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Abstract. In the area of Web services and service-oriented architec-
tures, business protocols are rapidly gaining importance and mindshare
as a necessary part of Web service descriptions. Their immediate benefit
is that they provide developers with information on how to write clients
that can correctly interact with a given service or with a set of services. In
addition, once protocols become an accepted practice and service descrip-
tions become endowed with protocol information, the middleware can be
significantly extended to better support service development, binding,
and execution in a number of ways, considerably simplifying the whole
service life-cycle. This paper discusses the different ways in which the
middleware can leverage protocol descriptions, and focuses in particular
on the notions of protocol compatibility, equivalence, and replace-ability.
They characterise whether two services can interact based on their pro-
tocol definition, whether a service can replace another in general or when
interacting with specific clients, and which are the set of possible inter-
actions among two services.

1 Introduction

Web services, and more in general service-oriented architectures (SOAs), are
emerging as the technologies and architectures of choice for implementing dis-
tributed systems and performing application integration within and across com-
panies’ boundaries. The basic principles of SOAs consist in modularizing func-
tions and exposing them as services, that are typically specified using (de jure
or de facto) standard languages and interoperate through standard protocols.
Web service technology is characterized by two trends that were not part of con-
ventional (e.g., CORBA-like) middleware services and that are relevant to the
topics discussed in this paper. The first is that, from a technology perspective,
all interacting entities are considered to be (Web) services, even when they are
in fact requesting and not providing services. This allows uniformity in the spec-
ification language (for example, the interface of both requestor and providers
will be described using the Web Services Description Language – WSDL) and
uniformity in the development and runtime support tools.
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The second trend, that is gathering momentum and mindshare, is that of
including, as part of the service description, not only the service interface but
also the business protocol supported by the service, i.e., the specification of which
message exchange sequences (called conversations in the following) are supported
by the service [3]. This is important, as it rarely happens that service operations
can be invoked at will independently from one another. The interactions between
clients and services are always structured in terms of a set of operation invo-
cations, whose order typically has to obey certain constraints for clients to be
able to obtain the service they need. In the following, we use the term external
specification to refer to the combination of the interface and business protocol
specifications, that define the externally visible behavior of a service [1, 12]. In
addition to the business protocol1, a service may be characterized by other pro-
tocols, such as security (e.g., trust negotiation) or transaction protocols that also
need to be exposed as part of the service description so that clients know how
to interact with a service [3, 10].

If two or more services need to interoperate, their protocols must be com-
patible. For example, a bookseller’s business protocol may require customer’s
Web services to first invoke the orderBook operation and then the makePayment
operation. If a requestor wishes to interact with this service, then its business
protocol will need to include the invocation of the orderBook operation followed
at some point by the invocation of the makePayment operation. If this is not
the case, then the interaction between the two entities will result in an error.
Hence, it is essential that requestors are only bound, statically or dynamically,
to providers that have compatible protocols.

This paper analyzes protocol compatibility and similarity in Web services. In
particular, we define and characterize different types of protocol compatibility,
corresponding to different capabilities of services to interoperate, and we show
how, given two services and their external specifications, it is possible to for-
mally identify their compatibility level. In addition, we discuss similarities and
differences between protocols, to understand if two services exhibit the same
behavior or if one can be used instead of another when serving a certain client.
In doing the analysis, our motivation and goal is to devise protocol management
primitives that support and simplify service development. This complements our
earlier efforts aiming at designing and developing a complete CASE tool sup-
porting the Web service lifecycle [3, 2, 10]. Indeed, and as discussed in this paper,
the primitives presented here can be used by service development and runtime
environment to: i) assist developers in creating and evolving Web services that
are compatible with other services of interest or with standard protocol spec-
ifications; ii) identify (statically or dynamically) services that can interoperate
with a given service; iii) manage non-compatibility situations.

This paper does not discuss other aspects that are in general relevant to
identifying whether two services can interact to achieve the desired goals. For
example, we do not deal with quality of service issues, or with structural and
semantic interoperability of messages [6]. While we believe that these issues are
also important, the (syntactic) protocols compatibility and similarity analysis

1 In this paper we will use “business protocol” and “protocol” interchangeably.
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discussed here is complex enough in itself to deserve the whole paper (and indeed
many aspects still remain to be addressed). Finally, we observe that, although
to make the presentation more concrete we will introduce the concepts based on
a specific protocol language, the results presented here can be applied to any
protocol language, such as WSCI or BPEL.

The outline of the paper is as follows: Section 2 introduces a protocol model
and some notations and concepts used throughout the paper. Section 3 defines
a collection of protocol management operators that allow understanding com-
monalities and differences between protocols, as well as whether two protocols
can interact with each other. Section 4 introduces compatibility and similar-
ity classes, and shows how the model and operators developed in the previous
sections can be used to analyze and understand the kind of compatibility or sim-
ilarity that two protocols exhibit. Finally, Section 5 concludes the paper with a
discussion of possible applications of the proposed protocol analysis.

