
A QoS broker based architecture for efficient web services selection

 *M.Adel Serhani, *Rachida Dssouli, **Abdelhakim Hafid, **Houari Sahraoui
*Concordia University Department of Electrical and Computer Engineering 1455 de

Maisonneuve Blvd. West Montreal, Quebec, H3G 1M8, Canada

**Département d'Informatique et recherche opérationnelle Université de Montréal CP 6128

succ Centre-Ville, Montréal QC H3C 3J7, Canada

{m_serhan, dssouli}@ece.concordia.ca, {ahafid, sahraouh}@iro.umontreal.ca

Abstract

Quality of Service (QoS) support in web services

plays a great role for the success of this emerging

technology. In this paper, we present a QoS broker-

based architecture for web services. The main goal of

the architecture is to support the client in selecting

web services based on his/her required QoS. To

achieve this goal, we propose a two-phase verification

technique that is performed by a third party broker.

The first phase consists of syntactic and semantic

verification of the service interface description

including the QoS parameters description. The second

phase consists of applying a measurement technique to

compute the QoS metrics stated in the service interface

and compares their values with the claimed one. This

is used to verify the conformity of a web service from

the QoS point of view (QoS testing). A methodological

approach to generate QoS test cases, as input to QoS

verification is used. We have implemented a prototype

that includes the verification and certification

components of the broker. We performed experiments

to evaluate the importance of verification and

certification features in the selection process using

real web services.

1. Introduction

QoS support for web services is among the hot

topics attracting both researchers from academia and

industry. During the emergence of web services

technologies, researchers focused more on the

functional and interfacing aspects of web services (i.e.

Simple Object Access Protocol (SOAP), Web Service

Description Language (WSDL), etc.). QoS delivered to

a client may be affected by many factors, including the

performance of the web service itself, the hosting

platform, and the underlying network. QoS

management has been extensively studied in network-

based multimedia applications as well as web-based

applications. In the context of web services, the

research issue is very recent.

Nowadays, both Web Services providers and clients

are concerned with the QoS guaranteed by web

services. From the client point of view, web service

based QoS selection is a multi-criteria decision

mechanism that requires knowledge about the service

and its QoS description. However, most of clients are

not experienced enough to obtain the best selection of

web service based on its described QoS. They simply

trust the QoS information published by the provider;

however most of web services providers do not

guarantee and assure the level of QoS offered by their

web services.

An open and multi-player testing environment is of

paramount importance for the efficient selection of

web services. This will enable third parties including

web services clients and third party certification

entities to verify the conformity of the features as well

as the consistency of the QoS claimed by web service

providers. A set of verification procedures is essential

for providers to remain competitive and for clients to

make the right selection and trust the published QoS

metrics. Performing QoS verification is not an easy

task since it is done at runtime and requires

considerable information exchanges between entities

involved in this process (provider, broker, and clients).

Therefore, it is essential for the success of any QoS

based web services architecture to support a set of

novel features: (1) QoS verification and certification to

guide web services selection; (2) QoS-aware web

services specification, publication, and discovery; (3)

QoS measurement and monitoring. In this paper, we

propose a broker-based architecture for web services

selection and QoS management. The role of the QoS

broker within the architecture is to support QoS

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

provisioning and assurance in delivering web services.

It introduces and implements the concept of QoS

verification and certification, which is used together

with the QoS requirements in the selection process of

web services. The proposed QoS broker is to be used

as a third party Web Service, itself published in UDDI

registries. It is invoked when a user requests a web

service with QoS requirements. We present the

operations of the QoS broker while processing user

requests with QoS requirements.

The remainder of the paper is organized as follows.

In Section 2, we briefly present related research and

identify the limitations of existing approaches dealing

with QoS for web services. In Section 3, we describe

the architecture and the design of our proposed QoS

broker. Section 4 describes the implementation of the

QoS verification and certification modules Section 5

introduces the prototype implementation Section 6

concludes the paper and presents future research

investigations.

