
Self-training a Constituency Parser using N -gram Trees

Arda Çelebi and Arzucan Özgür

Department of Computer Engineering
Boğaziçi University

Bebek, 34342 Istanbul, Turkey
{ arda.celebi arzucan.ozgur } @boun.edu.tr

Abstract
In this study, we tackle the problem of self-training a feature-rich discriminative constituency parser. We approach the self-training
problem with the assumption that while the full sentence parse tree produced by a parser may contain errors, some portions of it are
more likely to be correct. We hypothesize that instead of feeding the parser the guessed full sentence parse trees of its own, we can
break them down into smaller ones, namely n-gram trees, and perform self-training on them. We build an n-gram parser and transfer the
distinct expertise of the n-gram parser to the full sentence parser by using the Hierarchical Joint Learning (HJL) approach. The resulting
jointly self-trained parser obtains slight improvement over the baseline.

Keywords: Self-training, Constituency Parsing, n-gram Trees

1. Introduction

While statistical approaches for the supervised parsers
reach their highs, semi-supervised approaches like self-
training of parsers is starting to emerge as a next challenge
in the field. A self-trained parser starts its training with a
seed set. At some point during its training, it uses what
it has learned so far to process newly given sentences and
adds the outputted parse trees into its existing training set.
It continues to train on an extended training set. If it ex-
ceeds the accuracy of the original model, which is trained
on the initial seed training set, self-training, that is learning
from its own output, is achieved.

We approach the self-training problem with the assumption
that while the full sentence parse tree produced by a parser
may contain errors, some portions of it are more likely to be
correct. We hypothesize that instead of feeding the parser
the guessed full sentence parse trees of its own, we can
break them down into smaller subtrees and perform self-
training on them. We refer to these subtrees as n-gram
trees.

Due to their “not-complete” nature, we consider the n-gram
parsing task to be different from the full sentence parsing
task. In our recent study, we proposed an approach for n-
gram parsing and showed that jointly training a discrimina-
tive full sentence parser with an n-gram parser improves the
performance of the full sentence parser (Çelebi and Özgür,
2013). In this paper, unlike the prior work that self-train
full sentence parsers, we self-train n-gram parsers to boost
the accuracy of a full parser. We employ the Hierarchical
Joint Learning approach, which is described by Finkel et
al. (2008), to train the n-gram parser and the full sentence
parser with each other simultaneously. This allows the full
sentence and self-trained n-gram parsers to “transfer” their
knowledge to each other during training. This also includes
the transfer of the updated knowledge of the n-gram parser
gained from its own output.

2. Related Work

In the syntactic parsing literature, almost all of the stud-
ies have been based on supervised or semi-supervised
methods, with a couple of exceptions of unsupervised ap-
proaches, such as (Klein and Manning, 2004). Even though
supervised methods achieve the best results, in the absence
of sufficient annotated data, they can be outperformed by
semi-supervised methods. Self-training is one approach for
semi-supervised learning. In self-training, small amount of
labelled data is used to annotate unlabelled data, which be-
comes the labelled data for the learner at the next cycle of
its training.

One of the first studies on using self-training for parsing
was proposed by Charniak (1997), who first trained a parser
on the Penn treebank (Marcus et al., 1993) and then used
automatically parsed 30 million words from Wall Street
Journal (WSJ) to extent the initial training data. How-
ever, the self-trained parser failed to outperform the orig-
inal model. Roark and Bacchiani (2003) trained Roark’s
parser on the Brown treebank, then self-trained and tested
it on data from the WSJ. While they show some improve-
ment, their parsing results were lower than the state-of-
the-art levels. In another study, Steedman et al. (2003)
observed that self-training did not yield a significant gain
unless the baseline results were sufficiently bad, support-
ing (Roark and Bacchiani, 2003). Reichart and Rappoport
(2007) also showed that one can self-train with a generative
parser only if the seed training data size is small.

