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Outline

3

•Key message: Spectrum sharing is inevitable and  mechanisms to 
solve coexistence challenges is still immature. Machine learning 
can provide efficient tools to deal with complex interactions in 
the coexistence settings. 

• Outline:  

• Part I: Spectrum sharing essentials (10 mins) 
• Part II: Coexistence in unlicensed bands (30 mins) 
• Part III: Machine learning primer (20 mins) 
• Part IV: How ML helps for better coexistence (30 mins) 
• Part V: Summary and open research directions (5 mins)
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Part I 
Spectrum Sharing in Wireless Networks

• Why to share the spectrum? 
• Modes of sharing 
• Challenges in harmonious coexistence 
• Current solutions for coexistence in 

wireless networks

10        
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• Spectrum sharing covers the scenarios where at least two 
technologies, systems, or users utilise or are authorized to 
utilize the same frequency bands in a non-exclusive manner

5

Sharing

Simon Forge, Robert Horvitz and Colin Blackman, report on Promoting the Shared Use of Europe’s Radio Spectrum, 2012. 

Artist: Alan Levine



/170

Networks are getting denser

6

• High increase in wireless devices, networks, users 
• Massive and continuing  growth in mobile data traffic 

- Special thanks to video traffic! 60% of total mobile traffic in 2016   
• More to come with IoT, M2M, 5G 
• Many (cutting-edge) proposals to cope with the exponentially 

increasing wireless data demand  
- small cells, MU-MIMO, D2D, etc.

Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021, 2017. 
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-
white-paper-c11-520862.pdf

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
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Networks are getting denser

7

• High increase in wireless devices, networks, users 
• Massive and continuing  growth in mobile data traffic 

- Special thanks to video traffic! 60% of total mobile traffic in 2016   
• More to come with IoT, M2M, 5G 
• Many (cutting-edge) proposals to cope with the exponentially 

increasing wireless data demand  
- small cells, MU-MIMO, D2D, etc.

Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021, 2017. 
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-
white-paper-c11-520862.pdf

BUT: Scarcity of “good” spectrum for wireless communications is 
still the major bottleneck.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
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Scarcity of good spectrum

8

• Sub-6 GHz best performance 
• Unlicensed bands:  

- 2.4 GHz (already very congested)  
- and 5 GHz 

• New bands: mmWave etc.  
- for small cells and low mobility 
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Scarcity of good spectrum

9

• Sub-6 GHz best performance 
• Unlicensed bands:  

- 2.4 GHz (already very congested)  
- and 5 GHz 

• New bands: mmWave etc.  
- for small cells and low mobility 

Dynamic spectrum sharing as a remedy to cope with exponential 
wireless data demand and solve the artificial scarcity due to 
mis-management of the spectrum
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Also sharing economy is better
• Cheaper licenses for mobile network operators if operation on the 

licensed bands 
• Additional revenue for network operators if selling their under-utilised 

bands 
• More-efficient spectrum utilization if shared among multiple networks 

(use of underused assets by others)

10
Please see for sharing in the licensed bands: Tehrani, Roya H., et al. "Licensed spectrum sharing schemes for mobile 
operators: A survey and outlook." IEEE Communications Surveys & Tutorials18.4 (2016): 2591-2623.
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Spectrum authorities agree …
• FCC’s Notice of Inquiry July 13, 2017: Exploring Flexible Use in Mid-Band Spectrum 

Between 3.7 GHz and 24 GHz  
http://transition.fcc.gov/Daily_Releases/Daily_Business/2017/db0713/DOC-345789A1.pdf  
  

• Ofcom’s A Framework for Spectrum Sharing in April 2015  
https://www.ofcom.org.uk/__data/assets/pdf_file/0032/79385/spectrum-sharing-framework.pdf 

• Report for EU Commission, on Promoting the Shared Use of Europe’s Radio 
Spectrum, 2012, S. Forge et al.  
https://ec.europa.eu/digital-single-market/en/promoting-shared-use-europes-radio-spectrum

11

http://transition.fcc.gov/Daily_Releases/Daily_Business/2017/db0713/DOC-345789A1.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0032/79385/spectrum-sharing-framework.pdf
https://ec.europa.eu/digital-single-market/en/promoting-shared-use-europes-radio-spectrum
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A generic coexistence scenario

12

Coping with interference 
is central to the 
coexistence of wireless 
systems. 

1: transmission range 
2: detection range 
3: interference range

Simon Forge, Robert Horvitz and Colin Blackman, report on Promoting the Shared Use of Europe’s Radio Spectrum, 2012. 
https://ec.europa.eu/digital-single-market/en/promoting-shared-use-europes-radio-spectrum

2
3

Network 1

Network 2

1

https://ec.europa.eu/digital-single-market/en/promoting-shared-use-europes-radio-spectrum
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A generic coexistence scenario

13

Co-existence is when the 
operation of a radio 
system is capable of 
impairing the operation of 
another radio system but 
it does not.

1: transmission range 
2: detection range 
3: interference range

Simon Forge, Robert Horvitz and Colin Blackman, report on Promoting the Shared Use of Europe’s Radio Spectrum, 2012. 
https://ec.europa.eu/digital-single-market/en/promoting-shared-use-europes-radio-spectrum

2
3

Network 1

Network 2

1

https://ec.europa.eu/digital-single-market/en/promoting-shared-use-europes-radio-spectrum
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Spectrum sharing in various domains

• Frequency: each system operates on a different spectrum 
• Time: same spectrum used on a time-sharing basis (DSA, cognitive radio 

in overlay mode) 
• Space: systems coexist in different spatial domains (e.g., protection 

zones, exclusion zones) 
• Code: e.g. CDMA

14

Frequency 
f

Time 
t

Space 
s

Code 
c
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Spectrum Sharing Scenarios: A Taxonomy

15

Priority of the networks

Homogeneous Heterogenous 

Hybrid 
WiFi-WiFi-ZigBee

Communication 
networks 

802.22 and TV 
broadcasting

Communication and 
non-comm. systems 

Radar and 
WiFi@5GHz 

Vertical 
(primary and 

secondary networks)

Han, You, et al. Spectrum sharing methods for the coexistence of multiple RF systems: A survey. Ad Hoc Networks, 2016

Horizontal  
(same priority)
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Spectrum Sharing Scenarios: A Taxonomy

16

Priority of the networks

Communication 
networks 

802.22 and TV 
broadcasting

Communication and 
non-comm. systems 

Radar and 
WiFi@5GHz

Han, You, et al. Spectrum sharing methods for the coexistence of multiple RF systems: A survey. Ad Hoc Networks, 2016

Homogeneous 
WiFi-WiFi

Heterogenous 
WiFi-ZigBee

Hybrid 
WiFi-WiFi-ZigBee

Horizontal  
(same priority)

Vertical 
(primary and 

secondary networks)
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Priority of the networks

Homogeneous 
WiFi-WiFi

Heterogenous 
WiFi-ZigBee

Hybrid 
WiFi-WiFi-ZigBee

Communication 
networks 

802.22 and TV 
broadcasting

Communication and 
non-comm. systems 

Radar and 
WiFi@5GHz

Cognitive Radio

Spectrum Sharing Scenarios: A Taxonomy

Han, You, et al. Spectrum sharing methods for the coexistence of multiple RF systems: A survey. Ad Hoc Networks, 2016

Horizontal  
(same priority)

Vertical 
(primary and 

secondary networks)
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Spectrum Sharing Scenarios: A Taxonomy

18

Priority of the networks

Homogeneous 
WiFi-WiFi

Heterogenous 
WiFi-ZigBee

Hybrid 
WiFi-WiFi-ZigBee

Communication 
networks 

802.22 and TV 
broadcasting

Communication and 
non-comm. systems 

Radar and 
WiFi@5GHz 

Cognitive RadioUnlicensed

Main focus of this tutorial is on unlicensed bands

Horizontal  
(same priority)

Vertical 
(primary and 

secondary networks)
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What is an efficient coexistence?
• Depends on the scenario (requirements of each system’s 

operation) 
• Several metrics 

19

Network A
Network B

rBrA

Radar

rC
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Coexistence metrics

• Fairness in usage of the shared resources 
• Throughput 
• Delay 
• Spectrum utilisation (from the perspective of the regulatory bodies/

spectrum authority)

20
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Main challenges in  
wireless coexistence

21

Challenge #1 
Heterogeneity 

(other challenges are also mostly due to heterogeneity)
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Challenge #1: Heterogeneity
• Different rules of operation, different ethics 
• PHY, MAC layer (packets may not be decoded by the other 

network) 
• Different packet formats 
• Power levels 
• Different signal management functions 
• Modulation schemes 
• Data rates 
• Channel bandwidths and separations  
• Applications, communication vs. non-communication networks

22



/170

Main challenges in  
wireless coexistence

23

Challenge #2 
Power asymmetry
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Challenge #2: Power asymmetry
• High-power systems vs. small-cell/low-power systems

24

Network A

rB

rA

Network B

• Asymmetric interference 
(different tx powers, different 
interference regions)  

• WiFi vs. ZigBee
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Main challenges in  
wireless coexistence

25

Challenge #3 
Lack of communication among  

co-existing networks
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Challenge #3: lack of communication 

• Networks controlled by different operators 
• Networks using different technologies 
• No well-defined means for negotiation, e.g., residential WLANs

26
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Remember the cognition cycle

http://soma.mcmaster.ca/papers/SLIDES_NIPS_Keynote_Haykin.pdf 27

Tx power control 
Channel selection

Radio environment 
(outside world) RF stimuli

Observe

Strategise 
Adapt

Act

Transmit

• Coexistence requires cognition

http://soma.mcmaster.ca/papers/SLIDES_NIPS_Keynote_Haykin.pdf
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Some coexistence guidelines 
• IEEE 802.19 Wireless Coexistence Technical Advisory Group (TAG) 

within the IEEE 802 LAN/MAN Standards Committee: coexistence 
between unlicensed wireless networks 
• 802.19.1: Coexistence in TV bands 

• IEEE 802.15 Task Group 2: Recommended Practice on Coexistence 
of IEEE 802.11 and Bluetooth 

• P802.22b amendment: Self-coexistence protocol for 802.22 
networks: Coexistence Beacon Protocol (CBP) 

• P 1932.1: Standard for Licensed/Unlicensed Spectrum Interoperability 
in Wireless Mobile Networks

28
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Summary of Part I
• Sharing is vital for meeting the demand for wireless capacity 
• Coexistence is the main challenge in shared spectrum access 
• Heterogeneity of networks pose substantial difficulties 
• Metrics and requirements still not totally agreed upon

29



/170

Further Reading for Part I 
• Han, You, et al. "Spectrum sharing methods for the coexistence of multiple RF 

systems: A survey." Ad Hoc Networks 53 (2016): 53-78. 
• Beltran, Fernando et al "Understanding the current operation and future roles of 

wireless networks: Co-existence, competition and co-operation in the unlicensed 
spectrum bands." IEEE JSAC16. 

