
1

Secured Communication Channels in
Software-Defined Networks

Beytüllah Yiğit, Gürkan Gür†, Bernhard Tellenbach† and Fatih Alagöz
Department of Computer Engineering, Bogazici University

34342 Istanbul, Turkey
†Zurich University of Applied Sciences (ZHAW)

8401 Winterthur, Switzerland
Email: {beytullah.yigit, fatih.alagoz}@boun.edu.tr, {gueu, tebe}@zhaw.ch

Abstract—Software-Defined Networking (SDN) brings new op-
portunities to alleviate the existing security deficiencies of tradi-
tional networks. However, it also introduces new issues, a primary
one being the vulnerabilities related to data and control plane
communications. This work presents a security architecture to
address security problems regarding data exchange in software-
defined networks. To this end, a cryptographic key generation
application is proposed to generate certificates which are used for
securing communication of SDN entities (controller, switch and
application). We also provide an overview of related literature
focusing on key elements in such architecture. In our model,
Transport Layer Security (TLS) can be activated between SDN
nodes to provide confidentiality, integrity, authentication and
authorization with special certificate fields. Besides, an integrated
security module further strengthens the communication security
by applying Access Control List (ACL), hardening TLS con-
figuration and reducing the impact of private key hijacking.
It also facilitates security administration tasks via per-channel
activation/deactivation of TLS protocol and monitoring of real-
time security alarms.

I. INTRODUCTION

SOFTWARE-DEFINED networking (SDN) is a key tech-
nology for achieving the flexibility and scalability levels

required by future network infrastructure. It relies on the
main idea of decoupling the control and the data planes: net-
work intelligence and network states are logically centralized
while the underlying network infrastructure is abstracted by
the controller for different applications. The software-based
controller determines the network decisions (control plane),
while switches handle the actual forwarding of data packets
(data plane). A simplified view of a generic SDN architecture
and threats against SDN are shown in Fig. 1 [1]. In this setting,
the controller can be used to enhance network security by
exploiting the global network view. Security applications at
the controller can analyze and correlate network data to infer
the network status spatially and temporally. Furthermore, they
can run attack detection algorithms and help to understand
the nature of various network threats and security incidents.
The information collected and analyzed by the control plane
can then be used to enforce appropriate security policies in
the data plane. Overall, these characteristics provide potent

This work was supported by the Scientific and Technical Research Council
of Turkey (TUBITAK) under Grant 117E165.

7

 Control Plane

Network Application(s)

Southbound
API

Northbound API

Network Infrastructure

Controller Controller

East/Westbound API

2

3

4

5

Admin Station

6

1

Fig. 1. SDN architecture and threat vector (TV) map [1].

capabilities to improve the security level of the communication
infrastructure.

Although SDN offers opportunities to address security
related network issues, it also involves various comparable
challenges which cast worthwhile technical questions such
as control plane saturation attacks and detection of malicious
application. Threat vectors against SDN are also shown in Fig.
1 [1]. As seen in the figure, threat vectors 1 , 2 , 6 and 7
already exist in traditional networks. On the contrary, threat
vectors 3 , 4 and 5 are specific to SDN and stem from
the separation of the control and data planes and the addition
of a new component to the network, namely the controller.
Threat 1 considers generating malicious flows for Denial of
Service (DoS) attacks. System and software vulnerabilities in
the switch, controller and admin stations result in Threat 2 ,
4 and 6 , respectively. Threat 3 includes attacks on the

confidentiality, integrity and availability of the communication
channel between the control and data planes. For example, they
can be carried out by exploiting a (configuration) flaw in the
TLS protocol or by carrying out a DoS attack on a network

2

TABLE I
RELATED LITERATURE

Work Contributions and employed key method(s) Key Generation

Samociuk [2] Advantages and drawbacks of TLS, SSH and IPSec protocols are compared for SB interface. Not Applicable (N/A)

Lam et al. [3] Implementation of TLS support for cluster communications (EWB) in ONOS controller N/A

Lam et al. [4] Identity-based cryptography to secure SB interfaces Partially

Kang et al. [5] Pre-shared secrets for authentication of switches by extending OpenFlow to solve Data Path ID duplication
problem.

