
x
Loading

 Take our survey for a chance to win an HP ProLiant BL465c Server Blade Hi, ozturan | Logout | Preferences

�
�
�
�
�
�
�
� Analysis
� Interviews
� Webinars
� White Papers
� Case Studies

MPI on Multicore, an OpenMP Alternative?
No matter how you cut it, coding for multicore is really just parallel programming.Doug
Eadline explains the differences between OpenMP and MPI, when it’s smart to use existing
code and when it’s time to rewrite an application to scale better on multicore systems.

Douglas Eadline, Ph.D.
Tuesday, December 11th, 2007

No matter how you cut it, coding for multicore is
really just parallel programming. Once you’ve
realized that, it’s time to look at the options, whether
your existing codebase will scale, or if you need to
rewrite your code and how.

As stated in The Multicore Programming Challenge,
parallel programming can be difficult. It moves the
programmer closer to the hardware and further from
their application space or problem. Fortunately,
people like rocket scientists have been writing
parallel software for quite some time in the HPC (High Performance Computing) sector.

As any good programmer knows, an existing code base can be valuable to current
programming projects. First, the possibility of re-using existing code is a major incentive.
Also, learning how someone else attacked a similar problem is very valuable.

In the HPC sector, most parallel programs are written using Message Passing Interface (MPI).
While MPI is normally used on large computing systems (clusters) it can be also be used on a
multicore processor. The “MPI proposition” may seem counter to conventional wisdom as
MPI was designed for distributed memory (i.e. each core/processor has it own private
memory), whereas OpenMP was designed for shared memory.

The lazy assumption suggests that OpenMP is a better solution because it was designed for
shared memory. However, the possibility of re-using an existing MPI code base is worth
considering before you spend a month(s) re-inventing the software wheel. Ultimately, the

Community Tools

Recommend This
 (No Ratings Yet)

 Loading ...
Tags:

 2 Comments (view all)

ShareThis

question is really about efficiency. Namely, How does the performance of MPI compare to
OpenMP on a multicore system?

The answer to this question is important. If I can re-use MPI codes that work well enough on
multicore, then there is no need to (re)write my application using OpenMP. If, on the the other
hand, OpenMP or threads provide scaling benefits sufficient enough to justify re-writing the
code, then investing the time in re-coding might be in order.

Although your application(s) are always the ultimate test of hardware, a comparison of the
same program written in MPI and OpenMP would be interesting. Fortunately for us, the
people at NASA (the rocket science guys) have an interest in such things as well. The
venerable NAS Parallel Suite is now available in MPI, OpenMP, Java, and HPF.

This enhancement means a head to head comparison of MPI and OpenMP is possible. (I’ll
leave the Java and HPF runs as an exercise for the reader). Before we get to the main event
however, some background on how OpenMP and MPI differ may be helpful.

OpenMP and MPI Primer

Enter to Win an HP BladeSystem for Your IT
Infrastructure

Linux Simply Runs Better on ProLiant Servers

Harness the Power of Virtualization for Server
Consolidation

SUSE Linux Enterprise Server: The Solution for
Mission-critical Computing

� Video
� Podcasts
� White Papers

Interview: Intel's Richard Dracott
(Part One)
Doug Eadline talks with Intel's Richard
Dracott, General Manager of the High
Performance Computing Organization.

IBM Blue Gene is the World's
Fastest Supercomputer
Doug Eadline visits the IBM booth at
SC'07 to get a look at IBM's Blue Gene.

Page 1 of 5MPI on Multicore, an OpenMP Alternative? | Linux Magazine

5/7/2008http://www.linux-mag.com/id/4608

Because native Pthread programing can be cumbersome, a higher level of abstraction has been
developed called OpenMP. As with all higher level approaches, OpenMP sacrifices flexibility
for the ease of writing code. At its core, OpenMP uses threads, but the details are hidden from
the programmer.

OpenMP is implemented as compiler directives in program comments. Typically,
computationally heavy loops are augmented with OpenMP directives that the compiler uses to
automatically “thread the loop”. This type of approach has the distinct advantage that it may
be possible to leave the original program “untouched” (except for comment-directives) and
provide simple recompilation for a sequential (non-threaded) version where the OpenMP
directives are ignored. (Read the OpenMP Web site to get the complete picture.)

For those who don’t follow software trends, but instead rely on the crack Linux Magazine
columnists to provide them with all the important advances, GCC 4.2 (and later) has support
for OpenMP. This is important for the open source crowd, because OpenMP was only
available in commercial compilers before GCC 4.2 was released.