In (McClosky et al., 2006), they used a generative parser
and a discriminative reranker. They trained their system
on the Penn treebank and used that trained parser to parse
the North American News Text Corpus. They obtained an
absolute 1.1 F1 score improvement over the previous best
result on the Penn treebank. Despite this encouraging suc-
cess, to our knowledge, there hasn’t been any research that
achieved self-training of a parser that runs on a discrimina-
tive approach with no reranker.

2893



Figure 1: Sample 4-gram tree extracted from a full parse tree.

3. Background
In this section, we briefly describe the model behind our
discriminative constituency parser, the concept of n-gram
parsing, and our approach for combining full and n-gram
parsers using hierarchical joint learning.

3.1. Discriminative Constituency Parsing
Proposed by Lafferty et al. (2001), Conditional Random
Fields (CRFs) is a discriminative model which directly op-
timizes the conditional likelihood of an unobserved variable
given the observed data. Discriminative parsers maximize
the conditional likelihood of the parse tree given the sen-
tence, that is P(t| s;θ).

P (t|s; θ) = 1

Zs

∏
r∈t

φ(r|s; θ) (1)

Equation 1 describes how to calculate the conditional like-
lihood of a parse tree t given sentence s. In this equa-
tion, CRF-based context-free grammar (CRF-CFG) is rep-
resented with local clique potentials φ(r|s; θ), where r is
one-level subtree of a parse tree t and Zs is the partition
function. The partition function is calculated over all pos-
sible parse trees τ(s) for a given sentence and then used to
normalize the probabilities in Equation 1.

Zs =
∑
t∈τ(s)

∏
r∈t

φ(r|s; θ) (2)

φ(r|s; θ) = exp
∑
i

θifi(r, s) (3)

Local clique potentials are used to score rules in the Inside-
Outside algorithm. Their values are not probabilities but
non-negative numbers calculated by taking the exponent of
the dot product of the feature vector f(r, s) and parameter
vector θ. The feature fi(r, s) is an indicator function that
tells whether feature i is active for given rule r and sentence
s.

L(D; θ) =
∑

(t,s)∈D

(∑
r∈t

〈f(r, s), θ〉 − logZs,θ

)
−
∑
i

θ2i
2σ2

(4)

Given a set of training examples, the goal is to choose
the parameter values θ such that the conditional log likeli-
hood of these examples, i.e., the objective function L given

in Equation 4, is minimized. In this paper, we use the
same implementation and features described in (Çelebi and
Özgür, 2013).

3.2. n-gram Parsing

n-gram parsing refers to the process of predicting the syn-
tactic structure that covers n consecutive words in a sen-
tence. This structure is called an n-gram tree. A sample 4-
gram tree extracted from a complete parse tree is shown in
Figure 1. In order to fit lengthwise, cutting the left or right
hand-side of some constituents might be required, while ex-
tracting the subtree covering the consecutive words. That
cut may sometimes remove the head of the constituent. The
requirement during this extraction is to make sure that ev-
ery syntactic constituent in the extracted n-gram tree keeps
its head in the process. We apply this constraint in order to
make sure that every n-gram tree is generatively accurate,
following the head-driven constituency production process
of Michael Collins (Collins, 1999). Thus, n-gram trees are
linguistically motivated. The complete n-gram extraction
algorithm is given in our previous work (Çelebi and Özgür,
2013). Compared to the complete parse trees, n-gram trees
are smaller parse trees with one distinction. That is, they
may include constituents that are trimmed from one or both
sides in order to fit the constituent lengthwise within the
borders of the n-gram. Such constituents are still accepted
in our model but considered incomplete, and denoted with
the -INC functional tag. Figure 1 includes an example of
an incomplete prepositional phrase denoted with PP-INC.
n-gram parsing is fundamentally no different than the con-
ventional parsing of a complete sentence. However, n-
grams, especially the short ones, may have no meanings on
their own or can be ambiguous due to the absence of the sur-
rounding context. Even though the relatively smaller size
of n-gram trees makes it easier and faster to train on them,
their incomplete and ambiguous nature makes the n-gram
parsing task difficult. Despite all, n-gram parsing can still
be useful for the actual full sentence parser, just like the
partial parsing of a sentence used for bootstrapping (Ab-
ney, 1999). In (Çelebi and Özgür, 2013), we analyze 3-
to 9-gram parsing and investigate how an n-gram parser
helps the full sentence parser when they are jointly trained
together. Our results showed that n-gram parsing can im-
prove full sentence parsing results.

