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Abstract—Future Internet is going to be shaped by networked
multimedia services with exploding video traffic becoming the
dominant payload. That evolution requires a shift from the
connection-oriented architecture to a content-centric one. An-
other remedy to address this capacity crunch is to improve
spectral utilization through new networking techniques at the
wireless network edge. To this end, Device-to-Device (D2D)
communications has the potential for boosting the capacity and
energy efficiency for content-centric networking. To design and
implement efficient content-centric D2D networks, rigorous con-
tent modeling and in-network caching mechanisms based on such
models are crucial. In this work, we develop a multidimensional
content model based on popularity, chunking and layering, and
devise caching schemes through this model. Our main motivation
is to improve the system performance via our caching strategies.
The numerical analysis shows the interplay among different
system parameters and performance metrics: while our schemes
perform poorer in terms of system goodput, they also decrease the
system energy expenditure. Overall, this improvement dominates
the loss in the goodput, leading to greater energy efficiency com-
pared to the commonly-used caching technique Least Recently
Used (LRU).

I. INTRODUCTION

The drastically increasing video content consumption in the
Internet leads to burgeoning data traffic in wireless networks
[1]. This challenge requires the improvement of network
capacity while increasing energy efficiency for sustainable
systems. Content-centric design of networks is promising
to realize these goals. Accordingly, the classical networking
techniques are revised for improving the content dissemination
in terms of capacity and energy efficiency. These solutions
inherently employ in-network caching, and thus should con-
sider prospective content requests and cache videos according
to request patterns and content characteristics. Apart from
pervasive caching, Device-to-Device (D2D) communications
is also a promising enabler for boosting the system capacity
via short distance transmissions and better spectrum utiliza-
tion. This paradigm is especially instrumental in mobile edge
networks with localized computation and communications
for multimedia-intensive services such as Augmented Reality
(AR) or massive content streaming. Therefore, how the D2D
paradigm and content model driven caching for video traffic

can be jointly exploited is a key research topic for future
wireless networks.

In this work, we develop a video content model for content-
centric edge networks with D2D communications. In-network
caching is a fundamental capability for minimizing the en-
ergy consumption and increasing the capacity in that setting.
Thereof, we focus on that aspect and devise novel caching
strategies relying on our proposed model. Our developed
caching schemes are particularly built upon the popularity,
chunking and layering attributes. They are studied in terms
of their energy consumption, system goodput and energy
efficiency performance. The improvement in energy efficiency
and the trade-off between the energy consumption and goodput
are revealed through simulation-based experiments.

There is a plethora of research works that utilize tuples of
i) popularity, ii) chunking and iii) layering in their content
models. The popularity attribute is used to grasp an elemental
insight into the video consumption preferences of users. In [2],
Hachem et al. make use of the popularity characteristic of
contents in their study in that regard. Besides, the chunking
dimension that determines how videos are partitioned into
segments is an enabler for improving system efficiency. For in-
stance, chunking is used for its beneficial impact on bandwidth
utilization in [3]. Layering is another dimension in content
modeling that is utilized for providing scalability to the content
dissemination in networks. Chau et al. make use of the concept
of layering in their developed content model in [4]. There
are also studies that contain couples of these content model
dimensions. For instance, in [5], the popularity and layering
are used for content modeling while Xu et al. utilize popularity
and chunking dimensions in [6]. Moreover, there exist some
studies that take advantage of content popularities and also
focus on layered content caching such as [7] and [8]. In [9],
Ramzan et. al. exploit both layering and chunking aspects of
content modeling for video streaming.

In-network caching has also been extensively investigated
in the literature from i) content-based and ii) D2D caching
aspects. For instance, [8] and [10] are content-based caching
works which primarily utilize inherent content features in
their caching decisions. In [8], Zhan et. al. propose a heuris-
tic caching algorithm for minimizing the latency of layered



content dissemination in heterogeneous networks (HetNets).
However, these caching algorithms are not studied in the
parlour of the D2D domain. In contrast, there are some D2D
caching studies exploiting content-specific attributes in their
caching decisions [7], [11], [12]. Gregori et al. study the joint
caching and resource allocation problem in small cells and
D2D network where the popularity of contents follows the Zipf
distribution in [11]. [12] makes use of content popularities for
caching in HetNets with D2D and cognitive communications.
However, none of these studies utilizes all of the content
dimensions i) popularity, ii) chunking and iii) layering in their
investigations.

