
Cost-Aware Securing of IoT Systems Using Attack Graphs

Beytüllah Yiğita,∗, Gürkan Gürb, Fatih Alagöza, Bernhard Tellenbachb

aDepartment of Computer Engineering, Bogazici University
34342 Istanbul, Turkey

Email: {beytullah.yigit, fatih.alagoz}@boun.edu.tr
bZurich University of Applied Sciences ZHAW

8401 Winterthur, Switzerland
Email: {gueu,tebe}@zhaw.ch

Abstract

The Internet of Things (IoT) contains a diverse set of sensors, actuators and other Internet-connected devices com-
municating, processing data and performing a multitude of functions. It is emerging as an integral part of societal
infrastructure enabling smart services. However, these connected objects might have various vulnerabilities that can
lead to serious security compromises and breaches. Securing and hardening of IoT systems is thus of vital importance.
In that regard, attack graphs provide analytical support to prevent multistep network attacks by showing all possible
sequences of vulnerabilities and their interactions. Since attack graphs generally consist of a very large number of nodes,
it is computationally challenging to analyze them for network hardening. In this paper, we propose a greedy algorithm
using compact attack graphs to find a cost-effective solution to protect IoT systems. First, we extract all possible attack
paths which reach predetermined critical resources embedded in the network. Then, exploit or initial condition with
minimum effective cost is selected to be removed. This cost is calculated as a function of contribution to attack paths (the
higher, the better) and removal cost (the lower, the better). This process continues iteratively until the total cost exceeds
the allocated budget. The experimental results show that our algorithm scales almost linearly with the network size and
it can be applied to large-scale graphs with a very large number of IoT nodes. In addition to network-hardening, our
proposal measures the security level of the network in every step to demonstrate the vulnerability grade of the system.

Keywords: Internet of Things, attack graphs, network hardening, security decision support, security metrics, CVSS.

1. Introduction

Information and Communications Technology (ICT)
has become an inherent and dispensable part of our daily
lives with “anytime-anywhere” Internet communications,
smart devices, ubiquitous connectivity and networked in-
frastructure. This revolution is crystallized as the Internet
of Things (IoT) where Internet-connected devices with dif-
ferent levels of computation, communication, sensing, and
intelligence capabilities form a cyber-substrate perform-
ing various tasks and offering advanced functions. IoT
is envisaged to be a key pillar of smart communications
and services infrastructure in Future Internet. However,
to provide robust, trusted and dependable services in that
environment, security is a vital requirement and thereby a
perpetual task of ICT management. Therefore, vulnerabil-
ities of IoT systems must be identified to avoid disruption
or failure of network-based services.

The criticality of these connected infrastructures has
led to the huge body of research focusing on cybersecu-
rity. Accordingly, analysis of security vulnerabilities and

∗Corresponding author

how to avoid them are important research topics. In prac-
tice, there are various vulnerability scanners such as Nes-
sus [1] and Snort [2] which detect vulnerabilities of each
element of an investigated network in isolation. Since such
tools do not give any information about interaction of vul-
nerabilities, attackers can combine different vulnerabilities
to breach a seemingly well-guarded network and then can
disrupt it. Therefore, the information of not only isolated
vulnerabilities, but also their interactions are essential to
effectively protect a network from multistep attacks which
are combination of correlated vulnerabilities exploited se-
quentially to reach intended target(s). As a typical ex-
ample, an attacker compromises a Internet-reachable IoT
device as a stepping stone to reach a target in the core of
the network with a multistep attack.

Attack graphs provide crucial information to prevent
multistep attacks since they show all possible sequences of
vulnerabilities and their relationships [3]. In other words,
they reveal potential threats against networks by showing
all possible attack paths. An attack graph can be a use-
ful tool to extract recommendation for hardening network
nodes against inherent vulnerabilities [4]. It can also be
instrumental to reckon how secure a network is [5]. How-
ever, as the number of devices in an IoT system and their

Preprint submitted to Elsevier April 17, 2018

corresponding vulnerabilities increase, an attack graph can
become very complex for a security analyst to find which
vulnerabilities should be removed. Hence, automated ex-
traction of recommendations from attack graphs and their
user accessibility have a practical importance for effective
countermeasure enforcement.

While eliminating vulnerabilities to prevent multistep
attacks, one should also consider the cost of removal since
patches for different remedies usually incur different costs
[6]. In that regard, another critical question is how we can
minimize the cost of protection while removing all attack
paths or reducing their success probabilities since the cost
of protection is generally constrained by a limited budget
[7]. Moreover, removing all identified vulnerabilities can
be infeasible due to the characteristics of IoT systems such
as lack of known patches (zero-day attacks), resource lim-
itations, and operational constraints [8]. Although all the
identified vulnerabilities should be fixed in the long run,
there should be an efficient scheme to decide on an “action
plan” based on impact and feasibility in practical systems.
On the theoretical side, finding optimal minimum cost so-
lution by using attack graphs is an intractable problem [9],
which calls for computationally efficient approaches.

In this paper, we present a cost-aware network harden-
ing solution with limited budget by using compact attack
graphs for IoT systems. Firstly, all attack paths to critical
resources are extracted from the attack graph and their
success probabilities are calculated. The security analyst
can set length and likelihood thresholds to exclude certain
attack paths whose lengths exceed the length threshold or
the success probability is lower than the likelihood thresh-
old. Our algorithm uses Common Vulnerability Scoring
System (CVSS) [10] exploitability scores while calculating
success probabilities of attack paths. Then, security of the
network is measured with a novel method by considering
those success probabilities. This accompanying feature is
beneficial for network security assessment and situation
awareness. Subsequently, the most critical vulnerability is
selected according to the cost and its contribution to the
attack paths. This selection process continues iteratively
until the network is completely secure or the allocated bud-
get is consumed.

In this work, we elaborate on network hardening, com-
pact attack graphs and analysis of network hardening sche-
mes in IoT via contributions in the following key threads:

• We propose a heuristic-based and cost-controlled net-
work hardening solution in IoT with cost minimiza-
tion by using compact attack graphs (Sect. 3) and
illustrate its operation using a case study (Sect. 4).

• We devise attack path length and attack path success
probability thresholds to utilize budget effectively by
eliminating unlikely and long attack paths (Sect. 3).

• We propose a novel method to measure security level
metric of an analyzed network with the help of CVSS
scores (Sect. 3).

• We provide a comprehensive complexity and protec-
tion cost analysis of our approach. This aspect of
our work also provides a framework for comparative
analysis of such schemes for network security man-
agers (Sect. 5).

In the next section, we introduce essential background
for attack graphs. Our novel network hardening method,
Cost- and Budget-Aware Network Hardening for IoT (CO-
BANOT), is described in Section 3 followed by a case
study to illustrate its operation in Section 4. In Section
5, experimental results are presented to examine the time
complexity and minimum cost efficiency of COBANOT.
For illustrating the current state of the literature and how
our work differs, Section 6 reviews related work on attack
graphs and IoT security. In Section 7, we focus on limi-
tations of our approach for a balanced view. Finally, Sec-
tion 8 discusses future research directions and concludes
the paper.

2. Preliminaries on Compact Attack Graphs

Multistep and multi-host attacks must be considered to
analyze the security of a network effectively since an at-
tacker can penetrate the network by hopping from one de-
vice to another. However, the representation and analysis
of attack graphs for ICT infrastructures composed of more
than just a few components can be difficult. For example,
in the work by Sheyners et al., nodes represent the state of
the entire infrastructure after each step of an attack [11].
While the state is polynomial in the size of the infrastruc-
ture, the possible number of states is exponential. Even
when we assume that not all states can be reached when
considering the attack graph, the potential state explosion
makes this approach impractical except for small-scale in-
frastructures. A way to circumvent this problem is to use
compact attack graphs instead of state-based ones. They
have polynomial complexity in terms of total number of
vulnerabilities and security conditions [12]. Hence com-
pact attack graphs can be generated for large IoT systems
containing a very large number of nodes. Considering the
advantages they offer in terms of complexity, we utilize
compact attack graphs for security modeling and analy-
sis in our work. Moreover, there are various automated
tools proposed like MulVAL and NetSPA to produce at-
tack graphs in polynomial time [13, 14].