• P802.22b Coexistence Assurance Document, doc.: 22-14-0141-01-0000, Nov.2014 
available at https://mentor.ieee.org/802.22/dcn/14/22-14-0141-01-0000-p802-22b-coexistence-assurance-document.docx 

• Bahrak, Behnam, and Jung-Min Jerry Park. "Coexistence decision making for 
spectrum sharing among heterogeneous wireless systems." IEEE TWC 14 

• K. Bian et al., Cognitive Radio Networks, Chapter 2 Taxonomy of Coexistence 
Mechanisms, Springer 2014 

• JSAC Special Issue on Spectrum Sharing I, II, and III, October, November, December 
2016

30

https://mentor.ieee.org/802.22/dcn/14/22-14-0141-01-0000-p802-22b-coexistence-assurance-document.docx
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Part II 
Coexistence in unlicensed bands

31

• Wi-Fi overview 
• Unlicensed LTE overview 
• Coexistence Issues
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The future is ________

32

unlicensed
WiFi + femtocells carried 60% of mobile data traffic

Success of WiFi attributed to operation in unlicensed bands
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A brief overview of 

33
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IEEE 802.11 WLANs

Source: http://www.gcscte.org/presentations/2017/Wifi%20Overview.pdf34

• 11a - 20 MHz BW, 5GHz 
• 11b - 20 MHz BW, 2.4 GHz 
• 11g - 20 MHz BW, 2.4 GHz 
• 11n - 20 & 40 MHz BW, 2.4 and 5GHz 
• 11ac - 20 to 160 MHz BW, 5GHz 
• 11ad - 2 GHz BW, 60 GHz  
• 11af - 6/8 MHz, TV White Space 
• 11ah- 1/2/4/8/16-MHz, 900 MHz

2.4 GHz 5 GHzTVWS 60 GHz900 
MHz

source: http://www.mwrf.com

http://www.gcscte.org/presentations/2017/Wifi%20Overview.pdf
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Spectrum commons: Unlicensed bands

35

• 2.4 GHz ISM bands: already crowded  
- WiFi, Bluetooth, microwave ovens, Zigbee, etc. 
- WiFi: 802.11b/g/n at 2.4 GHz 
- Channels 1, 6, 11 are non-overlapping and should be used 

• 5 GHz UNII bands: getting crowded 
- WiFi, Radar, unlicensed LTE 
- WiFi: 802.11a/n/ac at 5GHz and future standards 11ax  
- Non-overlapping 20+ channels of 20 MHz
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WiFi is polite: listen-before-talk (LBT)

36https://commotionwireless.net/blog/2014/11/05/do-it-yourself-antennas-for-community-networks

2.4GHz

5GHz

AP

STA:  
station/client/device

SSID: crowncom17
Ch 6
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WiFi is polite: listen-before-talk (LBT)

37 

Checks before 
accessing the 

medium

If busy, wait till it 
becomes idle 

After idle, wait for 
some time 

Access if still idle

2.4GHz

5GHz

AP

STA:  
station/client/device

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

SSID: crowncom17
Ch 6

STA1

STA2

https://commotionwireless.net/blog/2014/11/05/do-it-yourself-antennas-for-community-networks
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Distributed Control Function (DCF)
• Random access protocol 

• transmission (attempt) can happen anytime 
• The same medium for all 

• uplink and downlink, control and data shares the medium 
• Exponential backoff mechanism 

• Contention window size 
• DIFS, SIFS amounts of waiting before continuing transmission 
• Rate adaptation according to channel quality

38
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WiFi shares the airtime with its neighbours

• As two APs operate on the same channel airtime is shared, e.g., 
only one transmitter is active at a time

39

STA

STA

STA
STA

STA

STA

AP1

AP2

Channel: 6 Channel: 6

Apartment 1 Apartment 2
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WiFi shares the airtime with its neighbours

40

STA

STA

STA
STA

STA

STA

AP1

AP2

Channel: 6 Channel: 6

Apartment 1 Apartment 2

airtime (AP2)= 0.5airtime(AP1)= 0.5
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Detecting the medium state

• Carrier sense (CS): decode the WiFi preambles  
• Energy detection (ED): detect that there is some (e.g., non-

WiFi) signal present in the channel above some ED threshold

41

Clear channel 
assessment

Carrier 
Sense (CS)

Energy Detection

(ED)
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• Carrier sense (CS): decode the WiFi preambles  
• Energy detection (ED): detect that there is some (e.g., non-

WiFi) signal present in the channel above some ED threshold

42

Clear channel 
assessment

Carrier 
Sense (CS)

Energy Detection

(ED) -62 dBm-82 dBm

Detecting the medium state
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Main challenge: chaotic WiFi deployments

• Enterprise WLANs: 
-  centrally-managed, easier coexistence  

• Residential/uncoordinated WLANs: chaotic deployment 
- independently controlled APs (or novice user control) 
- need for coexistence mechanisms 

• Co-channel interference, adjacent-channel interference,  non-WiFi 
interference, high channel occupancy  

• Main mechanism for coexistence in WLAN:  
- Channel selection, LBT parameter tuning, power control

43
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Residential WLANs

44

Berlin urban 
residential area

2.4 GHz

Highly 
congested

5 

expected 
to 
increase 
utilization
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WiFi moving to 5 GHz

45Source: Biswas, Sanjit, et al. "Large-scale measurements of wireless network behavior." ACM SIGCOMM15
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A brief overview of unlicensed 

46
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LTE in unlicensed bands
• Cellular operators benefit from WiFi a lot, but 

• WiFi has low spectral efficiency under high number of users 
due to losses in contention based access  

• MAC efficiency<1

47

UnlicensedLicensed

Solution: LTE in the unlicensed bands (Qualcomm, 2013)
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Why LTE in unlicensed bands?
•Unified control at the same core:  

- authentication, management, and security procedures 
•higher spectral efficiency in the unlicensed bands 

-  Centrally-scheduled access  
•Better error control at LTE  

-  HARQ vs. ARQ 
• other interesting convergence solutions not discussed here: 

MuLTEfire, LWA 

48



/170

Downlink

Boosting capacity with unlicensed carriers

• Augment the licensed capacity with unlicensed capacity when the 
data boost is needed (opportunistic use) 

• carrier aggregation: two or more carriers combined in a virtual bw. 
• supplementary downlink (SDL), downlink: 80-90 % of total traffic

49

Licensed

Primary carrier 
(anchor, control 
messages)

Secondary 
carrier (data)

Licensed Unlicensed

Uplink
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Available spectrum in unlicensed bands

50

Source: Cui, Haixia, et al. "LTE in the Unlicensed Band: Overview, Challenges, and Opportunities." IEEE Wireless 
Communications (2017).

Already 
highly 
occupied

5 GHz 
better 
candidate
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Regional regulations for 5GHz bands

DFS: dynamic frequency selection for radar avoidance 

51Wang, Xuyu et al. "A survey of LTE Wi-Fi coexistence in unlicensed bands." GetMobile: Mobile Computing and 
Communications 2017
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LTE unlicensed for small cell deployment
• Current trend: small cells for better frequency reuse 
• But additionally,  

• Unlicensed spectrum: power restrictions 
• 5 GHz: lower coverage compared to 2.4 GHz 

• Hence, LTE unlicensed is for small cells

52
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Unlicensed LTE and WiFi coexistence

530.5 ms

Sub-frame Sub-frame Sub-frame

LTE frame (10 ms)

1 ms

Sub-frame Slot Slot

Channel access 
LTE: centralized, strict time slots 
WiFi: contention-based random 
access

Channel usage 
LTE: always on, frames 
WiFi: demand based, on-off

Scheduling 
LTE: multiple users (time and freq) 
WiFi: one user

Interference 
LTE: Cross/co-tier interference 
WiFi: Hidden/exposed terminal, 
collision
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• Main problem: different PHY and MAC rules

Unlicensed LTE and WiFi coexistence

54

802.11a/n/acSomebody 
in the 
channel 
Exponential 
back off

• Expected result: WiFi suffers from LTE, if LTE does not adapt 
coexistence mechanisms!

LTE
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Two variants: LAA and LTE-U
• LBT required or not 

• License Assisted Access LAA: LBT mandatory 
• LTE Unlicensed (LTE-U): no LBT  

• LAA: by 3GPP, LTE-U: by LTE-U forum  
• LAA: Europe, Japan, LTE-U: US, Korea, China 
• LAA: Release 13 (requires changes to LTE air interface) 
• LTE-U: Release 10/11/12 
• LAA: a global standard, LTE-U: faster time to market

55
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LAA vs. LTE-U

56

LTE-U duty cycle

OFF 

LTE-U 

LAA

LBT ON IDLE

ONONON
Time

Time
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LTE-U duty-cycle

• MAC time sharing 
• Duty cycle: Ton/(Ton+Toff)  

57

can transmit during OFF periods 

Ton

Toff

LTE-U duty cycle

ONONON
Time
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• MAC time sharing 
• Duty cycle: Ton/(Ton+Toff) 
• CSAT (carrier sense adaptive transmission): adaptive duty cycle  
• Adaptation according to WiFi medium utilisation and number of 

WiFi nodes observed by user devices or small base stations

LTE-U duty-cycle

58

Ton

Toff ONONON
Time

Medium sensing 
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How to set the ON-OFF durations?
• Medium sharing: if X is LTE’s duty-cycle, airtime for WiFi is (1-X)  
• But some caveats: 
• Length of ON-duration: WiFi has to wait till the end of ON 

period which may affect latency-sensitive applications, e.g., high 
QoS frames.

59
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How to set the ON-OFF durations?
• Medium sharing: if X is LTE’s duty-cycle, airtime for WiFi is (1-X)  
• But some caveats: 
• Length of ON-duration: WiFi has to wait till the end of ON 

period which may affect latency-sensitive applications, e.g., high 
QoS frames. 
• subframe puncturing 
• max ON duration 20 ms

60

subframe puncturing period 
~ 2 msec gaps
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How to set the ON-OFF durations?
• Medium sharing: if X is LTE’s duty-cycle, airtime for WiFi is (1-X)  
• But some caveats: 
• Length of ON-duration: WiFi has to wait till the end of ON 

period which may affect latency-sensitive applications, e.g., high 
QoS frames.  