2 Preliminaries

2.1 Business Protocols Modeling

Following our previous work [3], we choose to model a service business proto-
col (protocol for short) as a non-deterministic finite state machine, where the
states represent the different phases that a service may go through during its
interaction with a requestor. Transitions are triggered by messages sent by the
requestor to the provider or vice versa (hence, transitions are labeled with either
input or output messages). A message corresponds to the invocation of a service
operation or to its reply. Note that each service may be simultaneously involved
in several message exchanges (conversations) with different clients, and there-
fore can be characterized by multiple concurrent instantiations of the protocol
state machine. The purpose of the protocol is essentially to specify the set of
conversations that are supported by the service. The reason for using a state
machine-based model is because it a formalism that is fairly easy to understand
for users, it is suitable to describe reactive behaviors, and it has the notion of
state which is useful for monitoring service executions. Furthermore, there are
a number of models and tools (some developed by the authors [2]), that enable
protocol modelling by means of state machines. The need for non-determinism
comes from the observation that a service may respond in different ways to a
certain message, based on internal business logic that is not exposed as part
of the protocol. For example, in response to an “approval request” message, a
service may move to different states based on whether the request is approved or
rejected. However, the criteria by which the service moves to this or that state
is hidden from the user as it is internal business logic that the provider does not
want to expose as part of the protocol definition.

As an example, Figure 1(a) shows a graphical representation of a protocol,
called P1, that describes the external behavior of a store service. Each tran-
sition is labeled with a message name followed by the message polarity2, that
2 The notion of message polarity is borrowed from [13].
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is, whether the message is incoming (plus sign) or outgoing (minus sign). For
instance, it specifies that the store service is initially in the Start state, and that
clients begin using the service by sending a login message, upon which the ser-
vice moves to the Logged state (transition (login(+)). We next provide a formal
definition of a protocol.

Definition 1. (Business protocol)
A business protocol is a tuple P = (S, s0,F , M,R) which consists of the following
elements:

– S is a finite set of states.
– s0 ∈ S is the initial state.
– F ⊆ S is a set of final states. If F = ∅, then P is said to be an empty

protocol.
– M is a finite set of messages. For each message m ∈ M, we define a function

Polarity(P , m) which will be positive (+) if m is an input message in P
and negative (−) if m is an output message in P. In the sequel, we use the
notation m(+) (respectively, m(−)) to denote the polarity of a message m.

– a finite set R ⊆ S2 × M of transitions. Each transition (s, s′, m) identifies a
source state s, a target state s′ and either an input or an output message m
that is either consumed or produced during this transition. In the sequel, we
note R(s, s′, m) instead of (s, s′, m) ∈ R.
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Fig. 1. Business protocols.

2.2 Execution Paths and Execution Trees

In this subsection, we introduce some important concepts and definitions that
are used to define the semantics of the protocol model defined above3. A protocol
defines all the possible conversations that a service supports in terms of alternat-
ing sequences of states and messages. We call these sequences executions paths.
For example, the sequence Start.login(+).Logged.selectGoods(+).Selecting is an
execution path of protocol P1. We are particularly interested in the complete ex-
ecution paths (i.e., paths that start from an initial state and ends at a final state)
3 See [8] for details on the various process model semantics.
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Fig. 2. Comparing protocols with respect to their branching structures.

as they denote the set of correct conversations supported by a service. For exam-
ple, the execution path Start.login(+).Logged.selectGoods(+).Selecting.cancel(+).
Cancelled corresponds to a complete execution path of protocol P1. The se-
quence of message exchanges login(+).selectGoods(+).selectGoods(+).cancel(+),
extracted from the complete execution path depicted at Figure 3(d), represents
a conversation which is compliant with (i.e., is allowed by) protocol P1 of Fig-
ure 1(a).

Since protocols are represented using non-deterministic state machines, ex-
ecution paths are not enough to capture the branching structures of protocols.
As an example, Figures 2(a) and (b) show two protocols P and P ′ that specify
exactly the same set of compliant conversations (the conversations m1(+).m2(+)
and m1(+).m3(+)). However, we can observe that after sending a message m1
in protocol P , a client interacting with P will have a choice to either send the
message m2 or m3, while a client interacting with protocol P ′ will not have such
a choice. For example, the client protocol PC depicted in Figure 2(c) can interact
correctly with the protocol P . However, the interaction of PC with protocol P ′

may result in an error (e.g., if PC sends the messages m1 and then m2, while
protocol P ′ decides to move to the state S3 after receiving the message m1).

To compare protocols with respect to their branching structures, we adopt
the well known branching-time approach [8] to describe business protocol se-
mantics. In this approach, the possible conversations allowed by a protocol are
characterized in terms of trees, called execution trees, instead of paths. The ex-
ecution trees of a protocol are used to derive what we call conversation trees. In
a nutshell, conversation trees of a protocol P capture all the conversations that
are compliant with P (i.e, message exchanges that occur in accordance with the
constraints imposed by P) as well as the branching structures of P (i.e., which
messages are allowed at each stage of a conversation).