Compact attack graphs are directed graphs which con-
sist of two node types: exploits and security conditions
[15]. An exploit is a vulnerability from which an attacker
can benefit to obtain higher privileges. Security conditions
show required preconditions or post conditions for exploits.
There are no direct edges among exploits and among secu-
rity conditions. However, exploits and security conditions
are connected with two types of directed edges. The first
type points to an exploit from a security condition. It rep-
resents a require relation such that execution of the exploit
requires that the security condition must be satisfied. The

2

ftp(0,1) user(0) ftp(0,2)

ftp_rhosts(0,1) ftp_rhosts(0,2)

trust(1,0) trust(2,0)

sshd(0,1)

rsh(0,1)

sshd_bof(0,1)

user(1)
ftp(1,2)

ftp_rhosts(1,2)

trust(2,1)

rsh(1,2)

user(2)

rsh(2,1)

ftp_rhosts(2,1)

sshd_bof(2,1)

sshd(2,1)

ftp(2,1)

trust(1,2)

rsh(0,2)

local_bof(2)

root(2)

Figure 1: An attack graph (AG1) with four vulnerability types,
eleven exploits and seven initial conditions.

second edge type points to a security condition from an
exploit. This type represents an imply relation such that
execution of the exploit will satisfy the security condition.
Attack graphs are formally described in Definition 1.1. We
shall also assume this notion of attack graphs in our work.

Definition 1.1. Given a set of exploits E, a set of
security conditions S, a require relation Rr ⊆ S × E, and
an imply relation Ri ⊆ E × S, an attack graph AG is the
directed graph AG(E ∪ S,Rr ∪ Ri) (E ∪ S represents the
vertex set and Rr ∪Ri represents the edge set) [9].

A sample attack graph is shown in Fig. 1. There are
three users in this network: an attacker, user 0, and two
victim users (devices), user 1 and user 2. For the identi-
fiers, numbers in parenthesis specify related users. For ex-
ample, root(2) indicates that attackers have root privilege
on user 2. Similarly, execution of ftp.rhosts vulnerability
from user 0 to user 1 is shown as ftp rhosts(0,1). In that
figure, plain text items represent security conditions while
rounded boxes represent exploits.

Security conditions are of two different types: initial
conditions and intermediate conditions. An initial condi-
tion is not a postcondition of any exploits but a necessary
precondition for them. Accessibility rules of hosts or net-
work configuration can be examples of initial conditions
like user(0) and ftp(0,1) in Fig. 1. Intermediate condi-
tions are both preconditions and postconditions of some
exploits. Condition trust(1,0) in Fig. 1 represents a trust
relationship between the attacker (user(0)) and user 1,
and is an example of intermediate condition.

An attack path or attack scenario is a multistep attack
which consists of a combination of correlated exploits per-
formed consecutively to breach critical resources of a net-

work. As an example, attacker (user(0)) can obtain root
privileges on user 2 by executing attack path “ftp rhosts(0,
2)→ rsh(0,2)→ local bof(2)” in the example network. To
do this, firstly a trust relationship is established between
user 0 (attacker) and user 2 (the condition trust(2,0)) by
exploiting ftp.rhosts vulnerability on user 2 (the exploit
ftp rhosts(0,2)). Then attackers obtain user privilege on
user 2 (the condition user(2)) using rsh login attack (the
exploit rsh(0,2)). After that, attackers own root privilege
on user 2 (the condition root(2)) via local buffer overflow
attack on that device (the exploit local bof(2)).

There are two ways to eliminate an attack path. First
one is to disable one of the security conditions in the attack
path. However, intermediate conditions are typically not
controlled directly by the security analyst [9]. Therefore,
initial conditions are left as the only option to disable secu-
rity conditions. Patching one of the exploits in the attack
path is the second option. However, we have to keep in
mind that both initial conditions and vulnerabilities can-
not be fixed in all cases since some IoT devices cannot be
patched properly due to constrained hardware and practi-
cal issues such as lack of omnipresent device management
capabilities [16]. In addition to that, there are circum-
stances such as zero-day attacks where patches are not
available for some vulnerabilities. Furthermore, disabling
an initial condition may seriously affect service availability
of the system. As an example, disabling ftp(0,2) by stop-
ping ftp service can be unacceptable for a server which
processes and relays sensory IoT data to other consumer
nodes. Hence, our approach COBANOT allows marking
of designated exploits and initial conditions such that they
are ignored when selection of exploits or initial conditions
for network hardening is performed. In other words, secu-
rity analyst can mark exploits and initial conditions which
cannot be removed from the system due to some constraint
or rationale.

3. Cost- and Budget-Aware Network Hardening
for IoT (COBANOT)

By traversing on attack graph, we can find all attack
paths which end in given critical devices of a system. If
all these attack paths are removed, IoT devices in the net-
work become secure against potential attacks. There are
plenty of options while eliminating all attack paths since
different exploits and initial conditions can be selected to
achieve this goal. However, we need to consider the cost
factor of elimination to harden network with minimum
burden. Some exploits or initial conditions may also be
unfitting for removal as discussed in Section 2. On the
other hand, cost consideration induces budget constraint
since the total cost of making network completely secure
can be unacceptable. Especially, large IoT systems con-
sisting of thousands of devices with poor vendor security
practices pose a serious obstacle against completely secur-
ing such a system with limited budget. Nevertheless, likeli-
hood of attacks against critical resources of the system can

3

Start

Measure SM

Calculate Con(Ei)
and Con(Ik),

Select an Ei or Ik
according to cost α

and contribution

Remove attack
path(s)

Measure SM

Phase II

.,ki∀

Budget γ or
SM is zero

YES

NO

Stop

Phase I

Extract Aj, .j∀
Calculate

Aprob(Aj), .j∀

Figure 2: The flowchart of COBANOT.

be reduced even if it cannot be totally eliminated in such
a case. To that end, the security metric of the system is
calculated to determine how secure the system is and then
a security analyst can decide how much protection needs
to be performed.

In this paper, we propose Cost- and Budget-Aware Net-
work Hardening for IoT (COBANOT) which achieves min-
imal cost by considering budget and cost factors in an
iterative way. The flowchart of COBANOT is shown in
Fig. 2. Accordingly, Table 1 shows the parameters used
in our algorithm and analysis. Our proposal consists of
two phases. In the first phase, all attack paths are ex-
tracted from the attack graph with a backward algorithm.
Meanwhile, the success probabilities of all attack paths are
computed. Then, the security metric SM is calculated. In
the second phase, the contributions of each exploit and
initial condition to attack paths are calculated. According
to the cost of removal α and the contribution to attack
paths, an exploit or an initial condition is selected for re-
moval. Finally, attack paths which include selected exploit
or initial condition are removed and the security metric is
re-calculated. This second phase continues until network
is “completely” secure, which means that there is no at-
tack path for an intruder to breach the critical IoT assets
or the available budget is depleted.

To find all attack paths which terminate at given crit-
ical resources, a backward algorithm is used in the first
phase. Thus, exploits which cannot reach the target are
never explored. We also benefit from forward algorithm
logic and discard attack paths which do not start from
the attacker node. Therefore, the complexity of second
phase is reduced since only necessary and relevant attack
paths are considered for elimination. Additionally, attack
graphs can also have cyclic paths. However, intruders do
not usually choose cyclic paths as noted in [15]. In back-
ward algorithm, while extracting one attack path, if an
exploit which was already included by that attack path is
visited again, extraction of the path is stopped to avoid a

Table 1: Analysis parameters

Abbreviation Explanation

Ei An exploit

Ik An initial condition

Aj An attack path

SM Security Metric

Eprob(Ei) Likelihood of an exploit

Aprob(Aj) Likelihood of an attack path

Con(Ei) Contribution of an exploit

Con(Ik) Contribution of an initial condition

β Effective cost

α
Cost of removal for exploits and
initial conditions

γ Remaining budget

θ Exploit Diversity Constant

ϕ

For an exploit Ei, ϕ shows number
of exploits whose type is equal to
Ei and exploited before Ei in an
attack path Aj

M
The maximum number of exploits
which point to a condition in the
attack graph

n The path length threshold

cyclic path. Hence we do not need to remove cycles in the
attack path, but just detect and avoid them during the
process.

Similar to cyclic paths, long attack paths would not
be preferred by attackers. Typically, attackers are not ex-
pected to use attack paths which take more than 4 steps
[15, 18]. In COBANOT, while extracting attack paths, a
security analyst can assign thresholds for length and suc-
cess probability to attack paths. During the extraction of
attack paths with backward algorithm, if the path length
exceeds given length or its likelihood is lower than the like-
lihood threshold, extraction of that path is halted. Hence,
complexity of Phase I is reduced by not traversing for long
and unlikely attacks paths. Additionally, the complexity
of Phase II is also reduced since the number of attack paths
which pass to Phase II is decreased. Moreover, a security
analyst can prevent easier and thus more likely intrusions
by considering them in the first place.