2. Background and related work

Web services paradigm is a recent concept of

emerging web applications. It connects a set of

technologies, protocols, and languages to allow

automatic communication between web applications

through the Internet. A Web Service is an application

that exposes its functionality through an interface

description and makes it publicly available for use by

other programs. As web services are a new emerging

technology, most existing work focuses more on their

development and their interfacing practices. QoS

support in web services, and in particular QoS

management, is still an immature research area. Efforts

are still carried for enumerating the requirements and

defining the approaches. In addition, standard web

services protocols such as WSDL and UDDI were

designed mainly for their functional features with only

minor consideration for QoS support and verification.

Until recently, considerable efforts have been

conducted to work on QoS for web services. DAML-S

provided an upper ontology for semantic description of

web services, including specification of functionalities

and QoS constraints [8]. IBM proposes Web Service

Level Agreements (WSLA), which is an XML

specification of SLAs for Web Services, focusing on

QoS constraints [9]. Web Service Offerings Language

(WSOL) has been developed for the formal

specification of various constraints, management

statements, and classes of service for Web Services

 [10]. Early framework supporting QoS-enabled web

services are proposed in [8, 12]. [7] proposes a model

for web services discovery that includes the functional

and non-functional requirements of web services (i.e.

QoS). A certification approach is introduced in the

proposed framework; the goal is to certify QoS claims

by providers and verify these QoS claims for the

clients. The certifier introduced in the architecture [8]

is not well defined and not implemented; it does not

describe the details of the certification process.

Furthermore, it neither verifies the WSDL content nor

controls the delivery of the selected QoS. In [11],

authors present a description and an implementation of

broker-based architecture for controlling QoS of web

services. The broker acts as an intermediary third party

to make web services selection and QoS negotiation on

behalf of the client. Delegation of selection and

negotiation raises trustworthiness issues mainly for

clients. Performance of the broker is not considered in

this approach. Moreover, performance of the broker

can be a key to the success of any proposed

architecture; if the user does not get a response to

his/her request with an acceptable response time,

he/she will switch to another provider. Some similar

broker based architectures were presented in [12] and

 [13] that focus more on the QoS specification using

XML schema, and dynamic QoS mapping between

server and network performance. In [14], Tsai et al

suggested test scripts specification techniques to

perform testing with the UDDI server. The verification

tests are performed in UDDI registry that does not

support QoS-aware web service publication and

discovery. Most of the above works do not consider

performance evaluation of web services and scalability

issue while the number of clients is continuously

increasing and their requirements are always changing.

In the next section, we describe the design of the

proposed QoS broker-based architecture; we describe

in details the QoS verification and certification

functions.

3. QoS broker based architecture:

components and interfaces

3.1. Architecture description

The architecture extends the standard Service

Oriented Architecture (SOA) [1] [2] with QoS support

for web services. It includes QoS description during

the service publication, and performs dynamic QoS-

aware invocations. In addition, it verifies, certifies,

confirms, and monitors QoS dynamically via a web

service-based broker. The architecture involves four

main participating roles the web service broker, the

web service provider, the client, in addition to a QoS-

enabled UDDIe registry [15]. Components of the

architecture are presented in figure 1. A sequence of

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

interactions between these components is presented in

figure 2.

Figure 1. A QoS broker-based architecture

Figure 1 presents an architecture based broker with

features that overcome limitations, of existing

approaches, described above. Its important features

include the support of service selection based on client

requirement, QoS verification and certification. QoS

verification is the process of validating the correctness

of information described in the service interface as

well as the described QoS parameters. The QoS

verification is performed using an approach that

generates test cases to measure QoS parameters. The

verification will be used as input for the certification

process that will be issued when the verification

succeed. The broker arbitrates the negotiation process

between clients and their providers until they reach an

agreement. During web service invocation, the broker

measures dynamically QoS attributes and uses their

values to monitor the provision of the selected QoS

level; then, it notifies the interested entities of any

violation. The broker updates, regularly, its database

whenever significant changes happen. In the

architecture, the certification process goes beyond

certifying just the QoS provider’s claims. Additional

tests can be performed to make sure that these QoS

claims are fulfilled.