GCC 4.2 has not found its way into all distributions, so you may need to download and build it
from source if you want to play along with this article. Of course if you have a commercial
compiler, it probably already has OpenMP support.

For gcc and gfortran, OpenMP programs can be compiled by including the -fopenmp option.
In order to test this new capability, I found an OpenMP version of the ubiquitous matrix
multiplication program. I built two versions of the program, one with OpenMP enabled and
one without:

$ gfortran -fopenmp -o matmult_omp matmult.f
$ gfortran -o matmult matmult.f

Then I ran the sequential version on an Intel Core 2 Duo system (two cores):

$time ./matmult

real 0m9.079s
user 0m8.988s
sys 0m0.012s

The OpenMP version was run as well. Note that there is a environment variable called
OMP_NUM_THREADS that will tell OpenMP binaries how many threads to use. If this is not
defined, one thread per CPU (core) is used. Ultimately however, the maximum number of
threads may be defined by the program. The OpenMP results for two cores is shown below.)

$ time ./matmult_omp

real 0m4.967s
user 0m9.783s
sys 0m0.018s

The OpenMP version reduced the wall clock time by forty five percent. Astute readers may be
wondering, why the user time is almost double the real time. This effect is due to using two
cores, i.e. your total CPU time is a sum of the cores your application is uses. As we will see
below, the user time can be quite a bit higher than the real time for eight cores.

In contrast to OpenMP, MPI uses a software library to send data from one process to another.
Each process has its own memory space and thus MPI is basically a message copying
methodology. In addition, MPI makes no distinction where a process runs. It can run on the
same machine or on another machine. If one were to time an 8-way OpenMP and MPI
program, the following would result (OpenMP is run first.):

$time bin/cg.B
real 1m11.735s
user 9m23.287s
sys 0m2.012s

$time mpirun -np 8 bin/cg.B.8
real 1m16.138s
user 0m0.000s
sys 0m0.004s

In the first case, OpenMP shows a real time of about one minute with user time of almost 9
and a half minutes indicating a good speed up. In the second case, the MPI run shows a
comparable real time, but zero user time. This result is easily understood in terms of how MPI
jobs are run. The mpirun command starts each separate MPI process and then waits until they
are finished, thus no user time. OpenMP jobs, however, share a process space which makes
them tractable to the OS.

The Process View

While we are talking about OpenMP and MPI, there’s one big difference between these
programming methods in terms of the OS process space. OpenMP programs run as a single

Free Email Newsletters

Blade & Virtualization Linux
Magazine Case Study Update Linux
Magazine Webinar Update Linux
Magazine White Paper Update Linux
Magazine PR Daily

Simplify deployment of clusters using
reference architecture and tools. Intel
Cluster Ready:
http://www.intel.com/go/cluster

The HP BladeSystem C3000
Same capability. Less space. No
compromise.

HP

gfedc gfedc

gfedc

gfedc

gfedc

Subscribe

SPONSORED LINKS

Page 2 of 5MPI on Multicore, an OpenMP Alternative? | Linux Magazine

5/7/2008http://www.linux-mag.com/id/4608

process and the parallelism is expressed as threads. This behavior can be viewed quite clearly
when using an eight core server (two quad-core processors). For instance, examining a running
OpenMP program using top shows only a single process running. (See Figure One)

Figure One: OpenMP program (cg.B) running on eight cores.

In contrast to the OpenMP, MPI actually starts one process per core using the mpirun -np

8 ... command. This situation is shown in Figure Two where an MPI version of the same
program is now running. Note the number of processes is now eight. The processor (core)
loads are about the same for both, however.

Figure Two: MPI program (cg.B.8) running on eight cores.

One final and subtle point. In OpenMP communication is through shared memory, which
means threads share access to a memory location. With MPI programs on SMP systems
communication is also through shared memory, but processes send messages by writing from

Page 3 of 5MPI on Multicore, an OpenMP Alternative? | Linux Magazine

5/7/2008http://www.linux-mag.com/id/4608

private to shared memory.

Obviously, sharing memory locations seems more efficient than sending copies of memory
locations to other processes, but it all depends. In the MPI process model, single processes
have exclusive access to all their process memory. For some programs this situation may be
more efficient because it is better to copy data (send a message) than to wait for shared
memory access. On the other hand, in the OpenMP model, threads can share access to all
memory in the process space. In this case, some programs may be much more efficient as the
large overhead of copying memory is not needed.