To formally define the notions of execution and conversation trees, we use
the following definition of a tree as in [9]: A tree is a set τ ⊆ N

∗ such that if
xn ∈ τ , for x ∈ N

∗ and n ∈ N, then x ∈ τ and xm ∈ τ for all 0 ≤ m < n. The
elements of τ represent nodes: the empty word ε is the root of τ , and for each
node x, the nodes of the form xn, for n ∈ N, are children of x. Given a pair of set
S and M , an 〈S, M〉-labeled tree is a triple (τ, λ, δ), where τ is a tree, λ : τ → S
is a node labeling function that maps each node of τ to an element in S, and
δ : τ × τ → M is an edge labeling function that maps each edge (x, xn) of τ to
an element in M . Then, every path ρ = ε, n0, n0n1, . . . of τ generates a sequence
Γ (ρ) = λ(ε).δ(ε, n0).λ(n0).δ(n0, n0n1).λ(n0n1). . . . of alternating labels from S
and M .
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Informally, if S and M correspond to the sets of states and messages, we
can use an 〈S, M〉-labeled tree to characterize protocol semantics. In particular,
the branches of the tree (once mapped with the labeling functions) represent
execution paths, and the tree hierarchy reflects the branching structures of the
protocol.

Definition 2. (Execution trees and conversation trees)

Let P = (S, s0,F , M,R) be a business protocol.

(a) An execution tree of P is a 〈S, M〉-labeled tree T = (τ, λ, δ) such that:
– λ(ε) = s0, and
– for each edge (x, xn) of τ , we have R(λ(x), λ(xn), δ(x, xn))

An execution tree T = (τ, λ, δ) is a complete execution tree of the protocol P
if for every leave x ∈ τ we have λ(x) ∈ F .

(b) If T = (τ, λ, δ) is a complete execution tree of a protocol P, then T C =
(τ, λC , δ) where λC(x) = ∅, ∀x ∈ τ , is a conversation tree which is compliant
with protocol P.

For example, Figures 3(a) and (c) show complete execution trees of the pro-
tocols P and P ′ of Figure 2. Figure 3(d) shows two complete execution trees
which are compliant with the protocol P1 of Figure 1. Figure 3(b) shows a con-
versation tree which is compliant with the protocol P (shown at Figure 2(a)).
This conversation tree describes the message exchanges that are accepted by P
(i.e., m1(+).m2(+) and m1(+).m3(+)) as well as the branching choice allowed
by P after receiving the message m1. Conversation trees of a protocol are derived
from complete execution trees by removing labels corresponding to the states.
For instance, the conversation tree of Figure 3(b) is derived from the complete
execution tree of Figure 3(a) by removing the labels of the states s1, s2, and s3.
In this paper we use complete execution trees to represent conversations that
are compliant with a protocol.

2.3 Protocol Simulation

The notion of simulation is used in the literature as a relation to compare labeled
transition systems with respect to their branching structures [8, 9]. Simulation is
a preorder relation on labeled transition systems that identifies whether a given
system has the same branching structures as another one. Here, we introduce
a slightly adapted notion of simulation between protocols that will be used to
compare protocols with respect to their complete execution trees.

Definition 3. (Protocol Simulation)
Let P = (S, s0,F , M,R) and P ′ = (S′, s′0,F ′, M′,R′) be two protocols.

– A relation Γ ⊆ S × S′ is a protocol simulation between protocols P and P ′

if whenever (s1, s
′
1) ∈ Γ then the following holds:

• ∀R(s1, s2, m) there is an s′2 such that R′(s′1, s′2, m), Polarity(P , m) =
Polarity(P ′, m) and (s2, s

′
2) ∈ Γ .

• ∀(s, s′) ∈ Γ , if s ∈ F then s′ ∈ F ′
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Fig. 3. Example of execution trees of the protocol P1.

– We use notation s1 � s′1 to say that there is a protocol simulation Γ such
that (s1, s

′
1) ∈ Γ .

– We say that protocol P is simulated by P ′ (noted P � P ′) iff s0 � s′0.
– We say that two protocols P and P ′ are similar (noted P ∼= P ′) iff P � P ′

and P ′ � P.

The following lemma4 states that the simulation relation allows to compare
protocols with respect to their complete execution trees.

Lemma 1. Let P1 = (S1, s1
0,F1, M1,R1) and P2 = (S2, s2

0,F2, M2,R2) be two
protocols.

(i) P1 � P2 iff there exists a node labeling function λ2 : τ → S2 such that for
each complete execution tree T = (τ, λ, δ) of P1, T ′ = (τ, λ2, δ) is a complete
execution tree of P2 and Polarity(P1, δ(x, xn)) = Polarity(P2, δ(x, xn)) for
each edge (x, xn) of τ .

(ii) P1
∼= P2 iff P1 and P2 have exactly the same set of complete execution trees,

modulo the name of the states.

