. For example, it
would be difficult to invoke an operation if there were no
mapping between the parameters requested by this operation
(e.g., data types, number of parameters) and those transmitted
by the client service. In this section, we identify two sets of
composability rules to compare syntactic and semantic prop-
erties of Web services (Fig. 3). Syntactic rules include: (1)
mode composability, which compares operation modes, and
(2) binding composability, which compares the binding pro-
tocols of interacting services. Semantic rules include (1) mes-
sage composability, which compares the number of message
parameters, their data types, business roles, and units; (2) op-
eration semantics composability, which compares the seman-
tics of service operations; (3) qualitative composability, which
compares qualitative properties of Web services; and (4) com-
position soundness, which checks whether combining Web
services in a specific way is worthwhile. Composition sound-
ness checks composability at the composition level, unlike
the other rules that deal with composability at the service and
operation levels.

In our model, clients and servers refer to outsourcing (e.g.,
car broker) and outsourced (e.g., insurance) services, respec-
tively. We adopt the approach defined in XLANG [28], WSFL
[18], and BPEL4WS [2] standards, that is,Web services at both
sides (client and server) are defined in WSDL augmented with
semantic capabilities. As in those standards, we assume that
each operation on the server side has at most one matching
operation at the client side and vice versa [28,18,2].

3.1 Mode and binding composability

For Web service interactions to take place, operations
at client and server sides must have “dual” modes [18,
28]. A notification operation at one service must be
connected to a one-way operation at a partner ser-
vice. Similarly, a solicit-response operation maps to a
request-response operation at a partner service. For ex-

B. Medjahed et al.: Composing Web services on the Semantic Web 339

ample, the operation CB::sendMePriceQuote (solicit-
response) maps to CD::priceQuote (request-response),
and CB::receiveSpecialOffers (one-way) maps to
CD::specialOffers (notification). The following rule,
called mode composability, checks whether two operations
have “dual” modes.

Definition 7 – Mode composability. Two operations
opik=(Dik, Mik, Inik, Outik, Pik, Cik, Qik) and opjl=(Djl,
Mjl, Injl, Outjl, Pjl, Cjl, Qjl) are mode composable
if (i) Mik = “notification” and Mjl = “one-way”; or
(ii) Mik = “one-way” and Mjl = “notification”; or
(iii) Mik = “solicit-response” and Mjl = “request-response”;
or (iv) Mik = “request-response” and Mjl = “solicit-response”.
♦

Assume now that two Web services are communicating
through operations that are mode composable. Since these
Web services may support different binding protocols (e.g.,
SOAP, HTTP, or MIME), it is important to insure that they
“understand” each other at the message format and protocol
level. At least one of the protocols expected by a Web service
must be supported by the other. For example, it would be dif-
ficult for a service that expects to receive messages in MIME
protocol to interact with another service that formats its mes-
sages in HTTP. The following rule, called binding compos-
ability, checks that Web services support at least one common
binding protocol.

Definition 8 – Binding composability. Two services WSi =
(Di, Oi, Bi, Pi, Ci) and WSj = (Dj , Oj , Bj , Pj , Cj) are binding
composable if Bi ∩ Bj �= ∅. ♦

3.2 Message composability

Interactions between Web services involve the exchange of
messages. A message consists of one or more parameters,
each having a certain data type. Hence it is important to check
that the data types of the parameters sent by a service are
compatible with the data types of the parameters received by
its partner. We consider two primary data-type-compatibility
methods: direct and indirect compatibility. Two parameters
are directly compatible if they have the same data type. A pa-
rameter p is indirectly compatible with a p′ if the type of p is
derived from the type of p′. For example, a parameter with a
positiveInteger or short type is indirectly compati-
ble with an integer parameter. Note that, contrary to direct
compatibility, indirect compatibility is asymmetric.

We extend the notion of data type compatibility to mes-
sages as follows: A message M is data type compatible with a
message M ′ if every parameter of M is directly or indirectly
compatible with a parameter of M ′. Note that not all param-
eters of M ′ need to be mapped to the parameters of M. The
rationale is that an input message of a service operation may
use only a subset of the parameters sent through an output
message of a “dual” operation. For example, assume that the
car broker provider is not interested in knowing the color of
cars advertised as special offers. In this case, she/he defines
the input message of the CB::receiveSpecialOffers
as composed of the following parameters: “make”, “model”,
“year”, “mileage”, “price”. The input message is compati-

ble with the output message of CD::specialOffers, al-
though the output message contains an additional parameter.

Assume now that a parameter p is compatible (directly or
indirectly) with a parameter p′. For p and p′ to be mapped
together, they must also have compatible semantics. For ex-
ample, a total price should not be mapped with a price before
taxes. Similarly, a price in US dollars should not be mapped to
a price in yen. To this end, we compare the units and business
roles of p and p′. Both parameters should have the same units
and business roles. The message composability rule compares
the input and output messages of every pair of operations. The
idea is to check that each input of an operation is data type
compatible with the output of the other operation. The input’s
unit and business role should be the same as the output’s unit
and business role. This means that the parameters of each in-
put message map to all or some of the parameters contained
in the output message of the other operation:

Definition 9 – Message composability. Two operations opik

= (Dik, Mik, Inik, Outik, Pik, Cik, Qik) and opjl=(Djl, Mjl,
Injl, Outjl, Pjl, Cjl, Qjl) are message composable if:

1. ∀ p ∈ Inik, ∃ p’∈ Injl | p is data type compatible with p′,
and U(p) = U(p′), and R(p) = R(p′).

2. ∀ p ∈ Injl , ∃ p′ ∈ Inik | p is data type compatible with p′,
and U(p) = U(p′), and R(p′) = R(p′). ♦

3.3 Operation semantics composability

This rule ensures that interconnected operations have “com-
patible” purposes and categories. For example, the func-
tion of CB::sendMePriceQuote (i.e., “request for quo-
tation”) is different from the function of CD::testDrive
(i.e.,“reservation”). It would be semantically “incorrect” to
map these operations since they offer different business func-
tions. Similarly, IN::applyForInsurance is “not se-
mantically compatible” with CB::calculatePayment
since these operations have different domains (“insurance”
and “mortgage and nonmortgage loan”, respectively). To de-
fine compatibility between operation categories, let us con-
sider the two operations opik = (Dik, Mik, Inik, Outik, Pik,
Cik, Qik) and opjl = (Djl, Mjl, Injl, Outjl, Pjl, Cjl, Qjl). We
say that Cik is compatible with Cjl if:

1. (Cik.Domain = Cjl.Domain) or (Cik.Domain ∈
Cjl.Synonyms) or (Cjl.Domain ∈ Cik.Synonyms);
or (Cik.Synonyms ∩ Cjl.Synonyms �= ∅); and

2. Cik.Specialization ⊆ Cjl.Specialization

The first condition verifies that the domains of interest are
similar (first disjunct) or synonyms (second, third, and fourth
disjuncts). The second condition ensures that opjl provides all
the characteristics of opik’s category. Compatibility between
purposes is defined in the same way as between categories.
Based on the notion of compatibility between categories and
purposes, we define the operation semantics composability
rule. We say that opik is operation semantics composable with
opjl if the purpose of opik is compatible with the purpose of
opjl and the category of opik is compatible with the category
of opjl:

340 B. Medjahed et al.: Composing Web services on the Semantic Web

Solicit-response
Operation

Request-response
Operation

Notification
Operation

One-way
Operation

WS WS

WS

1

2
WSi

i j

j

Dealer

Information

Mortgage and
non Mortgage
Loan

Dealer

(c)

CSCS

Insurance Insurance

Automobile Automobile

(b)(a)
Fig. 4a–c. Composition soundness

Definition 10 – Operation semantics composability. We say
that opik = (Dik, Mik, Inik, Outik, Pik, Cik, Qik) is opera-
tion semantics composable with opjl = (Djl, Mjl, Injl, Outjl,
Pjl, Cjl, Qjl) if (i) Pik is compatible with Pjl and (ii) Cik is
compatible with Cjl. ♦

3.4 Qualitative composability

Composers generally have preferences regarding the quality
of operations they would like to outsource. Qualitative com-
posability rules check the qualitative properties of interact-
ing operations. Let us consider an operation opik that out-
sources from another operation opjl. The fees composabil-
ity verifies that the dollar amount opik is willing to pay is
at least equal to the amount required by opjl. Security com-
posability guarantees that if opik uses security mechanisms
(e.g., encryption and nonrepudiation) to exchange messages,
then opjl uses them also. Privacy composability compares
opik’s and opjl’s privacy features. The privacy preferences of
opik should be subsumed by the privacy features exposed by
opjl. If opik’s provider does not want a parameter p to be di-
vulged (i.e., p ∈ Qualityik.privacy), then p should also belong
to Qualityjl.privacy. The following definition summarizes the
qualitative composability rule:

Definition 11 – Qualitative composability. We say that opik

= (Dik, Mik, Inik, Outik, Pik, Cik, Qik) is qualitatively com-
posable with opjl = (Djl, Mjl, Injl, Outjl, Pjl, Cjl, Qjl) if:

1. Qik.Fees ≥ Qjl.Fees; and
2. (Qik.Security = true) ⇒ (Qjl.Security = true); and
3. Qik.Privacy ⊆ Qjl.Privacy. ♦

3.5 Composition soundness

Another important aspect to consider in service composition is
whether combining a set of services in a specific way provides
an added value. For example, it would probably be “unusual”
to combine a lemon check service with a hotel service. How-
ever, combining airline and hotel services would provide a
travel preparation composite service. The idea is to define a
rule, called composition soundness, to test whether composite
services are sound. By sound, we mean that the way compo-
nent services are composed provides an added value. To this

end, we introduce the notion of composition templates. These
are graphs built using precedence relationships. As depicted
in Fig. 4a, a Web service WSi precedes another service WSj

if an operation of WSi invokes an operation of WSj . We give
below a formal definition of the precedence relationship:

Definition 12 – Precedence relationship. Let WSi = (Di,
Oi, Bi, Pi, Ci) and WSj = (Dj , Oj , Bj , Pj , Cj) be two
Web services. WSi precedes WSj if ∃ opik ∈ Oi ∃ opjl

∈ Oj | (i) (Mik=“notification” and Mjl=“one-way”); or (ii)
(Mik=“solicit-response” and Mjl=“request-response”). ♦

A composition template is associated with each compos-
ite service and gives the general structure of that service. It is
modeled by a directed graph (V, E) where V is a set of service
category names and E is a set of edges. A special vertex cor-
responds to the composite service and has the special value
“CS”. An edge (vi, vj) ∈ E means that a service of category
name vi precedes a service of category name vj . Figure 4b
gives the template corresponding to the car broker composite
service. Lemon check, credit history, and driving history ser-
vices are represented by the same node in the graph since they
have the same category name (i.e., “information”).

Composition templates are used to compare the values
added by different compositions. For example, consider the
template depicted in Fig. 4c. This template is a subgraph of
the template depicted in Fig. 4b. This means that the second
composite service would provide a subset of the functional-
ities offered by the first one. For example, it does not pro-
vide “financing” operations since it does not outsource from
a “mortgage and nonmortgage loan” service.

To check whether a composition of services is sound, we
define the notion of stored templates. Stored templates are di-
vided into two groups. The first group includes templates that
are predefined by domain experts (e.g., cars, travel, comput-
ers). For example, the travel industry would agree that a travel
preparation composite service combines airline, hotel, and
car rental services. The second group includes templates that
are “learned” by the system. Each time a composite service is
defined, the system stores its template in the repository. For
example, assume that the composer defines a service whose
template is depicted in Fig. 4b. If the template does not already
exist in the repository, the system would store it for future use.
Since stored templates inherently provide added values, they
are used to test the soundness of composition plans.

B. Medjahed et al.: Composing Web services on the Semantic Web 341

Fig. 5. Overview of the proposed approach for service composition

Definition 13 – Composition soundness.A composition of ser-
vices is sound if its template is a subgraph of a stored template.
♦

Stored templates are different from process templates and
reference processes used in [10] and [34], respectively. Indeed,
process templates and reference processes are used as an a pri-
ori “canvas” when defining composite services. In contrast,
stored templates are used a posteriori to check the soundness
of composite services, i.e., once they have been generated.
It is important to note that the composition soundness rule
is not used to determine if Web services are composable. It
is rather used to determine if composing a given set of ser-
vices provides an added value. Even if a composition is not
sound, composers have the flexibility to decide whether they
are willing to consider such composition as “acceptable”.

4 Automatic composition of Web services

Based on our composability model, we propose an approach
for the automatic composition of Web services. This approach
consists of four conceptually separate phases: specification,
matchmaking, selection, and generation (Fig. 5). The speci-
fication phase enables high-level descriptions of the desired
compositions using a language called CSSL (Composite Ser-
vice Specification Language). The matchmaking phase uses
composability rules to generate composition plans that con-
form to composers’ specifications. By composition plan, we
mean the list of component services and their interactions
with each other (plugging operations, mapping messages, etc.)
to form the composite service. The matchmaking algorithm
uses as input the composer’s specification and a repository
(e.g., UDDI [45]) of preexisting service interfaces described
in WSDL (extended with semantic constructs). Composers
select a generated plan (selection phase) based on quality of
composition (QoC) parameters (e.g., ranking, cost). Using the
selected plan, a detailed description of the composite service is
automatically generated (generation phase). This description
includes the list of outsourced services, mappings between the
composite and oustourced services operations and messages,
and the control flow of outsourced operations. The control flow
refers to the execution order of the operations outsourced by
the composite service.

Specification is the phase that requires the composer’s in-
tervention to describe the desired composition. The match-
making phase automatically generates composition plans
based on the composer’s specification. The selection phase
uses QoC parameters (composition and relevance thresholds)
to select the best plan. Those parameters are given by com-
posers based on their profiles defined in the specification pro-
cess. The generation phase automatically provides a descrip-
tion of the generated composite service in a given “target”
language (e.g., WSFL).

4.1 Specification phase

We define an XML language, called CSSL (Composite Ser-
vice Specification Language), for the specification of com-
posite services. CSSL is simple enough to enable high-level
descriptions of composite services. Composers only need to
have a general idea about the service they are interested in of-
fering (e.g., the operations to be outsourced). They are not
required to be aware of the full technical details such as
descriptions of the component services, their characteristics
(e.g., data types), and how they are plugged together. There
are several differences between CSSL and existing service
composition languages ([18,28,2,13,21,10,34]). First, CSSL
adopts the ontology-based model introduced in Sect. 2 to cater
to Semantic Web-enabled Web services. Most of the existing
languages do not consider semantic capabilities of Web ser-
vices. Second, the CSSL specification of a composite service
does not refer to any oustourced service. This is in contrast to
other languages where composers insert references to compo-
nent services in their composite service specifications. Third,
CSSL specifications are used as the entry point for the (semi-
)automatic generation of composite services. Finally, CSSL
defines a WSDL-like language for composite services. It ex-
tendsWSDL language to allow: (1) the description of semantic
features of Web services and (2) specification of the control
flow between composite service operations. This makes the
definition of composite services as simple as the definition of
simple (i.e., noncomposite) services. Additionally, it allows
the support of recursive composition of services. Composite
services can be considered as WSDL services and hence be
used as components for new compositions.