No

Agborubere et al. [6] Review of TLS security flaws and proposal of a TLS extension for OpenFlow No

Liyanage et al. [7] Host Identity Protocol to authenticate switches No

Othman et al. [8] Not only controller but also switches can install flow rules to other switches by using digital signatures. No

Cui et al. [9] A mutual authentication mechanism provided by certificates for NB interface No

Paladi et al. [10] A framework to establish a secure communication channel for OpenFlow via certificates is developed. It
uses Intel SGX which offers strong isolation of cryptographic data by reserving a dedicated private area
in the memory.

Partially

Qin et al. [11] Authentication for controllers and their messages by using hash chains Partially

Peng et al. [12] Usage of Quantum Key Distribution technology to secure SB interface Partially

Toseef et al. [13] Certificate-based AAA services for SDN experimental testbeds (e.g. OFELIA) Partially

Banse et al. [14] Authentication and authorization of SDN applications by controlling certificate fields No

link or communication endpoint. Threat 5 arises from lack
of trust between the controllers and applications while Threat
7 points lack of reliable and trustworthy information to

understand the cause of a detected problem. Threats 7 also
includes absence of secure and stable system snapshots for
remediation. Therefore, security in SDN is a vibrant research
field with a wide range of topics. Most of them can be
assigned to the body of work either on using SDN as a security
enabler or on how to implement SDN architectures so that they
are themselves secure. In this work, we focus on the latter
and consider the security of SDN communication channels.
Specifically, there exist three key communication interfaces
in SDN: SB (southbound), EWB (east-westbound) and NB
(northbound) as shown in Fig. 1. SB interface is located
between the controller and switches. OpenFlow has emerged
as the de facto SB protocol. OpenFlow specification recom-
mends the use of TLS with mutual authentication between
the controllers and their switches1. However, this feature is
optional starting with OpenFlow version 1.1.0. In the control
plane, the EWB interface covers controller communications
in a cluster while the NB interface provides communication
between network applications and the controller. Although
EWB and NB interfaces do not have agreed-upon protocols,
a REST API, which is TLS compliant, is typically used for
them.

In essence, TLS is imperative for protecting communication
in SDN interfaces. Nevertheless, relying on pure TLS usage
alone is not sufficient, albeit being instrumental. First, TLS
must be hardened in the whole network since it contains
some security flaws due to obsolete or vulnerable versions.
Furthermore, TLS must be used with mutual authentication
to limit the possibility of adding a bogus device. Hence,
the communicating entities should have proper certificates.
In that situation, one needs to consider the security of these
certificates and handle possible outcomes of private key hi-

1The specification also mentions auxiliary OpenFlow connection which can
use Datagram Transport Layer Security (DTLS).

jacking (stealing). Additionally, an Access Control List (ACL)
for network elements should regulate access since a switch
or a controller is authorized to connect to only a subset
of controllers. From the network management perspective, a
security architecture must handle network devices which lack
TLS support, generate alarms about security incidents and
allow per-channel activation/deactivation of TLS protocol.

In this work, we propose Secure Communication Architec-
ture for Software-Defined Networks (SECAS) to overcome the
aforementioned security problems. We design a cryptographic
key generation model and implement it with an SDN applica-
tion that can generate and manage key material for communi-
cating entities and then issue and manage corresponding X.509
certificates. Special certificate fields are designed to limit the
impact of private key hijacking. Moreover, TLS configuration
is hardened for all interfaces through features such as removal
of TLS version and removal of support for weak cipher suites.
From the operational perspective, real-time security alarms
are dispatched for security breaches like unauthorized access
requests. TLS usage in each interface can be managed or
monitored separately via a user interface.

