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Abstract

Run-time service discovery and late-binding constitute
some of the most challenging issues of service–oriented
software engineering. For late-binding to be effective in
the case of composite services, a QoS-aware composition
mechanism is needed. This means determining the set of
services that, once composed, not only will perform the re-
quired functionality, but also will best contribute to achieve
the level of QoS promised in Service Level Agreements
(SLAs).

However, QoS-aware composition relies on estimated
QoS values and workflow execution paths previously ob-
tained using a monitoring mechanism. At run-time, the ac-
tual QoS values may deviate from the estimations, or the
execution path may not be the one foreseen. These changes
could increase the risk of breaking SLAs and obtaining a
poor QoS. Such a risk could be avoided by replanning the
service bindings of the workflow slice still to be executed.

This paper proposes an approach to trigger and perform
composite service replanning during execution. An evalua-
tion has been performed simulating execution and replan-
ning on a set of composite service workflows.

Keywords: Dynamic binding, Replanning, Composite
Web Services

1 Introduction

Web service technology is greatly contributing to change
the landscape of today’s software engineering. One of
the most promising advantages of the service-oriented
paradigm is related to service run-time discovery and late-
binding mechanisms. Run-time discovery implies that our
program or workflow, instead of containing a direct invo-
cation to a service, contains an unambiguous, semantic de-
scription of the functionality needed at that point. At run-
time, a matchmaking mechanism is used to discover ser-
vices that match that description, and one of these services

is automatically invoked.
In many cases given a semantic, unambiguous descrip-

tion of a service (hereby referred to as abstract service),
several services (hereby referred to as concrete services)
may exist that match such a description. Late-binding
mechanisms provide means to select those services that best
contribute to maximize a set of local (i.e., related to the sin-
gle invocation) and global (i.e., related to the whole system
or composite service) optimum criteria (e.g., related to re-
sponse time, cost and, in general, to any QoS attribute), and,
above all, to meet QoS constraints formalized in the SLA.

Much in the same way, a composite service results from
a composition of abstract services. Thus, it is necessary
to define a QoS–aware composition mechanism (such as
the ones defined by Cardoso et al. [7] or Zeng et al. [17])
aiming to determine the set of concrete services so that the
composite service QoS is optimized and, above all, meets
the SLA. The composite service QoS can be computed ac-
cording to some aggregation formulae, such as those de-
fined by Cardoso et al. [7]. The formulae define aggregation
functions for each pair QoS attribute – workflow construct
(e.g., node type in a workflow description language such as
BPEL4WS [2]). Clearly, the formulae applicability relies
on estimates of service execution parameters, namely QoS
values for invoked services, and execution traces in work-
flows of composite services (used to determine the likeli-
hood each branch in the workflow has to be followed). All
the mentioned information can be obtained by monitoring
the composite service execution.

At execution time, the actual values will almost surely
deviate from the estimates. Iterations and execution paths
depend on the user inputs, and actual QoS values can vary,
for example, because of the network load. Finally, in the
worst case, some services may not be available when re-
quested. The effect of deviations from estimated values of
QoS attributes and execution profiles is that the actual QoS
of a composite service would not be the one agreed in the
SLA. To avoid this, it is necessary to replan the service com-
position, i.e., to remake the bindings between abstract and
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concrete services.
This paper proposes an approach to trigger replanning

opportunities during composite service execution. In sum-
mary, replanning is triggered as soon as it is possible to pre-
dict that the actual service QoS will deviate from the initial
estimates (an early version of the replanning trigger, as well
as the adopted QoS aware composition mechanism, have
been presented in [4]). Then, the slice, i.e., the part of the
service workflow that still has to be executed, will be de-
termined and replanned. The proposed approach relies on
a proxy-based architecture to easily permit the binding be-
tween abstract and concrete services, as well as to perform
replanning.

The validity of the approach has been evaluated simu-
lating the execution of composite services and their replan-
ning, and monitoring the actual QoS values. The tradeoff
between having an early sensitive replanning and the con-
sequent overhead is evaluated and discussed.