342 B. Medjahed et al.: Composing Web services on the Semantic Web

Table 1. CSSL specification of the car broker composite service

<service name=“car broker”/>
<category domain=“brokerage”>
.......

<binding name=“SOAP”/>
<message name=“offer”>
<parameter name=“price” type=“float” unit=“US dollar” role=“extendedPrice”/>
<parameter name=“make” type=“string”/>
<parameter name=“model” type=“string”/>
<pararmeter name=“year” type=“gYear”/>
<parameter name=“mileage” type=“integer”/>
</message>
.......

<operation name=“receiveSpecialOffers” mode=“one way”/>
<input name=“offer”/>
<category domain=“automobile dealer”>
<synonyms>
<synonym value=“car dealer”/>
</synonyms>
.......

<purpose function=“price-sales catalogue”/>
.......

<quality>
<fees value=0/>
.......

</operation>
<flow source=“getPayingHistory” target=“applyForFinancing”>

We illustrate the main features of CSSL through the ex-
ample depicted in Table 1. For the sake of clarity, we omit
references to XML namespaces. The top element of a CSSL
specification is service which includes the name (car broker)
of the composite service. The service category attributes (i.e.,
domain, synonyms, and specialization) are specified within the
category element. Each operation element allows the speci-
fication of the operation name, description, mode, purpose,
category, and quality. It also contains input and/or output el-
ements. For example, the receiveSpecialOffers op-
eration is one-way (mode attribute) and provides price and
sales information (purpose element) for the automobile indus-
try (category element). The operation’s input message, named
offer, contains five parameters (e.g., price). Each param-
eter has an XML Schema data type (e.g., “float”), unit (e.g.,
“US dollar”), and role (e.g., extendedPrice”). To facilitate the
definition of input and output message, we provide a set of
predefined messages; these are used by composers as a ba-
sis for defining composite service operations. Composers can
define new messages, use predefined messages, or modify pre-
defined messages at their own convenience. For example, they
may decide to remove TOD (terms of delivery or transport)
part from a “request for quotation” predefined message if they
are not interested in offering such information.

CSSL also enables the specification of the control flow of
composite service operations (flow attribute). Operations may
be executed sequentially or in parallel. For example, the spec-
ification of the car broker service shows that this service first
checks the payment history of its customers (source attribute)
before applying for financing on their behalf (target attribute).
Note that CSSL also allows the specification of conditions on

control flows. For example, the car broker service would ap-
ply for financing only if the current customer has a payment
history.

4.2 Matchmaking phase

Once CSSL specifications are provided, the next step is to gen-
erate corresponding composition plans using a matchmaking
algorithm (Table 2). Since the number of generated plans may
be large, composers have the possibility to control the number
of generated plans through the nb requested plans input. The
algorithm uses service interfaces rather than “whole” descrip-
tions of component services for checking compatibility. This
has the important advantage of decreasing the number of ser-
vices to be accessed. Indeed, the same interface may be used by
several existing services with different implementations [46].
For example, the car industry may define an interface for sell-
ing cars. Car dealer services would then reuse this interface
to create their own services.

The general premise of the matchmaking algorithm is to
map each operation opik = (Dik, Mik, Inik, Outik, Pik, Cik,
Qik) of the composite service WSi to one or more operations
opjl = (Djl, Mjl, Injl, Outjl, Pjl, Cjl, Qjl) of existing ser-
vice WSj . The algorithm looks for Web services WSj = (Dj„
Oj , Bj , Pj , Cj) so that Pik and Cik are compatible with at
least one element of Pj and Cj , respectively (lines 8 and 9).
Then the algorithm verifies that interacting services are bind-
ing composable (second condition in line 8). We organize Web
services into communities. Communities provide means for an
ontological organization of the available service space. Each
community clusters Web services based on their category. All

B. Medjahed et al.: Composing Web services on the Semantic Web 343

services that have similar categories belong to the same cate-
gory (purpose) community. A service may belong to different
communities. The use of service communities accelerates the
process of discovering relevant component services. Assume
that the category Cik is not compatible with WSj’s category.
In this case, Cik is not compatible with the services that be-
long to WSj’s community. Hence those Web services would
be pruned from the service space.

For every pair of operations (opik,opjl), it also checks
mode composability (line 10), operation semantics compos-
ability (line 11), and message composability (line 12). Each it-
eration of the while statement generates a composition plan.
The matched set contains all component operations that have
already been “plugged into” a composite service operation
(lines 10 and 15). The use of this set prevents the generation of
composition plans that can be inferred from previously gener-
ated plans. For example, assume that the following two plans,
plan1 = {(opi1,opj1), (opi2,opj2)} and plan2 = {(opi1,opj3),
(opi2,opj4)}, have been generated. Since plan3 = {(opi1,opj1),
(opi2,opj4)} and plan4 = {(opi1,opj3), (opi2,opj2)} can be
inferred from plan1 and plan2, there is no need to generate
them again. The statements in lines 26–28 check composition
soundness based on QoC parameters. They use two functions,
complete() and relevant(). Details about the selection process
including QoC, completeness, and relevance are given in the
next section.

The matchmaking algorithm uses the following func-
tions to check composability: purpose compatible(),
category compatible(), quality composable(), mes-
sage composable(), and sound(). The functions pur-
pose compatible() and category compatible() return true
or false depending on whether a composite service operation
has a purpose or category compatible with the purpose or cate-
gory of a component service operation. quality composable()
returns true if a composite service operation is qualitatively
composable with a component service operation. The two
other functions are given in Table 3. The message compatible()
function returns true or false depending on whether a message
Mi is message compatible with Mj . To allow a one-to-one
mapping between Mi’s and Mj’s parameters, we use the
matched set (line 10). This set contains Mj’s parameters that
have already been mapped to Mi’s. The sound() function
checks the soundness of the generated plan. Once a template
has been computed for the generated plan (lines 2–5), it
is compared with stored templates (lines 6–14). Note that,
as stated in Sect. 3.5, composition plans are returned to
composers even if they are not sound.

Example 4. To illustrate the matchmaking algorithm and with-
out loss of generality, we give below the execution trace of
the receiveSpecialOffers operation of the car broker
composite service:

– Step 1 (lines 1–5). The set variable plan contains the “plug-
ins” for the currently generated plan. It is reinitialized to
the empty set for each iteration of the while statement.

– Step 2 (lines 6–9). Look for component services
(e.g., car dealer) supporting SOAP protocol so that
receiveSpecialOffers’ purpose and category are
compatible with the service purpose and category.

– Step 3 (line 10). Determine operations of the
car dealer service that are mode compos-

able with receiveSpecialOffers. Since
receiveSpecialOffers is a one-way operation,
only the specialOffers operation is returned. The
algorithm also checks that the two operations have not
already been “plugged” together.