II. RELATED WORK

In this section, we present the literature on communication
channel security and authentication of network elements in
SDN. Table I shows some related technical works summarizing
their main methods and key generation capability. The papers
[2] and [3] do not entail a proposal for SDN security. Samo-
ciuk compares security protocols, TLS, SSH and IPSec in [2].
He also mentions about certificate generation via Public Key
Infrastructure (PKI). Lam et al. focuses on EWB interface and
implements TLS support in that channel for ONOS controller
in [3]. However, only intra-cluster communication is secured
and inter-cluster communication remains unprotected. Their
experiments show that TLS overhead in terms of number of
messages is about 5%.

3

Lam et al. propose to apply identity-based cryptography
(IBC) to secure SB communications [4]. They modify TLS
protocols to use them with IBC. In IBC, public keys are
generated according to the identity of the user corresponding
to, for instance, MAC address. The private keys are generated
in Private Key Generator (PKG) which is a separate security
module. Hence, an entity first creates its public key according
to its identity and then communicates with PKG to obtain
its private key. Kang et al. propose a lightweight data plane
authentication scheme to solve data plane identifier (DPID) du-
plication problem where switches have the same DPID causing
the controller to malfunction [5]. Liyanage et al. use the Host
Identity Protocol (HIP) to authenticate switches in [7]. In HIP,
similar to IBC, public keys are used as Host Identity which are
then used to mutually authenticate end nodes. Their proposal
changes the SDN architecture and switch design by adding
security gateways between the controller and switches to use
IPSec tunneling.

In [4] and [5], communicating entities need to possess a
secret key beforehand which means that they must employ
symmetric key distribution. Furthermore, TLS and OpenFlow
protocols need to be modified for [4], [6] and [5], respectively.
Likewise, SDN architecture must include IPSec capable secu-
rity gateway in [7]. Modification of a widely deployed protocol
and extra component integration to SDN limit the usability of
these proposals.

The works in the technical literature reveals that incum-
bent research generally does not address key generation or
distribution. Hence, a key generation application for SDN can
be beneficial and necessary since it can provide public/private
keys and certificates regarding all mentioned works. Moreover,
these proposals only focus on a part of the overall problem
such as switch authentication or SB interface security. Thus, a
holistic approach is crucial for securing SDN communication
channels in an efficient and robust way. To the best of our
knowledge, our architecture SECAS is the first work which
provides a complete set of features like certificate generation
and protection, ACL, security alarms and TLS hardening for
communication security in SDN.

III. SECAS: A SECURE COMMUNICATION
ARCHITECTURE FOR SOFTWARE-DEFINED NETWORKS

Software-defined networks entail control plane channels (i.e.
SB, NB, EWB links) which must be secured to implement a
robust SDN architecture. If the data exchange is not protected,
an attacker can impersonate a controller or switch and carry
out malicious activities which can have serious consequences,
depending on the traffic flowing over this infrastructure.

In this overall setting, a powerful and motivated at-
tacker/adversary can control the network infrastructure; hence
block, save, change, drop or replay all communication in
the SDN. Moreover, it can deploy fake network entities to
initiate a Sybil attack and subsequently disrupt the network
communication. Therefore, authentication and authorization
are crucial functions for this system.

In this work, we propose SECAS for secure communication
of controller, switch, and application entities in the SDN

and aim to overcome the SDN-specific threats 3 and 5 .
To this end, the attacker/adversary is restricted primarily by
the deployed cryptographic methods2. SECAS consists of two
main components: a key generation application to generate
required cryptographic material explained in Section III-A and
a security module (SecMod) to control TLS usage described
in Section III-B.