Each vulnerability has different difficulty level for an
attacker to exploit. Therefore, vulnerabilities have dif-
ferent likelihoods of successful occurrence which could be
estimated by average time or computational complexity
required to breach the network [19]. However, this estima-
tion task is not trivial for a non-expert person. In that re-
gard, an alternative approach based on empirical data can
be adopted and success probabilities of exploits Eprob(Ei)
can be extracted from CVSS exploitability scores [12, 20,
21, 22]. As of now, the most widely used vulnerability

4

Table 2: CVSS attributes used to calculate base metric exploitability
scores [17]

CVSS attribute Value

Attack Vector (AV)

Physical (P)

Local (L)

Adjacent Network (A)

Network (N)

Access Complexity (AC)
High (H)

Low (L)

Privileges Required (PR)

High (H)

Low (L)

None (N)

User Interaction (UI)

Required(R)

None (N)

scoring system is CVSS [23]. CVSS scores for known and
reported vulnerabilities can be found in NVD (National
Vulnerability Database) [24]. First exploitability score is a
subscore of base metric group and it consists of attack vec-
tor (AV), access complexity (AC), privileges required (PR)
and user interactions (UI) metric. Second one is a sub-
score of temporal metrics. Both of these exploitability
scores can be used separately to find the success proba-
bility of an exploit. However, NVD currently does not
provide temporal scores.

Table 2 shows CVSS attributes used for base metric ex-
ploitability scores. More detailed description can be found
in [17]. The base exploitability score is calculated as:

Exploitability Score = 8.22×AV ×AC × PR× UI, (1)

Base exploitability score range from 0 to 10. Hence we
can use base exploitability scores as Eprob(Ei) by nor-
malizing it with division by 10 like [25]. As an exam-
ple, base exploitability score of local bof is 10.0 since its
AV is exploitable from Network (N) called as remotely ex-
ploitable, AC is Low (L), UI is None (N) and PR is None
(N) which means attackers do not need to authenticate.
Therefore, Eprob(Ei) of local bof becomes 1.0 if we use
base exploitability score to obtain Eprob(Ei) of local bof.

Temporal metrics change over time since exploits evolve,
they are disclosed and automated or patches for them
are developed. The temporal exploitability score (Exploit
Code Maturity) shows the current state of exploit tech-
niques or code availability. Exploit Code Maturity can also
be a good indicator to determine path length threshold
since if there are well-known vulnerabilities with automa-
tion available through tools/frameworks, the path length
threshold might be much larger. Table 3 shows values and
their corresponding scores for temporal metric exploitabil-
ity scores [17]. We use the mapping {Unproven → 0.1,
Proof-of-concept → 0.5, Functional → 0.8, High → 1.0}
for success likelihoods. Apparently, it is reasonable that

Table 3: Temporal exploitability score values and descriptions [17]

Value Description

Unproven (U) No exploit code is available or the
exploit is entirely theoretical.

Proof-of-
concept (P)

Proof of concept exploit code or
an attack demonstration that is not
practical for most systems is avail-
able.

Functional (F) Functional exploit code is available.
The code works in most situations
where the vulnerability exists.

High (H) The vulnerability can be exploited
by automated code and mobile code
like a worm or virus.

Not Defined
(X)

A signal to ignore this score.

as exploit code is more accessible, success likelihood be-
comes higher.

We use success probabilities of exploits Eprob(Ei) to
calculate likelihood of attack paths. As the length of a
path increases, likelihood of execution of that attack path
generally decreases. However, there may be longer attack
paths which consist of vulnerabilities easy to exploit and
have higher success probability than shorter attack paths
which include vulnerabilities difficult to exploit. In that
regard, likelihood of an attack path Aj , Aprob(Aj), can be
calculated by multiplying success probabilities of exploits
which are present in that attack path.

Exploit diversity in an attack path also affects the like-
lihood of that attack path. When an attacker exploits a
vulnerability while executing an attack path, it is more
likely to have a higher success probability for exploiting
the same vulnerability type. Let’s consider attack path
“ftp rhosts(0,1)→ rsh(0,1)→ rsh(1,2)→ local bof(2)” for
instance. When attacker exploits rsh(0,1), it is likely that
rsh(1,2) is exploited more easily. In other words, successful
exploitation of rsh(0,1) increases the success probability of
rsh(1,2) since attacker has already acquired knowledge to
exploit the rsh vulnerability. Hence if an attacker tries
to find a way to crack a device by using a vulnerability,
it is possible that it can crack other devices which have
the same vulnerability. This feature can be seen in the re-
cent case of Mirai malware which set out to exploit specific
vulnerabilities to breach a massive number of IoT systems
[26]. An attacker can easily find IoT device vulnerabilities
from search engines such as SHODAN [27] and capture
hundreds of thousands of device by using the same vul-
nerability like the access vulnerability exposed in Belkin
WeMo devices [16].

Hence, COBANOT has a tuning parameter named ex-
ploit diversity constant and denoted as θ to adjust this
increase in success probability according to the system re-

5

quirement. In COBANOT, security analyst can assign val-
ues between 0.0 and 1.0 to θ which has default value 1.0.
Value 0 means that success probability of an exploit is not
changed according to diversity. As θ increases, exploit-
ing the same vulnerability type while executing an attack
path becomes easier. If θ is assigned to 1.0, when attacker
exploits a vulnerability in an attack path, the success prob-
ability of that vulnerability type becomes 1.0 which means
that attacker can always utilize that exploit type success-
fully after a single successful exploitation. Furthermore, if
θ is 1.0, a vulnerability type counts only once in an attack
path in order to normalize its effect on the length. For
instance, length of “ftp rhosts(0,1) → rsh(0,1) → rsh(1,2)
→ local bof(2)” counts as three if θ is 1.0.

Therefore, Aprob(Aj) can be calculated as:

Aprob(Aj) =
∏

min(1.0, (Eprob(E i) +

θ × ϕ× (1− Eprob(E i)))) , (2)

where Ei ∈ Aj , min is the minimum function and ϕ is a
variable which shows the number of exploits whose type
is equal to Ei and exploited before Ei. In this formula,
min is used since success probability of an exploit can-
not be larger than one. Each time the same vulnerability
type is exploited in an attack path, its success probability
increases by an amount of θ × (1− Eprob(E i)).

At the end of first phase, SM is calculated to deter-
mine security risk of the system. SM is a way to capture
the attack surface based on a set of known vulnerabilities
and initial conditions. Hence, the security analyst can use
it to get a better understanding of the threat posed by
this attack surface and it might help to drive requests for
budget allocations to reduce the attack surface in practi-
cal system management. In our proposal, likelihoods of
extracted attack paths are added to compute SM. In this
way, the number of attack paths and their likelihoods are
combined to create our security metric. We define security
metric SM as:

SM =
∑

Aprob(Aj), (3)

where Aj is the attack path which reaches the target de-
vice(s).

As mentioned before, there are two options to eliminate
attack paths: disabling initial conditions and removing
(patching) exploits. In the second phase of COBANOT,
elimination of paths is done iteratively via the selection of
an exploit or initial condition in each step. In COBANOT,
there are two criteria for selection: the cost of removal α
and the contribution to attack paths Con(x). Existence
of each exploit and initial condition increases the success
probability of the intruder or security risk of the network,
i.e. SM, and the resulting contribution is a measure of this
addition. In other words, the contribution shows us how
much the success probability of intruder is affected from
removal of an exploit or an initial condition. Contribution
of an exploit Con(Ei) can be found by adding likelihoods

of all attack paths which includes the corresponding ex-
ploit. Contribution of an initial condition Con(Ik) can be
found by adding contributions of all exploit(s) which are
enabled by the corresponding initial condition. Therefore,
Con(Ei) and Con(Ik) can be calculated as:

Con(E i) =
∑

Aprob(Aj), (4)

where Ei ∈ Aj , and

Con(I k) =
∑

Con(E i), (5)

where Ik enables Ei.
Cost of removal α represents the patching cost for ex-

ploits and the disabling cost for initial conditions. These
costs can originate from diverse actions or security invest-
ments such as buying a new firewall, stopping a service
or upgrading firmware of the IoT devices. Hence, it is
rather context-dependent and assumed to be estimated by
security experts and given as input to the algorithm. Pa-
rameters α and Con(x) are unified as the effective cost
β. This latter parameter simply shows how much security
risk is reduced per cost. With higher contribution rate,
one unit cost provides more reduction in security risk or
security metric SM. Effective cost β is defined as:

β = α/Con(x), (6)

where x can be an exploit or an initial condition.
β is calculated for each exploit and initial condition.