• Length of OFF-duration: typically 40/80 ms

61

 

ON 

Packet collisions
Rate adaptation 
(low rates) 
Exponential backoff

ON Off

backoff x
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Moderate LTE interference more detrimental 
to WiFi than high interference

62
N. Jindal et al, “LTE-U and Wi-Fi: A coexistence study by Google,” Wi-Fi LTE-U Coexistence Test Workshop, 
2015. https://goo.gl/x6r0Ac

Received LTE-U power at the WiFi AP

Moderate interference 
below -62 dBm

W
iF

i  
th

ro
ug

hp
ut

High interferenceWeak 
interference

Severe impact on 
WiFi

Hidden LTE node

https://goo.gl/x6r0Ac
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Moderate LTE interference more detrimental 
to WiFi than high interference

63
N. Jindal et al, “LTE-U and Wi-Fi: A coexistence study by Google,” Wi-Fi LTE-U Coexistence Test Workshop, 
2015. https://goo.gl/x6r0Ac

Received LTE-U power at the WiFi AP

Moderate interference 
below -62 dBm

High interferenceWeak 
interference

W
iF

i  
th

ro
ug

hp
ut

Less impact on LTE: 
LTE PHY more 
resilient to 
interference

Severe impact on 
WiFi

Hidden LTE node

https://goo.gl/x6r0Ac
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LAA medium access
• LBT:   

• default -72 dBm ED threshold: adaptation based on 
bandwidth and transmission power 

• Congestion window size adaptation based on HARQ NACK 
• DTX (Discontinuous transmission):  

• transmission time limited to 10 ms (4 ms in Japan, as 
opposed to 20 ms in LTE-U) 

• A new frame type 
• Type 3 frame: DL transmission can start at the next slot not next 

subframe 
64Kwon, Hwan-Joon, et al. "Licensed-Assisted Access to Unlicensed Spectrum in LTE Release 13." IEEE 

Communications Magazine 55.2 (2017): 201-207.

release 13

DL

release 14

UL (TDD)
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5 GHz not congested yet, but it is highly likely that it 
will soon 

Coexistence mechanisms to be implemented 

65
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Coexistence goal of LTE unlicensed 
A better neighbour than WiFi

• with WiFi: no worse impact in terms of both throughput and 
latency than another WiFi network 

• with LTE: fair resource sharing

66
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Peaceful Coexistence in Unlicensed Spectrum

67
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Coexistence scenarios in the unlicensed bands

• Homogeneous scenario: WiFi-WiFi 
• Intra-technology coexistence, self-coexistence 

• Heterogenous scenario: LTE-U and WiFi coexistence 
• Inter-technology/cross-technology coexistence  

68

Communication nws

Communication &non-
comm. systems

Homogeneous 
WiFi-WiFi 
LTE-LTE

Heterogenous 
WiFi-LTE

Hybrid

Vertical  
Priority of the networks

Horizontal  



/170

Current literature on WiFi self-coexistence

• Have a control channel among APs for coordination 
• ResFi [Zehl16], SAW [Herzen13]  

• Have a controller. e.g., APs of the same network provider, 
OpenFlow SDN 
• COAP [Patro15] 

• Beacon analysis based channel selection 
• Min-#of-STAs [Achanta06]  

• For a more complete set of proposals, see: 
Surachai Chieochan et al, Channel Assignment Schemes for 
Infrastructure-Based 802.11 WLANs: A Survey, IEEE Tut.&Surveys, 2010

69
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Coexistence solutions

70

time sharing

fixed /variable 
backoff

fixed/adaptive 
ON time

Channel selection

• Tuning these parameters efficiently not straightforward and 
depends on the scenario 

• Duty-cycle: LTE defines the degree of fairness/sharing

CW 
size

LBT

ED 
threshold

Subframe 
punctures

Duty-cycle

1

2
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Selected Literature
• Make LTE and WiFi communicate via a control channel 

• LtFi [Gawlowicz17] 
• Make LTE Base Station transmit WiFi channel reservation messages 

• ULTRON [Chai16] 
• Cooperation through a cloud-based controller 

•  [Maglogiannis17],[Al-Dulaimi15] 
• Embed LTE-U within Wi-Fi Bands  

• Hyper AP[Chen17] 
• Make WiFi estimate LTE airtime and duty cycle 

• WiPLUS [Olbrich17]
71
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Summary
• coexistence in the unlicensed bands is vital for everybody 
• difference in WiFi and LTE: random access vs. time scheduled 

access 

• industry: LTE unlicensed is coexistence-friendly  
• research and experiments: it is not, e.g., [ChaiMobicom16, Jindral2015] 

• need for smarter and adaptive co-existence schemes  
• coexistence test scenarios defined by Wi-Fi Alliance in 2016

72
Thanks!
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Part III 
A very brief overview of Machine Learning

74

20    • Supervised Learning  
• Unsupervised Learning 
• Reinforcement Learning 
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An abstraction of a system in operation

75

A decision unit 
(e.g., AP) 

Objective 
function

Algorithm 
Mapping Input to 

Output

• the algorithm:  if this then that

?
Not always easy  
to write an algorithm

Input: X Output : Y
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Why machine learning?
• For some tasks, we cannot easily write the algorithm:  if this then that 

• there is no simple algorithm, e.g., autonomous cars 
• it is very challenging to define rules (e.g., dynamic environments) 

76
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Learn from data or past experience

• When we cannot write algorithm directly, we use learning from data 
or past experience (meta-programming)  

• Machine learning: generalisation from examples, e.g., detect certain 
patterns or regularities 
• Because mapping from input to output is not random! 

77

Wireless communication: complex interactions
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How to learn the mapping?

78

Based on the available data: 
1.both the inputs and outputs are available: (x,y)  
2.only the inputs are available (x) 
3.no direct access to the «correct» output, but some measure of the 

quality of (x,y) mapping

Input: X Output : YMapping? 
F
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{
How to learn the mapping?

79

Unsupervised Learning
Learning 
Algorithms

Supervised Learning

Reinforcement Learning
no direct access to the «correct» output  
an agent learns to select an action to maximize its 
payoff, e,g., AlphaGo

only the inputs are available (x) 
uncovering hidden patterns from unlabelled data

both the inputs and outputs are available (x,y) 
predict output y for a new x 

categorized by the 
amount of knowledge 
or feedback provided 
to the learner

S
U
RL
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Supervised Learning

80

label: dog

Examples fed to the system

label: cat ?
cat

a binary classification problem

S
U
RL
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{
Terminology

81

training data set (Dtrain) 

cat

dog

cat

Input Target

example 1

example K

X1 =  (x1,1, x1,2, x1,3, …, x1,N)        Y0

X2 = (x2,1, x2,2, x2,3, …, x2,N)         Y1

XK = (xK,1, x2, x3, …, xK,N)         YK

Xi = (xi,1, xi,2, xi,3, …, xi,N)          Yi

Input: N-dimensions (features, attributes)

K 
ex

am
pl

es

Y: category or a class {cat, dog}
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Classification and Regression
• Supervised Learning: given x, predict y 

• Classification: y is discrete   
• Regression: y is continuous

82

Predictive models{
• Unsupervised Learning: Descriptive models 
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What to learn?
• Learn a predictive function f : X → Y , which maps the input variables 

into the output domain

83

Dtrain(X) 
X1 
X2

Domain(X)
Domain(Y)

Y1

Y2

Dtrain(Y)
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What to learn?
• Learn a predictive function f : X → Y , which maps the input variables 

into the output domain 

• Approach: f predicts well on the training set Dtrain 

• f(X) is a good predictor for the value of Y (f is called the hypothesis)

84

Dtrain(X) 
X1 
X2

Domain(X)
Domain(Y)

Y1

Y2

Dtrain(Y)
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What to learn?
• Learn a predictive function f : X → Y , which maps the input variables 

into the output domain 

• Approach: f predicts well on the training set Dtrain 

• f(X) is a good predictor for the value of Y (f is called the hypothesis)

85

Dtrain(X) 
X1 
X2

Domain(X)
Domain(Y)

Y1

Y2

Dtrain(Y)

Goal: f predicts well on ALL possible 
inputs 
Generalization capability
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Supervised Learning Methodology
1. Decide what the input-output pairs are.  
2. Decide how to encode inputs and outputs (X and Y).  
3. Choose a class of hypotheses/representations F:  

• F known as function family of f. 
4. Choose an error/loss function L to define the best hypothesis f* in F 

• Error, loss, cost function to assess how wrong a hypothesis f predicts 
5. Choose a way for finding the best function f* in F efficiently through the 

space of hypotheses 
6. Find the best function f* in F, using L on Dtrain 

7. Tune your model 
8. Test your model

86slide credit:Doina Precup
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Tune the model

Dataset split into three disjoint sets

87

Train the model

Learning algorithm Training data 
Dtrain

Feature vectors

Validation data 
Dvalid

Dataset 
(split into disjoint sets for train+validation and  test 80-20, 70-30)

Assess the model

Test data 
Dtest

Loss function

RMSE, true positives, 
false positives

k-fold cross validation 
(k = 5 or 10)
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Bias-variance problem: overfitting, underfitting

•Underfit: model is too simple (high bias) 
• even the prediction error on Dtrain is high 
• Increase the complexity of the hypothesis 

•Overfit: a model failing to generalize well (high variance) 
• learning even the noise or the random errors! Not desirable 
• add more training data 
• decrease complexity 88

Training data
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Checking for bias-variance error: validation 
data 

89

Error
Validation 

Training 

Tune the best parameter using validation data

Complexity of the hypothesis (degree of the polynomial)
0 1 2 3 4 5

Remember that Dtrain and Dvalid and Dtest disjoint sets
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Checking for bias-variance error: validation 
data 

90

Error
Validation 

Training 

• Similarly, learning curves to see the number of training 
examples needed (better to have smarter data than 
smarter models)

# of training examples
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Classification
• Is this observed signal a WiFi signal, a Bluetooth, a ZigBee 

or Microwave Oven?

91

Source: Zheng, Xiaolong, et al. "ZiSense: towards interference resilient duty cycling in wireless sensor networks." 
ACM Sensys, 2014.

S
U
RL

Regression  
Classification 
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Classification
• Is this observed signal a WiFi signal, a Bluetooth, a ZigBee 

or Microwave Oven?

92

Source: Zheng, Xiaolong, et al. "ZiSense: towards interference resilient duty cycling in wireless sensor networks." 
ACM Sensys, 2014.