A. SECAS Key Generation Model for SDN

The employment of TLS in SDN involves some extra opera-
tional steps for facilitating and maintaining secure communica-
tions. In particular, certificate generation for network entities,
signing of certificates with private keys and distribution of
cryptographic material to the network devices are required.
To generate certificates and public-private key pairs, a key
generation application is instrumental. In the application, a
Certificate Authority (CA) is generated as the first step. All
other certificates are trusted to CA. Hence, each entity only
needs the CA certificate and its own certificate. Typically, self-
signed certificates generated outside of the software-defined
network are used to enable TLS in SDN. However, self-signed
certificate generation is cumbersome and has scalability issues
since these certificates must be transferred to each commu-
nicating entity which leads to the common key distribution
challenge.

SECAS key generation application contains only one CA
and no intermediate subordinate CA. The system adminis-
trator can choose cryptographic algorithms and key length
according to the security requirements. SECAS model supports
two widely used asymmetric algorithms: RSA and Elliptic
Curve Cryptography (ECC). Although all key lengths are
supported, the security administrator needs to be aware that
larger key length substantially increases the time required for
key generation and exchange. ECC support is sensible since
it offers the same level of security with relatively small key
sizes. For instance, security level of 224-bit ECC is equivalent
to 2048-bit RSA. Besides, smaller key size enables faster
authentication.

In SECAS, an SDN application takes over the job of creating
and managing the certificates and key material needed to
protect the communication. The sequence diagram of certifi-
cate generation is depicted in Fig. 2. First, that application
generates a key pair and issues a CA certificate by using the
generated key pair according to designated security parame-
ters, e.g. the chosen asymmetric algorithm and key length. The
CA certificate and key pair can be stored in password-protected
Java Key Store (JKS) or Public-Key Cryptography Standards
(PKCS) data format. The password for the key stores are
dynamically generated according to password generation pa-
rameters (password length and character complexity such as
lower letters, upper letters, numbers and special characters).
After the CA generation, the network administrator can make
certificate request via the user interface or a REST call. There
are three certificate types: switch (Cs), controller (Cc) and

2Please note that, we intentionally exclude DoS attacks on SDN commu-
nication channels in this work. That issue deserves an availability-oriented
solution, which is out of scope for this paper.

4

SECAS Admin

Initialization

Read
Security
Config

Create &
Store CA

Certificate &
KP

Create
Certificate &

KP

Password
Generation

Password
Protected
Key Store

Generation

Certificate
Request

(Certificate Type
& IP address)

Certificate
& KP

Fig. 2. Certificate and key pair (KP) generation in SECAS key generation
model.

application (Ca). Cs and Ca certificates are used for SB and
NB interface, respectively. Cc certificates are used for SB,
EWB and NB interfaces.

SECAS utilizes only one CA in its key generation model.
However, one of the biggest concerns in using a single
trusted CA is the private key compromise (key hijacking).
Plain password protection of keys is usually ineffective since
passwords are written somewhere in the device where keys
are also located. Thus, if an attacker can somehow obtain
a certificate or key with its corresponding password, he/she
can connect to any element in the network. To alleviate this
threat, our certificates contain two internal information fields
about communicating entity: type and IP address of the entity.
In that way, the impact of stealing the private key from a
device other than those operating the CA is limited since an
attacker can only impersonate one entity from the specific type
written in the certificate and can only communicate from a
static IP address recorded in the certificate. Accordingly, a
certificate request shown during the certificate generation in
Fig. 2 contains two parameters: certificate_type and
IP_address. When a certificate request is received from
the network administrator, the certificate and key pair are
generated according to the security requirements and input
parameters. Besides, the administrators can make the request
to revoke a certain certificate of a device. Accordingly, SECAS
generates and publishes the Certificate Revocation List (CRL)
to announce the devices which should no longer be trusted. In

our model, certificates and key pairs which are requested by
the administrator must be transferred to the network devices
manually. Developing secure key distribution mechanism is
out of scope of this work.