The broker publishes its interface description in the

UDDIe registry (operation 1 in Figure 1). A web

services provider looks for the broker’s WSDL

document in the UDDIe registry (operation 2). Then, it

requests the broker to certify the web services and their

supported QoS (operation 3). The certification is

performed before issuing a certificate, the provider

publishes his/her QoS-aware web services in the

UDDIe registry (operation 4). Clients can check the

UDDIe registry for QoS-enabled web services

satisfying their needs (operation 5). Before starting in

the negotiation process with the provider, clients have

the possibility to confirm that the published classes of

QoS have been previously certified by the broker

(operation 6). The broker arbitrates the QoS

negotiation between the client and the provider

(operation 7). If an agreement is reached, the client

binds to the web service using the agreed class of QoS

(operation 8). During invocation, the client can ask the

broker to monitor and control the delivered QoS

(operation 9 and 10). If the QoS degrades, the broker

notifies the provider who initiates QoS adaptation in

order to maintain the agreed QoS (operation 11). The

QoS renegotiation is initiated if the adaptation

operations fail to maintain the agreed QoS (operation

11). The processes terminate by releasing resources

and issuing the corresponding bill (operation 12).

Figure 2. Architecture component interactions

3.1.1. Web services broker. The web services broker

assists clients in selecting web services based on a set

of QoS parameters. The broker is a web services

performing a collection of QoS functionalities. It is the

entity that performs the verification and certification

tasks. It is also involved in other operations, such as

QoS negotiation, monitoring, and adaptation.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

3.1.2. Web services provider (server). The provider

is the entity that develops the web service and

describes its functionalities in addition to the QoS it

provides.

3.1.3. Web services client. The client application

operates as a service consumer of the advertised web

services

 3.1.4. UDDI enabled QoS registry. UDDIe is a

registry that supports QoS aware web services

publication and discovery [15]. It supports the notion

of “blue pages”, to record user defined properties

associated with a service, and to enable discovery of

services based on these.

3.2. QoS support in web services

With the integration of Web Services as a business

solution in many enterprise applications, the QoS

presented by Web Services is becoming the main

concern of both service providers and clients.

Providers need to specify and guarantee the QoS in

their web services to remain competitive and achieve

the highest possible revenue from their business. On

the other hand, clients aim to have a good service

performance (e.g. high availability, short response

time, etc.).

3.2.1. QoS parameters for web services. QoS for web

services represents the non-functional aspects of the

service being provided to the web service users. A

wide variety of QoS parameters for web services have

been presented in pervious work ([3][4][5][6][7]). For

the sake of our experiments, we will consider the

following QoS attributes:

Response time (RT): is the time a service takes to

respond to the client request. This attribute is measured

at the client side and represents the difference between

time of sending the request and the time of receiving

an answer.

Service charge: is the cost involved in requesting the

service. The web service cost can be estimated by

operation or by volume of data.

Availability: the probability that the service is

accessible (available for use) [3] or the percentage of

time that the service is operating [4].

Latency: time taken between the time a service request

arrives and the time the corresponding response is

generated [7]. This metric is computed at the provider

side.

Reputation: is a measure of service trustworthiness. It

depends on end user’s experiences of using the service.

The value of reputation is given by the average ranking

given to the service by end users [4]; for example, in

Amazon.com, the range is [0,5].

3.2.2. Differentiated class of web service. We defined

classes of web services as proposed in [10] to allow a

differentiated QoS for different client’s profiles. Each

class is described by a set of QoS attributes a web

service can offer. It exposes different QoS attributes

with different values. Table 1 describes an example of

QoS classes of a web service according to a set of QoS

attributes.

Table 1. Differentiated class of services

 N/A: not applicable.