2.4 Protocol Interactions

In the previous subsections we focused on representing a protocol supported by a
given service and comparing two service protocols using the simulation relation.
We now address the joint analysis of two protocols, that of a requestor and that
4 It should be noted that lemma proofs are not presented due to space reasons.
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of a provider, to see if interactions between them are compatible. By defining the
constraints on the ordering of the messages that a web service accepts, a business
protocol makes explicit to clients how they can correctly interact with the service
(i.e., without generating errors due to incorrect sequencing of messages)5 [13, 3].
For example, a service that supports the reversed protocol P̄1 obtained from P1

of Figure 1(a) by reversing the direction of the messages (i.e., input messages
becomes outputs and vice versa) can interact correctly with the store service.
Interactions between two given protocols can also be characterized in terms of
execution paths and trees.

As an example, consider again the protocol P1 depicted in Figure 1(a) and
its reversed protocol P̄1. As the two protocols have exactly the same states, if
s is a state in the protocol P1, we use s̄ to denote the corresponding state in
the protocol P̄1. The path (Start, ¯Start).login.(Logged, ¯Logged) corresponds
to a possible interaction between protocols P1 and P̄1. This path indicates that,
at the beginning, the two protocols P1 and P̄1 are respectively at the states
Start and ¯Start. Then, protocol P̄1 sends message login and goes to state

¯Logged while protocol P1 receives message login and goes to state Logged.
The path (Start, ¯Start).login.(Logged, ¯Logged) is called an interaction path
of protocols P1 and P̄1. Each state in this interaction path consists of a state
of P1 together with a state of P̄1. The transition login indicates that an input
login message of one of the protocols coincides with an output login message
of the other protocol. Consequently, the polarity of the messages that appear in
an interaction path is not defined.

Correct interactions between two protocols are captured by using the notion
of complete interaction trees, i.e., interaction trees in which both protocols start
at an initial state and end at a final state. For example, the complete interaction
tree of Figure 4(a) describes a possible correct interaction between the protocols
P1 of Figure 1(a) and its reversed protocol P̄1. The notion of interaction tree is
formally defined below.

Definition 4. (interaction tree) An interaction tree between two protocols
P1 = (S1, s1

0,F1, M1,R1) and P2 = (S2, s2
0,F2, M2,R2) is a

〈
(S1 × S2, M1 ∩ M2)

〉
-

labeled tree I = (τ, λ, δ) such that:

– λ(ε) = (s1
0, s

2
0), and

– For x ∈ τ , λ(x) = (s1
x, s2

x) such that s1
x ∈ S1 and s2

x ∈ S2. Then, for each
edge (x, xn) of τ , we have: R1(s1

x, s1
xn, δ(x, xn)) and R2(s2

x, s2
xn, δ(x, xn)),

and Polarity(P1, δ(x, xn)) �= Polarity(P2, δ(x, xn))
An interaction tree I = (τ, λ, δ) is a complete interaction tree of the protocols
P1 and P2 if for every leave x ∈ τ we have λ(x) ∈ F1 ×F2.

In the sequel, an interaction between two protocols is characterized by the
set of the complete interaction trees of these protocols.

It should be noted that the notions of simulation and interactions defined
above focus on comparing protocols based on their structure and their messages,
5 Recall that structural and semantics interoperability [6] are outside the scope of this

paper.
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regardless of how states are named. Specifically, when in the formal definition we
place conditions on the two protocols having the same message (with the same or
opposite polarity), we mean that they have to refer to the same WSDL message,
as defined by its fully qualified name. Naming of the states is instead irrelevant,
as it has no effect on identifying the conversations allowed by a protocol.

3 Protocol Management Operators

To assess commonalities and differences between protocols, as well as whether
two protocols can interact with each other, we define a set of generic operators
to manipulate business protocols, namely: compatible composition of protocols,
intersection of protocols, difference between protocols, and projection of protocol
on a given role. The proposed operators take protocols as their operands and
return a protocol as their result. Although the proposed operators are generic
in the sense that they can be useful in several tasks related to management
and analysis of business protocols, we will show in the next section how these
operators can be used for analysing protocols compatibility and replaceability.
Effecient algorithms that implement the proposed operators as well as correct-
ness proofs are given in [4].

3.1 Compatible Composition

The operator compatible composition allows to characterize possible interactions
between two protocols, that of a requestor and that of a provider (i.e., the result-
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ing protocol describes all the interaction trees between the considered protocols,
and therefore characterizes the possible conversations that can take place be-
tween the requestor and the provider). This operator, denoted as ||C, takes as
input two business protocols and returns a protocol, called a compatible compo-
sition protocol, that describes the set of complete interactions trees between the
input protocols. Informally, the initial state of the resulting protocol is obtained
by combining the initial states of the input protocols, final states are obtained
by combining the final states of the input protocols, while intermediate states
are constructed by combining the intermediate states of the input protocols. The
resulting protocol is constructed by considering messages of the two input pro-
tocols which have same names but opposite polarities, and that allow execution
paths to flow from the start state to end states of the new protocol. All the
states that are not reachable from the initial state of the resulting protocol as
well as the states that cannot lead to a final state are removed from the result-
ing protocol. If the result of a compatible composition of two protocols is empty,
this means that no conversation is possible between two services that support
these protocols. Otherwise, the result is the identification of possible interactions
between these protocols.