B. SECAS Security Module (SecMod)

Certificate generation is not solely adequate for secure
communication in a TLS environment. We need to handle
mutual authentication with special certificate fields, notify the
network administrator about security incidents, harden TLS
configuration and comply with the requirements in realistic
settings like ACL. Hence, a security module in the controller is
beneficial to secure the communication infrastructure of SDN
in an integrated manner. The best location for the security
module is the controller since controllers are involved in all
communication interfaces. Besides, it is difficult to interfere
with switch software or network applications as they are
produced by different vendors and a large developer base.

1) TLS Hardening: TLS protocol has some vulnerabilities
leading to some significant attacks such as BEAST, CRIME
and BREACH [2]. Despite such security incidents, TLS is the
de facto standard on the Internet to secure communications
between clients and servers, and more than half of the network
traffic is protected by TLS. Thus, a proper implementation of
TLS is prevailingly accepted as secure [2].

TLS protocol has evolved over years and has different ver-
sions deployed across connected devices. It employs different
cipher suites which are set of of cryptographic algorithms and
used for key exchange, signature generation, encryption and
integrity. For secure SDN communication channels, we need
to harden TLS configuration by disabling older and vulnerable
TLS versions, and removing weak and vulnerable cipher
suites. In SECAS, the network administrator can determine
the TLS configuration to deploy in the whole software-defined
network. That configuration contains allowed TLS versions
and cipher suites in preferred order. Thus, only secure TLS
versions and cipher suites are maintained in the controller and
TLS attacks like CRIME and BEAST can be prevented.

2) Security Management Functions: In most of the con-
troller software implementations, TLS communication must be
activated before the controller is started and it cannot be turned
on or off without taking the controller offline. However, this
situation is impractical since the controller must be restarted
and then preserve all its operational context to enable or
disable merely a security feature. Additionally, the security
administrator is required to start or stop TLS for different
reasons such as changing security policies. As an example,
let us consider that all network applications are running in a
compute node near to the controller and TLS is deactivated in
NB interface since it is assumed to be physically secure in a
data center environment. The administrator needs to activate
TLS in NB interface when a remote application is deployed.
Nevertheless, intermittent restart of the network controller is
not a viable requirement due to changing security policies.
To address this management deficiency, SecMod allows acti-
vation/deactivation of TLS communication on-the-fly in every
interface separately via user controls. Thus, the administrator

5

can manage the network in an agile manner as its requirements
are constantly changing.

TABLE II
TLS SUPPORT IN VARIOUS COMMERCIAL SWITCHES.

Switch Model TLS Support

HP 3500 No

Brocade MLXe No

Alcatel-Lucent OmniSwitch No

Open vSwitch Yes

3) TLS-less Operation: A network consists of a diverse set
of elements (switches and network applications). Particularly,
switches can have different vendors and capabilities. Table II
shows TLS support of various switch vendors [15]. Although
more capable switches are being released alleviating this
deficiency, SDN network elements in the field may still lack
TLS support. Thus, SECAS also supports network elements
whose TLS support is absent via a fall-back scenario. The
administrators can mark these elements in the configuration
to permit plain-TCP connections to the controller while other
elements still connect via TLS3. Despite the fact that this is
not a desired and recommended situation, it may occur due to
practical constraints in operational networks.

4) Access Control: A distributed SDN control plane can
have more than one controller cluster. Controllers have two
types of communication through EWB interface: intra-cluster
and inter-cluster. In this setting, each controller manages a
subset of switches and communicates with only a set of
controllers. Hence, switches must connect to the controllers
assigned to them and a controller can only connect to allowed
peers. To this end, SecMod supports ACL for each controller
and can further restrict access. An ACL includes IP addresses
of valid switches and controllers which can connect to a
controller. When a device sends a connection request to a
controller, SecMod controls whether the ACL contains the IP
address of the device. If it does not, the connection request
is rejected by the security module. Hence, no device which is
not in the list can access the controller.