The remainder of this paper is organized as follows. Af-
ter a review of the literature in Section 2, Section 5 de-
scribes the architecture for service binding. The compo-
sition approach proposed in the paper [4] is summarized in
Section 3, while the replanning is detailed in Section 4. Sec-
tion 5 describes the architecture used to enable replanning.
Section 6 reports and discusses results obtained in the sim-
ulations. Finally, Section 7 concludes.

2 Related Work

In service-oriented systems, providers need ways to ex-
press their quality guarantees on the service being adver-
tised, and technological support should be given to cus-
tomers to search for and select the best available service.
In this respect, some formalism proposals for the service
QoS specification and SLAs have been provided, such
as the Web Service Offerings Language (WSOL) [15] or
the IBM’s Web Service Level Agreement (WSLA) lan-
guage [12]. Instead, the currently available technology still
lacks of facilities for a complete QoS estimation, manage-
ment and monitoring for processes.

Cardoso et al. [7] propose a mathematical model for
workflow QoS computation, described by some metrics ag-
gregation functions which are defined for time, cost, reli-
ability, and fidelity. The QoS computation algorithm con-
sists of applying a set of reduction rules to the workflow
until one atomic task is obtained. We use a similar reduc-
tion approach for QoS estimation, and have modified the ag-
gregation functions to enable dynamic service binding and
replanning (see also a previous paper [4] for details).

The work of Zeng et al. [17] proposes a global plan-
ning approach to reach overall QoS optimality through in-
teger programming techniques. Their method consists on
unfolding loops, once estimated the number of iterations,

and the binding for each task is decided based on the most
frequently executed path containing that task. We use an
alternative solution, namely binding all the occurrences of
an abstract service in the workflow to the same concrete ser-
vice, that might lead to a suboptimal solution but with better
performances [4]. Also, we improve their idea of workflow
replanning and introduce a triggering algorithm to predict
such an event as soon as possible during execution.

A paper by Aggarwal et al. [1] describes a framework for
a constraint driven service composition. Abstract processes
are defined in BPEL4WS and the specification is completed
after the binding with the concrete services and before exe-
cution. Performance issues of the constraint solver are not
discussed nor dynamic workflow replanning.

Web-Flow [11] and eFlow [8] are workflow management
systems that offer some support to selection of services ac-
cording to quality constraints but this is limited to individual
tasks.

Some very recent works propose to include ad-hoc ser-
vice calls in the process description to enable dynamic ser-
vice discovery and late binding [13]. An approach for
monitoring service compositions is presented in a paper by
Baresi et al. [3]. Monitors are defined as additional ser-
vices of a process and used to validate contracts of the indi-
vidual services, expressed through assertions in the process
specification. Spanoudakis et al. [14] propose a framework
for checking requirements compliance during process ex-
ecution, where the expected behavior and assumptions are
expressed in event calculus.

3 QoS-aware Composition

The first step is to estimate the QoS of a composite ser-
vice, and to determine the optimal set of concrete services to
be bound to the abstract services composing the workflow.

3.1 Computing the QoS of Composite Services

To compute the QoS attributes of a composite service,
we used the aggregation formulae proposed by Cardoso
et al. [7] for each pair QoS-attribute/composition language
control statement (e.g., sequence, switch, loop or flow).
QoS is computed by recursively applying these formulae for
compound nodes of the service workflow. Similarly to what
proposed by Cardoso et al., for a switch construct in the
workflow, each case statement is annotated with the proba-
bility to be chosen. For example, for a workflow containing
a switch composed of two cases, with costs C1 and C2 re-
spectively and probabilities p and 1 − p, the overall cost is
computed as follows:

p C1 + (1 − p) C2 (1)
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Also, sequence and flow are handled similarly to Car-
doso et al., basically using additive formulae for attributes
such as cost, and multiplicative formulae for attributes such
as availability or reliability. Loops (i.e., while constructs)
are handled differently from Cardoso et al. Our approach is
more similar to what proposed by Zeng et al [17], i.e., loops
are annotated with an estimated number of iterations k. In-
stead of unfolding loops (like Zeng et al.), here the QoS of
the loop is computed by taking into account the factor k.
For example, if the loop compound node has a cost Cl, then
the estimated cost of the loop will be k Cl.