As an example, Figure 5(a) shows protocol P1||CP2 that describes all the
possible complete interaction trees between protocols P1 of Figure 1(a) and P2

of Figure 1(b).

Definition 5. (Compatible composition)
Let P1 = (S1, s1

0,F1, M1,R1) and P2 = (S2, s2
0,F2, M2,R2) be two protocols.

The compatible composition P = P1||CP2 is a protocol (S, s0,F , M,R) where:
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– S ⊆ S1 × S2 is a finite set of states,
– s0 = (s1

0, s
2
0) is the initial state,

– F ⊆ F1 × F2 is a set of final states,
– M ⊆ M1 ∩ M2 is a set of messages. Note that, the polarity function is not

defined for the messages in an a compatible composition protocol.
– R((s1, s2), (q1, q2), m) iff R1(s1, q1, m) and R2(s2, q2, m) and Polarity(P1,

m) �= Polarity(P2, m).
– ∀(s1, s2) ∈ S1 × S2, the state (s1, s2) ∈ S iff (s1, s2) belongs to a complete

execution path of P (i.e., a path that goes from the initial state (s1
0, s

2
0) to a

final state (s1
i , s

2
j) ∈ F).

3.2 Intersection

The intersection operator allows the computation of the largest common part
between two protocols. The intersection operator, denoted as ||I, takes as input
two business protocols and returns a protocol that describes the set of complete
execution trees that are common between the two input protocols. The result-
ing protocol is called an intersection protocol. This operator combines the two
input protocols as follows: states of the resulting protocols are constructed using
the same procedure as in the compatible composition operator. However, unlike
compatible composition, the intersection protocol is constructed by considering
messages of the input protocols which have same names and polarities.

Definition 6. (Intersection)
Let P1 = (S1, s1

0,F1, M1,R1) and P2 = (S2, s2
0,F2, M2,R2) be two protocols.

The intersection P = P1||IP2 is a protocol (S, s0,F , M,R) where:

– S ⊆ S1 × S2,
– s0 = (s1

0, s
2
0),

– F ⊆ F1 × F2,
– M ⊆ M1 ∩ M2.
– R((s, q), (s′, q′), m) iff R1(s, s′, m) and R2(q, q′, m) and Polarity(P1, m) =

Polarity(P2, m).
– ∀(s1, s2) ∈ S1 × S2, the state (s1, s2) ∈ S iff (s1, s2) belongs to a complete

execution path of P (i.e., a path that goes from the initial state (s1
0, s

2
0) to a

final state (s1
i , s

2
j) ∈ F).

Note that the intersection protocol preserves the polarity of the messages
(i.e., ∀m ∈ M, Polarity(P1||IP2, m) = Polarity(P1, m) = Polarity(P2, m)).

3.3 Difference

While the intersection identifies common aspects between two protocols, the dif-
ference operator, denoted as ||D, emphasizes their differences. This operator takes
as input two protocols P1 and P2, and returns a protocol called difference proto-
col, whose purpose is to describe the set of all complete execution trees of P1 that
are not common with P2. As shown below, we compute the difference as a proto-
col where states are combination of states of P1 and P2, as opposed to deriving
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the subset of P1 that is not part of P2. This will allow us to reuse procedures
similar to those developed for computing results of previous operators.

Definition 7. (Difference)
Let P1 = (S1, s1

0,F1, M1,R1) and P2 = (S2, s2
0,F2, M2,R2) be two protocols

and let µ �∈ S1∪S2 be a new state name. The difference P = P1||DP2 is a protocol
(S, s0,F , M,R) where:

– S ⊆ S1 × (S2 ∪ {µ}),
– s0 = (s1

0, s
2
0),

– F ⊆ F1 × ((S2 ∪ {µ}) \ F2),
– M ⊆ M1.
– R((s, q), (s′, q′), m), with q, q′ ∈ S2, iff R1(s, s′, m) , R2(q, q′, m) and

Polarity(P1, m) = Polarity(P2, m),
– R((s, q), (s′, µ), m), with q ∈ S2, iff R1(s, s′, m) and not exists q′ ∈ S2 such

that R2(q, q′, m) and Polarity(P1, m) = Polarity(P2, m),
– R((s, µ), (s′, µ), m) iff R1(s, s′, m).
– ∀(s1, s2) ∈ S1 × S2, the state (s1, s2) ∈ S iff (s1, s2) belongs to a complete

execution path of P (i.e., a path that goes from the initial state (s1
0, s

2
0) to a

final state (s1
i , s

2
j) ∈ F).

