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‘Key message: Spectrum sharing is inevitable and mechanisms to
solve coexistence challenges is still immature. Machine learning
can provide efficient tools to deal with complex interactions in
the coexistence settings.

e Qutline:

 Part I: Spectrum sharing essentials (10 mins)

Part II: Coexistence in unlicensed bands (30 mins)

Part lll: Machine learning primer (20 mins)

Part V. How ML helps for better coexistence (30 mins)

Part V. Summary and open research directions (5 mins) 4170
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Part |
Spectrum Sharing in Wireless Networks

« Why to share the spectrum?
* Modes of sharing
« Challenges in harmonious coexistence

* Current solutions for coexistence in

wireless networks
4/170
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Sharing

* Spectrum sharing covers the scenarios where at least two
technologies, systems, or users utilise or are authorized to
utilize the same frequency bands in a non-exclusive manner

Artist: Alan Levine

5M170

Simon Forge, Robert Horvitz and Colin Blackman, report on Promoting the Shared Use of Europe’s Radio Spectrum, 2012.
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e High increase in wireless devices, networks, users

“16 Networks are getting denser

e Massive and continuing growth in mobile data traffic

- Special thanks to video traffic! 60% of total mobile traffic in 2016
e More to come with loT, M2M, 5G

e Many (cutting-edge) proposals to cope with the exponentially
Increasing wireless data demand

- small cells, MU-MIMO, D2D, etc.
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https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf

- M Networks are getting denser
:e”mHigh Increase in wireless devices, networks, users
e Massive and continuing growth in mobile data traffic
- Special thanks to video traffic! 60% of total mobile traffic in 2016
* More to come with loT, M2M, 5G

e Many (cutting-edge) proposals to cope with the exponentially
Increasing wireless data demand

- small cells, MU-MIMO, D2D, etc. 70 ==2G 3G ==4G+ ==LPWA

i 53%
5.0
Billions of
: 4.0
Devices or A% 28.7%

BUT: Scarcity of “good” spectrum for wireless communications is
still the major bottleneck.


https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
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e Sub-6 GHz best performance

e Unlicensed bands:
- 2.4 GHz (already very congested)
- and 5 GHz

e New bands: mmWWave etc.

- for small cells and low mobility

8/M170



mmg Scarcity of good spectrum

e Sub-6 GHz best performance

e Unlicensed bands:
- 2.4 GHz (already very congested)
- and 5 GHz

e New bands: mmWWave etc.

- for small cells and low mobility

Dynamic spectrum sharing as a remedy to cope with exponential
wireless data demand and solve the artificial scarcity due to
mis-management of the spectrum
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-l.ﬁ Also sharing economy is better

* Cheaper licenses for mobile network operators if operation on the
licensed bands

* Additional revenue for network operators if selling their under-utilised
bands

* More-efficient spectrum utilization if shared among multiple networks
(use of underused assets by others)

Please see for sharing in the licensed bands: Tehrani, Roya H., et al. "Licensed spectrum sharing schemes for mobile
operators: A survey and outlook." [IEEE Communications Surveys & Tutorials18.4 (2016): 2591-2623. 10/170



szl 'E Spectrum authorities agree ...
« FCC’s Notice of Inquiry July 13, 2017: Exploring Flexible Use in Mid-Band Spectrum
Between 3.7 GHz and 24 GHz

http://transition.fcc.gov/Daily Releases/Daily Business/2017/db0713/DOC-345789A1 .pdf

» Ofcom’s A Framework for Spectrum Sharing in April 2015

https://www.ofcom.org.uk/ data/assets/pdf file/0032/79385/spectrum-sharing-framework.pdf

» Report for EU Commission, on Promoting the Shared Use of Europe’s Radio
Spectrum, 2012, S. Forge et al.

https://ec.europa.eu/digital-single-market/en/promoting-shared-use-europes-radio-spectrum

11/170
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-I.E A generic coexistence scenario

Network 2

1: transmission range
2. detection range
3: interference range

Network 1

Coping with interference
IS central to the
coexistence of wireless
systems.

Simon Forge, Robert Horvitz and Colin Blackman, report on Promoting the Shared Use of Europe’s Radio Spectrum, 2012. 1170
https://ec.europa.eu/digital-single-market/en/promoting-shared-use-europes-radio-spectrum



https://ec.europa.eu/digital-single-market/en/promoting-shared-use-europes-radio-spectrum

;z:c::;;ME A generic coexistence scenario

Berlin

Network 2

1: transmission range
2. detection range
3: interference range

Network 1

Co-existence is when the
operation of a radio
system is capable of
impairing the operation of
another radio system but
it does not.