Actually, for the QoS estimation, we create a new work-
flow where loops are removed, and each invoke node has
a weight, representing the number of times that the node
should be accounted for in the QoS formulae. This work-
flow, hereby referred to as unlooped workflow, will be used
throughout the process execution only for QoS estimation
purposes, whenever replanning is triggered.

3.2 Searching for an optimal solution

Determining the best concretization of a composite ser-
vice is an optimization problem, aiming to i) maximize
a fitness function of the available QoS attributes; and ii)
meet the constraints specified for some of the attributes. In
particular, these are the global constraints, i.e. assertions
on the overall QoS attribute values. Local constraints, i.e.
constraints on each abstract service composing our service,
need to be checked when choosing the set of candidate con-
crete services to bind.

Finding a solution for the above problem is NP-hard [9].
In this case, different strategies can be adopted, for ex-
ample Integer Programming [17] or Genetic Algorithms
(GAs) [10], or else Constraint Programming [16]. In our
work we have tried some of these approaches with the aim
of choosing the most appropriate for each case. As dis-
cussed in the paper [5], GAs better handle non-linearity of
aggregation formulae, and better scale up when the number
of concrete services for each abstract service is high. For
simpler cases, integer programming is quicker.

The fitness function may need to maximize some QoS
attributes (e.g., reliability), while minimizing others (e.g.,
cost). When user–defined, domain–specific QoS attributes
are used, the specification of the fitness function is left to the
workflow designer. For standard QoS attributes, a fitness
function for a solution g can be defined as follows:

F (g) =
w1 Availability(g) + w2 Reliability(g)
w3 Cost(g) + w4 Response T ime(g)

(2)

where w1, . . . , w4 are real, positive weighting factors. As
mentioned above, some of the variables could be con-
strained and in this case the best solution could be found
at the cost of a more expensive search.

QEST ←Estimated overall QoS;
QCOS ← QoS parameter upper bound;
QACT ← QEST ;
QTOT ← 0 ;
NTH ← replanning threshold;
QTH ← single node replanning threshold;
NODE ← Workflow root node;
visit(NODE);
exit();
begin function visit(node)

switch node is type of do
case loop

k ← Estimated loop iterations ;
k′ Actual # of loop iterations ;
INNER ← Loop inner node
QINNER ← QoS(INNER);
QACT ←
QACT + (k′ − k) ∗ QINNER ;
if
(QACT − QEST )/QEST > NTH
or QACT > QCOS then

triggerReplan(INNER,
QTOT ) ;

end
for j ← 1 to k′ do

visit(INNER);
if (QACT − QEST )/QEST >
NTH or QACT > QCOS

then
QTOT ← QTOT −
ActQoS(INNER) ;
triggerReplan(INNER,
QTOT );

end
end

case switch
j ← Case statement chosen ;
INNER ← Inner node of the
j − th case ;
QSWITCH ← QoS(node);
QINNER ← QoS(INNER);
QACT ←
QACT − QSWITCH + QINNER;
if
(QACT − QEST )/QEST > NTH
or QACT > QCOS then

triggerReplan(INNER,
QTOT )

end
visit(INNER);

case sequence
foreach Node INNER in
sequence do

visit(Node);
if (QACT − QEST )/QEST >
NTH or QACT > QCOS

then
QTOT ← QTOT −
ActQoS(INNER) ;
triggerReplan(INNER,
QTOT );

end
end

case flow
foreach Node CHILD in flow
do

flow(Node);
end

case invocation
INNER ← node
QINNER ← QoS(node);
Execute(node);
QINNERACT ← ActQoS(node);
if (QINNERACT −
QINNER)/QINNER > QTH
then

triggerReplan(INNER,
QTOT );

end
QACT ←
QACT −QINNER +QINNERACT ;
QTOT ← QTOT + QINNERACT ;

if (QACT − QEST )/QEST > NTH
or QACT > QCOS then

triggerReplan(INNER, QTOT );
end

end
end function

Figure 1. Re-planning triggering algorithm

Proceedings of the IEEE International Conference on Web Services (ICWS’05) 
0-7695-2409-5/05 $20.00 IEEE 



4 Replanning

This section describes how, during a composite service
execution, replanning is triggered by refining the QoS es-
timation whenever new information is available, how the
workflow slice to be replanned is determined and finally
how replanning will be performed.