2894



3.3. Hierarchical Joint Learning
We use an instance of the multi-task learning setup called
the Hierarchical Joint Learning (HJL) approach introduced
in (Finkel and Manning, 2010). HJL enables multiple mod-
els to learn more about their tasks due to the commonal-
ity among the tasks. By using HJL, we expect the n-gram
parser to help the full parser in cases where the n-gram
parser is better.
As described in (Finkel and Manning, 2010), the HJL setup
connects all the base models with a top prior, which is set
to zero-mean Gaussian in our experiments. All the shared
parameters between the base models are connected to each
other through this prior. The only requirement for HJL is
that the base models need to have some common features
in addition to the set of features specific to each task. As
both parsers employ the same set of feature templates, they
have common features through which HJL can operate.

∂Lhier(D; θ)
∂θm,i

=
∂Lhier(Dm, θm)

∂θm,i
− θm,i − θ∗,i

σ2
d

(5)

The parameter values for the shared features are updated by
incorporating the top model feature θ∗,i into the parameter
update function as in Equation 5. The first term is the partial
derivative of Equation 4 with respect to the model param-
eter θm,i. The second term ensures that the base model m
is not getting apart from the top model by taking the differ-
ence between the top model and the corresponding shared
parameter value. The variance σ2

d is a parameter to tune this
relation.

∂Lhier(D; θ)
∂θ∗,i

=

(∑
mεM

θ∗,i − θm,i
σ2
m

)
− θ∗,i

σ2
∗

(6)

Equation 6 shows that updates for the top model parame-
ter values are calculated by summing the parameter value
differences divided by the base model variance σ2

m, and
then by subtracting the regularization term to prevent over-
fitting. As in Equation 5, taking the difference of model
parameters keeps the top model and base model close to
each other.

4. Self-training with n-gram trees
In this paper, we extend the setup of (Çelebi and Özgür,
2013) where we jointly train a full sentence parser with an
n-gram parser. We start with training n-gram and full mod-
els for N iterations until pausing the system and using the
full sentence parser to parse new sentences. Then, we ex-
tractK n-gram trees from the outputted parse trees and add
them to the existing training data set of the n-gram parser.
The number of parsed sentences depends on how many n-
gram trees are required as new additions to the training set
of the n-gram model. As the training data set of the n-gram
parser expands, the n-gram model starts to have more influ-
ence on the full model as they have more data compared to
the beginning. After the n-gram training sets are expanded
with guessed n-grams, training continues for M more iter-
ations. At the end, we retain the parameter values of the
full parser and evaluate it on the development and test sets
of the Penn treebank.

We investigate three methods for choosing the n-gram trees
for self-training. First method choosesK n-gram trees ran-
domly. In case of the second method, it chooses the top K
n-gram trees based on their confidence (model) scores as-
signed by the trained n-gram parser model. In (Çelebi and
Özgür, 2013) we showed that the NP, VP, PP and ADJP
constituents help most when the full sentence parser and
the n-gram parser are jointly trained. Therefore, the third
method uses the n-gram trees which include only NP, VP,
PP and ADJP constituents.