= WiFif(      )

S
U
RL

Regression  
Classification 
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Classification algorithms

• K-Nearest Neighbour (KNN) Classifier 
• Support Vector Machine (SVM) 
• Logistic regression (probabilistic classifier)

93
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K-nearest neighbours (KNN)
• Memorize the example set 
• Majority voting among the K 

nearest neighbours

94

Two classes
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K-nearest neighbours (KNN)
• Memorize the example set 
• Majority voting among the K 

nearest neighbours

95

Two classes

Point 1

Point 2

Which class? 
4 Neighbors
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K-nearest neighbours (KNN)
• Memorize the example set 
• Majority voting among the K 

nearest neighbours

96

Two classes

Point 1

Point 2
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KNN
• Deal with ties (odd number of neighbors) 
• Distance measure, e.g., euclidean 
• Weighted distance   
• How to choose K? 
• Imbalanced data problem 
• Accuracy of classification: 

• Precision: TP/(all predicted pos.) 
• Specificity: TN/(TN+FP) 
• Recall: TP/(all real positives) 
• ROC curve

97
Fr

ac
tio

n 
of

 e
xa

m
pl

es
Cat Dog

Having a good 
dataset is very 
important
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Unsupervised Learning

• No labeled data 
• Can we group our data according to their feature? 
• The main goal is to classify or cluster the input, find outliers 
• Extracting useful information out of (big) data 
• Dimension reduction (or summarization): identify the 

important components of the data while preserving much 
of the  information

98

S
U
RL
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K-means clustering
• Measure of similarity  
• Number of clusters, K 
• Goal: maximum similarity within a cluster, low similarity among 

clusters 

99
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K-means clustering
• Step 1: Pick K random points as cluster centers (centroid)  
• Step 2: Iterate till no pointsʼ assignments change  

1. Assign data points to the closest centroid 
 2. Change the cluster centroid to the average of its  cluster 
members 

100

• K-means is a heuristic 
• sensitive to outliers 
• selection of initial cluster centers is important 
• Run K-means multiple times and select the solution with 

the smallest cost function
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Reinforcement Learning (RL)

• No explicit supervision 
• Learn through self-experience (refine the behavior based on 

reward or punishment)

101

Environment

Observe
Learn

Agent action a
Act

reward r

S
U
RL
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Modeling approach: Markov Decision 
Processes (MDP)

• Four elements (S, A, R, P) 
• S: finite set of states (remember scalability) 
• A: actions (discrete) 
• R: reward signal (a real number) for each (state, action) pair from the 

environment  
• (should reflect the purpose of the task) 
• undesired actions can be discouraged with a negative reward value 

• P: state transition model P(s|s, a) with s′∈S P(s′|s, a) = 1. 
• Goal: Find the policy that maximize the expected reward

102
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Reward (r)

103

Value of a state: 
cumulated discounted value  
starting in st following arbitrary policy π 

Discount factor in [0,1), used to scale future 
rewards in the total value of a policy

Immediate reward
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Q-learning: the most popular RL method

• Q-value: expected discounted reward for executing action a at 
state s and following policy π  

• Select action a at state s with probability ~ Q(a,s) 
• Initiate Q-values 
• store values in Q-table

104
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Practice makes perfect
• Exploit the past actions that have resulted in high reward 
• Explore new/untried actions to discover reward-producing actions 
• Tradeoff 
• Examples: ε-greedy, softmax 
• ε greedy policy: 

• probability ε, act randomly 
• probability 1-ε, act according to current policy 
• less exploration after some number of interactions: lower ε over 

time

105
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Flowchart of RL

source: Yau, Kok-Lim Alvin et al. "RL for context awareness and intelligence in wireless networks: Review, new features and open issues." JNCA12.106

Exploration: 
Random selection 
of an action

Exploitation: 
Choose the best action 
with max Q-value(s,a) 
at the current state

Observe the 
state and reward

Execute the 
actionExplore 

or exploit

Set of 
actions

Update Q-
values

Q-table 
(s,a)
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RL relevant 
terms

107
Yau, Kok-Lim Alvin et al. "RL for context awareness and intelligence in 
wireless networks: Review, new features and open issues." JNCA12.
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Summary: important points
• Representation is very important: What are the right features?  

• Curse of dimensionality 
• Domain knowledge 

• Data comes in all shapes and sizes 
• Normalization such that each feature has a mean of zero and unit 

variance  
• Train, validate, test 
• Overfitting, underfitting analysis

108
Thanks!
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Please see below for more details
• Pascal Vincent, Introduction to Machine Learning, Deep Learning Summer School, 2015. http://

videolectures.net/deeplearning2015_vincent_machine_learning/ 

• Doina Precup, Introduction to Machine Learning, Deep Learning Summer School, 2016. http://
videolectures.net/deeplearning2016_precup_machine_learning/?q=Doina%20Precup  

• Kulin, Merima, et al. "Data-driven design of intelligent wireless networks: An overview and tutorial." 
Sensors 16. 

• Yau, Kok-Lim Alvin et al. "Reinforcement learning for context awareness and intelligence in wireless 
networks: Review, new features and open issues." JNCA12. 

• Jiang, Chunxiao, et al. "Machine learning paradigms for next-generation wireless networks."  IEEE 
Wireless Communications 24.2 (2017): 98-105. 

• Bkassiny, Mario, Yang Li, and Sudharman K. Jayaweera. "A survey on machine-learning techniques 
in cognitive radios." IEEE Communications Surveys & Tutorials 15.3 (2013): 1136-1159. 

• Ding, Guoru, et al. "Kernel-based learning for statistical signal processing in cognitive radio networks: 
Theoretical foundations, example applications, and future directions."  IEEE Signal Processing 
Magazine 30.4 (2013): 126-136.
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Part IV 
Machine Learning for Coexistence in Wireless 

Networks 

110
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Case Studies
1.Is the channel idle or busy? 

2.Which carrier should LAA BS select?  

3.How to select the carrier and ON-time for LAA? 

4.Can WiFi exploit ML for LTE-U duty cycle estimation? 

5.Traffic analysis in a WiFi residential network?

111

Classification

Regression

RL

RL

Clustering
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Attention!
Please see the original papers for more details 

ACK: figures are adapted or copied from the relevant papers

112



/170

Case study #1 
Is the channel idle or busy?

113

Classification

Thilina, K.M., Choi, K.W., Saquib, N. and Hossain, E., Machine learning techniques for cooperative spectrum sensing 
in  CRNs. IEEE  JSAC 2013
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Is the channel idle or busy?

114

CR1

CRN

CRi

CRk

Fusion center

Idle

Busy

Idle
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Is the channel idle or busy?
• Cooperative spectrum 

sensing (CSS): N radios 
deciding on the state of the 
channel 

• Traditional approach: decision 
fusion with AND, OR, k-out-of-N 
rules 

• Performance metrics: 
- PU detection probability (true+) 
- False alarm probability (false+)

115

CR1

CRN

CRi

CRk

Fusion center

Idle

Busy

Idle

Conflicting! 
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ML approach for CSS in CRNs

116

• Binary classification problem: 
- class 1: idle, class 2: busy 

• Different classifiers 
- unsupervised: K-means, Gaussian MM - more practical 
- supervised: KNN, SVM - needs real state of the channel 

• Features:  
- Energy level detected by each CR, N-dimensional vector

CR1 CRN

Y =(Y1,  ... ,  Yj   , ... ,YN)T

CRi
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CSS as binary classification problem
• M static primary users, N static cognitive radios 
• Energy vector at the fusion centre: Y =(Y1,... ,YN)T

117• KM Thilina et al. “ML techniques for cooperative SS in CRNs." IEEE JSAC (2013) 

channel 
availability 
{idle, busy}

test energy  
vector

training 
energy vector

Trained 
classifier

Fusion center

Yi

Yj

detected 
energy level

training 
module

Y
classification 

module
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Unsupervised learning for CSS

118

• M primary users 
• State of all PUs: S = (S1, …, SM)T 

• Probability of state s = v(s) = Pr[S=s] 
• 2M cluster: {all PUs off, at least one is on, ….} 
• Only cluster 1: channel is idle 
• Other clusters: channel is busy

}Y: multivariate Gaussian
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Unsupervised learning for CSS
• Decision boundary: idle vs. busy

119

Energy Level of SU1
En

er
gy

 L
ev

el
 o

f S
U

2
• Only 1 cluster: channel idle 
• Others: channel busy Training vectors are generated from a 

Gaussian mixture distribution for all

PU state combinations (0,0), (0,1), (1,0), (1,1)
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Unsupervised learning for CSS
• Decision boundary: idle vs. busy

120

Energy Level of SU1
En

er
gy

 L
ev

el
 o

f S
U

2

at least 1 
PU is active

idle channel

• Only 1 cluster: channel idle 
• Others: channel busy

decision boundary
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K-means based classification 
• Training phase:  

• Training examples: y = {y(1), …, y(L)}  
• Apply K-means to training examples 
• First cluster centroid          fixed to the mean of (Y|no primary signal) 
• Other centroids: mean of training energy vectors in that cluster 

• On-line classification phase: given y* as test energy vector, 
channel is busy if:

121

Tune probability of  

detection vs.  

false alarm
centroid of cluster k found in training phase

First cluster
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KNN-based classification
• Real labels a provided for each training example 
• Training examples: y = {(y(1), a(1)), …,(y(L), a(L))} 
• majority voting of neighbors 
• define a distance function 
• choose K nearest neighbors 
• busy if following holds

122

Two classes

Which class?

Tune the tradeoff 
detection vs.  
false alarm
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Comparison of classifiers
- training time, classification delay, ROC curve

123

Traditional 
approach 
AND 
OR

+ K-means close to best classifier (supervised, SVM) 
+ classification delay, detection capability, and training time
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Case study #2 
Which carrier should LAA BS select?

124
Sallent, O., Pérez-Romero, J., Ferrús, R. and Agustí, R., 2015, June. Learning-based coexistence for 
LTE operation in unlicensed bands 2015 IEEE International Conference on Communication Workshop

RL
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Channel selection via learning for LAA inter-
operator coexistence

125

- Setting [Sallent-ICC15]: 
- Indoor scenario 
- M small cells from 2 operators 
- K channels  
- Bandwidth B MHz 
- LBT 

- Assumptions: downlink-only, full buffers

Challenge: 
Select a channel at each 
small cell to achieve high 

throughput in a cell

Learning approach: 
Q-learning

Why learning: 
quasi-static environment 

(deployment)

 

situations like the hidden node problem where a small cell can 
detect a channel as not used but some of its served terminals 
can experience severe interference conditions from other small 
cells and/or Wi-Fis. Furthermore, including adaptability to the 
learning-based decision-making process will provide 
robustness to the solution and the capability to react to 
changes in the scenario (e.g., the deployment of a new small 
cell in the area).  

With all the above, this paper proposes the use of a Q-
learning solution as an efficient means to carry out a 
distributed Channel Selection in a practical while at the same 
time efficient way. Q-learning belongs to the category of 
Temporal Difference Reinforcement Learning (RL) techniques 
that consist in learning how to map situations to actions so as 
to maximize a scalar reward [16]. The learning is achieved 
through the interaction with the environment, so that the 
learner discovers which actions yield the most reward by 
trying them. In this way, the idea proposed by this paper is 
that each small cell progressively learns and selects the 
channels that provide the best performance based on the 
previous experience.    