4. QoS broker verification and certification

model

Verification and certification are keys

differentiators of the proposed broker compared to

existing approaches ([7] [11] [12] [13]). Web services

providers request the QoS broker for QoS certification

before publishing their WSDL with QoS classes in

UDDIe registry. Before issuing a certificate, the web

service should pass a list of verification tasks. In the

following subsections, we describe the verification and

certification functions and show how they are used to

improve the utilization of web services.

4.1. Verification scenarios

The verification process is initiated by the service

provider through the “invokeBroker” operation of the

web service verifier. During the invocation the web

service provider supplies the verifier with its WSDL

document and additional information about resources

available at the provider platform (operation 1 in

figure3). Then, the verifier sends this document to the

WSDL parser. We developed a parser application that

extracts all useful information from the service

interface including the QoS properties (operation 2)

and stores them in its database (operation 3). This

information consists of a service name, its location, its

implementation description, the QoS properties names,

types and values. The next operation performed by the

service verifier is to test the service URI, the XML

schema definition, the service binding information, and

the availability of all operations described in the

 Class of web

 services

QoS Parameters

Class 1 Class 2 Class 3 … Class n

Response Time N/A 0.7 ms 0.5 ms 0.1ms

Latency N/A N/A 0.1 ms 0.01 ms

Availability N/A N/A 0.8 1 (100%)

Reputation N/A N/A N/A 5/5

Service charge 0.10 $ 0.2 $ 0.25$ 0.35$

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

service interface (operation 4). The service verifier

checks also if all the operations described in the

service interface are available.

The verifier goes beyond the above verification

functions and performs as well the verification of the

QoS information introduced in the service interface.

QoS verification is conducted through a set of test

cases generated by the service verifier to verify the

conformity of QoS properties claimed by a provider.

To perform each test case the verifier asks for

additional information about the provider and its web

service (Server capacity, Network bandwidth, etc.).

QoS verification process is detailed in the

implementation section and includes the verification of

Response Time, Availability, and the Price properties.

Once the verification operation is terminated the

verifier stores the verification result in its Database

(operation 5). It uses the stored information to generate

a verification report as shown in Figure 3 (operation6).

The service provider have the access to its verification

report via a web site and after being authenticated

using a specific username and password (operation 7).

Figure 3. Verification scenarios
The verification process deals with three verification

levels: general web services information validation,

WSDL document content validation, and QoS

description validation. A web service is said to be

compliant with a given level when it passes the

corresponding set(s) of tests described in the

verification document.

Based on this document, web service is classified

for example into one of the followings: Silver web

services, Bronze web services, and Gold web services.

A Bronze web service is, for instance, a service for

which most of the verification scenarios failed. A

Silver web service is a service for which more than

80% of verification tests succeeded. A web service is

qualified as Gold if all the verification tests succeeded.

4.2. QoS certification

Once the verification is passed successfully, the

certification process is initiated. The certification

process consists of issuing a certificate to the service

provider. These certificate states that the offered QoS

are conform to their descriptions. The web service

Certifier is implemented within the broker and is

responsible for certifying web services and their

provided QoS. A certificate is sent to the web services

provider and a copy is stored in the broker’s database

for future use. A certificate includes information such

as certificate number, certificate issue date, number of

years in business, services location. If, for some

reasons, a certificate cannot be issued, feedbacks are

sent to the provider. This may be due to the provider’s

resource limitations, to his bad reputation, etc

5. Implementation

To show the applicability of our broker-based

architecture for QoS enabled web services selection,

we developed a prototype. We implemented the web

service verifier and certifier, the WSDL parser, and the

broker components. For the sake of testing the

verification and certification process, we developed a

web services called Tri_Stat. The latest provides a set

of statistics and math functions (sorting algorithms,

statistic functions, etc.) and it also describes and

supports the set QoS metrics describes in section 3.2.