5) Protection against Private Key Hijacking: Private keys
can be hijacked by hacking an SDN communicating entity or
physically compromising it. As mentioned earlier, two special
fields, certificate_type and (device) IP_address,
are added to the certificates to cope with the hijacking issue.
SecMod overrides the certificate verification to control these
two fields. Besides, client authentication is enforced since the
default mode of TLS considers only server authentication.
After certificate generation, the client and server already
have necessary certificates and key pairs which are used as
key-stores to authenticate themselves. They also have the
CA certificate to use as trust-store. SecMod takes over the
certificate verification when there is a connection attempt to
the controller. It performs the usual certificate verification
using the device’s trust-store. SecMod also checks the CRL to
control whether the certificate is revoked or not. Additionally,

3The controller can not be marked since the selected controller software
must support TLS anyway.

NO

YES

YES

YES

Connection
Request

In ACL ?

TLS active ?

TLS
supported ?

Certificate
Check

TLS
Connection

OK

Plain TCP
Connection

Fire a Security
Alarm

NO

NOT OK

NO

Feeds to
external
security
systems

Secure communication
channel established

event: connection
attempt from an
unlisted device

event: malformed
or invalid
certificate

Fallback: Insecure
communication

channel established

Hardening
applied

Check if the
connecting device
supports TLS

Check if TLS is
enabled for
comm. channel

Fig. 3. Operation flow of SecMod.

the module checks the certificate type and controls whether IP
address of the connecting party is identical with the respective
field in the certificate.

6) Security Monitoring and Situation Awareness: Network
administrators operate large networks and they can not control
every network element and their states in real time. SDN
provides powerful mechanisms to monitor network status such
as global network view and flow statistics. SecMod leverages
the SDN infrastructure to generate real-time alarms for the
following security incidents: 1) connection requests from IP
addresses not in the ACL, 2) the use of invalid or untrusted
certificates in the TLS handshake and 3) a mismatch between
the IP address or the type of the connecting device and
the corresponding information in the certificate shown during
the TLS connection setup. These alarms specifically indicate
which devices are affected from which security incidents. For
further analysis by the administrator(s), they can be seen from
a graphical user interface. These alarms can also be used to
determine the certificates which need to be revoked.

7) How They All Fit Together – SecMod Operation Flow:
Fig. 3 depicts the operation flow of the SECAS SecMod when a
switch initiates a connection to the controller. The other cases
such as controller-to-controller communication are handled in
a similar way. When the connection request is received by
the controller, SecMod checks whether the IP address of the
connecting switch is in the ACL. If it is not, the connection
is rejected and a security alarm is generated. Otherwise, the
module checks if TLS is active and the switch supports TLS.
If that is not the case, the connection request is accepted but

6

the controller starts managing the switch via plain OpenFlow.
Otherwise, a TLS handshake is started. When the certificate
of the switch is received, its verification is started. The
certificate must be issued by the CA trusted by the controller.
Additionally, its type must be “switch” and the IP address of
the connecting switch must be the same IP address embedded
in the certificate. If any of these checks fails, a security alarm
is triggered. According to the alarm, the administrator(s) may
decide to revoke the certificate of the connecting switch. If
all controls are passed, the TLS handshake is completed and
communication between the switch and the controller over the
TLS channel can start.

IV. DISCUSSION

Persistently, there is a performance concern when apply-
ing any security mechanism to a communication channel
in data networks. Such concerns are common excuses to
disable/ignore security functions based on a cost-benefit per-
spective. Besides, data centers, touted as leading execution
points of SDN implementations, have relatively controlled
and restricted environments. Therefore, security hardening and
cyberattacks on the communication channels in these domains
are regarded as relatively far-fetched issues. These factors have
led to the current situation where securing communication
channels via TLS is generally overlooked or comes later in
the list of security priorities [2].