In particular, in the proposed approach each small cell i 
stores a value function Q(i,k) that measures the expected 
reward that can be achieved by using each channel k according 
to the past experience. Whenever a channel k has been used by 
the small cell i, the value function Q(i,k) is updated following 
a single state Q-learning approach with null discount rate 
given by [16]:  

 ( ) ( ) ( ) ( ), 1 , · ,L LQ i k Q i k r i kα α← − +  (2) 

where αL∈(0,1) is the learning rate and r(i,k) is the reward that 
has been obtained as a result of the current use of the channel 
k. Assuming that the target of the channel selection is to find a 
channel that maximizes the total throughput, the reward 
function considered in this paper is given by: 

 ( ) ( )
max

,
,

R i k
r i k

R
=  (3) 

where ( ),R i k is the average throughput that has been obtained 

by the i-th small cell in channel k as a result of the last 
selection of this channel. In turn, ( )max max· · 1 idleR B S θ= − is a 

normalization factor.  

At initialization, i.e. when channel k has never been used 
in the past by small cell i, Q(i,k) is set to an arbitrary value 
Qini. 

Based on the Q(i,k) value functions, the proposed Channel 
Selection decision-making for the small cell i follows the 
softmax policy [16] in which channel k is chosen with 
probability: 

 ( )
( )
( )

( )
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i

Q i kK
i

k

ei k

e

τ

τ
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=
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where τ(i) is a positive parameter called temperature. High 
temperature values cause the different channels to be all nearly 

equiprobable. Low temperature causes a greater difference in 
selection probability for channels that differ in their Q(i,k) 
value estimates, and the higher the value of Q(i,k) the higher 
the probability of selecting channel k. Softmax decision 
making is a popular means of balancing the exploitation and 
exploration dilemma in RL-based schemes. It exploits what 
the system already knows in order to obtain reward (i.e. 
selecting with high probability those channels that have 
provided good results in the past), but it also explores in order 
to make better actions in the future (i.e. the selection must try 
first a variety of channels and progressively favor those that 
appear to be the best ones) [16]. A cooling function will be 
considered in this paper to reduce the value of the temperature 
τ(i) as the number of channel selections made by the small cell 
i increases, so that the amount of exploration will be 
progressively decreased as the small cell has learnt the best 
solutions. Specifically, the following logarithmic cooling 
function is assumed [17]: 

 ( ) ( )( )
0

2log 1
i

n i
ττ =
+

 (5) 

where τ0 is the initial temperature and n(i) is the number of 
channel selections that have been already done by the i-th 
small cell. 

IV. PERFORMANCE ANALYSIS 

This section presents some evaluation results to illustrate 
the behavior and the performance of the proposed approach. 
A. Simulation scenario 

The considered scenario is based on the indoor scenario for 
LTE-U coexistence evaluations defined in the context of the 
corresponding 3GPP Study Item [3]. It consists of a single 
floor building where two operators deploy 4 small cells (SCs) 
each. SCs are equally spaced and centered along the shorter 
dimension of the building, as depicted in Fig. 2. Small cells 
SC1 to SC4 are owned by operator 1 (OP1), while SC5 to SC8 
are owned by operator 2 (OP2). SCs are deployed at height 6m 
while the antenna height of the mobile terminals is 1.5m. A 
total of 10 terminals (users) per operator are randomly 
distributed inside the building. Each user is associated to the 
SC of its own operator that provides the highest received 
power. The SC-to-terminal and SC-to-SC path loss and 
shadowing are computed using the ITU InH model in [18]. 
The carrier frequency is 5 GHz and the channel bandwidth 
B=20 MHz. The transmit power in one LTE-U carrier is 15 
dBm. Omnidirectional antenna patterns are assumed with a 
total antenna gain plus connector loss of 5 dB. The terminal 
noise figure is 9 dB. The spectrum efficiency function S(SINR) 
is obtained from Section A.1 in [15] with Smax=4.4 b/s/Hz.  

 
Fig. 2. Layout of the floor building 

SC1 SC2 SC3 SC4

SC5 SC6 SC7 SC8

5m

50
m

25
m

120m

15m

IEEE ICC 2015 - Workshop on LTE in Unlicensed Bands: Potentials and Challenges

2310
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Agent-environment framework

126

action a

reward r

AgentLAA BS Environment other LAA SBS 
traffic

select a carrier

observed throughput in the channel
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Channel selection via learning for LAA inter-
operator coexistence

• Reward: observed throughput in the channel 
• Q-value (k, i) for small cell i if it selects channel k 
• Initiate Q-values to some random value

127

reward of the transmission at ch k:

throughput normalised by maximum 
exp. throughput

Learning rate

• Select a channel k with probability Pk ~ F(Q(i,k))

• F: exploitation vs. exploration (softmax)

• Decrease exploration by time (logarithmic cooling function)
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time steps. It can be observed how the initial solution learnt 
until t=30000 reflects that SC1 and SC4 learn to use channel 
k=3 (i.e. the only channel not used by OP2 at the beginning). 
This is certainly a good choice, since SC1 and SC4 are located 
far away from one another inside the building (see the layout in 
Fig. 2) so they are not mutually detected during the CCA phase 
(i.e., the received power level is below the TL threshold). 
Therefore, they can use the same channel without sharing it in 
the time domain. Similarly, SC2 learns to use the same channel 
k=4 as SC8, which is also located at a sufficiently large 
distance from SC2. As for SC3, it is located in the middle of 
the building and it is able to detect all the other SCs during the 
CCA phase, so it necessarily has to share a channel in the time 
domain following LBT. As seen in Fig. 6, it learns not to use 
channels k=3 and 4, which are already in use by two other SCs. 
Instead, it can use indifferently either channel k=1 or 2 as both 
of them are used only by another SC. As both channels provide 
the same performance, they are selected with equal probability.  

After t=30000, SC7 is switched on and starts using channel 
k=3, which is the channel that was being used by SC1 and SC4 
so far. Since SC1 is located at a sufficient distance from SC7 
in order not to detect it during CCA, it keeps on operating in 
the same channel k=3, as seen in Fig. 6. Instead, SC4, located 
close to SC7, perceives throughput degradation in this channel 
due to the time sharing between SC4 and SC7, and 
progressively reduces its selection probability. At the end, 
SC4 learns to use the same channel k=1 as SC5 that is located 
at the other side of the building. With all these changes, also 
SC3 identifies that channel k=1 is no longer a good option 
(since it is used by both SC4 and SC5) and it learns to use 
channel k=2. The final solution learnt by the small cells of 
OP1 is the use of channels k=3,4,2,1, respectively by SC1 to 
SC4. A detailed analysis of the throughput achievable with all 

the possible solutions (not reported for the sake of brevity) 
reveals that this is actually the solution that maximizes the 
total aggregated throughput among all the SCs of both 
operators.   
C. Performance analysis 

In order to assess the benefits of the proposed solution 
from a quantitative perspective, Fig. 7 plots the ratio between 
the total throughput achieved by the proposed Q-learning in 
the scenario with respect to the throughput that would be 
achieved with an ideal optimum assignment. This optimum 
solution corresponds to the assignment of channels to small 
cells that maximizes the total throughput in the scenario. 
Results are provided for the cases K=4 and K=8 channels, and 
for the cases when Q-learning is applied only by OP 1 (OP 2 
following a fixed assignment) or by the two operators. Each 
result corresponds to the average throughput obtained after 50 
different experiments each one associated with a different user 
spatial distribution. Each experiment lasts for 1E6 time steps 
and the throughput for all SCs is aggregated and averaged 
along the whole simulation time. In each experiment the 
optimum channel assignment is found by exhaustive analysis 
of all the possible combinations.  

As it can be observed in Fig. 7, the proposed approach 
achieves between 95.8 and 98.8% of the optimum throughput, 
revealing a promising behavior of the Q-learning mechanism. 
Reasonably, slightly better results are achieved with K=8 than 
with K=4, which is a more challenging scenario. Similarly, 
slightly better results are achieved when both operators apply 
Q-learning than when only one is doing so. In turn, Fig. 8 
depicts the Cumulative Distribution Function (CDF) of the 
throughput (normalized to Rmax) obtained for all the considered 
experiments. The figure considers that both operators apply Q-
learning with K=4 channels. It can be noticed how the 
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• Convergence analysis 
• K >= M (one frequency for each LAA BS) 
• K < M (requires time sharing)

128

Channel selection via learning for LAA 
inter-operator coexistence

ch 2 Converges 
to ch 3

Another SC 
appears on ch 3

ch1

 

time steps. It can be observed how the initial solution learnt 
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k=3 (i.e. the only channel not used by OP2 at the beginning). 
This is certainly a good choice, since SC1 and SC4 are located 
far away from one another inside the building (see the layout in 
Fig. 2) so they are not mutually detected during the CCA phase 
(i.e., the received power level is below the TL threshold). 
Therefore, they can use the same channel without sharing it in 
the time domain. Similarly, SC2 learns to use the same channel 
k=4 as SC8, which is also located at a sufficiently large 
distance from SC2. As for SC3, it is located in the middle of 
the building and it is able to detect all the other SCs during the 
CCA phase, so it necessarily has to share a channel in the time 
domain following LBT. As seen in Fig. 6, it learns not to use 
channels k=3 and 4, which are already in use by two other SCs. 
Instead, it can use indifferently either channel k=1 or 2 as both 
of them are used only by another SC. As both channels provide 
the same performance, they are selected with equal probability.  

After t=30000, SC7 is switched on and starts using channel 
k=3, which is the channel that was being used by SC1 and SC4 
so far. Since SC1 is located at a sufficient distance from SC7 
in order not to detect it during CCA, it keeps on operating in 
the same channel k=3, as seen in Fig. 6. Instead, SC4, located 
close to SC7, perceives throughput degradation in this channel 
due to the time sharing between SC4 and SC7, and 
progressively reduces its selection probability. At the end, 
SC4 learns to use the same channel k=1 as SC5 that is located 
at the other side of the building. With all these changes, also 
SC3 identifies that channel k=1 is no longer a good option 
(since it is used by both SC4 and SC5) and it learns to use 
channel k=2. The final solution learnt by the small cells of 
OP1 is the use of channels k=3,4,2,1, respectively by SC1 to 
SC4. A detailed analysis of the throughput achievable with all 

the possible solutions (not reported for the sake of brevity) 
reveals that this is actually the solution that maximizes the 
total aggregated throughput among all the SCs of both 
operators.   
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slightly better results are achieved when both operators apply 
Q-learning than when only one is doing so. In turn, Fig. 8 
depicts the Cumulative Distribution Function (CDF) of the 
throughput (normalized to Rmax) obtained for all the considered 
experiments. The figure considers that both operators apply Q-
learning with K=4 channels. It can be noticed how the 

 
 Fig. 5.  Evolution of the channel selection probabilities with K=8 channels when both operators apply Q-learning. 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC1

Time steps

 

 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC2

Time steps

 

 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC3

Time steps

 

 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC4

Time steps

 

 

Pr(k=1)
Pr(k=2)
Pr(k=3)
Pr(k=4)
Pr(k=5)
Pr(k=6)
Pr(k=7)
Pr(k=8)

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC5

Time steps

 

 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC6

Time steps

 

 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC7

Time steps

 

 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC8

Time steps

 

 

Pr(k=1)
Pr(k=2)
Pr(k=3)
Pr(k=4)
Pr(k=5)
Pr(k=6)
Pr(k=7)
Pr(k=8)

 
 Fig. 6.  Evolution of the channel selection probabilities for the SCs of operator 1with K=4 channels when a new SC is activated at t=30000. 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC1

Time steps

 

 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC2

Time steps

 

 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC3

Time steps

 

 

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
SC4

Time steps

 

 

Pr(k=1)
Pr(k=2)
Pr(k=3)
Pr(k=4)

IEEE ICC 2015 - Workshop on LTE in Unlicensed Bands: Potentials and Challenges

2312

Continues 
learning!
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• Throughput analysis 
- comparison with optimal and random

129

Performance of Q-learning based carrier 
selection

 

performance of the Q-learning approach is very close to the 
optimum one. As a further reference, the fully random case 
where each SC selects randomly the channel to be used is also 
presented, revealing that the Q-learning approach offers a very 
significant improvement with respect to this basic strategy. 