4.1 Triggering Service Replanning

The algorithm presented in Figure 1, describes the pro-
posed replanning triggering approach. The basic idea is to
re-estimate the workflow QoS as soon as new information
is available. The number of times a loop will be iterated,
the branch followed in a conditional node, or the QoS val-
ues measured when a service is invoked, permit to correct
initial QoS estimates, which are updated on the unlooped
workflow. Whenever this new estimate indicates a large de-
viation from the initial one and, above all, that a risk for
SLA violation, services that still remain to be executed must
be replanned to try to “reduce the damage”.

The algorithm is described for the cost QoS attribute.
For response time the algorithm is quite similar (being it
also an additive attribute), except for the flow node, for
which differences are discussed. For multiplicative QoS at-
tributes, the algorithm remains the same, except that QACT

and QTOT are updates of performed multiplications and
divisions instead of additions and subtractions. Given the
overall estimated QoS (QEST ), initially the actual workflow
QoS (QACT ) is equal to it. Then, the workflow execution
starts visiting the root node, and each node is recursively
visited. Replanning is triggered if i) the actual cost goes be-
yond the estimated one over a given percentage; or, clearly,
ii) if the actual cost violates the SLA.

For loop nodes, the actual number of iterations k′ is de-
termined if possible (when the loop exit is bound to a con-
dition, this might not be possible), and the actual QoS is
refined varying it by (k′ − k) ∗ QINNER (i.e., considering
that the number of iterations is varied by k′ − k). In case
this difference evaluates above the threshold, a replanning
is triggered. Then, the loop inner node is visited k′ times
(or while the loop condition is true), triggering replanning
each time this is necessary.

For switch nodes, the actual case to be executed (the
j − th one) is determined, and the switch inner QoS (origi-
nally a weighted sum, as shown in equation (1)) is updated,
considering, instead, only the QoS of the case chosen.

For sequence nodes, each child is visited, and replanning
is triggered each time the deviation of the actual QoS from
the estimate is above the threshold.

For flow nodes, the overall actual cost is augmented
while services are invoked in the different, parallel flow
children. Instead, the response time is measured separately

NODE ← unlooped workflow root node;
LIST ← list of stopped nodes;
SLICE ← triggeringNode;
SLICE ←
computeSlice(NODE, LIST, SLICE) ;
exit();
begin function computeSlice(in
NODE, in LIST , out SLICE)

CONTAINER ← SLICE.container;
if !CONTAINER then

return SLICE;
end
if (sizeOfList > 1) then

FORK ← most external fork of first
node of LIST ;
N ← # of children of FORK;
newFORK ← create new fork;
for i ← 1toi < N + 1 do

CHILD ← i-th child of FORK;
CLIST ←
sublist(LIST, CHILD);
CSLICE ← first node of
CLIST ;
CSLICE ←
computeSlice(CHILD, CLIST, CSLICE);
newFORK.addChild(CSLICE);

end
SLICE ← newFORK;
SLICE.next ← FORK.next;
SLICE.container ←
FORK.container;

end
else

if (most external loop of SLICE)
then

SLICE ← unlooped sequence;
CONTAINER ←
SLICE.container;
if (!CONTAINER) then

return SLICE;
end

end
end
switch CONTAINER is type of do

case sequence
newSEQUENCE ← new
sequence node ;
TSLICE ← SLICE ;
while (TSLICE) do

newSEQUENCE.add(TSLICE);
TSLICE ← TSLICE.next;

end
newSEQUENCE.container ←
CONTAINER.container;
newSEQUENCE.next ←
CONTAINER.next;
SLICE ← newSEQUENCE;

case case statement
SLICE.container ← container
of Switch;
SLICE.next ← next of Switch;

end
end function

Figure 3. Slice computation algorithm

for each child. Thus, a response time constraint violation
may be triggered on each different child. After all children
have terminated their execution, the maximum response
time is kept as the parent process actual response time.