A java application has been developed to generate

clients that consume the Tri_Stat web service. The

prototype was developed using: WebLogic platform

8.1 with service pack 2, that include the application

server and the development environment (workshop)

 [16]. Oracle Database version 9i [17]. UDDIe server

that support QoS aware web services [15].

5.1. Verification platform

Figure 4 shows the testing platform and interactions

between the components: In the following, we briefly

describe these components.

Figure 4. Testing environment

T1T0

T3 T2

Clients

Generator Web Service

Provider

Broker

Verifier web service

S
o

ap

H
an

d
le

r

Invoke Web

Service Verifier +

other information

exchange (WSDL,

etc.)

Broker

WSDL Parser

Oracle

Database

Web services

Verifier

Provider and

theirs Web

Services

Web Site

Authentication

Generate

Verification Report

Provider

1

2

3

5

6

4

7

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

Broker Verifier: is designed as a web service. It tests

and verifies the QoS properties of a web service

(Response Time, Availability, Cost, etc.).

Client generator: is a multithread Java application

implemented to generate many instances of clients that

invoke the web service. It also computes the final RT

value and forwards it to the web services verifier. It

initiates a timer at the instance of sending the request

to the service (T0) and captures the time stamp once

receiving the answer (T3). The response time value is

the difference between these two time stamps (T3 –

T0).

Soap Handler: is a Java application developed by the

broker and integrated with the provider service to

intercept SOAP messages coming from clients. The

handler measures the time consumed in processing

each client request. It also forwards the processing

time (T2-T1) to the web services verifier who uses it to

compute the time consumed by the message in

transiting the network.

Web Service Provider: is the hosting environment

where web services are deployed and available for use

by clients.

5.2. Experiments

Our simulation model consists of a single broker, a

single web service and N concurrent clients. We

measured the RT and the availability attributes

measured the below equations (1, 2, and 3).

(1) RT = T3 – T0 Equation (1) can be rewritten to

include the network round-trip and the processing

delays as:

(2) RT = (T1 – T0) + (T2 – T1) + (T3 – T2)

(3) Availability (s) = <uptime> / <total-time>

= <uptime> / (<upTime> + <downtime>)

The uptime is total time the service has been up

during the measurement period. The downtime is the

total time the service has been down during the

measurement period. And the total-time is the total

measurement time.

We propose an approach to generate test cases for

three verification scenarios of RT and availability

properties. Each scenario takes into consideration

resources that may affect the evaluation of the above

QoS attributes. These resources might include the

network throughput, number of clients connected to

the service, the provider and the client server resources

capacity (Memory, CPU). Description of each scenario

and its related results are illustrated below.

Scenarios 1: We generate a set of concurrent clients

and we invoke the broker to calculate the RT and the

availability of the service. We increase the number of

clients until we reach the server capacity. The

objective of this experiment is to check if the RT is

stable with the increased load. The network connection

and the available resources at the client and the

provider are very limited.

Figure 5. Distribution of RT with increased
number of client

Figure 6. Distribution of availability with
increased number of client

Scenarios 2: the client application, the broker and the

web service are deployed on different networks

locations (LAN, Wireless) and executed at different

period of the week. We instantiate the clients, the

broker, the web service from different network

location and we measure the RT and the availability

properties at different period of the week. These

experiments are performed during the week end, and in

a light load. The objective of this experiment is to

check if the RT and availability are preserved with the

variation of network resources, the server load and the

period of evaluation.

Figure 7. Service RT in a low load conditions

RT sensitivity

0

5000

10000
15000

20000

25000

20 60 10
0

14
0

18
0

22
0

26
0

Number of Clients

R
es

p
o

n
se

T
im

e
(m

s)

Average RT

sensitivity

Web Service Availability

0

0.5

1

1.5

20 60
100 140 180 220 260

Number of clients

S
er

v
ic

e

A
v

ia
la

b
li

ty

Server

Availabilit

Web Service RT distribution

0

5000

10000

15000

20000

20 80 14
0

20
0

26
0

32
0

38
0

44
0

50
0

Number of Clients

R
es

p
o

n
se

T
im

e
(m

se
c)

Network Location 2

Network Location 1

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

Figure 8. Service availability in a low load
conditions

Scenarios 3: we use a limited resource capacity at

client, the provider and the broker platform (limited

CPU capacity, Dial UP Connection, and limited

memory size) and we try to initiate the broker to

evaluate the RT and availability under these

constraints.