 
Fig. 7. Throughput achieved by Q-learning with respect to the optimum case. 

 
Fig. 8. CDF of the achieved normalized throughput for K=4 when the two 

operators apply Q-learning. 

V. CONCLUSIONS AND FUTURE WORK 
The use of LTE-U in the unlicensed 5 GHz band is a 

promising enhancement to meet the requirements foreseen for 
future systems. Coexistence between different systems 
operating in the same band is one of the key technical 
challenges to be resolved for a successful operation of LTE-U 
deployments. In this framework, this paper has addressed the 
Channel Selection functionality that decides the most 
appropriate channel in the unlicensed band to set-up a LTE-U 
carrier for supplemental downlink as a means to facilitate the 
coexistence. In particular, a distributed Q-learning mechanism 
that exploits prior experience has been proposed. In order to 
initially assess the potentials of the Q-learning solution, a fully 
decentralized approach has been considered. The evaluations 
presented in an indoor scenario with small cells belonging to 
different operators have revealed promising results in which 
the proposed approach is able to achieve a performance 
between 96% and 99% of the optimum ideal achievable 
throughput.  

Based on these promising results, a number of areas are 
identified for further consolidating the proposed approach. In 
particular, different intra and inter-operator coordination levels 

can be studied both in terms of architectural implications and 
Q-learning Channel Selection strategy design. Similarly, the 
study should be extended to include a rigorous stability 
analysis of the Q-learning approach, particularly when legacy 
unmanaged Wi-Fi with unknown channel selection strategies 
are in place, and when different activity conditions exist in the 
different small cells. Finally, the combination of the proposed 
approach with other possible solution approaches such as 
Game Theory can also be developed.  
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Channel selection via learning for LTE-WiFi 
Coexistence: frequency domain coexistence

• Q-learning for inter-operator coexistence  
• Extension to WiFi coexistence is straightforward 
• Many parameters to tune 
• What happens till convergence? 

• harmful interference, coexistence is an issue

130
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Case study #3 
Carrier Selection and On-time Adaptation in LAA 

Galanopoulos, Apostolos et al. "Efficient coexistence of LTE with WiFi in the licensed and unlicensed 
spectrum aggregation." IEEE Transactions on Cognitive Communications and Networking, 2016.

RL
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WiFi channel occupancy estimation using Q-
learning in LAA 

Setting:

Single LAA cell, multiple WiFi nodes/channels

Goal: both high WiFi and LTE performance

132

Challenge:  
which unlicensed carrier 

to aggregate? 
How long to transmit on 

this carrier?

Learning approach: 
Q-learning

What to learn? 

unlicensed band activity
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LAA on-time based on  WiFi channel 
occupancy

• Channel-occupancy based channel and ON-time selection (COT) 
• tune LAA ON-time according to channel occupancy  
• Occupancy measurement of each channel via ED on subframes when 
LTE is not transmitting  

• Channel occupancy = # of busy samples/ # of all samples  
• ON-time = (1-occupancy)* 10 ms 
• Switch channel in the next frame if it has a smaller occupancy than the 
current one 

• Q-learning based channel and ON-time selection 
• learn from experience 
• Idle time measurement of each channel via ED

133
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Agent-environment framework

• Carrier selection: every frame 
• Information collection: every subframe when LAA is not 

transmitting check WiFi traffic activity 134

action a

reward r

AgentLAA BS Environment WiFi CSMA/CA 
Poisson traffic

Select a carrier 
Select  ON duration

Time difference between the actual OFF-time  
and estimated OFF time
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Q-learning framework

• States: The channel selected for carrier aggregation {1,.., N} 
• Actions: Transmission time in the selected carrier i {1,…, 9}ms 
• Action time: At the beginning of each frame   
• Reward: difference between real off time of the carrier - off-time 

from the previous sensing period (Toff updated after each 
sensing)

135

Negative reward (punishment) for degrading WiFi performance!
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Q-value initial value and update rule

• Optimal action (a: LAA transmission duration) depends on the 
selected channel’s availability time

136

Select a channel with low 
occupancy (high off 
duration)

Select transmission time 
matching the channel off time

Only immediate reward, 
discount factor = 0
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Q-learning overperforms COT under high 
WiFi load

137

Moderate to high WiFi 
traffic 
Q-learning is better 
COT predictions may 
not represent real 
channel occupancy 
under high WiFi load

Low WiFi traffic 
COT is better
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WiFi performance analysis 

WiFi performance  Q-
learning over performs 
COT-based access 
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Case study #4 
Can WiFi exploit ML for protecting itself from LTE 

interference? 

yes, WiPLUS!

Olbrich, M., Zubow, A., Zehl, S. and Wolisz, A. "WiPLUS: Towards LTE-U Interference Detection, 
Assessment and Mitigation in 802.11 Networks", in European Wireless 2017 (EW2017), Best 
Paper Award, May, 2017.

LTE
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WiPLUS: detecting LTE duty cycle
• Estimate LTE-U ON and OFF phases 
• Quantify available airtime for WiFi on each link

140

Atheros AR95xx 802.11n 
chip

• Online algorithm running on WiFi AP, 
• MAC-layer passive and low-complexity monitoring 
• commodity 802.11 hardware 
• covering the whole LTE-U interference range
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Key idea of WiPLUS
• Analyse MAC Finite State Machine (FSM) transitions of the 

Network Interface Card (NIC) 
• States: RX, TX, IDLE, OTHER_BUSY (=ED) 

• Analyse the Automatic Repeat reQuest (ARQ) frame 
retransmissions 

• ACK_FAIL 
• If LTE is detected, calculate airtime and LTE-ON duration for a link

141

PHY

MAC WiPLUS
MAC FSM, ARQ 
samples

W
iF

i N
IC
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Received LTE-U power at the WiFi AP
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Received LTE-U power at the WiFi AP
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Approach: data collection from the 
testbed

144
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ML approach: data analysis 
Data:  
• data collection via periodic samples from the NIC 
• Fraction of time in each MAC-state, ARQ number of 

packet retransmissions during the respected sampling

145

Raw data 

More useful  
representation Rt which represents (possible) LTE ON-time

total MAC time spent in 
transmission in the 
sampling period
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K-means clustering to 
detect the clusters of 
transmission duration 
and  clean the outliers

146

WiPLUS Detector Pipeline 
• Input data is very noisy, 
• Detector pipeline: 

– Periodically sampled MAC FSM 
states (RX/TX/IDLE/ED state) + 
MAC ARQ states (missing ACK), 

– Spurious signal extraction 
(cleansing), 

– FFT / PWM signal detection, 
– Used to find fundamental 

frequency (harmonics) of 
interfering signal, 

– ML cluster detection (k-means): 
• Remove signals outside clusters to 

suppress outliers, 
– Low pass filtering, 
– LTE-U ON time estimation & 

calculation of eff. available airtime 
for WiFi. 

 

Read MAC state & 
ARQ info

Spurious signal 
extraction

Enough samples?

FFT

CCI(f)

PWM signal 
detection

Periodic spectrum?

fPWM

Cluster detection

CCI(t)

Low pass FIR filter

CCI‘(t)

LTE-U ON time 
estimation

Estimation of eff. 
medium airtime

TON

TON=0

NO

NO YES

YES
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WiPLUS detector pipeline 
R
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WiPLUS protoype

147

• WiPLUS can estimate airtime quite accurately! (RMS < 3% for DL) 
• Possible use of this capability: select channel based on observed LTE 

activity 
• Python’s Scikit-learn 

Simple detector: Only ED
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Case study #5 
 WiFi performance estimation

148Herzen, Julien, Henrik Lundgren, and Nidhi Hegde. "Learning Wi-Fi performance." IEEE SECON 2015

Regression

AP 2 AP 3AP 1



/170

• 802.11ac variable bandwidths (20, 40, 80, 160 MHz) 
• Overlapping channel interference 
• How to estimate the link capacity for a  

 given configuration (bandwidth, center f)?

Selecting the best link in a multi-AP WiFi setting

149

f1 f2

AP 1
AP 2 AP 3

Traditional approach:  
SINR based
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Coexistence in Uncoordinated WiFi Networks
• Modelling performance realistically due to complex PHY-MAC interactions is difficult 

• channel width, partial-overlaps with other links, transmission power, PHY rate 
• Proposed approach: learn Wi-Fi Performance via measurements 
• Estimate link capacity and decide on the best setting
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Figure 2: Measured throughput and theoretical capacity of l, when
k varies its transmit power. The results are shown for two different
pairs of links (l1, k1) and (l2, k2) from our testbed.

performance in three distinct regimes (represented by three
shaded regions in the figure). When k’s transmit power is low,
the links are nearly independent and l suffers little interference
from k. When k’s transmit power grows to intermediate values,
k starts interfering with l. In this case, l carrier-senses k, and
interference mitigation is done in time-domain via CSMA/CA.
However, a closer inspection of packets reveals that k itself

does not have a good channel quality (as it uses only an
intermediate transmit power), which forces it to use relatively
robust (and slow) modulations. As a result, in this intermediate
regime, k consumes a significant portion of the time to transmit
its packets, which reduces l’s throughput (due to the rate-
anomaly). Finally, when k uses a large transmit power, it also
uses faster modulations, which has the apparently paradoxical
effect of increasing l’s throughput.

In this second example, the information-theoretic formu-
lation for the capacity does not capture all these “802.11-
specific” cross-layer and multi-modal effects. Instead, it shows
a monotonic dependency on transmit power, because it treats
the case of Gaussian channels subject to constant and white
noise interference.In fact, in the cases where a time-sharing
scheme such as CSMA/CA is employed, links often have the
opportunity to transmit alone on the channel, thus without
observing any interference at all during their transmission1.