As a key contribution in this work, we develop a popularity,
chunking and layering based video content model for content-
centric D2D edge networks. To the best of our knowledge, our
work is the first proposal that models video contents according
to all these dimensions — especially from the perspective
of caching in D2D networks. Additionally, based on our
novel content model, we propose two caching algorithms via
prioritization on content attributes in such systems. We also
investigate the impact of caching on the energy consumption,
goodput and energy efficiency.

II. SYSTEM MODEL

In our system, we consider the wireless nodes in the
network edge exchanging content via D2D communications in
an infrastructure-independent manner [13]. This architectural
layout refers to emerging mobile edge computing scenarios
such as AR and edge-accelerated content streaming. Devices
in this network setting need to be protected against excessive
energy consumption due to video traffic while enjoying very
high bitrates. In that regard, we focus on video content
modeling and caching in these ad hoc D2D networks.

In our system, users are dispersed in the spatial domain
without access to a base station for content delivery. For
modeling the user locations, Poisson Point Process (PPP) is a
commonly utilized spatial distribution [14]. In our network,
users are distributed according to PPP with mean density
λusers. They have devices with storage that is capable of
storing contents. These devices can exchange video content
with each other via D2D communications. When a content is
requested, first the requester will check its local cache. If the
content is not found, it will try to use D2D transmissions. It
will fetch the requested content from the closest accessible
device that stores that content. All users have equal priority
while accessing the wireless medium. For the D2D wireless
channel, the employed pathloss model for a given distance d
is:

Pr(d) = PD2D − 20 · log10(
4πfd0
c

)− 10 · log10(
d

d0
)n (1)

where PD2D is the transmit power of a device and Pr(d)
received power, n is the path loss exponent and d0 is a
reference distance of the device antenna. The D2D channel
capacity is calculated by C = B · log2(1 + Pr(d)

B·N0
) where B is

the bandwidth and N0 is the noise power density.

TABLE I: Video sequences [19].

Video Genre

Citizen Kane Drama

Silence of the Lambs Drama

Jurassic Park I Action

Die Hard I Action

The Terminator I Action

Total Recall Action

Star Wars IV Sci-fi

Star Wars V Sci-fi

Aladdin Cartoon

Cinderella Cartoon

The Firm Drama

Tonight Show Late Night Show

Baseball Game 7 of the 2001 World Series

Snowboarding Snowboarding Competition

A. Video Content Model

To explain the rationale behind our three dimensional (pop-
ularity, chunking and layering) video content model, we first
describe these dimensions:
• Popularity: Popularity is a key content attribute that is

used to optimize caching according to content request
characteristics. The emergence of content-centric net-
working requires popularity profiling of contents. In the
literature, the Zipf distribution Zipf(s,N) [5], [15] is
widely used for generic modeling of content requests.
Here, N stands for the total number of contents in the
system while s determines the skewness of the distribu-
tion.

• Chunking: The partitioning of contents into chunks lever-
ages the caching gain [16]. It is also a practical instrument
for designing simpler caching schemes and enabling
differentiation among different parts of a content. In that
regard, it is beneficial to be utilized in the content model.

• Layering: In scalable coding, the base layer is the
standard quality (SQ) video segment while enhancement
layers improve the video quality [17]. The upper layers
require low quality layer portions for successful decoding.
Scalable video coding provides adaptability for different
network conditions [18] such as congestion or packet loss.
Thus, it is integrated into our content model.

For empirically determining the video characteristics in our
content model, we utilize 60 minutes long QCIF formatted
temporal scalable encoded videos [19] listed in Table I.
IBBPBBPBBPBBPBB... is the group of picture (GoP)
structure of these videos with frame rate 30 Hz. In [19],
layering dimension is used where the trace statistics of tem-
poral scalable encoded videos are provided. I and P frames
constitute the base layer while B frames form the enhancement
layer. The calculation of mean video frame sizes of base and
enhancement layer Xγ is given in (2) [20]. Xn is the size of
the nth frame for n = 0, 1, · · · , N − 1 while Xb

n=Xn for I
and P (base layer) frames and Xb

n is zero for B (enhancement
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Fig. 1: Layer and chunk dimensions of the video content
model.

layer) frames. On the contrary, Xe
n is zero for base layer

frames and Xe
n=Xn for enhancement layer frames.