Our mechanism chooses an exploit or an initial condition
for removal in each step according to the following rule:

min(β) ∧ (α ≤ γ) (7)

Hence, COBANOT chooses an Ei or Ik with minimum β
among all Ei and Ik whose cost α does not exceed remain-
ing budget γ. If an exploit is selected, attack paths which
include that selected exploit are removed. Since the se-
lected exploit is patched, attack paths including it will be
no longer available for attackers. If an initial condition is
selected, attack paths which include exploit(s) which were
enabled by selected initial condition are removed. Thus,
the selected initial condition or exploit eliminates its con-
tribution to attack paths and reduces SM. By considering
β for removal, critical assets in the IoT network are se-
cured with minimal cost. Selecting and using minimum
effective cost ensures that highest reduction in security
risk is achieved per unit cost in each step. Then SM is
re-measured and second phase continues until SM is zero
or γ is less than minimum α.

4. A Case Study for COBANOT Operation

In this section, we utilize a network example, AG1,
from the literature to elaborate on the operation of COBA-
NOT. The AG1 is a well-known network example in the
study of attack graphs [9, 12, 15, 28].

6

Table 4: Success probability and cost value for each exploit type in
AG1

Exploits Ei Success Probability Eprob(Ei) Cost α

ftp rhosts 0.8 5

rsh 0.8 15

local bof 1.0 25

sshd bof 0.8 12

Attack graph of sample network 1 (AG1) is shown in
Fig. 1. Plain text items represent security conditions while
rounded boxes represent exploits in the figure. More de-
tails can be found in [11, 29]. There are eleven exploits and
seven initial conditions in the attack graph. Table 4 shows
the success probability and the patching cost for each ex-
ploit type. All initial conditions have the same disabling
cost, which is 10 units and user(0) cannot be disabled
since it is an attacker. The budget allocated for network
protection is 25 units. Success probability values are ex-
tracted from CVSS base exploitability scores as discussed
in Section 3. The values for budget and cost of removal are
assumed to be given by security experts. However, in this
example, budget and cost of removal values are assigned
by us appropriately and randomly in order to illustrate
the operation of COBANOT more clearly. The unit for
cost values can be a money currency such as US dollars or
average time as man-hours or some other representation
of cost according to user requirements.

Attack path length threshold n and attack path like-
lihood threshold are set to 4 and 0.01 for this case study,
respectively. Also, the diversity constant θ is assigned
as 0.5. Table 5 shows four attack paths for intruders
which try to obtain root privileges on host 2 and their
corresponding likelihoods. The backward algorithm finds
nine attack paths. However, four of them, one exam-
ple being ftp rhosts(2,1) → rsh(2,1) → rsh(1,2) → lo-
cal bof(2), are excluded since they do not start from the
attacker node (user(0)). Thus, our algorithm combines ad-
vantages of both backward and forward algorithm. Also,
ftp rhosts(0,1) → rsh(0,1) → ftp rhosts(1,2) → rsh(1,2)
→ local bof(2) is excluded since its length is 5. In this
case, the attack path likelihood threshold does not help to
reduce the number of attack paths since likelihoods of all
attack paths is greater than 0.01.

The success probability of an attack path can be cal-
culated by multiplying success probabilities of all exploits
which are included in that attack path. For instance,
likelihood of first attack path A1 is Aprob(A1) = 0.8 ×
0.8×(0.8 + (1 − 0.8) × 0.5)×1.0 = 0.576. Attack path
A1 includes two rsh (rsh(0,1) and rsh(1,2)) vulnerabili-
ties. Hence, success probability of second rsh vulnerabil-
ity (rsh(1,2)) increases to (0.8 + 1× (1− 0.8)× 0.5) = 0.9
because of diversity constant θ being equal to 0.5. If there
was another rsh vulnerability in this attack path, its suc-
cess probability would become (0.8 + 2× (1−0.8)×0.5) =

1.0.
For the initial setting, SM equals to 0.576 + 0.512 +

0.64 + 0.64 = 2.368 and is measured by the sum of success
probabilities of all four attack paths. SM and budget γ
are not zero hence we can execute the second phase of
our algorithm. In second phase, we give an example from
COBANOT calculations but do not show all of them for
the sake of brevity.

In the first iteration, effective cost β is calculated for
each exploit and initial condition. Then an exploit or
initial condition which has minimum effective cost and a
cost of removal smaller than remaining budget is selected
for removal. Contribution of an exploit is measured by
summing likelihood of attack paths which include that ex-
ploit. Contribution of an initial condition is measured by
summing likelihood of attack paths which include the ex-
ploit(s) enabled by that initial condition. To calculate β,
cost of removal α is divided by that contribution as shown
in (6). Table 6 shows effective cost and contribution val-
ues of exploits and initial conditions for each step. In
the table, green, blue and yellow colors (decreasing dark-
ness in grayscale) show chosen exploit or initial condition
for iteration 1, 2 and 3, respectively. If an exploit or an
initial condition does not contribute to SM, which means
that it is not used by attacker, its effective cost is not
calculated. For instance, contribution of ftp rhosts(0,2) is
0.64 since only A4 includes it. Hence, the effective cost of
exploit ftp rhosts(0,2) is equal to 5/0.64 = 7.8125. The
cost of ftp rhosts(0,2) is not larger than the budget and
it has the minimum effective cost. Hence, ftp rhosts(0,2)
is selected for removal and attack path A4 is removed.
Budget γ reduces to 25 − 5 = 20 and new SM value is
0.576 + 0.512 + 0.64 = 1.728. Then SM and γ are not zero
and we go on with the second iteration.

In the second iteration, the contribution of exploit sshd-
bof(0,1) which is included by A2 and A3 is 0.512+0.640 =

1.152. Since initial condition sshd(0,1) enables only sshd-
bof(0,1), it has the same contribution. Hence, the effec-

tive cost of sshd(0,1) is equal to 10/1.152 = 8.6805. The
cost of sshd(0,1) is not larger than the budget and it has
the minimum effective cost. Hence, sshd(0,1) is selected
for removal, and A2 and A3 which include sshd bof(0,1)
are removed. Budget γ reduces to 20 − 10 = 10 and new
SM is 0.576 (likelihood of A1). Since SM and γ are not
zero, we go on with the third iteration. In this iteration,
ftp rhosts(0,1) is selected for removal. Consequently, with
total cost of 20, we harden network such that there is no
attack path for an intruder to breach host 2 with root priv-
ilege. If only initial conditions are taken into account while
protecting the network as in [15, 30, 31, 32, 33], the harden-
ing cost would be 30 instead of 20 whereas using only initial
condition provides additional gain of completely securing
of network elements. However, these former approaches
are not adaptive and do not let the security analyst con-
trol the cost of hardening in a flexible way, i.e. cost-aware
and limited budget operation focusing on the most critical
assets. Therefore, considering exploits for removal as in

7

Table 5: Attack paths in AG1 and their success probabilities

Aj Attack Paths Success Probability of Aj Aprob(Aj)

A1 ftp rhosts(0,1) → rsh(0,1) → rsh(1,2) → local bof(2) 0.576

A2 sshd bof(0,1) → ftp rhosts(1,2) → rsh(1,2) → local bof(2) 0.512

A3 sshd bof(0,1) → rsh(1,2) → local bof(2) 0.640

A4 ftp rhosts(0,2) → rsh(0,2) → local bof(2) 0.640

Table 6: Contribution and effective cost β values for AG1

Graph Step 1 Step 2 Step 3

Elements Con(x) β Con(x) β Con(x) β

ftp rhosts(0,1) 0.576 8.680 0.576 8.680 0.576 8.680

rsh(0,1) 0.576 26.041 0.576 26.041 0.576 26.041

ftp rhosts(1,2) 0.512 9.765 0.512 9.765 0 -

rsh(1,2) 1.728 8.680 1.728 8.680 0.576 26.041

local bof(2) 2.368 10.557 1.728 14.467 0.576 43.402

sshd bof(0,1) 1.152 10.416 1.152 10.416 0 -

rsh(0,2) 0.640 23.437 0 - 0 -

ftp rhosts(0,2) 0.640 7.812 0 - 0 -

ftp(0,1) 0.576 17.361 0.576 17.361 0.576 17.361

ftp(0,2) 0.640 15.625 0 - 0 -

sshd(0,1) 1.152 8.680 1.152 8.680 0 -

ftp(1,2) 0.512 19.531 0.512 19.531 0 -

ftp rhosts(2,1) 0 - 0 - 0 -

rsh(2,1) 0 - 0 - 0 -

sshd bof(2,1) 0 - 0 - 0 -

sshd(2,1) 0 - 0 - 0 -

ftp(2,1) 0 - 0 - 0 -

our technique helps us to converge to the minimum cost
requirement in a budget-aware manner.