Looking at the Numbers

An eight-core Intel server (two four core Clovertown processors) was used to run the tests.
The OpenMP tests used gcc/gfortran version 4.2. The MPI tests used LAM version 7.1.2. The
OpenMP and MPI suites have six programs in common and each of these was run five times
and averaged (Class B problem sizes were used). The results are given in Mops (million
operations per second) in Table One. The percent difference is also shown.

Table One: Results for the OpenMP/MPI benchmarks. (winning test is in bold)

Tests CG and EP are about the same. Indeed, EP is a good check as both methods should
produce a similar result because there is very little communication. OpenMP is the clear
winner with FT performance, but MPI does surprisingly better with the latency sensitive IS
benchmark. In the fifth test, OpenMP does best with the LU benchmark, while MPI does best
with MG. Overall the comparison is a bit of draw.

The results are clear on one point, there is not a definitive winner in this match-up. This result
may come as a surprise to those who would assume, OpenMP would easily beat MPI on an
multicore machine. (Or any SMP machine for that matter.) Maybe MPI is good enough to
stand toe-to-toe with OpenMP for many applications.

In only one case (FT), did OpenMP run away from MPI. In other cases, MPI was a clear
winner, and taking the time to convert your code to OpenMP would actually result in a
performance loss. The story is far from over, more benchmarks are in order using other
hardware and commercial compilers.

Other Things to Consider

Test OpenMP
gcc/gfortran 4.2

MPI
LAM 7.1.2

Percent
Difference

CG 790.6 739.1 7%

EP 166.5 162.8 2%

FT 3535.9 2090.8 69%

IS 51.1 122.5 139%

LU 5620.5 5168.8 9%

MG 1616.0 2046.2 27%

Getting back to our question, “do I need to re-code my MPI programs for these multicore
thingies?,” the answer is a resounding maybe not. MPI may just be good enough in many
cases. Again, more data, and results for your application are needed for more solid
recommendations.

Another important question to ask is how scalable your application is. As more processors are
added, parallel execution will always hit a point of diminishing returns. This situation means
that creating more threads or processes will not improve performance and it may actually hurt
performance. The size of your data set may also come into play. One of the advantages of
distributed MPI programs is the ability to distribute large data sets over many processors
thereby solving problems that would never fit in an SMP memory space.

If you’re considering a writing a new application from scratch, the choice of OpenMP or MPI
includes other considerations. OpenMP is designed for shared memory (SMP) machines. As
multicore continues to grow the number of processors on an SMP will continue to grow, but
OpenMP is not designed to run across multiple machines like MPI.

If you want your application to be portable on clusters and SMP machines, MPI might be the
best solution. If, however, you do not envision using more than eight or sixteen cores, then
OpenMP is probably one of your best choices if the benchmarks point in that direction. From a
conceptual standpoint, those with experience in both paradigms state that using OpenMP and
MPI provide a similar learning curve and nuance level. There are no shortcuts or free lunches
with OpenMP, or MPI for that matter.

Douglas Eadline is the Senior HPC Editor for Linux Magazine.

2 Comments on MPI on Multicore, an OpenMP

Page 4 of 5MPI on Multicore, an OpenMP Alternative? | Linux Magazine

5/7/2008http://www.linux-mag.com/id/4608

Alternative? »

 Comments via RSS

Reply to this comment

Reply to this comment

 Comments via RSS
You are logged in as ozturan. Logout »
Have a Gravatar? Your Gravatar pic will appear next to your comments. [?]

Your Comment

You may use <abbr title=""> <acronym title=""> <blockquote cite=""> <code>
<i> <strike> in your comment.

Could you post (the link to) the OpenMP and MPI source code for OpenMP/MPI
benchmark apps on the web?

April 8th, 2008 11:00 PM (permalink)

hzmonte said: +0

There is a link in the article. Here it is again:

NAS Parallel Suite:

http://www.nas.nasa.gov/Resources/Software/npb.html

April 17th, 2008 12:57 PM (permalink)

deadline said: +0

Add comment

About | Contact Us | Privacy Policy | FAQ | RSS
Back Issues | Subscribe | Give a Gift | Renew | Customer Service | Change Address | Advertise
© Linux Magazine 1999-2008 All rights reserved.
LinuxMagazine.com v4.0

Page 5 of 5MPI on Multicore, an OpenMP Alternative? | Linux Magazine

5/7/2008http://www.linux-mag.com/id/4608