5. Experiments
5.1. Data
We use the Penn treebank (PTB) (Marcus et al., 1993)
for training and testing. It contains approximately 40K
sentences of manually annotated sentences from the WSJ.
Among its 23 sections, we use 23rd and 22nd sections for
development and testing, respectively and the rest is used
for training. Due to performance issues with long sentences
at training, we use only those sentences with no more than
15 words (WSJ15), which includes 9753 training and 603
test sentences.
The sentences that we use for self-training come from the
Reuters RCV1 corpus, which is chosen due to its content-
wise similarity to PTB. It contains newswire articles about
finance and economy. As in the case of training data, for
self-training data, we pick sentences no longer than 15
words and no shorter than 3 words. While selecting, we
also make sure that each contains no more than one un-
known word that doesn’t occur in PTB.

5.2. Baseline
When we run our baseline full sentence parser on WSJ15,
it achieves an F1 score of 90.2% on the development set
and 88.3% on the test set. These are taken with the same
parameter settings from (Çelebi and Özgür, 2013) with one
improvement, that is the tag dictionary built from the devel-
opment set of the PTB. However, in order to see the ben-
efit of self-training, we need to compare it with respect to
the full parser that is jointly trained with the n-gram parser
that uses the seed n-gram training set. In Table 3.3., this
parser is denoted as BF and the F1 scores given under the
“1K+0K” and “3K+0K” columns are our actual baseline
scores. These are the cases where the n-gram training set is
not expanded by its own output, denoted by +0K. When we
use only seed n-gram training data (1K or 3K), F1 score on
the test set varies between 88.7 and 89.0, which is higher
than our stand-alone parser’s test score.

5.3. Self-training Results
Table 3.3. shows the results for the jointly self-trained full
sentence parser with different n-gram models from 3 to 6.
Our runs show that choosing the initial training iteration
count N=3 and the self-training iteration count M=17 give
the best results, making the total iteration count 20. The
caption of the columns indicate the size of the seed n-gram
training set and the number of n-grams added to expand the
training set for self-training. For example, “1K+3K” means
that the seed training set consists of 1000 n-grams and this

2895



n-gram
Selection Method Models 1K+0K 1K+1K 1K+3K 1K+5K 1K+10K 3K+0K 3K+1K 3K+3K 3K+5K 3K+10K

Randomly

BF+3-gram 88.9 88.7 88.1 88.1 88.1 89.0 89.1 88.0 88.0 88.2
BF+4-gram 88.7 89.0 88.7 88.0 88.0 88.9 88.7 88.5 88.4 88.8
BF+5-gram 88.7 88.8 87.7 87.6 87.6 88.7 88.4 87.5 87.6 88.2
BF+6-gram 88.7 89.0 88.4 88.8 88.7 88.8 88.8 87.6 88.3 88.0

Confidence Score

BF+3-gram 88.9 89.0 89.0 89.0 89.0 89.0 88.8 88.8 88.8 88.8
BF+4-gram 88.7 89.0 89.0 89.0 89.0 88.9 89.0 89.0 89.0 89.0
BF+5-gram 88.7 88.9 88.9 88.9 88.9 88.7 88.7 88.7 88.7 88.7
BF+6-gram 88.7 89.0 89.0 89.0 89.0 88.8 88.8 88.8 88.8 88.8

Constituency Type

BF+3-gram 88.9 88.5 88.1 88.1 88.1 89.0 88.7 88.0 88.3 87.9
BF+4-gram 88.7 88.6 89.3 88.0 88.0 88.9 88.6 88.9 88.7 88.5
BF+5-gram 88.7 88.7 87.6 87.6 87.6 88.7 88.0 87.5 87.5 87.3
BF+6-gram 88.7 88.4 88.8 88.8 88.9 88.8 88.7 87.6 87.6 88.4

Table 1: F1 scores obtained by the jointly self-trained full parser on the test set. BF is the baseline full parser.