Figure 9. RT distribution for different server
capacity

Figure 10. Service availability under different
server capacity

5.3. Results and analysis

The result obtained from scenario 1 and shown in

figure 5 demonstrates that the response time increase

linearly with the number of clients until it saturates at

280 active clients. Figure 6 shows that the service

availability is fluctuating with the first triggered

clients; and then the service remains soundly available

until it becomes 85% available at 220 clients. Latterly

the web service becomes unavailable at 280 connected

clients.. We conclude from this scenario that the

number of client, the network connexion, the service

resources capacity have a significant effect on response

time and the availability of the service.

 Scenario 2 shows that for high speed network

connection and higher resource available on the service

provider and the client’s platform; the service can

support until 500 clients from two locations. Under a

light load condition and using different network

location and significant resources at the client and the

provider platform; the service RT is sensibly small and

stable with the increased number of clients (figure 7).

Alternatively the service availability is very high and

stable with the increased number of connected clients

(figure 8). Afterwards it decreases sensitively at about

450 clients connected from two network location.

 From scenario 3 we conclude that the slowest server

has a significantly larger response time and smaller

availability than the fastest server (figure 9 and 10).

The service reject all receives request and stop

responding when it simultaneously deals with more

than 320 clients from different locations. Similar

behaviours are observed for the service availability that

starts to be partially available at 260 active clients from

each location and become totally unavailable at 380

clients from each location.

 Finally, the results of validation test cases show

significant influence of the server resources capacity,

the number of connected client, the network load on

the RT and the availability of a web service. The result

indicates that under light service load, delivery of QoS

for clients at different locations has no big difference

and all clients are satisfied. When the service is

overloaded clients with faster network connection and

less network overload have faster and more stable

responses. The QoS values computed from the above

experiments when compared with the described one

are still valid under the applied constraints. However,

the broker will exploit the results of these experiments

to evaluate the RT and the availability of the service to

its provider.

Validation of the other QoS attributes (price, and

reputation) described in table 1 is also achieved by the

broker. The service verifier store in its database all

Service Availability

0

0.5

1

1.5

20 80 14
0

20
0

26
0

32
0

38
0

44
0

50
0

Number of Clients

S
er

v
ic

e

A
v

ai
la

b
il

it
y

Network Location 1

Network Location 2

RT distribution

0

1000

2000

3000

4000

5000

6000

7000

8000

20 80 140 200 260 320 380 440 500
Number of Clients

R
es

p
o

n
se

 T
im

e
(m

se
c)

Slow Server

Fast Server

Service Availability

0

0.2

0.4

0.6

0.8

1

1.2

20 80 140 200 260 320 380 500

Number of Clients

S
er

v
ic

e
A

v
ai

la
b

il
it

y

Fast Server

Slow Server

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

important QoS information published in the service

interface. Then, it retrieves QoS information of web

services that offer the same functionalities. After that,

it analyses and evaluates the service charge and

reputation according to similar web services offering

the same properties. Based on this analysis the service

verifier can decide about the conformity of these QoS

to the service description. The validation of the latency

property is performed using the same architecture

described in figure 6 and can be measured using the

equation 2 stated in section 5.2.

6. Conclusion and future work

In this paper, we presented a QoS broker-based

architecture for web services. The goal of the broker is

to support web services QoS verification, certification,

confirmation, selection and monitoring. We described

the key features of the broker that are not supported by

existing approaches dealing with QoS for web

services. The main contribution concerns the design of

the broker that can be invoked by interested requesters

when developed and published as a web service. We

emphasize in our work more on the verification and

certification process, and we used a methodological

approach to measure the QoS attributes and generate

test cases for the verification purposes. Also, we

illustrated the applicability of the architecture roles

with prototype implementation.