Simon Forge, Robert Horvitz and Colin Blackman, report on Promoting the Shared Use of Europe’s Radio Spectrum, 2012.

https://ec.europa.eu/digital-single-market/en/promoting-shared-use-europes-radio-spectrum /170
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-I.E Spectrum sharing in various domains

Frequency Time Space Code
f t S C

* Frequency: each system operates on a different spectrum

* Time: same spectrum used on a time-sharing basis (DSA, cognitive radio
in overlay mode)

« Space: systems coexist in different spatial domains (e.g., protection
zones, exclusion zones)

* Code: e.g. CDMA
/170
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Horizontal
(same priority)

/

Homogeneous Heterogenous

“E Spectrum Sharing Scenarios: A Taxonomy

Priority of the networks j\

Vertical
(primary and

secondary networks)

l

A4

.

Communication
networks

~

(" )
Communication and
non-comm. systems

\ _J

Han, You, et al. Spectrum sharing methods for the coexistence of multiple RF systems: A survey. Ad Hoc Networks, 2016 15/170
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Horizontal
(same priority)

Homogeneous Heterogenous
WiFi-WiFi WiFi-ZigBee

A4

Hybrid
WiFi-WiFi-ZigBee

ﬂs Spectrum Sharing Scenarios: A Taxonomy

Priority of the networks j\k

Vertical

(primary and
secondary networks)

l

-

— \( )
Communication Communication and
networks non-comm. systems
802.22 and TV Radar and
broadcasting y WiFi@5GHz

-

_J

Han, You, et al. Spectrum sharing methods for the coexistence of multiple RF systems: A survey. Ad Hoc Networks, 2016 16/170



“E Spectrum Sharing Scenarios: A Taxonomy

Priority of the networks j\C(:gnitive Radio

Berlin
. Vertical
[ Horizontal

ta (primary and
(same priority) secondary networks)

- l

e \WiEi WiFi-ZigBee gt
WIFI-WIF ° Communication Communication and
v 80;22"’0”;81_\, non-comm. systems
.22 an
Hlybrid broadcasting R_a cilar and
WiFi-WiFi-ZigBee _ Y, . WiFi@5GHz
_J

Han, You, et al. Spectrum sharing methods for the coexistence of multiple RF systems: A survey. Ad Hoc Networks, 2016 17/1170



ns Spectrum Sharing Scenarios: A Taxonomy

Unlicensed Priority of the networks )\C(:gnitive Radio

Berlin
Vertical
(primary and
secondary networks)

Horizontal
(same priority)

Homogeneous Heterogenous ~ l ~
i _\WiFi WiFi-ZigBee mal
WIFI-WIF ° SOMILAIGEON Communication and
v SogzgvortlsTV non-comm. systems
.22 an
Hlybrid broadcasting R_a c?lar and
WiFi-WiFi-ZigBee _ ), . WiFi@5GHz
_J

Main focus of this tutorial is on unlicensed bands



-'.E What is an efficient coexistence?

e Depends on the scenario (requirements of each system’s
operation)

LS

e Several metrics e

Network A

19/170



-I.E Coexistence metrics

« Fairness in usage of the shared resources
* Throughput
« Delay

« Spectrum utilisation (from the perspective of the regulatory bodies/
spectrum authority)

20170



Main challenges In
wireless coexistence

Challenge #1

Heterogeneity
(other challenges are also mostly due to heterogeneity)

21170



-'.E Challenge #1: Heterogeneity

* Different rules of operation, different ethics

* PHY, MAC layer (packets may not be decoded by the other
network)

* Different packet formats

* Power levels

* Different signal management functions
* Modulation schemes

* Data rates

* Channel bandwidths and separations

* Applications, communication vs. non-communication networks
22170



Main challenges In
wireless coexistence

Challenge #2
Power asymmetry

23170



-'.E Challenge #2: Power asymmetry

* High-power systems vs. small-cell/low-power systems

e Asymmetric interference
(different tx powers, different
interference regions)

o WiFi vs. ZigBee

Network A
Network B

rB

241170



Main challenges In
wireless coexistence

Challenge #3
Lack of communication among
co-existing networks

25M170



-'.E Challenge #3: lack of communication

* Networks controlled by different operators
» Networks using different technologies
* No well-defined means for negotiation, e.g., residential WLANSs

26/M170



-l.ﬁ Remember the cognition cycle

Universitat
Berlin

e (Coexistence requires cognition

~
Radio environment

(outside world) RF stimuli
Y,
o Observe

Transmit

Strategise

Adapt Tx power control
Channel selection

http://soma.mcmaster.ca/papers/SLIDES NIPS Keynote Haykin.pdf 271170
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-I.E Some coexistence guidelines