Let us also consider what happens if budget is 12. The
first iteration is the same except now the budget reduces
to 12 − 5 = 7. Hence, in second iteration, sshd(0,1) can-
not be chosen this time since the cost of sshd(0,1) is 10.
Therefore, ftp rhosts(0,1) is chosen for removal and A1 is
removed. New SM is 0.512 + 0.64 = 1.152 and there are
two attack paths , A2 and A3, to breach. However, there
is no more hardening option left since the remaining bud-
get is only 2. In this case, COBANOT finds a favorable
budget-limited network hardening solution without secur-
ing critical assets completely.

5. Complexity/Cost Analysis and Experimental Re-
sults

In this section, algorithm and run-time complexity of
Phase I and Phase II are analyzed to render the per-

formance of COBANOT. Extensive simulations are con-
ducted and reported to demonstrate its performance char-
acteristics. The efficiency of minimum cost solution is in-
vestigated by comparing total protection cost of COBA-
NOT with optimal minimum cost solution.

5.1. Complexity Analysis of COBANOT

COBANOT is a greedy heuristic-based scheme, since
finding optimal solution is an intractable problem for mini-
mum-cost network hardening [9]. Phase I of COBANOT
extracts at most O(Mn) attack paths in O(Mn-1) time [15].
Here, M is the maximum number of exploits which point
to a condition in the attack graph and n is the path length
threshold [15]. An initial condition or an exploit is selected
in each iteration of Phase II. Hence, there can be at most
|Ei| + |Ik| iterations where |Ik| is number of initial condi-
tions and |Ei| is number of exploits. Computing contribu-
tions of initial condition and exploits takes O(nMn) time

8

Table 7: Attributes of randomly generated attack graphs

AG |Ik| |Ei| Avg|Edges|

A 21 32 129

B 98 305 1382

C 512 984 4982

D 945 1326 6814

E 2122 4023 21221

since there are at most O(Mn) attack paths with maximum
length n. Selecting an exploit or initial condition takes
O(|Ei| + |Ik|) time. Therefore, each iteration in Phase II
takes O(nMn) time. Computational complexity of Phase
II becomes O((|Ei| + |Ik|)nMn) time. We know that at-
tackers do not typically use attack paths whose length is
more than 4 [15, 18]. Thus worst-case computational com-
plexity of Phase I becomes O(M3) and Phase II becomes
O((|Ei|+|Ik|)M4). Basically attack path length threshold
is helpful to avoid state explosion while generating attack
paths.

For complexity analysis, we use different sizes of IoT
networks while conducting experiments. All attack graphs
and parameter values such as success probability and cost
of removal are generated randomly. However, we try to
imitate attack graphs of real IoT systems to obtain mean-
ingful results. Cost of removal α is assigned from the
range [5,10] for initial conditions and from the range [2,8]
for exploits. Success probability of exploits Eprob(Ei)
is assigned from the range [0.3,1.0]. M is 10 and likeli-
hood threshold of attack path is 0.01. M is high since we
try to simulate densely connected IoT devices with var-
ious vulnerabilities. Also the budget is unbounded and
COBANOT always eliminates all attack paths. Therefore
simulations show that worst-case performance of COBA-
NOT. We run each simulation for 50 times and report
the average of these runs. During the simulations, firstly,
exploits and initial conditions are generated according to
above values. Then initial conditions are assigned to ex-
ploits and exploits are randomly connected with a maxi-
mum number of M connections.

The simulation environment and COBANOT were im-
plemented in Java. Experiments are conducted single-
threaded on a computer with 3.4GHz CPU and 8GB RAM
to show run-time performance of COBANOT. The oper-
ating system was Microsoft Windows 7 Ultimate with Ser-
vice Pack 1. Table 7 shows different attack graph config-
urations with different number of initial conditions (|Ik|),
different number of exploits (|Ei|) and different number
of edges (|Edges|). When attack graphs are constructed,
number of edges and extracted attack paths are changed
according to the topology of the graph. Therefore, the
parameter Avg|Edges| shows the average number of edges
for our randomly generated attack graphs.

In Fig. 3, the average number of attack paths (denoted

A B C D E
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Attack graph index

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
a
tt
a
c
k
 p

a
th

s

n=5

n=10

n=15

n=20

increasing complexity

Figure 3: Average number of attack paths for randomly generated
attack graphs with different path length threshold n.

A B C D E
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Attack graph index

A
v
e

ra
g

e
 C

P
U

 t
im

e
 (

m
s
)

n=5

n=10

n=15

n=20

increasing complexity

Figure 4: Average CPU time in milliseconds for Phase I of
COBANOT in randomly generated attack graphs with different path
length threshold n.

as Avg|Aj |) with different path length threshold n for ran-
domly generated attack graphs is shown. As expected, the
size of attack graph has a substantial effect on the number
of attack paths. It can also be seen from the graph that
path length threshold n can reduce the number of attack
paths (|Aj |) drastically. |Aj | increases significantly when
n is changed from 5 to 10 or from 10 to 15. Likelihood
threshold becomes active when the length of attack paths
exceeds 15. Consequently, this dramatic growth turns into
a manageable one. By setting likelihood and path length
thresholds, only simple and probable attack paths which
are generally preferred by the attackers can be found and
eliminated. These findings indicate the importance of both
path length and likelihood threshold parameters.

Fig. 4 and 5 show average CPU time in milliseconds
for Phase I and Phase II of COBANOT with different
path length threshold n for randomly generated attack
graphs. As n and network size increase, Phase I needs
more time to find all attack paths. Similarly, Phase II
requires more time for each iteration. Also, as the num-
ber of attack paths which are found by Phase I increases,
Phase II needs more time to protect the network with min-
imum cost. Moreover, larger |Aj | generally induces more

9

A B C D E
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Attack graph index

A
v
e

ra
g

e
 C

P
U

 t
im

e
 (

m
s
)

n=5

n=10

n=15

n=20

increasing complexity

Figure 5: Average CPU time in milliseconds for Phase II of
COBANOT in randomly generated attack graphs with different path
length threshold n.

Table 8: Features of randomly generated attack graphs for cost com-
parison

AG |Ik| |Ei| Avg|Edges| Avg|Aj |

F 8 12 54.7 4.9

G 10 15 64.7 8.3

H 12 18 76.8 18.9

I 15 20 99.9 23.6

J 17 23 119.7 26.4

iterations in Phase II. These results are consistent with
our computational complexity analysis and show that av-
erage run-time complexity of COBANOT is much better
than the computational worst-case complexity. Further-
more, when n is five, it finds minimum cost solution for
all randomly generated graphs in less than one minute.

The results also indicate that COBANOT scales ap-
proximately linearly with the size of the graphs although
CPU time can vary according to the characteristic of the
attack graph and selected thresholds. In less than 25 min-
utes, it finds a cost-effective solution for an attack graph
with tens of thousands of nodes by eliminating nearly three
million attack paths during the experiments. These results
show that COBANOT can be used in large IoT networks
encompassing a huge number of devices with prevalent vul-
nerabilities.

5.2. Protection Cost Analysis of COBANOT

We investigate the protection cost of COBANOT with
respect to optimal protection cost and optimal protection
cost by using only initial conditions in this section. In
the literature, there are many works which consider only
initial conditions for protection [15, 30, 31, 32, 33]. Table 8
shows some small and random attack graph configurations.
We choose small graphs which are different from rather
complex graphs used before since finding optimal solution
is a NP-hard problem and it takes too much time as shown

0

2

4

6

8

10

12

14

16

18

F G H I J

T
o

ta
l
c
o

s
t

o
f

p
ro

te
c
ti

o
n

Randomly generated attack graphs

COBANOT

Optimal cost

Optimal cost with only
initial conditions

Figure 6: Average total protection costs for COBANOT, optimal
solution and optimal solution by using only initial conditions in ran-
domly generated attack graphs.

F G H I J

10
0

10
2

10
4

10
6

10
8

Attack graph index

A
v
e

ra
g

e
 C

P
U

 t
im

e
 (

m
s
)

COBANOT

Optimal solution	

Optimal solution with IC

increasing complexity

Figure 7: Average CPU time in milliseconds for COBANOT, opti-
mal solution and optimal solution by using only initial conditions in
randomly generated attack graphs.

later. Cost of removal values are the same with the settings
in Section 5.1.