Finally, the actual QoS values of each invocation are
measured and the actual overall QoS is updated accordingly.
Also, if the estimation on the single node has a strong de-
viation, above a threshold indicated by QTH in Figure 1,
replanning is triggered as well.

4.2 Determining the replanning slice

The function triggerReplan() invoked in the algorithm
of Figure 1 has as effect that the workflow execution is
stopped and replanning is performed on a slice of the un-
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Figure 2. Replanning slice a) Node inside a loop b) Node inside a switch c) Node inside a flow

looped workflow (see Section 3.1), containing all the nodes
that are still to be executed, with their weights. Note that the
weight of each node is decreased by 1 at every invocation.
The algorithm presented in Figure 3 describes how this slice
is identified.

Given a node that, after its execution, triggers a replan-
ning, the list of the nodes executed last before the workflow
execution was stopped is considered. The slice to be re-
planned is recursively computed depending on the position
of each of these nodes in the workflow control structure.

Let us assume that the triggering is not performed inside
a child process (i.e., inside a flow). Initially, the slice refers
to the triggering node np. Now, each invoke node of the
original workflow has a reference to the most external loop
to which it belongs, if any. This reference becomes a refer-
ence to a sequence node on the unlooped workflow. Also,
each node has a reference to a next node and a reference to
a container node, if they exist.

If the node np is inside a loop in the original workflow,
then the slice is changed to the referred sequence node (cor-
responding to the most external loop in the original work-
flow), not yet estimated to be completed, i.e., whose inner
invoke nodes have ”estimated” weights greater than zero.

If the current slice is inside a sequence construct, then
the slice is set to a new sequence node that collects the old
slice, and its following nodes, of the sequence construct.
As an effect, we have that only the non-executed nodes of
the original sequence are considered (Figure 2-a, 2-d). If
the node is part of a case statement of a switch construct,
then the slice is set to have pointers to the next node and
the container node of the switch construct. In fact, as the

decision for the case was taken already, the alternative cases
will never be executed (Figure 2-b). Finally, the algorithm
ends if the current slice is not included in any other control
construct, as this will be the replanning slice.

In case there are more stopped nodes in the list, other
then the replanning triggering node, then the most external
flow construct containing these nodes is considered first for
slice computation. The procedure described above is ap-
plied to its children threads to get their slices, which will be
then composed again in a flow construct (Figure 2-c) to be
the new slice, from where a second recursion of the algo-
rithm above starts.

Given the replanning slice, the same approach described
in Section 3.2 is used to find its (sub)-optimal concretiza-
tion. However, this time the overall QoS that maximizes the
fitness function while meeting the constraints is given by:

QOV ERALL = QTOT + Qslice (3)

i.e., the QoS of already executed nodes, plus the estimated
QoS of the slice.

5 Architecture

The implementation of late-binding and service replan-
ning mechanisms require a proper architecture that goes
beyond the Service-Oriented-Architecture (SOA). Our ap-
proach stems from an architecture, also used by Mandell
and McIlraith [13], to permit run-time discovery and com-
position. The binding between abstract and concrete ser-
vices is realized by means of a proxy service. Instead
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Figure 4. Dynamic binding and replanning via proxy services

of containing directly partner links to concrete services,
BPEL4WS processes contain invocations to the proxy ser-
vice, specifying i) the query, i.e., the semantic description of
the desired functionality; and ii) the list of provided inputs
and expected outputs.