It is thus clear that even in such a simple setting, a resource
allocation algorithm relying on monotonic expressions of the
SINR is likely to take bad decisions. Despite these problems
– and despite the fact that SINR models are usually not
considered strong predictors of wireless performance – these
models are still the models of choice for allocating resources at
the PHY layer, due to their generality: By adapting judiciously
the power values in the SINR Equation (2), it is possible to
use variable transmit powers (as we just did), but also partially
overlapping channels [23] and variable bandwidths [26] as
inputs of SINR models. In addition, a large body of literature
on optimal resource allocation also relies on SINR models
in various contexts [3], [10], [15], [19], [22]. By contrast,
MAC layer models such as Bianchi’s are often accurate with
homogeneous PHY configurations, but cannot be used to

1This is also the reason the actual throughput might be largely above the
predicted capacity.

capture such heterogeneous PHY configurations.

III. LEARNING PERFORMANCE MODELS

A. Approach

A natural step to improve the accuracy of SINR-based
models is to seed (or fit) some parameters (for instance, a
factor controlling the magnitude of the prediction) to the
observations of actual measurements. The approach of seeding
a model with measurements can be appropriate for networks
with collaborative APs, such as enterprise networks, and it has
been taken in [21], [26], [27] and others (see Section VII for
a discussion). We now show that, if one has the possibility of
conducting an initial measurement phase, then it is possible to
directly learn the model itself from the data, instead of fitting
or seeding a previously existing model. Our overall approach
consists of the three following steps.

1) Measurement phase: This phase consists in performing
N short-duration controlled experiments. Considering again
the black box representation of Figure 1 (although generalized
for several links), each experiment consists in measuring the
throughput of a given link l, for one particular combination of
inputs (which we call features). This phase is relatively short;
we observe in Section IV-D that it is possible to “learn” our
entire indoor testbed with reasonable accuracy in less than 6
hours.
2) Learning phase: Once the measurements are obtained,
this phase consists in finding a mathematical function that
maps the features to observed throughputs. This function
should approximate the throughput well on the measured data
points. However, to be useful, it must not overfit existing
measurements, which are intrinsically noisy. Instead, it should
generalize to unseen combinations of input features (which
can potentially relate to unseen nodes and links). Supervised
machine learning provides us with precisely the tools to handle
this challenge.
3) Black box representation: Once a good function has been
found, we can discard the measurements and use the function
itself to cheaply compute throughput predictions. Such black
boxes can then be used by the APs themselves for selecting
efficient configurations (e.g., with predicted throughputs satis-
fying traffic demands) without probing.

Importantly, we observe in Section IV-C that learned models
continue to be useful in new or unseen environments, and that
the training procedure does not need to be repeated when new
wireless links come and go. We detail our procedure in the
remainder of this section.

B. Feature Selection

Consider a link l, for which we want to predict saturated
throughput (i.e., under saturated traffic load2) for arbitrary
spectrum and transmit power configurations, given a set Nl of
K neighboring links with arbitrary conditions, configurations

2We target saturated throughput because it is the maximum achievable
throughput in a given configuration. In particular, we assume that if throughput
t is achievable, then any throughput t′ < t is also achievable.
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Methodology
• Step 1: Real-world measurements from a testbed (public data: http://

www.hrzn.ch/data/lw-data.zip) 
• Step 2: Supervised learning: different link configurations -> measured 

throughput 
• Step 3: Prediction of a link throughput based on the learned black-box 

model 
• Step 4: An AP selects the configuration using Gibbs sampling and 

estimated capacities
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Supervised learning framework
• Features (X): (commodity hw. can capture) 

• All received powers: 5K + 1 
• channel width of l, and its NL: K+1 
• spectral separation of channel of l and its 

NL: K 
• average traffic loads of NL: K 
• PHY rates of NL: K 

• Labels (Y): measured throughput on link l 
• Goal: Answer the question “given a setting, 

what is the expected throughput of l?”
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Figure 3: Throughput prediction setting for a link l and two
neighboring links Nl = {k1, k2}. We wish to predict the throughput
that l could potentially obtain, given the various received powers
P1, . . . , P11, as well as the physical rates, channel widths, center
frequencies, and traffic loads of k1 and k2.

and traffic demands. Such a scenario is shown in Figure 3
for K = 2. The features must include factors that impact
the performance and are measurable by the transmitter of l
and its immediate neighbors. We selected the following list of
features, because it is known that they all have an immediate
impact on performance [4], [5], [11], [23]:

• The power received by each node of l from every trans-
mitting node, and the power received by every other node,
from the transmitter of l. These quantities are denoted
P1, . . . , P11 in Figure 3 (assuming downlink traffic, from
the APs to their clients). They depend on the transmit
powers and the various channel gains, and they can be
easily measured online by commodity hardware using RSSI
(received signal strength indicator). There are 5K +1 such
power quantities in general.

• The channel widths used by l and by the links in Nl. There
are K + 1 such values.

• The spectral separations between the center frequency used
by l, and the center frequencies used by all the other links
in Nl. There are K such values.

• The K average traffic loads of the links in Nl.
• The physical rates (determined by the 802.11n MCS index)

used on each link in Nl. There are again K such values.

Adding up the above-mentioned features, we have access to
d := 9K + 2 quantities to estimate the throughput that l can
obtain in the presence of K interferers. Note that this list
of features is not an exhaustive list of the factors affecting
performance that can be known or measured by the APs. For
instance, we could make it more complete by including the
packet sizes, higher order statistics to describe the traffic loads
of interferers (instead of the mean only), or more detailed
PHY layer information (e.g., capturing multipath effects or
frequency-selective fading). Including more features could
further increase the predictive power and generality of the
learned models. However, the features selected here already
allow us to build useful models, while having the advantage
of being simple and easy to acquire with commodity hardware.

C. Measurement Phase

The initial measurement phase consists of N measurements
with different combinations of features. Some of the features
can be directly controlled (namely, the channel widths, spectral
separations and traffic loads) and others cannot (the received
powers depend both on the transmit powers and channel gains,

and the physical rates depend on the auto-rate mechanism
used by the APs). Each of the N measurements consists of
two sub-experiments. We first perform an experiment during
which l is silent, in order to obtain a corresponding vector
x ∈ Rd of features (some of which are controlled, others
are measured). We then repeat the experiment with l sending
saturated traffic, and measure its throughput tl. Our goal is to
expose the learning procedure to as wide a variety of situations
as possible. To this end, we apply the following sampling
procedure for each of the N data points.

We start by selecting a link l uniformly at random among
all the links formed by all the nodes of the network. We
then sample K random interfering links, where K itself is
randomly drawn between 0 and max K, and max K denotes
a fixed upper bound on K. For l and the K links in Nl, we
sample transmit powers and spectral configurations uniformly
at random from the set of configurations that do produce some
interference (i.e., such that each link in Nl uses a band at least
adjacent or partially overlapping with l). Finally, for each link
k in Nl, we sample a traffic load in the interval (0, h(wk)/K],
where h(wk) is a value representing the maximum throughput
achievable on an isolated link using bandwidth wk. We take
h(20 MHz) = 80 Mbps and h(40 MHz) = 130 Mbps in
our training procedure, in line with the maximum achievable
throughput of our 802.11n cards. Our goal is to predict
performance for arbitrary interfering loads, and sampling the
loads in this way allows us to expose the learning procedure to
different environments with both light and heavy contention.
In particular, we measured that the offered loads of the nodes
in Nl was above capacity (i.e., saturated) in about 54% of the
experiments (mainly due to inter-neighbors interference). The
remaining experiments consist of non-saturated conditions.

Once the configurations have been chosen, we perform
the first experiment with only the K interfering links active.
During this experiment, we measure the average physical rates
used by each of the K links in Nl, and we group all the above-
mentioned features in a vector xi. In order to vary K between
0 and max K but keep features vectors of fixed dimension
d, we append 9 · (max K − K) default “flag” values to xi,
using −110 dBm for all the power values, and setting all
the remaining features to zero3. We then perform the second
experiment in the same conditions, but with link l sending
saturated traffic, and we measure its achieved throughput. Each
of the two sub-experiments constituting each of the N data
points needs only to last a few seconds (in order to measure
physical rates and throughput), and the whole procedure is
easily automated.

D. Learning

Let us write {(x1, t1), . . . , (xN , tN )} ⊂ Rd ×R for our set
of measurements. Our goal is now to find a function f : Rd →
R that maps xi to a value close to ti for each measurement i.
Learning the function f from the observed data is a regression

3The current number of interfering links K is thus an implicit feature,
encoded by the presence/absence of flag values.

link of interest l 
neighbouring links (NL):  
k1, k2
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Figure 3: Throughput prediction setting for a link l and two
neighboring links Nl = {k1, k2}. We wish to predict the throughput
that l could potentially obtain, given the various received powers
P1, . . . , P11, as well as the physical rates, channel widths, center
frequencies, and traffic loads of k1 and k2.

and traffic demands. Such a scenario is shown in Figure 3
for K = 2. The features must include factors that impact
the performance and are measurable by the transmitter of l
and its immediate neighbors. We selected the following list of
features, because it is known that they all have an immediate
impact on performance [4], [5], [11], [23]:

• The power received by each node of l from every trans-
mitting node, and the power received by every other node,
from the transmitter of l. These quantities are denoted
P1, . . . , P11 in Figure 3 (assuming downlink traffic, from
the APs to their clients). They depend on the transmit
powers and the various channel gains, and they can be
easily measured online by commodity hardware using RSSI
(received signal strength indicator). There are 5K +1 such
power quantities in general.

• The channel widths used by l and by the links in Nl. There
are K + 1 such values.

• The spectral separations between the center frequency used
by l, and the center frequencies used by all the other links
in Nl. There are K such values.

• The K average traffic loads of the links in Nl.
• The physical rates (determined by the 802.11n MCS index)

used on each link in Nl. There are again K such values.

Adding up the above-mentioned features, we have access to
d := 9K + 2 quantities to estimate the throughput that l can
obtain in the presence of K interferers. Note that this list
of features is not an exhaustive list of the factors affecting
performance that can be known or measured by the APs. For
instance, we could make it more complete by including the
packet sizes, higher order statistics to describe the traffic loads
of interferers (instead of the mean only), or more detailed
PHY layer information (e.g., capturing multipath effects or
frequency-selective fading). Including more features could
further increase the predictive power and generality of the
learned models. However, the features selected here already
allow us to build useful models, while having the advantage
of being simple and easy to acquire with commodity hardware.

C. Measurement Phase

The initial measurement phase consists of N measurements
with different combinations of features. Some of the features
can be directly controlled (namely, the channel widths, spectral
separations and traffic loads) and others cannot (the received
powers depend both on the transmit powers and channel gains,

and the physical rates depend on the auto-rate mechanism
used by the APs). Each of the N measurements consists of
two sub-experiments. We first perform an experiment during
which l is silent, in order to obtain a corresponding vector
x ∈ Rd of features (some of which are controlled, others
are measured). We then repeat the experiment with l sending
saturated traffic, and measure its throughput tl. Our goal is to
expose the learning procedure to as wide a variety of situations
as possible. To this end, we apply the following sampling
procedure for each of the N data points.