In Fig. 6, average protection cost for randomly gen-
erated attack graphs is shown for COBANOT, optimal
solution and optimal solution by using initial conditions.
Fig. 7 shows average required time for this protection.
Apparently, the required time for optimal solution grows
exponentially as the number of exploits and initial con-
ditions rise. Because 2|Ei| + |Ik| iterations are required to
find it. The optimal solution by using initial conditions
has the same tendency. However, it is only affected by
the number of initial conditions (2|Ik|). Therefore, both
optimal solution and optimal solution by using only ini-
tial conditions are unfeasible to use in large attack graphs.
Average protection cost of COBANOT is generally about
10% higher than the optimal solution which is tolerable
when considering the time gains (reduction). Additionally,
the performance of COBANOT is better than the optimal
solution by using only initial conditions which shows that
considering exploits while protecting network offers a huge
advantage.

10

6. Related Work

There are various works focusing on attack graphs and
network hardening in the literature. In [9], initial secu-
rity conditions (initial conditions) are removed in an at-
tack graph for network hardening. Their proposed solution
traverses attack graph with a backward algorithm. In [30]
Man et al. calculate criticality degree for each node in the
attack graph. The nodes with higher degrees are selected
for removal. However, [9] and [30] do not consider the cost
factor while selecting conditions or exploits to remove.

Islam et al. propose a heuristic approach for minimum
cost network hardening [31]. They aim to select initial
conditions which are disabled to protect the network. But
they do not consider success probabilities of attack paths
in their cost function. If two initial conditions have the
same cost of removal, the one which participates in more
attack paths is selected. However, initial condition which
participates in attack paths with higher success probabil-
ity is a more suitable candidate for removal. Therefore,
our approach COBANOT considers success probabilities
of attack paths while selecting the best option.

In [15], all n-valid attack paths which are loop-free with
distance n are extracted from an attack graph. Then the
security metric of the network is calculated according to
the path length and the number of different exploits in
all paths. However, this security metric does not pro-
vide much information about the success probability of
an attack since long attack paths can be easier to breach.
Considering this fact, we calculate network security metric
according to success probabilities of attack paths so that
a security analyst can assess potential threats more easily.
In [15], initial conditions are removed according to the cost
and the number of participated attack paths.

Jun-chun et al. use genetic algorithms to find mini-
mum cost network hardening solution by transforming it
into a non-constrained optimization problem with penalty
in [32]. They use bidirectional-based search strategy to
explore the relationship of network vulnerabilities. In this
way, the efficiency of attack graph generation is improved.
The proposed method guarantees the network security with
the least cost. In [33], attack graphs are converted to Re-
duced Ordered Binary Decision Diagram (ROBDD). Then
Chen et al. find the minimum cost solution from this new
representation which does not require to list every possi-
ble solution. Hence, the algorithmic complexity is reduced.
The minimum cost solution is found by a recursive algo-
rithm which is a depth-first search of ROBDD.

Although, [15, 30, 31, 32, 33] focus only on initial con-
ditions, it is possible to remove an exploit by patching
it to protect the network against known attacks [12]. In
[29, 11, 34], minimal critical attack set is found to harden
the network since finding minimum critical attack sets
leading to optimum solution is NP-hard. The minimal
critical attack set is a minimal set of exploits in the attack
graph whose removal eliminates all the attack paths which
reach target assets. Due to complexity, these approaches

are heuristic based and only exploits are considered for re-
moval. In [29] and [11], model checking techniques are used
to generate and analyze attack graphs. These techniques
produce attack graphs with a very large number of states
which also include many redundant states. Thus, they suf-
fer from scalability issue while finding minimal critical at-
tack set. In our work, both initial conditions and exploits
are considered jointly to protect a network with minimum
cost.

Keramati et al. introduce a framework for minimum
cost network hardening in [12]. Initially, all attack paths
are extracted from attack graphs. The priority of an at-
tack path is calculated by predefined rules and then attack
paths with highest priority are selected for removal. While
calculating the priority, CVSS exploitability and impact
metrics are used directly by summation to find easiness
and impact of an attack path. The drawback of this ap-
proach is that some attack paths are not removed, which
makes the network insecure. Additionally, it suffers from
exponential complexity since it uses the method in [9] to
extract the critical set.

Homer et al. use Boolean Satisfiability Solving (SAT)
to harden the network by changing its configurations [35].
Firstly, an attack graph which is generated by MulVAL
[13] is converted to a first-order logic formula which is in
conjunction with a security policy. For usability, the secu-
rity analyst can mark some configuration as unchangeable
similar to our work. The authors use UnSAT core elimina-
tion and MinCostSAT separately. UnSAT core elimination
does not need discrete cost values and any conflict is asked
to the user with possible options.

In [36], security analysts determine all possible counter-
measures to protect a network. A genetic algorithm is used
to find the minimum cut-set in the attack graph according
to determined countermeasures. However, security ana-
lysts cannot determine all the countermeasures since there
can be millions of them in an large attack graph. Hence,
our algorithm automatically extracts all possible counter-
measures from attack graph. In [37], attack graphs are
used to select countermeasures according to stateful re-
turn on investmest metric. As a result, an optimal set of
countermeasures are found and enforced over the network.

Overall, works in [9, 11, 12, 15, 29, 30, 31, 32, 33, 34, 35,
36, 37] have a similar drawback compared to our approach.
Usually, it is difficult to secure a network completely due to
resource limitations. Since our proposal works iteratively,
it can be stopped when the allocated budget is depleted.
Therefore, our scheme lets the security analyst balance
security vs. cost according to context-based requirements.
This is critical for practical network hardening in network
security.

There are also some works considering the budget as-
pect in the literature. In [38] and [39], network hardening
solutions with budget consideration are proposed. How-
ever, these solutions require that a set of possible defenses
with specified cost and expected benefit is given by a se-
curity analyst. In [38], a heuristic algorithm which con-

11

siders benefit and cost together is utilized to find the op-
timal solution. The authors also offer a method to gen-
erate attack graph of a network and calculate its security
risk. In [39], minimum cost solution is transformed to a
binary knapsack problem which has exponential complex-
ity. They choose hardening measures according to security
metrics and cost. The proposed method guarantees opti-
mal solution and utilize dynamic programming to achieve
this.

Sawilla et al. try to minimize connectivity in AND/OR
directed dependency attack graph by using partial cuts in
[4]. AssetRank [40] is applied to produce a rank metric for
each asset in the network. A k -connected graph is used
to find critical attack paths. A k -connected graph is a
graph where k is the smallest number of vertices whose
removal disrupts the graph. Then they try to eliminate
critical attack paths according to cost and rank metric
with budget consideration. However, their solution does
not provide any security metric to a security analyst to
show the effect of network hardening or its current state.
Moreover, usage of AssetRank to find critical paths is a
costly operation in terms of complexity and there is no
analysis provided regarding that aspect in their work.

In [41], Homer et al. propose a security metric which
shows likelihoods of an attack to a given target. While cal-
culating this metric, authors use Access Complexity sub-
metric of CVSS to assign probabilities to exploits by using
a simple mapping similar to our temporal score approach.
In [20], base and temporal metric scores are used together
to calculate likelihood of an exploit. Houmb et al. use
base and temporal metrics for frequency estimation [21].
They also compute impact of an exploit by using base and
environmental metrics.

Security of the IoT systems has attracted significant
attention in recent years [42, 43, 44, 45]. There are many
attack types against IoT systems like sinkhole, wormhole,
and sybil attacks. These attacks are possible since IoT
devices have lots of security vulnerabilities and hardening
these devices is challenging. Attack graphs are instrumen-
tal to support security hardening of IoT networks. To
this end, Ge et al. propose a framework to model and
assess the security of IoT systems via attack graphs [46].
This work is the first model which uses attack graph to
model and assess security of an IoT system. The proposed
framework finds the possible attack paths, measures secu-
rity metrics by using CVSS and assesses defense options.
However, cost of the defense and budget limitations are
not considered. The framework mainly calculates success
probability, impact and cost of attack paths. After that,
it decides on a defense solution according to these metrics.
In another work, Ge et al. propose a proactive defense
mechanism for IoT by using Software-Defined Networking
(SDN) [47]. The defense approach is similar to their pre-
vious work while SDN is used to reconfigure the network
topology to remove non-patchable vulnerabilities. In other
words, they use SDN to disable initial conditions easily.
Wang et al. propose a vulnerability assessment method

for industrial IoT by using attack graphs [23]. Firstly,
attack graph is generated for the IoT system and attack
paths are extracted. Then, vulnerability degree of the at-
tack paths according to CVSS is calculated and priority
order of the attack paths is determined.