We are convinced that the proposed architecture is a

good starting point for QoS management of web

services. The service provider does not have to design

and develop her/his own broker but just invoke one

from the published brokers. The client will also find a

good support during its web services selection using

the broker services.

The main weakness of the architecture is the cost of

its adoption. In fact, the broker should be fully

operational and its interface has to be known in

advance to the providers and clients. However, these

limitations are weighted against the benefits in terms of

QoS guarantees, and monitoring. We are working in

enhancing the proposed architecture to support

independent set of broker. These QoS broker will

compete collectively in delivering QoS management

for providers and clients of web services. This will

enable a more flexible, and trustable architecture.

Results of this work will be reported in a future paper.

Acknowledgments

The authors would like to thank Abdelmoujoud

Lakhlifi, from University of Montreal, for his help

developing and running the simulations.

7. References

[1] http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[2] D. Gisofli, “Web services architect: An introduction to

dynamic e-business”, IBM paper, April 2001.

[3] Daniel A. Menascé, “QoS Issues in Web Services”, IEEE

Internet Computing, December 2002.

[4] Liangzhao, “Quality Driven Web Services Composition”,

The Twelfth International World Wide Web Conference ,

Budapest, Hungary, May 2003.

[5] A. Mani and A. Nagarajan, “Understanding quality of

service for web services”, IBM paper, January 2002.

[6] Ying Li, Xiaochen DING, Ying CHEN, Dong LIU,

Thomas LI, “The Framework Supporting QoS-enabled

Web Services”, IEEE International Conference on Web

Services, Las Vegas, Nevada, USA, June 2003.

[7] Shuping Ran, “A Framework for discovering web

services with Desired Quality of Services Attributes”,

IEEE International Conference on Web Services, Las

Vegas, Nevada, USA, June 2003.

[8] DAML-S Coalition, DAMLS-S, “Web Service

Description for the Semantic Web”, In Proceeding of the

International Semantic Web Conference, June 2002.

[9] A. Keller and H. Ludwing, “The WSLA framework:

Specifying and Monitoring Service Level Agreements for

Web Services”, IBM Research Report, May 2002.

[10] V. Tosic, B. Pagurek, K. Patel, “WSOL A Language

for the Formal Specification of Classes of Service for

Web Services”, International Conference on Web

Services, Las Vegas, Nevada, USA, June 2003.

[11] Hongan Chen, Tao Yu, Kwei-Jay Lin, “QCWS: an

implementation of QoS-capable multimedia web

services”, IEEE Fifth International Symposium on

Multimedia Software Engineering, December 2003.

[12] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J.

Schiller, “A Concept for QoS Integration in Web

Services”, 4th International Conference on Web

Information Systems Engineering, Rome, Italy,

December 2003.

[13] M. Tian, A. Gramm, H. Ritter, J. Schiller, “Efficient

selection and monitoring of QoS-aware web services with

the WS-QoS framework”, IEEE/WIC/ACM international

Conference on Web Intelligence, Beijing, China,

September 2004.

[14] W.T. Tsai, R. Paul, Z. Cao, L.Yu, A. Saimi, B. Xiao,

“Verification of web services using an enhanced UDDI

server” Eighth IEEE International Workshop on Object-

Oriented Real Time Dependable Systems, Guadalajara,

Mexico, January 2003.

[15] Ali Shaikhl Ali, Omer F. Rana, Rashid Al-Ali, David

W. Walker, “UDDIe: An Extended Registry for Web

Services”, Workshop on Service Oriented Computing:

Models, Architectures and Applications, IEEE Computer

Society Press, Florida, USA, January 2003.

[16] BEA WebLogic platform, http://www.bea.com

[17] Oracle Database http://www.oracle.com

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