There are different elements of overhead due to adoption
of TLS solutions for SDN security. First, encryption and
certificate usage naturally leads to computational costs. How-
ever, modern hardware minimizes these costs with perpetual
improvements. Processors utilize built-in instruction sets to
efficiently handle encryption and mitigate performance issues.
Hence, the performance overhead of TLS practically becomes
manageable nowadays [3]. To render the related trade-offs of
the SECAS key generation application in a tangible way, a
performance simulation was conducted by generating certifi-
cates with different key sizes of RSA and ECC algorithms.
We used BouncyCastle cryptography library and Java 1.8 on
a 64-bit Ubuntu machine with 2.5GHz CPU, 8GB RAM.
We ran each simulation for 100 times and investigated the
average generation time. The results indicated that ECC has
faster certificate generation speed and that generation time
does not change significantly as the key size increases. In
contrary, as the key size of RSA increases, the required time
for certificate generation increases drastically. For instance,
NIST allows 2048-bit or longer RSA keys to be used in TLS
and SECAS key generation application can generate and pack
2048-bit certificate in less than 0.5 second on average while
224 bit ECC which is equivalent to 2048 bit RSA, took only 8
milliseconds. In addition to this investigation of key generation
performance, as future work, we plan to perform system-level
overhead analysis of SECAS.

Another considerable drawback is the certificate and key
distribution since it may require manual steps like transfer-
ring generated certificates to network elements. However, key
distribution is an inherent problem which can be addressed
according to different requirements. Efficient mechanisms can

be devised based on existing solutions to address different
security policies, system attributes and use-cases. Besides,
network administrators already deal with such operational
challenges in the field and are used to address this kind
of deployment tasks thanks to practices such as scripting.
Essentially, SDN usage cannot be expanded without securing
it by accepting some bearable overhead.

Since key generation must be done before TLS handshake,
the key generation application does not work in real time.
Thus, failure or saturation of the application do not impose
a major risk and can be mitigated using various techniques
(e.g. additional hardware resources). Besides, according to
our simulation, 2048-bit RSA certificate generation of a large
network with 1000 switches, 10 controllers and 100 applica-
tions would take less than 10 minutes. This run-time can be
shortened by using a dedicated hardware module, deploying
multiple instances of the key generation application by cloning
the CA key pair on different machines. From an architectural
viewpoint, SECAS can be used with intermediate CAs to
achieve better scalability. Additionally, if one uses at least
two sub-CAs with a root CA where the private key is only
offline available, he significantly reduces the risk of single-
point-of-failure and the system might have a recovery path
if only one sub-CA certificate is revoked and no secure
connection is possible anymore because of this situation.
However, the security administrators should keep in mind that
each additional layer significantly increases the time required
for certificate verification.

V. CONCLUSIONS

In this work, we first present a concise overview of SDN
strengths and weaknesses from the security perspective. There
are many works which use SDN as a security enabler. How-
ever, the security of SDN is also a crucial topic. Therefore,
we propose SECAS — a secure communication architecture
including a key generation application to eliminate security
threats to the communication channels of SDN. SECAS pro-
vides mutual authentication between SDN entities, end-to-end
TLS encryption for all communication interfaces, certificate
verification and real-time notifications/alarms about security
violations. It also hardens the TLS configurations while ap-
plying ACL to further restrict access. SECAS considers real-
world requirements of SDN such as on-the-fly TLS activa-
tion/deactivation and support for TLS-incapable devices. We
also present a discussion on how SECAS provides secured
communication channels in SDN.

As a future research direction, the security module can be
further extended to detect malicious network devices and then
automatically revoke their certificates. Besides, overhead of
TLS to the SDN system in terms of bandwidth, latency and
throughput with respect to different security parameters (e.g.,
key length and deployed algorithms) can be investigated. Ac-
cordingly, particular impact of TLS to the network operation
according to pertinent security requirements can be explicitly
conveyed.

7

REFERENCES

[1] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and depend-
able software-defined networks,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13. ACM, 2013, pp. 55–60.

[2] D. Samociuk, “Secure communication between OpenFlow switches
and controllers,” Proceedings of the 7th International conference on
Advances in Future Internet (AFIN)., vol. 39, 2015.