– Step 4 (line 11). The receiveSpecialOffers
and specialOffers operations have similar func-
tions (“price-sales catalogue”) and domains (“automobile
dealer”). Thus they are operation semantics composable.
We assume that both operations are qualitatively compos-
able.

– Step 5 (line 12). The operations are tested for message
composability. The input ofreceiveSpecialOffers
(i.e., offer) is compared with the output of
specialOffers. Except for the parameter
“color”, which does not belong to offer, all of
specialOffers output’s parameters are mapped
to offer’s. Hence the two operations are message
composable.

– Step 6 (lines 13–22). Since both operations are syntacti-
cally and semantically composable, a “plug-in” between
the operations is inserted in plan. The information is also
kept in the set matched. Steps 1 to 6 are iteratively per-
formed for the remaining composite service operations.

– Step 7 (lines 22–29). Once all operations of the car bro-
ker service have been “plugged”, the algorithm checks
whether the generated plan is sound. Other plans are then
generated depending on the number of requested plans. ♦

4.3 Selection phase

At the end of the matchmaking phase, several composition
plans may have been generated. To facilitate the selection of
relevant plans, we define three quality of composition (QoC)
parameters: ranking, relevance, and completeness. Other QoC
parameters based on cost and time may also be defined. We
present below definitions of ranking, relevance, and complete-
ness:

– Composition ranking: The ranking of a composition gives
an approximation of its “importance”. For each plan, we
determine its composition template CT. Assume that CT
is a subgraph of a stored template STi. We use a function
R (R for reference) defined on the set of stored templates;
R(STi) gives the number of times that services with tem-
plates that are subgraphs of STi have been created. The
ranking of CT with respect to STi is the proportion of ref-
erences to ST. It is defined as follows (n is the number of
stored templates):

Ranking(CT, STi) =
R(STi)∑n

k=1 R(ST k)
– Composition relevance: This parameter, denoted by CR,

gives an approximation of a composition soundness. It
compares edges of a composition template, CT, with the
edges of a stored template STi. CR(CT,STi) is the ratio of
CT’s edges that occur in STi. It is defined as follows (E
and Ei are the edges of CT and STi, respectively):

CR(CT, STi) =
| E ∩ Ei |

| E |

344 B. Medjahed et al.: Composing Web services on the Semantic Web

Table 2. Matchmaking algorithm

(01) Input:WSi, repository, nb requested plans {
(02) nb generated plans = 0
(03) matched = ∅
(04) while nb generated plans ≤ nb requested plans do
(05) { plan = ∅
(06) for each operation opik ∈ Oi do
(07) { found = false
(08) for each serviceWSj from repository | category compatible(Cik,Cj)
(09) and purpose compatible(Pik,Pj) and (Bi ∩ Bj �= ∅) do
(10) { for each operation opjl ∈ Oj | (modeik and modejl are dual) and (opjl �∈ matched)
(11) if purpose compatible(Pik,Pjl) and category compatible(Cik,Cjl) and quality composable(opik,opjl)
(12) and message composable(inik,outjl) and message composable(injl,outik)
(13) then { found = true
(14) plan = plan ∪ {(opik,opjl)}
(15) matched = matched ∪ {opjl}
(16) break }
(17) if found then break
(18) } /* for in line (08) */
(19) if ¬found
(20) then { output(“no matchmaking for”,opik)
(21) break }
(22) } /* for in line (06) */
(23) if ¬found then break
(24) else if sound(plan)
(25) then output(plan,ST) /* ST is a Stored Template */
(26) else if relevant(plan,τrelevance) and complete(plan,τ completness)
(27) then output(plan,ST,τrelevance,τ completness) /* Test for QoC parameters */
(28) else output(plan,“not sound”,τrelevance,τ completness)
(29) nb generated plans = nb generated plans + 1
(30) } /* while in line (04) */ }

Table 3. Message composability and soundness checking functions

(01) function message composable(Mi,Mj):boolean { function sound(plan):boolean {
(02) matched = ∅ for each element (opik,WSj ,opjl) ∈ plan do
(03) for each param pik ∈ Pi do if modeik ∈ {“notification”,“solicit-response”}
(04) { found = false then template = template ∪ (“CS”,Cj)
(05) for each param pjl ∈ Pj | pjl �∈ matched do else template = template ∪ (Cj ,“CS”)
(06) if (T (pik) = T (pjl) or for each stored template ST do
(07) T (pjl) is derived from T (pik)) and for each pair (vp,vq) ∈ template do
(08) (U(pik) = U (pjl)) and (R(pik) = R(pjl)) { found = false
(09) then { found = true for each pair (vr ,vs) ∈ ST do
(10) matched = matched ∪ {pjl} if (vp,vq) = (vr ,vs)
(11) break } then { found = true
(12) if ¬found then return false break }
(13) } /* for in line (03) * if ¬ found then break
(14) return true } /* for in line (07) */
(15) } if found then return true
(16) else return false
(17) }

– Composition completeness: This parameter, denoted by
CC, gives the proportion of composite service operations
that are composable with component service operations.
CC allows the generation of plans whose composite ser-
vices may not be “fully” composable with component ser-
vices. The value of CC is set by service composers and de-
pends on their level of expertise. Indeed, if the value CC
is relatively low (e.g., 25%), the algorithm might return

plans in which 75% of the composite service operations
are not composable with component service operations.
In this case, composers may need to change their speci-
fication (e.g., data types) so that the desired service can
deal with other services’ features. The following formula
defines the CC parameter for a composite service WSi:

CC(WSi) =
| Composable(Oi) |

| Oi |

B. Medjahed et al.: Composing Web services on the Semantic Web 345

Table 4. WSFL description generated for the car broker service

Flow Model Global Model

<serviceProvider name=“myCarDealer”> <plugLink>
<locator type=“static” service=“carDealer.com”> <source serviceProvider=“carBroker”
</serviceProvider> portType=“Port 1”
.....

operation=“receiveSpecialOffers”/>
<activity name=“Activity 1”> <target serviceProvider=“carDealer”
<performedBy serviceProvider=“myCarDealer”> portType=“portCarDealer”
<implement> operation=“specialOffers”>
<export> </plugLink>
<target portType=“Port 1” <plugLink>

operation=“receiveSpecialOffers”/> <source serviceProvider=“carBroker”
</export> portType=“Port 1”
</implement> operation=“insuranceQuote”>
</activity> <target serviceProvider=“insurance”
<activity name=“Activity 2”> portType=“portInsurance”
.....

operation=“applyForInsurance”>
<target portType=“Port 1” </plugLink>

operation=“askForPayingHistory”/> <plugLink>
.....

<source serviceProvider=“carBroker”
<activity name=“Activity 3”> portType=“Port 1”
.....

operation=“applyForFinancing”>
<target portType=“Port 1” <target serviceProvider=“financing”

operation=“applyForFinancing”/> portType=“portFinancing”
.....

operation=“financingQuote”>
<controlLink source=“Activity 2” </plugLink>

target=“Activity 3”>

where Composable(Oi) = {opik ∈ Oi | ∃ WSj ∃ opjl ∈ Oj

so that opik is syntactically and semantically composable
with opjl}.