The proxy service allows to retrieve the set of services
matching the query and to choose the one that best con-
tribute to fulfill the QoS requirements of the composite ser-
vice and to meet the SLA. The invocation message is then
forwarded to this service, eventually solving the type map-
pings of the input parameters through the underlying ontol-
ogy. Before the execution of a composite service starts, the
proxy service retrieves and caches the lists of concrete ser-
vices that match the abstract services (represented in Fig-
ure 4). Right before the execution, in fact, it is necessary
to perform a QoS-aware service composition, following the
approach described in Section 3. Once a solution of the
composition optimization problem is found, the binding is
performed through a routing from abstract to concrete ser-
vices. Whenever workflow replanning is triggered by the
triggering algorithm explained in Section 4.1,

1. the workflow execution is stopped;

2. a workflow slice, i.e. the part of workflow still remain-
ing to be executed, is determined;

3. new bindings are determined so to maximize the fit-
ness function on the service slice that remains to be
executed;

4. bindings are enacted by simply moving the bold links
to different concrete services in the list; and, finally

5. the engine is re-started to continue the workflow exe-
cution.

The approach described above and the architecture
present several advantages. Namely, there is no need to
perform any change in the BPEL4WS language nor in the
workflow engine to support the use of abstract services in
the workflow. Also, when performing a replanning, the only
intervention to be done is to change the bindings to concrete
services, and then to restart the workflow execution.

The proposed architecture also encompasses monitoring
facilities1. Briefly, all the needed information (QoS es-
timates, paths followed in the workflow) is collected by
means of services invoked by probes inserted in the work-
flow using instrumentation (see Figure 4).

6 Empirical Study

We used numerical simulations to evaluate the proposed
approaches for triggering and realizing workflow replan-
ning during execution. The experiments were run on a Pen-
tium IV with 1800 MHz processor, 640MB of RAM. The
QoS values of semantically equivalent services were vary-
ing according to some Gaussian distribution function, and

1Out of scope of this paper, details can be found in the technical re-
port [6].
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Figure 5. TravelPlan process

better response time and availability offers corresponded to
higher costs.

For both experiments, we used an elitist GA (the best
two individuals were kept alive over subsequent genera-
tions), a population of 50 individuals and 200 GA gener-
ations. The crossover probability was set to 0.7 while the
mutation probability to 0.01.

For our experiments we took some realistic examples of
service composition and reproduced situations for workflow
replanning on them. Then we made several runs in order
to evaluate the overall benefit of replanning on the result-
ing QoS. Figures 5 and 6 show two concrete examples of
abstract service orchestrations. The first is concerned with
a travel planning service, whose control structure includes
sequence, flow and switch constructs. The process essen-
tially describes a search for availability of a flight to, and
accommodation in, a certain city, the nearest possible to
some target place in that city, which could be, for exam-
ple, a tourist attraction. The output of the service should
also include information about the total cost of the travel.
According to the arrival time of the flight and the latest pos-
sible hotel check-in, the cost of a cab rather then a shuttle
ticket should be included. Also, two possible alternatives,
either a car rental or a metro card, are offered according
to the distance of the tourist attraction from the hotel. The

AS1

AS2

AS3

Receive

MP3search

getAlbum

compressFile
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a) b)

[i <= number]

[i > number]

[i <= number]

Figure 6. CDMaker process

whole plan and its costs are then presented to the customer
for approval and booking. The abstract services needed by
the process are: at one side a tourist information service
to provide the address of the target attraction, with hotel
search, and a flight information service to plan the travel at
the other side. Then services, such as car rental or transport
information are used to inquire about additional costs. For
this example, we have assumed that, with probability 0.75,
a shuttle would be taken to reach the hotel, while, less prob-
ably, i.e., 0.6, (a convenient) hotel would be close to the at-
traction. Also, we suppose that a customer has required that
the response time of the whole service should not be above
14 seconds and that the cost for its usage should be mini-
mal. The second example is a very simple CD composition
process, including sequence and loop constructs. Given the
title of an album, it describes a search for, and compression
of, the MP3 files composing it. Here, we have assumed that
any album would contain about 20 songs on average, while
a customer has required that the overall cost be less then 14
dollars and the response time be minimal.