As an example, Figure 5(b) shows the difference protocol P4||DP3 that de-
scribes all the complete execution trees of the protocol P4 of Figure 6(b) that are
not allowed by the protocol P3 of Figure 6(a). From this, it can be inferred, e.g,
that the sequence of messages login(+).selectGoods(+).POrder(+).cancelPO(+),
which is derived from a complete execution path of the difference protocol, is a
conversation which is allowed by the protocol P4 but it is not allowed by P3.

3.4 Projection

In this section, we discuss the projection of a protocol obtained by using one of
the previous operators (i.e, compatible composition, intersection, or difference)
on a participant protocol. In the case of compatible composition, the projection
of P1||CP2 on the protocol P1, denoted as [P1||CP2]P1

, allows to identify the part
of the protocol P1 that is able to interact correctly with the protocol P2. While
a compatible composition protocol P allows to characterize the possible inter-
actions between two business protocols each defining the behavior of a service
playing a certain role in a collaboration, the projection of P allows the extrac-
tion of a protocol that defines the role a service plays in a collaboration (e.g., a
customer) defined by P . This is very important since the expected behavior of a
service in a collaboration constitutes an important part of the requirements for
the implementation.

As an example, Figure 5(c) shows the projection of protocol P1||CP2 of Fig-
ure 5(a) on protocol P2. The obtained protocol describes the part of protocol P2

that can be used to interact correctly with P1 (i.e, the role of P2 in P1||CP2).
Briefly stated, the projection of a protocol obtained using an intersection

or a difference is defined as follows. In the case of intersection, the projection
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(a) A protocol P3
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(c) A protocol P5

Fig. 6. Business protocols of two other store services.

[P1||IP2]P1
allows to identify the part of the protocol P1 that is common with

the protocol P2. In the case of difference, the projection [P1||DP2]P1
allows to

identify the part of the protocol P1 that is not supported by the protocol P2.
Below, we give the formal definition of the projection of a protocol obtained by
using compatible composition, intersection, or difference.

Definition 8. (Projection) Let P = (S, s0,F , M,R) be a protocol obtained using
compatible composition, intersection, or difference of two protocols P1 and P2

(e.g., P = P1||CP2). A projection of P on the protocol P1, denoted as [P ]P1
,

is a protocol (S′, s′0,F ′, M,R) obtained from P by projecting the states of P
on P1 (i.e., replacing each state (s1

i , s
2
j) ∈ S by the state s1

i in S′) and by
defining the polarity function of the messages as follows: Polarity([P ]P1

, m) =
Polarity(P1, m), ∀m ∈ M.

4 Taxonomy of Protocols Compatibility
and Replaceability

This section analyzes service protocols compatibility and replaceability. Service
compatibility refers to capabilities of services to interoperate while service re-
placeability refers to the ability of a given service to be used instead of another
service, in such a way that the change is transparent to external clients. We
define and characterize several types of protocols compatibility (respectively, re-
placeability). We show how, given two services and the corresponding protocols,
it is possible to identify their compatibility (respectively, replaceability) levels
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using the operators introduced in section 3. Instead of simple black and white
compatibility and replaceability measures (i.e, whether two services are compat-
ible or not, whether a service can replace another or not), we propose to consider
different classes of protocols compatibility and replaceability.

4.1 Compatibility Classes

We identify two classes of protocols compatibility which provide basic building
blocks for analysing complex interactions between service protocols.

– Partial compatibility (or simply, compatibility): A protocol P1 is partially
compatible with another protocol P2 if there are some executions of P1 that
can interoperate with P2, i.e., if there is at least one possible conversation
that can take place among two services supporting these protocols

– Full compatibility: a protocol P1 is fully compatible with another protocol
P2, if all the executions of P1 can interoperate with P2, i.e., any conversation
that can be generated by P1 is understood by P2.

These notions of compatibility are very useful in the context of Web services.
For example, it does not make sense to have interactions with services for which
there is no (partial or total) compatibility, as no meaningful conversation can be
carried on. Furthermore, if there is only partial compatibility, the developer and
the Web service middleware need to be aware of this, as the service will not be
able to exploit its full capabilities when interacting with the partially compatible
one: indeed, in this case, it is not sufficient that a service implementation is
compliant with its advertised protocol, as additional constraints are posed by
the fact that the service is interacting with another one whose protocols is only
partially compatible, and hence some conversations are disallowed.

As an example, Protocol P1 of Figure 1(a) can interact with the its reversed
protocol P̄1 without generating errors and, hence, P1 is fully compatible with P̄1.
However, this is not the case for the protocol P1 of Figure 1(a) and the protocol
P2 of Figure 1(b). When the protocol P2 is at the state Selecting, it can send a
message comparePrice, e.g., to look for the best price of a given product, and goes
into a state Price Processing where it waits for an input message priceInfo. These
two transitions do not coincide with the transitions of the protocol P1 (i.e.,
the protocol P1 does not accept an input message comparePrice at the state
Selecting nor it is able to generate an output message priceInfo). Clearly, there
are some executions of the protocol P2 that cannot interact with the protocol P1.
However, we can observe that there are some cases where the protocol P2 is able
to interact correctly with the protocol P1 (i.e., there are some executions of P2

that are compatible with executions of the protocol P1). An example of such an
interaction is given by the complete interaction tree between P1 and P2 depicted
at Figure 4(b). Hence, the protocols P1 and P2 are(partially) compatible.