Xγ =
1

N

N−1∑
n=0

Xγ
n , γ ∈ {b, e}. (2)

For video coding, our sample videos consist of frames
partitioned into 8 × 8 sample blocks of luminance, hue and
intensity and all of them are mapped to 8 × 8 transform
coefficient blocks via DCT. These blocks are quantized based
on a quantization scale where low scale means higher quality
and high scale entails lower quality in [19]. In our work, we
consider 10, 14 and 16 as quantization scales for I, P and B
frames, respectively. For the given quantization scale, the mean
base frame size Xb is 0.3727 kB while the mean enhancement
frame size Xe is 0.176 kB [19]. The average size of 60 minutes
long SQ videos of frame rate 30 Hz sSQ is then calculated
as:

sSQ := 3600 s · 30 Hz ·Xb kB · 8 · 103 bits

kB
(3)

Accordingly the average size of HQ videos (60 minutes
long, frame rate 30 Hz) sHQ is calculated using the value sSQ
and the additional enhancement layer contribution as shown
below:

sHQ := sSQ + (3600 s · 30 Hz ·Xe kB · 8 · 103 bits

kB
) (4)

Then the average sizes according to employed video sequences
are sSQ = 322 Mb and sHQ = 474 Mb.

As the chunking technique, we employ equipartioning, i.e.
partition the contents into equal sizes [10], [16] and take the
base chunk size as 16 Mbits. The two layers in our video
content model with chunking are shown in Fig. 1. We assume
two video layers with equal sized chunks in these layers.

III. MULTIDIMENSIONAL CACHING SCHEMES FOR D2D
EDGE NETWORKS

The benefits of content-centric networking are realized
through the utilization of content popularity differentiation in
caching. For instance, Suksomboon et. al. propose PopCache
in content-centric networks which stores popular contents
close to the requesters [10]. However, apart from the inter-
content patterns such as relative popularity, intra-content fea-
tures are promising as some content portions are more benefi-
cial in terms of caching gains. For instance, from the layering
aspect, the base is more critical compared to enhancement

Algorithm 1 Caching Algorithm

CACHE(Sc, cx, C,TYPE){

CurCap = Capacity(Sc)

if (CurCap + size(cx) ≤ C) then
return Sc ∪ {cx};

else
Ssorted ← sort(Sc, POP);
if (TYPE == LPPC) then
Ssorted ← sort(Ssorted, LAYER);
Ssorted ← sort(Ssorted, CHUNK);

else if (TYPE == CPPC) then
Ssorted ← sort(Ssorted, CHUNK);
Ssorted ← sort(Ssorted, LAYER);

end if
//Ssorted = {s1, s2, ... , sk} ordered from s1 to sk
j = k;
while (j ≥ 1) do

Ssorted ← Ssorted \ {sj , sj+1, ...sk};
if (CurCap + size(cx)−

∑k
θ=j size(sθ) ≤ C) then

return Ssorted ∪ {cx};
end if
j ← j − 1;

end while
end if
}

layer(s) since videos cannot be rendered when it is unavail-
able [18]. From the perspective of chunking factor, the initial
chunks are more worthy owing to the inter-chunk request
phenomenon where the initial chunks are demanded more
frequently (e.g. the beginning segments of a video compared
to the end ones) [21]. Based on these content related observa-
tions, we develop our prioritized content caching techniques.
Our proposals, namely Layer Prioritized Popularity Based
Caching (LPPC) and Chunk Prioritized Popularity Based
Caching (CPPC), are constructed with the aim of preserving
“important” content segments in caches for improving the
system performance.

In both schemes, listed in Algorithm 1, the content units in
the cache Sc are first sorted on the popularity dimension in
descending order. In this way, the highest priority is given to
the popularity attribute. Next, the caching mechanisms focus
either on the chunk or layer order. LPPC first sorts on the
layering dimension of a given content. For breaking ties among
the same layer of the same content, it sorts on the chunk
order. Thus, the layering dimension dominates the chunking
dimension in LPPC. On the contrary, CPPC gives greater
importance to the chunking dimension compared to layering
and does the opposite sorting, i.e, first according to chunking,
then layering. If the to-be-cached content cx cannot fit into the
the cache of capacity C, the content units are discarded from
the cache starting from the lowest order until the free cache
capacity suffices for the cx.



A. Complexity

The complexity of any caching algorithm is important for
practical purposes. Therefore, we also investigate the com-
plexity of our proposed algorithms. In our system, let Nc be
the number of contents, Nl the number of layers and Nch
the maximum number of chunks of a content. Both algo-
rithms first sort contents on popularity with time complexity
O(Nc logNc). Next, LPPC sorts on the layering dimension
on each content with complexity O(Nc(Nl logNl)). Finally,
LPPC sorts on the chunking dimension for each layer of
all contents with complexity O(NcNl(Nch logNch)). Overall,
the time complexity of LPPC algorithm is O(Nc logNc +
Nc(Nl logNl) +Nc Nl(Nch logNch)).