Overall, fueled by the critical need of secure networks,
numerous network hardening methods using attack graphs
have been proposed in the literature. However, these so-
lutions generally focus on and address only one aspect of
the problem. Some of them work only with initial condi-
tions to protect the network, and thus violate minimum
cost requirement, or just calculate the security metric and
do not offer a solution to harden the network. Moreover,
most of them do not consider the budget constraints and
do not pose as a viable solution in a real-world situation.
Although budget constraint is considered in some works
such as [38, 39, 4], the presented solutions lack fundamen-
tal network hardening features such as a security metric.
Furthermore, their methods have significant drawbacks re-
garding applicability in real networks as described above.

7. Discussion

COBANOT requires that security experts provide the
cost estimations for initial conditions and exploits. Al-
though this estimation process may emerge as the biggest
challenge for COBANOT, this is due to the context-depen-
dent nature of the problem and apparent in all such works
in the literature. The cost of patching an exploit or dis-
abling an initial condition will vary substantially from one
network to another. Moreover, IoT corresponds to a mul-
titude of use cases and services ranging from infotainment
to critical infrastructure protection. Thus there is no one-
size-fits-all cost function applicable to all IoT systems [35].
Hence, security experts are expected to estimate the costs
based on native requirements and policies. In the simula-
tion and case study, cost values are assigned randomly in
a suitable range under these constraints.

Our security metric is calculated by adding likelihoods
of attack paths and it can be between 0 to ∞. It does not
show success probability of the attacker as in [41] which
has high complexity. Since our algorithm calculates secu-
rity metric in every iteration, it requires low-complexity
and quick calculation. Accordingly it does not consider
overlaps among attack paths, since it aims to show that
how secure the network is and how changes in the network
affect the system.

Another challenge may be the zero day vulnerabilities
since they do not have patches or CVSS scores. For that
case, the security analyst can mark a zero day vulnerability
as unpatchable as we suggest in Section 2. Moreover, if
CVSS score of an vulnerability does not exist or is not
defined, the security analyst can assign them probabilities
according to specific security requirements. For instance,
1.0 value can be assigned if the expert wants to consider
worst-case scenario, e.g. in an IoT environment operating
in a critical industrial control network.

12

In COBANOT, a network security manager can tune
three parameters: path length, likelihood threshold and
exploit diversity constant θ. Considering the sensitivity of
the algorithm to these parameters, experiments show the
impact of the threshold parameters. On the other hand,
exploit diversity constant θ is used in likelihood calcula-
tion. If all attack paths will be removed, θ does not affect
the selected hardening option but the order of precautions
since minimum cost hardening does not depend on likeli-
hoods. However, if the budget is limited, then the order
of precautions is changed.

The experimental results also convey the effect of bud-
get parameter on the algorithm’s operation. The budget
does not affect Phase I of the algorithm as expected. If it
is limited, some attack paths may not be removed which
needs less iterations in Phase II and thus less CPU time.
If it exceeds total protection cost, time spent in Phase II
does not change. This behavior is consistent with the ex-
pectations stemming from the mechanics of the algorithm.

In this paper, attack graph generation is not studied
and we assume that attack graph of the IoT network is
generated a priori and given to the proposed scheme. Re-
alistic large-scale attack graph generation is an important
research topic. Accordingly, there are lots of works in the
literature which work on efficient attack graph generation,
update and visualization such as [5, 48]. However, new
concepts like social engineering must be taken into account
while generating attack graphs to better cope with a wide
spectrum of attacks since according to the ENISA Threat
Landscape report [49], around 90% of the attacks with
malware involve social engineering. This topic can be a
promising future research direction to extend COBANOT.

Another such emerging research challenge is the nation
state attackers. In our solution, nation state attackers are
not considered since they have much more budget, time
and arsenal than ordinary cybercriminals. In that regard,
they exhibit unique attack characteristics which may call
for optimized custom approaches. For instance, the em-
ployed temporal exploitability score mapping can be op-
timistic in the case of nation state attacks. Hence, that
mapping in COBANOT can be changed by security ana-
lyst to cope with different threat agents. Insider attacks
are not considered either since COBANOT benefits from
forward algorithm while extracting attack paths. Hence,
the attacker in our model is an arbitrary entity in the In-
ternet performing a remote attack. However, the security
analyst can still utilize COBANOT to tackle with such
attacks by disabling forward algorithm pruning at the ex-
pense of having a higher number of attack paths extracted
during the process.

Finally, COBANOT ’s approach does not recommend
or encourage to leave some vulnerabilities unpatched. Please
note that all vulnerabilities exposed to the public should
be fixed in the long run. COBANOT provides an effective
framework to prioritize hardening options based on maxi-
mum remedial impact with the resources available. If the
security metric SM shows that the attack surface/risk is

still too large, the security analyst should think hard to
get additional resources to fix these issues since leaving
the system vulnerable in the Internet might induce much
higher costs than fixing the problem itself.

8. Conclusion

In this paper, we have presented a network hardening
solution with cost minimization by using compact attack
graphs for IoT systems. The proposed solution COBANOT
provides heuristic-based cost-controlled network harden-
ing by considering exploits and initial conditions for po-
tential removal. Furthermore, we consider budget limi-
tation while protecting the system. Therefore, a feasible
hardening option under the given budget constraint is dis-
covered while trying to maximize the security level of the
IoT system. With the help of the path length and likeli-
hood thresholds, less likely and complicated attack paths
are eliminated. Hence, the allocated budget is used effi-
ciently. We further extract success probabilities of exploits
from CVSS metrics and propose a novel method to mea-
sure security metric of a system to represent how secure the
analyzed system is. The extensive simulations show that
COBANOT has a reasonable run-time complexity even
for large-scale IoT networks. Besides, it is shown that the
protection cost of COBANOT is minimal with respect to
the optimal solution and much better than the optimal
solution which uses only initial conditions for removal.

In addition to the points discussed in Section 7, the im-
pact of attack paths on integrity, confidentiality and avail-
ability of IoT assets can be considered while calculating
the security metric as future work. In that way, not only
the likelihood of an attack path but also its impact on the
network assets will be taken into account. Moreover, base
and temporal exploitability scores of CVSS can be merged
to calculate the success probabilities of exploits consider-
ing their inherent and time-dependent features jointly.

Acknowledgments

This work was supported by the Scientific and Techni-
cal Research Council of Turkey (TUBITAK) under grant
number 117E165.

[1] R. Deraison, Nessus scanner, http://www.nessus.org, [Ac-
cessed March 2018].

[2] M. Roesch, Snort - lightweight intrusion detection for networks,
in: Proc. of the 13th USENIX Conf. on System Administration,
1999, pp. 229–238.

[3] R. P. Lippmann, K. W. Ingols, An annotated review of past
papers on attack graphs, Tech. rep., MIT Lincoln Lab (2005).

[4] R. Sawilla, D. Skillicorn, Partial cuts in attack graphs for cost
effective network defence, in: IEEE Conf. on Technologies for
Homeland Security (HST), 2012, 2012, pp. 291–297.

[5] J. B. Hong, D. S. Kim, Towards scalable security analysis using
multi-layered security models, Journal of Network and Com-
puter Applications 75 (2016) 156 – 168.

[6] B. Yigit, G. Gür, F. Alagöz, Cost-aware network hardening with
limited budget using compact attack graphs, in: Military Com-
munications Conference (MILCOM), 2014 IEEE, IEEE, 2014,
pp. 152–157.

13

http://www.nessus.org

[7] L. D. Bodin, L. A. Gordon, M. P. Loeb, Evaluating informa-
tion security investments using the analytic hierarchy process,
Communications of the ACM 48 (2) (2005) 78–83.

[8] L. Wang, T. Islam, T. Long, A. Singhal, S. Jajodia, An attack
graph-based probabilistic security metric, in: Proc. of the 22nd
Annual IFIP WG 11.3 Working Conf. on Data and Applications
Security, 2008, pp. 283–296.

[9] L. Wang, S. Noel, S. Jajodia, Minimum-cost network hardening
using attack graphs, Computer Communications 29 (18) (2006)
3812 – 3824.

[10] P. Mell, K. Scarfone, S. Romanosky, Common vulnerability
scoring system, IEEE Security and Privacy 4 (6) (2006) 85–89.