We start by selecting a link l uniformly at random among
all the links formed by all the nodes of the network. We
then sample K random interfering links, where K itself is
randomly drawn between 0 and max K, and max K denotes
a fixed upper bound on K. For l and the K links in Nl, we
sample transmit powers and spectral configurations uniformly
at random from the set of configurations that do produce some
interference (i.e., such that each link in Nl uses a band at least
adjacent or partially overlapping with l). Finally, for each link
k in Nl, we sample a traffic load in the interval (0, h(wk)/K],
where h(wk) is a value representing the maximum throughput
achievable on an isolated link using bandwidth wk. We take
h(20 MHz) = 80 Mbps and h(40 MHz) = 130 Mbps in
our training procedure, in line with the maximum achievable
throughput of our 802.11n cards. Our goal is to predict
performance for arbitrary interfering loads, and sampling the
loads in this way allows us to expose the learning procedure to
different environments with both light and heavy contention.
In particular, we measured that the offered loads of the nodes
in Nl was above capacity (i.e., saturated) in about 54% of the
experiments (mainly due to inter-neighbors interference). The
remaining experiments consist of non-saturated conditions.

Once the configurations have been chosen, we perform
the first experiment with only the K interfering links active.
During this experiment, we measure the average physical rates
used by each of the K links in Nl, and we group all the above-
mentioned features in a vector xi. In order to vary K between
0 and max K but keep features vectors of fixed dimension
d, we append 9 · (max K − K) default “flag” values to xi,
using −110 dBm for all the power values, and setting all
the remaining features to zero3. We then perform the second
experiment in the same conditions, but with link l sending
saturated traffic, and we measure its achieved throughput. Each
of the two sub-experiments constituting each of the N data
points needs only to last a few seconds (in order to measure
physical rates and throughput), and the whole procedure is
easily automated.

D. Learning

Let us write {(x1, t1), . . . , (xN , tN )} ⊂ Rd ×R for our set
of measurements. Our goal is now to find a function f : Rd →
R that maps xi to a value close to ti for each measurement i.
Learning the function f from the observed data is a regression

3The current number of interfering links K is thus an implicit feature,
encoded by the presence/absence of flag values.

link of interest l 
neighbouring links (NL):  
k1, k2

This is a regression problem
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Used tools for this regression problem

• Regression tree, Gradient Boosted Regression Trees (GBRT), 
Support Vector Regression (SVR) 

• Comparison baseline: SINR-based model  
• accuracy of predictions: coefficient of determination R2, RMSE 

• Python scikit-learn package 
• 50-fold cross-validation
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Improved prediction accuracy compared to SNIR model 

In terms of R2-score, learned SVR and GBRT models improve the prediction 
accuracy by 54% and 71%, respectively, compared to SINR models
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Figure 5: Summary of prediction performance for various models (a)
and empirical CDF of prediction errors (b). The “mean” model in
plot (b) represents the errors obtained by a baseline predictor that
always predicts the mean throughput of the training set.

we recall, are the only known class of models capturing
phenomena such as overlapping channels). In terms of error
distribution, 90% of the errors made by learned models are
between −25 Mbps and 25 Mbps, whereas 90% of the errors
made by SINR-based models are between −35 Mbps and
36 Mbps. The fact that learned models are more accurate
is remarkable; it demonstrates that, as far as performance
prediction is concerned, learning abstract models coming from
the machine learning domain can be much more efficient than
trying to fit (or seed) pre-existing specialized models.

In order to visualize the actual predictions in detail, we
also show a scatter plot of the throughputs predicted by SINR
models and learned SVR models, against the actual measured
throughputs, in Figure 6. Clearly, SVR models perform much
better and produce fewer outlying predictions than SINR
models. Note that obtaining perfect predictions is impossible
here, considering the fact that both the measured features and
the throughput are highly noisy variables, measured with com-
modity hardware. To illustrate this, we examine in more detail
the features corresponding to the worst prediction obtained by
both models (shown by an arrow on the plots – incidentally,
this is the same point for both models). This point corresponds
to a link l subject to no (controlled) interference (i.e., K = 0),
with an apparently good channel quality (the measured RSSI
is -59 dBm), and using a bandwidth of 40 MHz, supposedly
yielding the largest capacity. Yet, despite these features, the
measured throughput was low. We can only speculate about
the causes for this discrepancy (it may be due to especially
high noise or software factors). In any case, this example
illustrates the limits of throughput predictability with imperfect
information.

C. Generalization

Due to the evaluation on test set, the previous results address
cases where predictions are produced for unseen combinations
of features. We now attempt to push our models further, by
predicting throughputs for unknown links, potentially belong-
ing to different environments.

1) Predictions for Unknown Links: For each possible link
l, we remove both l and its reverse link (obtained by inverting
the transmitter and the receiver of l) from the training set. We
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Figure 6: Predicted versus measured throughput, for SINR and a
learned model, on a test set of 200 points.

then predict throughput for each data point that contains l (or
its reverse link), and show the results in Figure 7. Compared
with Figure 5(a), some models (especially the ones based on
regression trees) see their accuracy slightly decreased. How-
ever, the models learned with SVR still perform remarkably
well; in terms of R2-score, their accuracy is reduced by less
than 4%, and they still improve the accuracy by 49% compared
to SINR-based models.

2) Different Environments: We now manually divide the
links present in our trace in three distinct categories, depending
on the type of attenuation that they experience. The categories
are shown in Figure 4, and they correspond to the following
link division: (i) links that traverse mostly empty space, (ii)
links that traverse sparsely spaced walls and (iii) links that
traverse densely spaced walls.

For each category, we remove all the links (and their reverse)
belonging to this category from the training set. We then build
the test set so as to predict throughput for links belonging
only to this category. The goal of this experiment is to test
prediction accuracy in the worst possible conditions: each
model is learned on links that operate in conditions radically
different than the conditions prevailing during the actual
predictions. In addition to the three link categories (i)-(iii), we
also split our testbed in two halves A and B (also shown in
Figure 4). The resulting accuracies are shown in Figure 8. Even
in these difficult cases, the learned models based on SVR show
a graceful degradation and keep a relatively high accuracy
(with R2-scores always larger than 0.54). When predicting on
half B with models learned on half A, models based on SVR
even obtain similar accuracies as when learning using the full
testbed. This allows us to draw some conclusions on the extent
to which our method generalizes. Even when learning models
on a different part of the testbed, or using radically different
links, abstract models based on machine learning still have
far more predictive power than measurement-seeded models
based on SINR.

D. How Much Learning is Needed?

Finally, we measure the accuracy as a function of the
training set size N . For different N , we learn models using
N experiments sampled at random from our experiment trace.
We then predict the throughput for all the other experiments,
and measure the R2-score. The results are shown in Figure 9.
Using N = 100 training experiments is enough to obtain
better accuracy than SINR models, and N = 1000 experiments
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How to use this information for coexistence?
• Select channel center frequency, bandwidth, and 
transmission power 

• Distributed algorithm 
• An AP randomly wakes up and collects 
information from its neighbours, e.g., via wired 
backbone 

• The AP predicts the achievable throughput  on 
each of its attached links, for each possible 
configuration of spectrum and transmit power 

• AP samples a new configuration using the Gibbs 
distribution with more weight to configurations 
with large achievable utilities
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Learning helps increasing fairness
• Prediction-based configuration selection over performs SINR-based 

selection 
• Fairness: key pillar of peaceful coexistence
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802.11 networks. [26] runs the spectrum allocation jointly with
scheduling decisions at a central controller, and [17] proposes
a distributed algorithm for the joint allocation of center fre-
quencies and bandwidths. None of these algorithms considers
the transmit power, and they do not adapt to various utility
functions. Our learned models predict achievable throughputs,
which can be directly plugged into the utility maximization
framework. This removes the need to use indirect optimization
objectives (such as minimization of interference, which often
does not coincide with performance maximization [17]).

The theoretical works that are the closest to ours are [3],
[15]. These papers propose optimal algorithms for channel
and/or power selection, but do not consider channel width.
Further, they have not been implemented in real networks.

VIII. CONCLUSIONS

We investigated and validated a new approach for predicting
the performance of Wi-Fi networks. Rather than manually
fitting complex models to capture complex dependencies,
we showed that it is possible to directly learn the models
themselves, from a limited set of observed measurements. This
approach bypasses the usual modeling process, which requires
both deep knowledge and tedious analysis, and yet often yields
models that are either too restricted or too inaccurate. We
observed that abstract black box models built using supervised
machine learning techniques – without any deep knowledge of
the complex interference dynamics of 802.11 networks – can
largely outperform the dominant class of SINR-based models.
Further, we have shown that these models still work when
they have to predict performance for links that have never
been observed during the learning phase.

We have used one such model as an oracle in a new
distributed utility-optimal resource allocation algorithm. We
observed that our algorithm adapts well to various optimiza-
tion criteria, and that our learned model is instrumental for
achieving good performance in these tangled settings.
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Part IV 
Summary and open research directions
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A taxonomy of the literature
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Real coexistence scenario consisting of 
many networks

• Hybrid scenarios are more realistic 
• More complex requiring more intelligence/adaptation
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Desirable properties of coexistence solutions

• standards compliance 
• soft solutions rather than hardware based 
• distributed vs centralized/controller based
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Challenges of applying ML approaches
• Feasibility in practical settings 

• Complexity 
• Real-time convergence time 
• What happens till convergence? 
• Is it really possible to learn? 

• Mobile or other dynamic environments 
• Where to implement ML?  

• AP, nodes, network-core, cloud
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Challenges for wireless researchers
 Machine learning requires lots of data to learn useful things 

• bad news: researchers mostly are limited in access to such real data 
• good news: publicly-available data (some better than none) 
• https://crawdad.cs.dartmouth.edu/ 

• Limited applicability to computation-limited devices, 
• bad news:  ML requires high resources which are mostly not available in 

e.g., embedded devices, IoT devices 
• good news: ML is very active and searching for smart algorithms with 

lower complexity 
• Fog/Cloud can be exploited for such devices

165• Weka, R, Python

https://crawdad.cs.dartmouth.edu/
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DARPA challenge 

• https://www.darpa.mil/
news-events/2017-08-11a
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Machine learning in 5G

167Jiang, Chunxiao, et al. "Machine learning paradigms for next-generation wireless networks." IEEE Wireless 
Communications 24.2 (2017): 98-105.
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Summary
• The future is unlicensed 
• Coexistence of such unlicensed networks is a big challenge 
• ML can provide the capability to embrace uncertainty
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Thanks!