Composition plans are sorted and returned according to
their ranking. Plans with the highest ranking are returned first.
This assumes that a ranking coefficient is maintained for each
stored template. Composers define thresholds τ relevance and
τ completness corresponding to relevance and completeness pa-
rameters, respectively. Plans are returned to composers if their
relevance and completeness are greater than their respective
thresholds. QoC parameters may be specified within CSSL
specifications so that the “best” plans are automatically se-
lected and returned to users.

4.4 Generation phase

The last phase in our approach aims at generating a detailed
description of a composite service. This description includes
the list of outsourced services, mappings between compos-
ite service and component service operations, mappings be-
tween messages and parameters, and flow of control and
data between component services. Two important features of
this phase are customization and extensibility. Customization
refers to the ability to generate composite service descriptions
in different languages such as WSFL (Web Services Flow Lan-
guage) [18], XLANG [28], and BPEL4WS (Business Process
Execution Language forWeb Services) [2]. Composers specify
the “target” language in their CSSL specification. Extensibil-
ity refers to the potential to include additional composition
languages [10,34]. Indeed the structure of composition plans

is abstract enough to be used at an intermediate level between
CSSL specifications and most existing Web service composi-
tion languages. Below we illustrate the generation of a WSFL
description from a composition plan.

WSFL defines two complementary descriptions for a com-
posite service: flow model and global model. The flow model
specifies the execution sequence between component services.
The global model specifies how component services interact.
Table 4 depicts parts of the flow and global models generated
for the car broker service. The flow model contains a set of
activities. Each activity represents a single step of the over-
all business goal. Activities are bound to services through the
locator element. Static binding means that the service is di-
rectly specified in the locator. The information assigned to
the name (i.e., myCarDealer) and service (carDealer.com) at-
tributes is obtained during the matchmaking phase (Table 2,
line 08). We use the UDDI inquiry interface (i.e., find() op-
eration) to retrieve such information from the businessEntity
of each Web service stored in the UDDI registry. Each activ-
ity in the flow model is implemented by an operation spec-
ified in the implement element. The nested export element
means that this operation is outsourced. For example, the oper-
ation receiveSpecialOffers (corresponding to Activ-
ity 1) is outsourced from the myCarDealer service. The name
of this operation is provided by the composer in the CSSL
specification. Activities are connected together through con-
trol links, which specify the order in which activities are exe-
cuted. Each control link is generated from a flow element pro-
vided by composers in their CSSL specifications. For example,
Activity 2 (corresponding to the askForPayingHistory

346 B. Medjahed et al.: Composing Web services on the Semantic Web

Fig. 6. WebDG architecture

operation) is executed before Activity 3 (corresponding to
applyForFinancing).

The global model includes a set of plug link elements. A
plug link connects each operation of the composite service to
an operation of a component service. It indicates that an in-
teraction has to take place between these two operations in
order to completely implement an activity. Each plug link ele-
ment corresponds to a mapping in a composition plan (Table 2,
line 14). For example, the operation insuranceQuote is
mapped to the operation applyForInsurance offered by
the insurance service. The port type and operation names of
the outsourced services are obtained from the WSDL descrip-
tion of those services.

5 Case study: E-government Web services

A typical and emerging area that involves access to Web ser-
vices is E-government. As an application domain of our re-
search in Web services, we partnered with the Family and So-
cial Services Administration (FSSA) [26]. The FSSA serves
families facing issues associated with low income, mental ill-
ness, addiction, mental retardation, disability, aging, and chil-
dren at risk for healthy development. The aim is to help the
needy citizens in collecting benefits to which they are entitled.
However, the current process within FSSA is time-consuming
and frustrating to both citizens and case officers. To facili-
tate the use of FSSA welfare applications and hence expedi-
tiously satisfy citizens’ needs, we organize these applications
into Web services. The implementation of our approach is

showcased using the FSSA case study. The resulting system,
called WebDG, provides customized services to indigent citi-
zens. In this section, we first describeWebDG implementation.
We then illustrate our approach by using a scenario from social
and welfare services.

5.1 WebDG implementation

The WebDG system is implemented across a network of So-
laris workstations. Citizens and case officers access WebDG
via a graphical user interface (GUI) implemented using
HTML/Servlet (Fig. 6). WebDG currently includes seven (7)
FSSA applications implemented in Java (JDK 1.3). These
applications are wrapped by WSDL descriptions. Examples
of services implemented in WebDG include WIC (a feder-
ally funded food program for women, infant, and children),
Medicaid (a healthcare program for low income citizens),
and Teen Outreach Pregnancy (a program that offers
childbirth and postpartum educational support to pregnant
teens). Each service accesses a database (Oracle or Informix)
in the backend to retrieve and/or update citizens and govern-
ment information.

We use the Axis Java2WSDL utility in IBM’s Web Ser-
vices Toolkit to automatically generate WSDL descriptions
from Java class files. WSDL service descriptions are published
into a UDDI registry. We adopt Systinet’s WASP UDDI Stan-
dard 3.1 as our UDDI toolkit. A Cloudscape (4.0) database
is used as a UDDI registry. WebDG services are deployed
using Apache SOAP (2.2). Apache SOAP provides not only

B. Medjahed et al.: Composing Web services on the Semantic Web 347

Fig. 7. Stored template corre-
sponding to the pregnancy benefits
service

server-side infrastructure for deploying and managing service
but also client-side API for invoking those services. Each ser-
vice has a deployment descriptor. The descriptor includes the
unique identifier of the Java class to be invoked, session scope
of the class, and operations in the class available for the clients.
Each service is deployed using the service management client
by providing its descriptor and the URL of the Apache SOAP
servlet rpcrouter.

The WebDG manager is at the core of the WebDG system.
The Service Locator (SL) allows the discovery of WSDL de-
scriptions by accessing the UDDI registry. The SL implements
UDDI Inquiry Client using WASP UDDI API. Once a service
is discovered, its operations are invoked through SOAP Bind-
ing Stub, which is implemented using Apache SOAP API.
CSSL specifications are handled by the Composite Service
Manager (CSM). The CSM uses JAXP (Java API for XML
Processing) to parse those specifications and returns them to
the matchmaker. The matchmaker sends the category of each
composite service operation to the SL. Only services with
a category compatible with the operation’s category are re-
trieved. The SL parses the WSDL description of each located
service and returns it back to the matchmaker. After checking
composability, the matchmaker generates composition plans
and sends them to the QoC-based Optimizer. The optimizer
selects plans based on QoC parameters. The matchmaker for-
wards the selected plans to the Soundness Controller (SC).

The SC checks the soundness of each generated plan by ac-
cessing a stored templates (ST) repository (Oracle database).
Stored templates are kept in a relational table containing four
attributes: template number (unique), source category, target
category, and ranking. The SC returns composition plans with
their compatible stored templates (if any) to the CSM. The
CSM finally forwards the results to the composer, who selects
the appropriate plan (e.g., plan with the highest ranking). If
the selected plan is not sound, the CSM module determines

its template and stores it in the ST repository. This new tem-
plate can be used to test the soundness of future composition
plans. Once a composition plan is selected, the CSM mod-
ule forwards it to the appropriate generator. For example, if
the composer has specified WSFL as a “target” language, the
composition plan is sent to the WSFL generator. In this case,
a WSFL description is generated as described in Sect. 4.4 and
returned to the composer via the CSM module.