We use the boolean operator P -compat(P1,P2) (respectively, F -compat(P1,
P2)) to test if the protocol P1 is partially compatible (respectively, fully compat-
ible) with the protocol P2. The following lemma gives necessary and sufficient
conditions to identify the compatibility level between two protocols.
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Lemma 2. Let P1 and P2 be two business protocols, then

(i) P -compat(P1,P2) iff P1||CP2 is not an empty protocol (i.e., the set of its
final states is not empty).

(ii) F -compat(P1,P2) iff [P1||CP2]P1
∼= P1

Note that full compatibility is not a symmetric relation, i.e., F -compat(P1,
P2) does not imply F -compat(P2,P1) (however, F -compat(P1,P2) implies P -
compat(P2,P1)).

4.2 Replaceability Classes

Repleacability analysis helps us identify if we can use a service supporting a cer-
tain protocol in place of a service supporting a different protocol, both in general
and when interacting with a certain client. It also helps developer to manage ser-
vice evolution, as when a service is modified there is the need for understanding if
it can still support all conversations the previous version supported. We identify
four replaceability classes between protocols, namely: equivalence, subsumption,
replaceability with respect to a client protocol and replaceability with respect
to an interaction role. These replaceability classes provide basic building blocks
for analysing the commonalities and differences between service protocols.

1. Protocols equivalence: two business protocols P1 and P2 are equivalent if they
are mutually substituable, i.e., the two protocols can be interchangeably used
in any context and the change is transparent to clients. We use the boolean
operator Equiv(P1,P2) to test the equivalence of protocols P1 and P2.

2. Protocol subsumption: a protocol P1 is subsumed by another protocol P2,
if the externally visible behavior of P1 encompasses the externally visible
behavior of P2, i.e., if P1 supports at least all the conversations that P2

supports. In this case, protocol P1 can be transparently used instead of
P2 but the opposite is not necessarily true. We use the boolean operator
Subs(P1,P2) to test if P2 subsumes P1. It should be noted that equivalence
is stronger than subsumption (i.e., Equiv(P1,P2) implies Subs(P1,P2) and
Subs(P2,P1)). The protocol P1 of Figure 1(a) is subsumed by the protocol
P3 of Figure 6(a).

3. Protocol replaceability with respect to a client protocol : The previous defini-
tions discussed replaceability in general. However, it may be important to
understand if a service can be used to replace another one when interacting
with a certain client. This leads to a weaker definition of replaceability: a
protocol P1 can replace another protocol P2 with respect to a client protocol
Pc, denoted as Repl[Pc](P1,P2), if P1 behaves similarly as P2 when inter-
acting with a specific protocol Pc. Hence, if Repl[Pc](P1,P2) than P1 can
replace P2 to interact with Pc and this change is transparent to the client
Pc. It should be noted that, this replaceability class is also weaker than sub-
sumption (i.e., Subs(P1,P2) implies Repl[Pc](P1,P2) for any protocol Pc).
For example, Protocol P1 of Figure 1(a) is not subsumed by protocol P4 of
Figure 6(b), as P4 allows a client to cancel an order (message cancelPO(+) at
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state Ordering) and also accept payments by credit card (message
CCpayment(-) at state Invoicing) while P1 does not support these two possi-
bilities. Hence, P1 cannot replace P4 for arbitrary clients. However, we can
observe that P1 can replace P4 when interacting with the protocol P2 of Fig-
ure 1(b) as this client never cancel an ordering and it also always performs
its payments by bank transfer.

4. Protocol replaceability with respect to an interaction role: Let PR be a busi-
ness protocol. A protocol P1 can replace another protocol P2 with respect
to a role PR, denoted as Repl Role[PR](P1,P2), if P1 behaves similarly as
P2 when P2 behaves as PR. This replaceability class allows to identify ex-
ecutions of a protocol P2 that can be replaced by the protocol P1 even in
the case when P1 and P2 are not comparable with respect to any of the pre-
vious replaceability classes. The class Repl Role[PR](P1,P2) is the weakest
replaceability class (i.e., Repl[PR](P1,P2) implies Repl Role[PR](P1,P2)).
For example, consider the protocolP2 of Figure 1(b) and its reversed protocol
P̄2. Protocol P4 of Figure 6(b) cannot replace protocol P̄2 when interacting
with client P2 (i.e., Repl[P2](P4, P̄2) does not hold). This is because protocol
P4 does not accept an input message comparePrice at the state Selecting.
However, even in this case, a client P2 may be interested to know for which
executions it can use P4 instead of P̄2. For example, we can observe that P4

can replace P̄2 in all the interactions in which P̄2 behaves as the protocol
P5 of Figure 6(c) (i.e., Repl Role[P5](P4, P̄2)). In other words, the protocol
P5 exhibits to a given client executions of P̄2 for which it is possible to use
P4 instead of P̄2.