The sorting order of layering and chunking dimensions of
CPPC are the direct opposite of LPPC with the time com-
plexity O(Nc logNc+Nc(Nch logNch)+NcNch(Nl logNl)).
Consequently, both CPPC and LPPC operate in polynomial
time.

IV. PERFORMANCE METRICS

We investigate our proposed caching schemes in terms of
the performance metrics (i) energy consumption, (ii) goodput,
and (iii) energy efficiency. The parameter explanations are
listed in Table II.

A. Energy

One of the energy consumption components is due to the
local cache hits of requested content units Eloc. In that regard,
Ploc · |su|Cloc

is the energy consumption of each local service
for some content unit u (ru ∈ S(n,n)). The summation of
local services for all content units and devices in the analyzed
network region provides Eloc:

Eloc :=
∑
u∈U

∑
n∈N

∑
ru∈S(n,n)

Ploc ·
|su|
Cloc

(5)

The aggregate transmission energy of devices operating in
the D2D mode ED2D is another element for the system energy
usage. PD2D · |su|

CD2D(n,m) is the energy consumption of the
D2D service for some content unit u transmitted between
devices n and m. Then, ED2D refers to the aggregate of all
D2D utilizing services for all content units from all device
pairs:

ED2D :=
∑
u∈U

∑
n,m∈N
n 6=m

∑
ru∈S(n,m)

PD2D ·
|su|

CD2D(n,m)
(6)

Some content unit requests are blocked due to the limitation
of the network and cache capacities. However, the devices
have to switch from the sleep to the idling state for these
unsuccessful attempts. In that regard, the activation energy of
devices for content units Eblock(su) is aggregated to calculate
the total blocking energy consumption:

Eblock :=
∑
u∈U

∑
n∈N

Eblock(su) (7)

Then, the overall energy consumption of our system Eall is

Eall := Eloc + ED2D + Eblock (8)

B. Goodput

Gloc is the aggregate number of received bits via local hits
of requested content units over the course of the experiment.
For successful reception, any content unit request ru should
be in the Comp set. This is because none of the corresponding
content units of a given content request has contribution to the
goodput if that given request has incomplete base chunk(s).

Gloc :=

∑
u∈U

∑
n∈N

∑
ru∈Comp∩S(n,n)

|su|
Tsim

(9)

The overall goodput provided by the network through D2D
mode is GD2D. For contributing to the D2D goodput, any
request should be in the Comp set by the same reasoning
explained above. Such a request should also be a member
of Fail set. Please note that the Comp and Fail set are
not necessarily the same. A content request can have all of
its base chunks successfully transmitted, i.e., ru ∈ Comp.
However, some enhancement chunk unit u might have failed
for that content and then ru ∈ Fail, thus not contributing to
the goodput via D2D communications.

GD2D :=

∑
u∈U

∑
n,m∈N
n 6=m

∑
ru∈Comp∩S(n,m)

ru∈Fail
|su|

Tsim
(10)

By summing all of these contributions, we get the overall
network goodput Gall as shown in (11):

Gall := Gloc +GD2D (11)

TABLE II: System parameters.

Parameter Explanation

Ploc The power consumption of local content unit
retrieval

PD2D The transmission power consumption of a device

Cloc The service capacity of content

CD2D(n,m) The channel capacity between the nth and mth
devices

Eblock The activation energy of devices from the sleep-
ing to the idling state

N The total number of devices

U The set of content units uniquely identifiable by
content, chunk, and layer id

ru The request for the content unit u

su The size of the content unit u

S(n,m) The set of services from the nth device to mth
device

Comp The set of requests for a content where all the
base chunks are transmitted successfully (service
completed successfully)

Fail The set of requests for content units that have
failed



TABLE III: Simulation parameters.