5.2 Scenario: collecting social and welfare benefits

To illustrate the main features of WebDG, we present the
following scenario. Let us consider the case of a pregnant
teen Mary visiting case officer John to collect social bene-
fits to which she is entitled. Mary would like to apply for a
government-funded health insurance program. She also needs
to consult a nutritionist to maintain an appropriate diet during
her pregnancy. As Mary will not be able to take care of the
future newborn, she is interested in finding a foster family.
The fulfillment of Mary’s needs requires accessing different
services scattered in and outside the local agency. It would be
more efficient if all Mary’s needs are addressed together and
specified only once. John would, as result, seamlessly access
all related services through one single access point. He would
specify Mary’s needs through one single composite service
called Pregnancy Benefits (PB).

Case Officer John would select the “Advanced Programs”
node (Fig. 7) to specify PB composite service. He would give
the list of operations to be outsourced by PB. Examples of such
operations include Find Available Nutritionist,
Find PCP Providers (which looks for primary care
providers), and Find Pregnancy Mentors. After check-
ing composability rules, WebDG would return composition
plans that conform to PB specifications. Each plan has an ID

348 B. Medjahed et al.: Composing Web services on the Semantic Web

Table 5. Simulation settings

Variable Range

Service interfaces 3000–30000
Composite services 100–1000
Operations per service 10–50
Parameters per message 50–100
Requested plans 50–100
Stored templates 100–500
Vertices per stored template 10–20

(number), a graphical description, and a ranking. The ranking
gives an approximation about the relevance of the correspond-
ing plan (Fig. 7). John would click on the plan’s ID to display
the list of outsourced services. In our scenario, WIC, Medi-
caid, and TOP services would be outsourced by PB.

6 Performance evaluation

The purpose of our experiment is to assess the scalability of
our approach, i.e., the possibility of generating plans for a
large number of service interfaces. We mainly focus on the
matchmaking phase since it is the one that may require access
to a large number of Web services to check composability
rules. The aim is to evaluate the effectiveness and speed of the
matchmaking algorithm. We also assess the role of the selec-
tion phase (QoC parameters) in reducing the number of gener-
ated plans. We ran our experiments on a Sun Enterprise Ultra
10 server with a 440-MHz UltraSPARC-IIi processor, 1-GB
of RAM, and under a Solaris operating system. Although the
algorithm is implemented in a WebDG prototype, we built a
simulation testbed to run the experiments. This allows the gen-
eration of a large number of service interfaces that would be
difficult to achieve in the current WebDG version. The testbed
generates XML documents that store CSSL composite ser-
vice specifications and WSDL service interfaces. CSSL and
WSDL documents are manipulated using JDOM, a Java-based
document object model for XML documents. JDOM provides
means to represent XML documents for easy manipulation.

The testbed allows the generation of WSDL descriptions
at an arrival rate that follows a statistical model (e.g., Pois-
son, uniform) specified by the user. The arrival rate represents
the duration (in seconds) between the generation of two con-
secutive services. This parameter is particularly important for
simulating the dynamics of Web service environments. The
testbed also allows users to give the range and statistical mod-
els for several quantitative attributes such as the number of
operations per service, messages, and parts per message. In
our experiments, we randomly generate (using uniform distri-
bution) service interfaces, composite services, and stored tem-
plates. We varied different parameters including the number of
service interfaces, composite services, operation per services,
parameters per message, requested plans, stored templates,
and nodes per templates (Table 5). We first set the number
of services (from 3,000 to 30,000 with an iteration range of
3,000). For each service, we then generate a category (1 out
of 50), binding, and number of operations. We also generate
the mode, purpose (1 out of 100), category, and quality of
each operation. Finally, for each input and output message,

0

500

1000

1500

2000

2500

3000

3500

0 5000 10000 15000 20000 25000 30000

P
la

n
G

en
er

at
io

n
T

im
e

(m
ill

is
ec

on
ds

)

Number of Service Interfaces

Mode, operation semantics, and binding
Message Composability
Composition Soundness

Fig. 8. Plan generation time

we randomly generate the number of parameters, data type,
unit, and business role of each parameter (1 out of 37 built-in
data types).

We first evaluate the time for generating composition plans
(Fig. 8). We consider three execution times. The first execution
time includes mode, binding, and operation semantics com-
posability. The second execution time corresponds to message
composability. The last execution time corresponds to com-
position soundness. The results show that most of the time
is spent on checking message composability (Fig. 8). Indeed,
the second time requires comparing the parameters of each
composite service operation with the parameters of each op-
eration of a component service. In contrast, the first time in-
cludes comparing operation modes, categories, purposes, and
binding protocols that are less CPU-intensive. Composition
soundness is the property that consumes the least generation
time. Indeed, syntactic and operation semantics composabil-
ity compare composite services with all service interfaces in
the business registry. In contrast, composition soundness com-
pares generated plans with stored templates whose number is
much smaller than the number of service interfaces (100–500
templates vs. 3,000–30,000 interfaces). This also explains the
relative stability of the composition soundness time. Note that
the plan generation time shown in Fig. 8 does not consider
access time to UDDI business registry and stored templates
repository.

We also assess the impact of QoC parameters on the num-
ber of generated plans (Fig. 9). We particularly consider the
composition completeness (CC) ratio. We conducted experi-
ments for CC = 33% and CC = 66%. The results show that the
number of generated plans is higher for CC = 33% (Fig. 9).
Indeed, for CC = 33%, plans are generated if at least 33% of
composer operations are composable with component opera-
tions. However, for CC = 66%, plans are generated if at least
66% of composer operations are composable with component
operations. The results also show that the number of generated
plans for CC = 33% is, on average, greater than 50 (i.e., min-
imum number of requested plans). This means that plans are
generated for almost every specified composite service. How-
ever, for CC = 66%, the number of generated plans is at most
equal to 30 (i.e., less than the minimum number of requested
plans). This means that for some composite services, no plan

B. Medjahed et al.: Composing Web services on the Semantic Web 349

10

20

30

40

50

60

70

0 5000 10000 15000 20000 25000 30000

N
um

be
r

of
 G

en
er

at
ed

 P
la

ns

Number of Service Interfaces

composition completeness = 33%
composition completeness = 66%

Fig. 9. Number of generated plans

has been generated. This confirms our expectation about the
impact of CC on the number of generated plans; a relatively
low value of CC generates more plans, each plan containing
a small number of composable operations. In contrast, a high
value of this ratio generates a smaller number of plans, each
plan having more composable operations.

7 Related work

Web services are slated to be a very active research area. We
overview major techniques, standards, and platforms for Web
services that are most closely related to our research.

7.1 Automatic service composition

Automatic service composition has been the focus of several
recent projects. DAML-S (the DARPA Agent Markup Lan-
guage) [23] defines a semantic markup for Web services based
on the use of ontologies. DAML-S introduces the notions of
prerequisites (called Preconditions) and consequences (called
Effects) of Web services to cater to automatic composition. It
is not clear, however, how composite services are generated
using DAML-S specifications. DAML-S does not define the
notion of service composability. Additionally, it does not con-
sider semantic properties such as purpose, parameter unit, and
business role. An architecture for service composition in per-
vasive computing environments is presented in [12]. Service
descriptions are provided in DAML-S. They also include plat-
form specific information such as processor type, speed, and
memory availability. The composition manager uses a seman-
tic service discovery mechanism to select component services.
This mechanism is based on DReggie, a Jini-based semantic
discovery framework [11]. The matching mechanism focuses
mostly on comparing service attributes. In contrast, the match-
making algorithm proposed in this paper is based on a set of
composability rules that compare the structure of messages,
their business function, the semantics and data types of their
parameters, qualitative properties, and the soundness of com-
posite services.