The following lemma characterizes the replaceability levels of two given pro-
tocols using the operators introduced in previous sections.

Lemma 3. Let P1, P2, Pc and PR be business protocols.

1. Equiv(P1,P2) iff P1
∼= P2

2. Subs(P1,P2) iff P2 � P1

3. Repl[Pc](P1,P2) iff [Pc||CP2]P2
� P1 (or equivalently, iff Pc||C [P2||DP1]P2

is
an empty protocol)

4. Repl Role[PR](P1,P2) iff PR � [P1||IP2]P1
.

Note that this lemma provides two equivalent characterizations of class
Repl[Pc](P1,P2) (item 3 of the lemma). The second characterization (i.e.,
Pc||C [P1||DP2]P) can be useful to check whether P2 can be used instead of P1

with respect to a client Pc in those cases where the protocol P2 is not fully
accessible (e.g., P2 is hidden for security reasons). Furthermore, such a charac-
terization may be interesting for change support as it allows to incrementally
check whether a given client protocol Pc used to interact with a protocol P1 can
still interact correctly with a new version P2 of the protocol P1.

5 Discussion

We believe that the effective use and widespread adoption of Web service tech-
nologies and standards requires: (i) high-level frameworks and methodologies for
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supporting automated development and interoperability (e.g., code generation,
compatibility), and (ii) identification of appropriate abstractions and notations
for specifying service requirements and characteristics. Service protocol manage-
ment as proposed in this paper offers a set of mechanisms for the automation of
services development and interoperability.

Several efforts recognize aspects of protocol specifications in component-
based models [7, 13]. These efforts provide models (e.g., pi-calculus -based lan-
guages for component interface specifications) and algorithms (e.g., compatibility
checking) that can be generalized for use in Web service protocol specifications
and management. Indeed, various efforts in the general area of formalizing Web
service description and composition languages emerged recently [5, 11]. However,
in terms of managing the Web service development life-cycle, technology is still
in the early stages. The main contribution of the work presented in this paper is
a framework that leverages emerging Web services technologies and established
modeling notation (state machine-based formalism) to provide high-level sup-
port for analyzing degrees of commonalities and differences between protocols
as well interoperation possibilities of interacting Web services. In the following
we briefly discuss how the framework presented in this paper can be leveraged
to better support the service lifecycle management.

Development-time support. During service development, protocol analysis can
assist in assessing the compatibility of the newly created service (and service
protocol) with the other services with which it needs to interact. The protocol
analysis will in particular help users to identify which part of the protocol are
compatible and which are not, therefore suggesting possible areas of modifica-
tions that we need to tackle if we want to increase the level of compatibility with
a desired service.

Runtime support. In terms of runtime support, the main application of compat-
ibility analysis is in dynamic binding. In fact, just like for static binding, the
benefit of protocol analysis is that search engines can restrict the services they
return to those that are compatible. This is essential, as there is no point in
returning services that are not protocol-compatible, since no interoperation will
be possible (unless there is a mediation mechanism that can make interaction
possible, as discussed below).

Change Support. Web services operate autonomously within potentially dynamic
environments. In particular, component or partner services may change their
protocols, others may become unavailable, and still others may emerge. Con-
sequently, services may fail to invoke required operations when needed. The
proposed operators allow to statically and dynamically identify alternative ser-
vices based on behavior equivalence and substitution. Protocols analysis and
management provide also opportunities to: (i) help understanding mismatch be-
tween protocols, (ii) help understand if a new version of a service protocol is
compatible with the intended clients, and the like.

The framework presented in this paper is one of the components of a broader
CASE tool, partially implemented, that manages the entire service development
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lifecycle [2, 3, 10]. In this paper, we focused on analysing and managing Web ser-
vice protocols. Another component (presented in [2]) of this framework features
a generative approach where conversation protocols are specified using an ex-
tended state machine model, composition models are specified using statecharts,
and executable processes are described using BPEL. Through this component,
users can visually edit service conversation and composition models and au-
tomatically generate the BPEL skeletons, which can then be extended by the
developers and eventually executed using BPEL execution engine such as the
IBM’s BPWS4J (www.alphaworks.ibm.com/tech/bpws4j). We are also consid-
ering the extension of the proposed approach to cater for trust negotiation and
security protocols in Web services, by exploring the leverages between conversa-
tion and trust negotiation protocols [10], that can both be specified through state
machines, although at different levels of abstractions. The proposed framework
supports also lifecycle management of trust negotiation protocols [10]. We intro-
duced a set of change operations that are used to modify protocol specifications.
Strategies are presented to allow migration of ongoing negotiations to a new
protocol specification. Details about these features of framework can be found
in [2, 10]. Finally, our current research also includes addressing the problem of
designing and testing for compatibility, trying in particular to understand how to
develop test cases that can test that two services can interact and how to devise
a methodology for service development that facilitates protocol compatibility.
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