Parameter Explanation Value

Tsim The simulation duration 1200 s

s The Zipf distribution exponent 0.8

λ The Weibull distribution scale parame-
ter

1

k The Weibull distribution shape param-
eter

0.6

pHQ The ratio of high quality content con-
sumers

1

λusers The mean density of user distribution
in PPP

0.0015
user/m2

RBS The radius of the investigation zone 330 m

RD2D The radius of interference free D2D
transmission zone

120 m

C The cache capacity of devices 47.1 Mbits

PD2D The transmission power of a device 80 mW

d0 The reference distance of device an-
tenna

1 m

n The path loss exponent of D2D trans-
mission

3

B The bandwidth of the terrestrial channel 2 MHz

N0 The noise power density -95 dBm

C. Energy Efficiency

The division of the overall system energy consumption over
the total number of transmitted bits in the system gives the
energy efficiency metric EE as

EE :=
Eall

Gall · Tsim
(12)

in energy spent per bit (joule per bit - jpb) units which has to
be minimized to improve energy efficiency.

V. PERFORMANCE EVALUATION

For performance evaluation, we inspect how our system
performs with varying Zipf distribution parameter α for the
performance metrics (i) energy, (ii) goodput and (iii) energy
efficiency. We compare our strategies to baseline Least Re-
cently Used (LRU) scheme. The simulation parameters and
their values are listed in Table III.

In Fig. 2(a), it is observed that with increasing α values
the total system energy consumption decreases for all caching
mechanisms. This is intuitive since with increasing α, the
popularity gap between contents increases and the popular-
ity concentrates on fewer contents. Then the most popular
contents are stored in devices more often and the overall
local hit rates are improved. Therefore, increasing α benefits
energy due to two factors. First, the power consumption Ploc
for a local hit is less than the device transmission power
PD2D. Second, local hits attain larger local service capacity
Cloc compared to the wireless transmissions. Specifically,
CPPC and LPPC algorithms deplete less energy than the
LRU algorithm for any fixed α as seen in Fig. 2(a). The
energy consumption of CPPC (LPPC) has an improved
performance gap with the classical LRU ranging from 11.49%
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Fig. 2: Performance of caching mechanisms for different α
values in terms of (a) energy consumption, (b) goodput, (c)
EE.

(9.05%) to 19.63% (12.88%). Our proposed techniques are
better at keeping important content portions corresponding
to prospective user requests in local caches. That advantage
reduces network traffic and thus results in less overall energy
consumption. With increasing α, the gap between content
popularities increases: the maximal improvement of CPPC
(LPPC) over LRU is attained at the largest α = 2.2 value with
19.63% improvement from 164.5 Joule to 132.2 Joule (12.88%
improvement from 164.5 Joule to 143.3 Joule). CPPC is
more beneficial for energy consumption compared to LPPC
especially for larger α values. This phenomenon means that



chunking is dominant over layering dimension of the video
model for large α’s regarding the minimization of total energy
consumption.

According to the experimental results, the system goodput
improves with increasing α in all caching strategies as shown
in Fig. 2(b). This is again due to the increased caching
benefits with high popularity differentiation among content
units in large α regime. In Fig. 2(b), the CPPC and LPPC
schemes achieve poorer system goodput in contrast to the
LRU. The worst degradation compared to LRU in the goodput
is observed for the CPPC scheme with 8.9% reduction from
50.1 to 45.7 Mbps at α=1. For the entire α range, LPPC
is substantially more beneficial than CPPC in terms of the
system goodput, especially for larger α’s. Unlike the energy
consumption case, for this case we deduce that layering has
greater impact than chunking on the service quality.

To analyze the system EE, we inspect the results in Fig. 2(c).
Evidently, our proposed schemes perform better compared to
LRU with increasing α. For the largest value 2.2 in our α
range, the improvement of CPPC (LPPC) over the LRU in
terms of EE is 13.10% from 2.12 to 1.84 nJpb (11.81% from
2.12 to 1.87 nJpb). Despite the system goodput degradation in
our caching techniques, they provide gains in the energy con-
sumption to a greater extent. Thereof, our schemes are overall
more energy efficient. No apparent EE difference between
our techniques is observed. Hence, the different prioritization
ordering of our proposed schemes do not significantly alter
the EE characteristic of the network in this case.

VI. CONCLUSIONS

In this work, we develop a video content model based on
the popularity, chunking and layering dimensions for content-
centric and D2D edge networks. Moreover, we propose priority
based caching schemes that utilize our video content model for
caching decisions. Our caching techniques yield varying prior-
itization of chunking and layering dimensions. The chunking
dimension compared to the layering has greater effect on the
reduction of the system energy consumption while the layering
dimension in contrast has greater effect on the improvement
of the system goodput. Our numerical results show that our
caching schemes outperform the standard LRU algorithm
and provide higher EE due to dominant energy consumption
reduction in spite of slightly worse system goodput.
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