WSMF (Web Service Modeling Framework) combines the
concepts of Web services and ontologies to cater to Seman-
tic Web-enabled services [7]. WSMF is still in its early stage.

The techniques for the semantic description and composition
of Web services are still ongoing. Furthermore, WSMF does
not address the issue of service composability. An approach
to ontology-based composition of Web services is proposed in
[8]. It uses DAML-S for describing Web services. Semantic
matching of Web service capabilities is limited to comparing
QoS (quality of service) dimensions and input/output parame-
ters of Web services. In our approach, we compare additional
features such as category, purpose, parameters’ data types,
units, and business roles. Additionally, [8] focuses mostly on
the automatic selection of Web services. Only a few details
are given about the way composite services are generated.
Ninja [14] introduces a technique called automatic path cre-
ation (APC) to cater to automatic service composition. When
an APC receives requests for composite service execution,
the APC creates a path that includes a sequence of operators
that perform computation on data and connectors that pro-
vide data transport between operators. Ninja focuses mostly
on fault tolerance by replicating services on multiple worksta-
tions. It uses a limited operator functional classification (four
categories) to automate the selection of operators. It is also
mainly based on input-output matching of services. SWORD
[32] uses a rule-base expert system to automatically determine
whether a desired composite service can be achieved using
existing services. SWORD does not seem to focus on service
composability and semantic description of Web services.

Other techniques for composing Web services include
WISE [21], eFlow [10], and CMI [34]. These techniques gen-
erally assume that composers are responsible of checking
service composability. WISE [21] defines the notion of vir-
tual business process to help users compose services. Com-
posite service specifications, however, require dealing with
such technical details as interservice communication and event
management. eFlow [10] uses the notion of process template
to model composite services. Composers need to browse the
process library to search for process templates of interest.
Furthermore, they need to handle interactions between com-
ponent services when defining composite services. CMI [34]
introduces the notion of polymorphic process model for de-
scribing collaborations among activities. This model requires
handling details about activities and their interactions (e.g.,
defining activity state machines, interfaces, and implementa-
tions).

7.2 Service matching and composability

Techniques have recently been proposed to deal with service
matching and composability. Paolucci et al. [30] proposes a
solution-based on DAML-S for semantic matching between
service advertisements and capabilities. The matching algo-
rithm defined in [30] is limited to comparing inputs and out-
puts of the advertisement with inputs and outputs of the re-
quest. LARKS defines five techniques for service matchmak-
ing: context matching, profile comparison, similarity match-
ing, signature matching, and constraint matching [37]. Those
techniques mostly compare service text descriptions, signa-
tures (inputs and outputs), and logical constraints about in-
puts and outputs. The ATLAS matchmaker defines two meth-
ods for comparing service capabilities described in DAML-S
[31]. The first method compares functional attributes to check

350 B. Medjahed et al.: Composing Web services on the Semantic Web

whether advertisements support the required type of service
or deliver sufficient quality of service. The second compares
the functional capabilities of Web services in terms of inputs
and outputs. No evaluation study is presented to determine
the effectiveness and speed of the ATLAS matchmaker. Li
and Horrocks [22] describe the design of a service match-
maker that uses DAML-S-based ontology. It uses techniques
from knowledge representation to match service capabilities.
In particular, it defines a description logic (DL) reasoner; ad-
vertisements and requests are represented in DL notations.
Baina et al. [1] present a composability property that com-
pares service categories. However, features such as operation
purposes, modes, message data types, and soundness are not
considered. No algorithm is proposed to check composabil-
ity or to automatically generate composite services. In [24],
an algorithm for checking Composability is presented. Unlike
our approach, this algorithm is limited to checking syntactic
features (input and output events of component services). In
addition, it only checks composability on an a posteriori ba-
sis to replace a component service by another. Composers are
still responsible for providing detailed descriptions of their
services. Heuvel et al. [15] define composability properties to
compare service categories and messages. This method not
seem to consider properties such as mode, purpose, binding
protocol, and composition soundness. More importantly, it
does not seem to provide algorithms for the automatic gen-
eration of composite services.

7.3 Standards and commercial platforms

Standardization efforts are ongoing to enable service composi-
tion [39]. These include XLANG [28],WSFL [18], BPEL4WS
[2], and XL [13]. XLANG [28] and WSFL [18] extend WSDL
language to provide constructs for combining Web services
to build multiparty business processes. BPEL4WS (Business
Process Execution Language for Web Services) [2] combines
the features of both WSFL (support for graph oriented pro-
cesses) and XLANG (structural constructs for processes) for
composing Web services. However, XLANG, WSFL, and
BPEL4WS assume that service composers are responsible for
checking service and operation compatibility. Semantic prop-
erties of Web services are not considered. XL (XML Lan-
guage) [13] aims at providing an XML language for service
specification and composition. It uses a mix of imperative,
parallel, and workflow constructs. XL is still in its initial de-
sign stage. In its current form, it does not explicitly define
primitives for composition.

Commercial platforms are increasingly targeting Web ser-
vices [40]. Microsoft’s .NET [27] enables service composition
through Biztalk Orchestration tools that use XLANG. .NET
does not check service composability. IBM’s WebSphere [19]
supports key Web service standards. To the best of our knowl-
edge, it provides little or no support for service composi-
tion. HP’s Netaction Internet Operating Environment (IOE)
[17] is an integrated platform for building Web services. Like
.NET, Netaction does not support service composability. HP
announced in July 2002 it was discontinuing its development
and support of NetAction. The WebMethods Enterprise Server
[47] defines Flow, a process-oriented language used to visu-
ally compose services. This language is very simple and is

fairly limited to a small number of services. IONA’s Orbix
E2A [20] includes the Orbix E2A Web Services Integration
Platform. It provides a set of tools for business integration
using Web service standards. Developers create Web services
from existing applications including EJBs and CORBA ob-
jects. It is unclear how Web services would be composed. Sun
ONE (Sun Open Net Environment) [36] is a platform for Web
services developed by Sun. Sun began its Web services efforts
only recently, and few details have so far emerged.

8 Conclusion

In this paper, we propose a rigorous framework for compos-
ing Web services. We present an algorithm to automatically
generate composite services from high-level specifications of
the desired composition. We define a model for checking ser-
vice composability.This model provides a set of composability
rules that compare syntactic and semantic features of Web ser-
vices.We provide an implementation of the proposed approach
in theWebDG prototype. Finally, we conducted experiments to
illustrate the scalability of our approach. Future work includes
extending our composability model to include additional se-
mantic features such as temporal and spatial availability of
Web services and operation preconditions and effects. Other
extensions would be to consider XML Schema’s user-defined
data types and define data type compatibility among message
parameters in terms of XML Schema inference. Finally, we
are investigating the definition of an “optimization” model for
composite services based on our quality of composition (QoC)
parameters.

Acknowledgements. The authors would like to thank the anonymous
reviewers for their valuable comments on earlier drafts of this paper.