[11] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing, Auto-
mated generation and analysis of attack graphs, in: Proc. of
IEEE Symposium on Security and Privacy, 2002, pp. 273–284.

[12] M. Keramati, H. Asgharian, A. Akbari, Cost-aware network
immunization framework for intrusion prevention, in: Proc. of
the IEEE Int. Conf. on Computer Applications and Industrial
Electronics (ICCAIE’11), 2011, pp. 639–644.

[13] X. Ou, S. Govindavajhala, A. W. Appel, Mulval: A logic-
based network security analyzer, in: Proc. of the 14th Conf.
on USENIX Security Symposium, SSYM’05, 2005, pp. 8–33.

[14] K. Ingols, R. Lippmann, K. Piwowarski, Practical attack graph
generation for network defense, in: Proc. of 22nd Annual Com-
puter Security Applications Conf. (ACSAC06), 2006, pp. 121–
130.

[15] F. Chen, D. Liu, Y. Zhang, J. Su, A scalable approach to an-
alyzing network security using compact attack graphs, Journal
of Networks 5 (5) (2010) 543–550.

[16] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, C. Xu, Handling a tril-
lion (unfixable) flaws on a billion devices: Rethinking network
security for the internet-of-things, in: Proceedings of the 14th
ACM Workshop on Hot Topics in Networks, ACM, 2015, p. 5.

[17] Common Vulnerability Scoring System (CVSS), http://www.

first.org/cvss/, [Accessed March 2018].
[18] Z. Liu, S. Li, J. He, D. Xie, Z. Deng, Complex network security

analysis based on attack graph model, in: Proc. of 2012 Sec-
ond Int. Conf. on Instrumentation, Measurement, Computer,
Communication and Control (IMCCC), 2012, pp. 183–186.

[19] L. Wang, A. Singhal, S. Jajodia, Toward measuring network
security using attack graphs, in: Proc. of the 2007 ACM Work-
shop on Quality of Protection, 2007, pp. 49–54.

[20] N. Ghosh, S. Ghosh, An approach for security assessment of
network configurations using attack graph, in: First Int. Conf.
on Networks and Communications, NETCOM ’09, 2009, pp.
283–288.

[21] S. H. Houmb, V. N. Franqueira, E. A. Engum, Quantifying
security risk level from cvss estimates of frequency and impact,
Journal of Systems and Software 83 (9) (2010) 1622 – 1634.

[22] M. Ge, J. B. Hong, W. Guttmann, D. S. Kim, A framework for
automating security analysis of the internet of things, Journal
of Network and Computer Applications 83 (2017) 12 – 27.

[23] H. Wang, Z. Chen, J. Zhao, X. Di, D. Liu, A vulnerability as-
sessment method in industrial internet of things based on attack
graph and maximum flow, IEEE Access.

[24] National Vulnerability Database. (NVD), http://nvd.nist.

gov, [Accessed March 2018].
[25] Q. Hui, W. Kun, Real-time network attack intention recogni-

tion algorithm, International Journal of Security and Its Appli-
cations 10 (4) (2016) 51–61.

[26] M. Özçelik, N. Chalabianloo, G. Gür, Software-defined edge
defense against IoT-based DDoS, in: 2017 IEEE International
Conference on Computer and Information Technology (CIT),
2017, pp. 308–313.

[27] Shodan, https://www.shodan.io/, [Accessed March 2018].
[28] C. Feng, S. Jin-Shu, A flexible approach to measuring network

security using attack graphs, in: 2008 Int. Symposium on Elec-
tronic Commerce and Security, 2008, pp. 426–431.

[29] S. Jha, O. Sheyner, J. Wing, Two formal analysis of attack
graphs, in: Proc. of the 15th IEEE Workshop on Computer
Security Foundations, 2002, pp. 49–63.

[30] D. Man, Y. Wu, Y. Wu, A method based on global attack
graph for network hardening, in: Proc. of the 4th Int. Conf. on
Wireless Communications, Networking and Mobile Computing
(WiCOM’08), 2008, pp. 1–4. doi:10.1109/wicom.2008.1086.

[31] T. Islam, L. Wang, A heuristic approach to minimum-cost net-
work hardening using attack graph, in: Proc. of the New Tech-
nologies, Mobility and Security (NTMS’08), 2008, pp. 1–5.

[32] M. Jun-chun, W. Yong-jun, S. Ji-yin, C. Shan, A minimum cost
of network hardening model based on attack graphs, Procedia
Engineering 15 (2011) 3227 – 3233.

[33] F. Chen, L. Wang, J. Su, An efficient approach to minimum-cost
network hardening using attack graphs, in: Fourth Int. Conf.
on Information Assurance and Security (ISIAS’08), 2008, pp.
209–212.

[34] P. Ammann, D. Wijesekera, S. Kaushik, Scalable, graph-based
network vulnerability analysis, in: Proc. of the 9th ACM Conf.
on Computer and Communications Security, 2002, pp. 217–224.

[35] J. Homer, X. Ou, Sat-solving approaches to context-aware en-
terprise network security management, Selected Areas in Com-
munications, IEEE Journal on 27 (3) (2009) 315–322.

[36] M. Alhomidi, M. Reed, Finding the minimum cut set in at-
tack graphs using genetic algorithms, in: Proc. of Int. Conf. on
Computer Applications Technology (ICCAT’13), 2013, pp. 1–6.

[37] G. Gonzalez-Granadillo, E. Doynikova, I. Kotenko, J. Garcia-
Alfaro, Attack graph-based countermeasure selection using a
stateful return on investment metric, in: International Sympo-
sium on Foundations and Practice of Security, Springer, 2017,
pp. 293–302.

[38] C. Phillips, L. P. Swiler, A graph-based system for network-
vulnerability analysis, in: Proc. of the 1998 Workshop on New
Security Paradigms, 1998, pp. 71–79.

[39] N. C. Idika, B. H. Marshall, B. K. Bhargava, Maximizing net-
work security given a limited budget, in: The Fifth Richard
Tapia Celebration of Diversity in Computing Conf.: Intellect,
Initiatives, Insight, and Innovations, 2009, pp. 12–17.

[40] R. E. Sawilla, X. Ou, Identifying critical attack assets in depen-
dency attack graphs, in: Proc. of the 13th European Symposium
on Research in Computer Security: Computer Security, 2008,
pp. 18–34.

[41] J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S. R. Ra-
jagopalan, A. Singhal, Aggregating vulnerability metrics in en-
terprise networks using attack graphs, Journal of Computer Se-
curity 21 (4) (2013) 561–597.

[42] X. Jia, D. He, Q. Liu, K.-K. R. Choo, An efficient provably-
secure certificateless signature scheme for internet-of-things de-
ployment, Ad Hoc Networks.

[43] M. Ammar, G. Russello, B. Crispo, Internet of things: A sur-
vey on the security of IoT frameworks, Journal of Information
Security and Applications 38 (2018) 8–27.

[44] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A sur-
vey on internet of things: Architecture, enabling technologies,
security and privacy, and applications, IEEE Internet of Things
Journal 4 (5) (2017) 1125–1142.

[45] J. M. de Fuentes, P. Peris-Lopez, J. E. Tapiador, S. Pastrana,
Probabilistic yoking proofs for large scale iot systems, Ad Hoc
Networks 32 (2015) 43–52.

[46] M. Ge, J. B. Hong, W. Guttmann, D. S. Kim, A framework for
automating security analysis of the internet of things, Journal
of Network and Computer Applications 83 (2017) 12–27.

[47] M. Ge, J. B. Hong, S. E. Yusuf, D. S. Kim, Proactive defense
mechanisms for the software-defined internet of things with non-
patchable vulnerabilities, Future Generation Computer Systems
78 (2018) 568–582.

[48] V. Shandilya, C. B. Simmons, S. Shiva, Use of attack graphs in
security systems, Journal of Computer Networks and Commu-
nications 2014.

[49] ENISA threat landscape report 2017,
https://www.enisa.europa.eu/publications/

enisa-threat-landscape-report-2017, [Accessed March
2018].

14

http://www.first.org/cvss/
http://www.first.org/cvss/
http://nvd.nist.gov
http://nvd.nist.gov
https://www.shodan.io/
http://dx.doi.org/10.1109/wicom.2008.1086
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017

	Introduction
	Preliminaries on Compact Attack Graphs
	Cost- and Budget-Aware Network Hardening for IoT (COBANOT)
	A Case Study for COBANOT Operation
	Complexity/Cost Analysis and Experimental Results
	Complexity Analysis of COBANOT
	Protection Cost Analysis of COBANOT

	Related Work
	Discussion
	Conclusion