6.1 Empirical Study Results

These examples have been thought to highlight the three
possible causes for replanning, that is: deviation of the
actual QoS of the candidate services, more accurate re-
estimations of the overall QoS after decision points of the
workflow, and under-estimation of the number of iterations
for loops. Obviously, a consequence of these changes could
be the violation of some global constraints. A selection of
representative results from our experiments is shown in Ta-
ble 1.
The first row of the table corresponds to the scenario where
a high deviation of the actual response time (T) from the
estimations occurred for some of the composing services.
Consequently, a time constraint violation was foreseen, as
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Process Initial Est QoS Replanning QoS Final QoS
T [s] C T [s] C T [s] C

TravelPlan 13.86 1.9 22.1 1.87 13.9 1.7
TravelPlan 13.86 1.89 24.62 1.97 14.81 1.82
TravelPlan 12.45 1.96 22.8 2.03 13.39 1.97
CDMaker 1927.65 13.8 2021.88 14.46 2567.75 10.39
CDMaker 1927.65 13.8 - - 2471.65 10.26

Table 1. Initial, replanning and final QoS val-
ues

the second column shows, before the execution of the shut-
tle ticket service, and a replanning was applied, which al-
lowed for the time constraint to be met. It should be noted
that the final cost (C) was even less then the one initially es-
timated as optimal because the aggregation formula for the
branch construct had resulted in an over-estimation of the
cost and time values. The final response time value also ac-
counts for the time spent by the replanning algorithm, which
was of about 1 sec.

The second and third rows of the table refer to the case
where the less likely branch was executed, i.e., the cab
choice, so that the initial QoS estimation was not at all ac-
curate and, again, the time constraint would have been vi-
olated. The workflow slice to which replanning was ap-
plied in both cases is shown as a dashed area in Figure 5.
However, in the first case, the replanning did not solve the
problem, as the final response time was still above the limit.
While an acceptable solution was found by the optimiza-
tion algorithm, the additional time of the replanning algo-
rithm (i.e., 1 sec.) caused the violation of the constraint.
Thus, in general, the cost of the replanning process should
be estimated and a decision on whether or not trying to do
replanning should be taken accordingly. Instead, the third
experiment shows a successful replanning with respect to
the time constraint, but with a sub-optimal final cost.

Figure 7. TravelPlan results

The forth row of the table reports the experiment where
a replanning was performed due to an under-estimation on
the number of songs, i.e., 20 instead of 21. This would
have lead to the violation of the cost constraint. The replan-
ning was triggered before entering the loop, when the new
cost estimation was computed as soon as the actual number

Figure 8. CDMaker results

of songs of the requested album was known. The work-
flow slice and the new bindings are shown in Figure 6-b).
The fifth row shows the results from the situation where the
song download service selected turned not to be available.
The replanning lead to a much higher time, i.e., 2471 sec.
instead of 1927, but with a save in cost.

Figures 7 and 8 report the evaluation of the effects of
replanning on the final QoS, considering two possible con-
straints for each process. We made about 1100 runs of each
workflow, where the actual response time of the chosen ser-
vices was varying according to a standard deviation up to
30%, and considered the mean QoS values. The essen-
tial observation is that, in both examples, replanning was
successful on average, i.e., the constraints were finally met.
Further, the results we obtained indicated a loss in cost of
about 7% after replanning in the case of the TravelPlan pro-
cess and up to 44% in the response time in the case of the
CDMaker process.

7 Conclusions

This paper presented an approach to replan, at execu-
tion time, the binding between a composite service and its
invoked services. During service execution, the QoS at-
tributes are monitored and replanning is triggered if the
SLA is violated, if there is a high likelihood to violate it,
or if deviation between estimated and actual QoS is very
high. The triggering algorithm proposed permits an early
activation of the replanning, so to prevent risks as soon as
possible. Once replanning is triggered, the workflow slice
that (possibly) still remains to be executed is determined
and rebound to concrete services. Finally, the workflow ex-
ecution is restarted. A proxy architecture is used to enable
dynamic binding and replanning.

The case studies showed the feasibility of the approach.
During service execution, if the QoS constraints were vio-
lated or if a service was not available, the replanning was
able to determine new bindings that permitted to complete
the service execution while satisfying the SLA. For services
requiring a quick response, it is necessary to pursue a trade-
off between a possible improvement gained with replanning
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and the replanning overhead on response-time. Future work
is devoted to thoroughly study the above mentioned trade-
off issues, as well as to perform an in field evaluation of the
proposed approach on complex composite services.
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