References

1. Baina K, Benali K, Godart C (2001) A process service model for
dynamic enterprise process interconnection. In: Proceedings of
the CoopIS conference, Trento, Italy, September 2001, pp 239–
254

2. BEA, IBM, Microsoft (2003) Business Process Ex-
ecution Language for Web Services (BPEL4WS).
http://xml.coverpages.org/bpel4ws.html

3. Benatallah B, Dumas M, Shen M, NguAHH (2002) Declarative
composition and peer-to-peer provisioning of dynamic Web ser-
vices. In: Proceedings of the ICDE conference, San Jose, CA,
February 2002, pp 297–308

4. Benatallah B, Medjahed B, Bouguettaya A, Elmagarmid A,
Beard J (2000) Composing and maintaining Web-based virtual
enterprises. In: Proceedings of the 1st VLDB TES workshop,
Cairo, Egypt, September 2000, pp 155–174

5. Berners-Lee T (2001) Services and semantics:Web architecture.
http://www.w3.org/2001/04/30-tbl

6. Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web.
Sci Am 7–15

7. Bussler C, Fensel D, Maedche A (2002) A conceptual archi-
tecture for Semantic Web enabled Web services. SIGMOD Rec
31(4):24–29

8. Cardoso J, Sheth A (2002) Semantic e-workflow composition.
Technical report, LSDIS Lab, Computer Science, University of
Georgia

B. Medjahed et al.: Composing Web services on the Semantic Web 351

9. Casati F, Georgakopoulos D, Shan MC (eds) In: Proceedings of
the 2nd VLDB TES workshop, Rome, September 2001. Lecture
notes in computer science, vol 2193, Springer, Berlin Heidel-
berg New York

10. Casati F, Ilnicki S, Jin L, Krishnamoorthy V, Shan MC (2000)
Adaptive and dynamic service composition in eFlow. In: Pro-
ceedings of the CAiSE conference, Stockholm, June 2000,
pp 13–31

11. Chakraborty D, Perich F, Avancha S, Joshi A (2001) DReggie:
a smart service discovery technique for e-commerce applica-
tions. In: Proceedings of the workshop at the 20th symposium
on reliable distributed systems, New Orleans, October 2001

12. Chakraborty D, Perich F, Joshi A, Finin T, Yesha Y (2002) A
reactive service composition architecture for pervasive comput-
ing environments. In: Proceedings of the 7th personal wireless
communications conference, Singapore, October 2002, pp 53–
62

13. Florescu D, Grünhagen A, Kossmann D (2002) XL: an XML
Programming Language for Web service specification and com-
position. In: Proceedings of the WWW 2002 conference, Hon-
olulu, May 2002, pp 65–76

14. Gribble SD, Brewer EA, Hellerstein JM, Culler D (2000) Scal-
able, distributed data structures for Internet service construc-
tion. In: Proceedings of the 4th symposium on operating sys-
tems design and implementation, San Diego, CA, October 2000,
pp 319–332

15. Heuvel JVD, Yang J, Papazoglou MP (2001) Service repre-
sentation, discovery and composition for E-marketplaces. In:
Proceedings of the CoopIS conference, Trento, Italy, Septem-
ber 2001, pp 270–284

16. Horrocks I (2002) DAML+OIL: a description logic for the Se-
mantic Web. IEEE Data Eng Bull 25(1):4–9

17. HP (2003) NetAction. http://www.hp.com
18. IBM (2003) Web Services Flow Language (WSFL).

http://xml.coverpages.org/wsfl.html
19. IBM (2003) WebSphere.

http://www-3.ibm.com/software/info1/websphere
20. IONA (2003) Orbix E2A. http://www.iona.com
21. Lazcano A, Alonso G, Schuldt H, Schuler C (2000) The WISE

approach to electronic commerce. Int J Comput Sys Sci Eng
15(5):343–355

22. Li L, Horrocks I (2003) A software framework for matchmaking
based on Semantic Web technology. In: Proceedings of the
WWW 2003 conference, Budapest, May 2003, pp 331–339

23. McIlraith SA, Son TC, Zeng H (2001) Semantic Web services.
IEEE Intell Sys 16(2):46–53

24. Mecella M, Pernici B, Craca P (2001) Compatibility of e-
services in a cooperative multi-platform environment. In: Pro-
ceedings of the 2nd VLDB TES workshop, Rome, September
2001, pp 44–57

25. Medjahed B, Benatallah B, BouguettayaA, NguA, Elmagarmid
A (2003) Business-to-business interactions: issues and enabling
technologies. VLDB J 12(1):59–85

26. Medjahed B, Rezgui A, Bouguettaya A, Ouzzani M (2003)
Infrastructure for e-government Web services. IEEE Internet
Comput 7(1):58–65

27. Microsoft (2002) .NET. http://www.microsoft.com/net
28. Microsoft (2003) Web Services for Business Process Design

(XLANG). http://xml.coverpages.org/xlang.html
29. Muth P, Wodtke D, Weissenfels J, Dittrich AK, Weikum G

(1998) From centralized workflow specification to distributed
workflow execution. J Intell Inform Sys 10(2):159–184

30. Paolucci M, Kawamura T, Payne TR, Sycara K (2002) Semantic
matching of Web services capabilities. In: Proceedings of the
1st international Semantic Web conference, Sardinia, Italy, June
2002, pp 318–332

31. Payne TR, Paolucci M, Sycara K (2001) Advertising and match-
ing DAML-S service descriptions. In: Proceedings of the inter-
national Semantic Web working symposium, Stanford, CA, July
2001

32. Ponnekanti SR, Fox A (2002) SWORD: A developer toolkit for
Web service composition. In: Proceedings of the WWW 2002
conference, Honolulu, May 2002

33. Rezgui A, Ouzzani M, Bouguettaya A, Medjahed B (2002) Pre-
serving privacy in Web services. In: Proceedings of the the
4th international ACM workshop on Web information and data
management, McLean, VA, November 2002, pp 56–62

34. Schuster H, Georgakopoulos D, Cichocki A, Baker D (2000)
Modeling and composing service-based and reference process-
based multi-enterprise processes. In: Proceedings of the CAiSE
conference, Stockholm, June 2000, pp 247–263

35. Sheth A, Miller J (2003) Web services: technical evolution yet
practical revolution. IEEE Intell Sys 18(1):78–80

36. Sun (2003) Sun ONE. http://wwws.sun.com
37. Sycara K, Klush M, Widoff S (1999) Dynamic service match-

making among agents in open information environments. ACM
SIGMOD Rec 28(1):47–53

38. Tsur S, Abiteboul S, Agrawal R, Dayal U, Klein J, Weikum G
(2001) Are Web services the next revolution in e-commerce?
(Panel). In: Proceedings of the VLDB conference, Rome,
September 2001, pp 614–617

39. Van der Aalst W Don’t go with the flow: Web services compo-
sition standards exposed. IEEE Intell Sys 18(1):72–76

40. Vaughan-Nichols SJ (2002) Web services: beyond the hype.
IEEE Comput 35(2):18–21

41. W3C (2001) XML Schema. http://www.w3.org/XML/Schema
42. W3C (2003) OWL Web Ontology Language overview.

http://www.w3.org/TR/owl-features
43. W3C (2003) Semantic Web. http://www.w3.org/2001/sw
44. W3C (2003) Simple Object Access Protocol (SOAP).

http://www.w3.org/TR/soap
45. W3C (2003) Universal description, discovery, and integration

(UDDI). http://www.uddi.org
46. W3C (2003) Web Services Description Language (WSDL).

http://www.w3.org/TR/wsdl
47. WebMethods (2003) http://www.webmethods.com
48. Weikum G (ed) (2002) Special issue on organizing and discov-

ering the Semantic Web. IEEE Data Eng Bull 25(1): 1–58