[3] J. H. Lam, S.-G. Lee, H.-J. Lee, and Y. E. Oktian, “TLS channel imple-
mentation for ONOS’s east/west-bound communication,” in Electronics,
Communications and Networks V. Springer, 2016, pp. 397–403.

[4] J. Lam, S.-G. Lee, H.-J. Lee, and Y. E. Oktian, “Securing SDN south-
bound and data plane communication with IBC,” Mobile Information
Systems, vol. 2016, 2016.

[5] J. W. Kang, S. H. Park, and J. You, “Mynah: Enabling lightweight data
plane authentication for SDN controllers,” in 24th International Con-
ference on Computer Communication and Networks (ICCCN). IEEE,
2015, pp. 1–6.

[6] B. Agborubere and E. Sanchez-Velazquez, “OpenFlow communications
and TLS security in software-defined networks,” in IEEE Green Com-
puting and Communications (GreenCom), 2017, pp. 560–566.

[7] M. Liyanage, M. Ylianttila, and A. Gurtov, “Securing the control
channel of software-defined mobile networks,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, June 2014, pp. 1–6.

[8] O. M. Othman and K. Okamura, “Securing distributed control of
software defined networks,” International Journal of Computer Science
and Network Security (IJCSNS), vol. 13, no. 9, p. 5, 2013.

[9] H. Cui, Z. Chen, L. Yu, K. Xie, and Z. Xia, “Authentication mechanism
for network applications in SDN environments,” in 20th International
Symposium on Wireless Personal Multimedia Communications (WPMC).
IEEE, 2017, pp. 1–5.

[10] N. Paladi and C. Gehrmann, “TruSDN: Bootstrapping trust in cloud
network infrastructure,” in International Conference on Security and
Privacy in Communication Systems. Springer, 2016, pp. 104–124.

[11] H. Qin and N. Wang, “A data-origin authentication protocol based on
ONOS cluster,” in MATEC Web of Conferences, vol. 56. EDP Sciences,
2016.

[12] Y. Peng, C. Wu, B. Zhao, W. Yu, B. Liu, and S. Qiao, “QKDFlow:
QKD based secure communication towards the OpenFlow interface in
SDN,” in 4th International Conference on Geo-Informatics in Resource
Management and Sustainable Ecosystems GRMSE. Springer, 2016, pp.
410–415.

[13] U. Toseef, A. Zaalouk, T. Rothe, M. Broadbent, and K. Pentikousis,
“C-BAS: Certificate-based AAA for SDN experimental facilities,” in
2014 Third European Workshop on Software Defined Networks, 2014,
pp. 91–96.

[14] C. Banse and S. Rangarajan, “A secure northbound interface for SDN
applications,” in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, 2015, pp.
834–839.

[15] N. Dayal, P. Maity, S. Srivastava, and R. Khondoker, “Research trends
in security and DDoS in SDN,” Security and Communication Networks,
vol. 9, no. 18, pp. 6386–6411, 2016.

Beytüllah Yiğit (beytullah.yigit@boun.edu.tr) is a Ph.D. candidate in the De-
partment of Computer Engineering, Bogazici University. His current research
focuses on SDN and network security.

Gürkan Gür (gueu@zhaw.ch) is a senior researcher at Zurich University
of Applied Sciences (ZHAW) in Switzerland. His research interests include
information security, Future Internet and information-centric networking.

Bernhard Tellenbach (tebe@zhaw.ch) is a professor and head of the infor-
mation security research group at ZHAW. He received his Ph.D. degree in
2013 from ETH Zurich. His research interests include information security,
network security, system security, and security training and testing.

Fatih Alagöz (fatih.alagoz@boun.edu.tr) is a professor in the Computer
Engineering Department of Bogazici University, Turkey. He obtained his DSc
degree in Electrical Engineering in 2000 from George Washington University,
USA. His current research areas include wireless/mobile/satellite networks and
network security.