training set is expanded using 3000 n-grams extracted from
the output of the full parser.
Based on the results in Table 3.3., at certain configurations
denoted by bold numbers, the jointly self-trained full parser
exceeds the baseline, especially when the seed size is small,
that is 1K. The best results are obtained when we order the
extracted n-grams to be used for self-training by the con-
fidence scores given by the n-gram parser model. In that
case, 4-grams lead to better performance compared to 3-,
5- and 6-grams. However, expanding the training set with
more n-grams doesn’t help much, except slight improve-
ment observed with the 3K seed in the second row of Ta-
ble 3.3.
Third set of experiments involve being selective about
which type of constituents n-gram tree can have. In (Çelebi
and Özgür, 2013), we showed that the n-gram parser helps
the jointly trained full parser most for parsing the NP, VP,
PP and ADJP constituents. However, in this study, when we
pick the n-gram trees that contain only these constituents
for self-training, the accuracy of the full parser surprisingly
deteriorates in all cases.

6. Conclusion and Future Work
In this study we proposed an approach for self-training a
constituency parser using n-gram trees. We investigated
three strategies for selecting the n-grams to be used for self-
training: random selection, selection by confidence score
produced by the n-gram parser model, and selection by the
types of the constituents. Our results show that selecting
the n-grams by their confidence scores achieves better re-
sults in general. However, extending the n-gram training
set with n-grams extracted from the output of the full parser
only helps when the seed n-gram training set size is small.
In addition, when we use more outputted n-gram trees, the
accuracy of the jointly trained full parser decreases in most
cases. For future work, we plan to expand our experiments
and investigate whether using more seed n-gram data im-
proves the results.

7. Acknowledgments
The authors would like to thank Brian Roark for his invalu-
able feedback. This work was supported by the Boğaziçi
University Research Fund 12A01P6.

8. References
Abney, S. (1999). Part-of-speech tagging and partial pars-

ing. Corpus-Based Methods in Language and Speech

Processing, Kluwer Academic Publishers, Dordrecht,
pages 118–136.

Çelebi, A. and Özgür, A. (2013). N-gram parsing for
jointly training a discriminative constituency parser.
Proceedings of CICLing, pages 5–12.

Charniak, E. (1997). Statistical parsing with a context-free
grammar and word statistics. Proceedings of The Four-
teenth National Conference on Artificial Intelligence
(AAAI), pages 598–603.

Collins, M. (1999). Head-driven statistical models for nat-
ural language parsing. Doctoral Dissertation Depart-
ment of Computer and Information Science, University
of Pennsylvania.

Finkel, J.R. and Manning, C.D. (2010). Hierarchical joint
learning: Improving joint parsing and named entity
recognition with non-jointly labeled data. Proceedings
of ACL, pages 720–728.

Finkel, J.R., Kleeman, A., and Manning, C.D. (2008). Ef-
ficient, feature-based conditional random field parsing.
Proceedings of ACL-HLT, pages 959–967.

Klein, D. and Manning, C.D. (2004). Corpus-based induc-
tion of syntactic structure: Models of dependency and
constituency. Proceedings of ACL.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling sequence data. Proceedings of ICML,
pages 282–289.

Marcus, M., SantoriniB., and MarcinKiewicz, M.A.
(1993). Building a large annotated corpus of en-
glish: The penn treebank. Computational Linguistics,
19(2):313–330.

McClosky, D., Charniak, E., and Johnson, M. (2006). Ef-
fective self-training for parsing. Proceedings of NAACL-
HLT, pages 152–159.

Reichart, R. and Rappoport, A. (2007). Self-training for
enhancement and domain adaptation of statistical parsers
trained on small datasets. Proceedings of ACL, pages
616–623.

Roark, B. and Bacchiani, M. (2003). Supervised and unsu-
pervised pcfg adapation to novel domains. Proceedings
of NAACL-HLT, pages 205–212.

Steedman, M., Baker, S., Crim, J., Clark, S., Hocken-
maierJ., Hwa, R., Osborne, M., Ruhlen, P., and Sarkar,
A. (2003). CLSP WS-02 Final Report: Semi-supervised
training for statistical parsing. Technical Report, Johns
Hopkins University.

2896