« |EEE 802.19 Wireless Coexistence Technical Advisory Group (TAG)
within the IEEE 802 LAN/MAN Standards Committee: coexistence
between unlicensed wireless networks

e 802.19.1: Coexistence in TV bands

« |EEE 802.15 Task Group 2: Recommended Practice on Coexistence
of IEEE 802.11 and Bluetooth

« P802.22b amendment: Self-coexistence protocol for 802.22
networks: Coexistence Beacon Protocol (CBP)

« P 1932.1: Standard for Licensed/Unlicensed Spectrum Interoperability
in Wireless Mobile Networks

/170



-'.E Summary of Part |

« Sharing is vital for meeting the demand for wireless capacity

« (Coexistence is the main challenge in shared spectrum access
* Heterogeneity of networks pose substantial difficulties

« Metrics and requirements still not totally agreed upon

29170



-I.E Further Reading for Part |

e Han, You, et al. "Spectrum sharing methods for the coexistence of multiple RF
systems: A survey." Ad Hoc Networks 53 (2016): 53-78.

e Beltran, Fernando et al "Understanding the current operation and future roles of
wireless networks: Co-existence, competition and co-operation in the unlicensed
spectrum bands." I[EEE JSACT6.

e P802.22b Coexistence Assurance Document, doc.: 22-14-0141-01-0000, Nov.2014

available at ntips://mentorieee.ora/802.22/den/14/22-14-0141-01-0000-p802-22b-coexistence-assurance-document.docx

e Bahrak, Behnam, and Jung-Min Jerry Park. "Coexistence decision making for
spectrum sharing among heterogeneous wireless systems." I[EEE TWC 14

e K. Bian et al., Cognitive Radio Networks, Chapter 2 Taxonomy of Coexistence
Mechanisms, Springer 2014

e JSAC Special Issue on Spectrum Sharing [, Il, and Ill, October, November, December
2016

30/170
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Part |
Coexistence in unlicensed bands

 Wi-Fi overview
 Unlicensed LTE overview
* (Coexistence Issues

31170
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WiFi + femtocells carried 60% of mobile data traffic

The future is unlicensed

Success of WiFi attributed to operation in unlicensed bands
32170



A briet overview oOf
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=Ml |EEE 802.11 WLANS

- 11a - 20 MHz BW, 5GHz

- 11b - 20 MHz BW, 2.4 GHz

* 11g - 20 MHz BW, 2.4 GHz

* 11n - 20 & 40 MHz BW, 2.4 and 5GHz !
* 11ac - 20 to 160 MHz BW, 5GHz 4
* 11ad - 2 GHz BW, 60 GHz * 3
* 11af - 6/8 MHz, TV White Space

* 11ah- 1/2/4/8/16-MHz, 900 MHz o .csce.orso:;:i:iotztp://W\?::V'mv:rzc,om

802.11af



http://www.gcscte.org/presentations/2017/Wifi%20Overview.pdf

Technische

I'E Spectrum commons: Unlicensed bands

- 2.4 GHz ISM bands: already crowded
- WIiFI, Bluetooth, microwave ovens, Zigbee, etc.
- WiFi: 802.11b/g/n at 2.4 GHz
- Channels 1, 6, 11 are non-overlapping and should be used

- 5 GHz UNII bands: getting crowded
- WiFI, Radar, unlicensed LTE
- WiFi: 802.11a/n/ac at 5GHz and future standards 11ax
- Non-overlapping 20+ channels of 20 MHz

/170



-I.E WiFi is polite: listen-before-talk (LBT)

2.4GHz

5GHz
AP nn SSID: crowncomi7
I Ch 6
STA:
station/client/device D

https://commotionwireless.net/blog/2014/11/05/do-it-yourself-antennas-for-community-networks

36/170



szc::;ims WiFi is polite: listen-before-talk (LBT)

Berlin

2.4GHz
5GHz Checks before
accessing the
AP nn SSID: crowncomi7 medium
1 Ch 6 - .
STA: -
station/client/device If busy, wait fill it
becomes idle
After idle, wait for

STA2 some time
Access if still idle
STA1 ) ’

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)


https://commotionwireless.net/blog/2014/11/05/do-it-yourself-antennas-for-community-networks

-I.E Distributed Control Function (DCF)

Random access protocol
* transmission (attempt) can happen anytime

The same medium for all
* uplink and downlink, control and data shares the medium

Exponential backoff mechanism
* Contention window size

DIFS, SIFS amounts of waiting before continuing transmission
Rate adaptation according to channel quality

38/M170



"E WiFi shares the airtime with its neighbours

Apartment 1 Apartment 2
Channel: 6 Channel: 6
AP1
STA
/ AP2
TA
STA S STA

* As two APs operate on the same channel airtime is shared, e.g.,

only one transmitter is active at a time

39170



"E WiFi shares the airtime with its neighbours

Apartment 1

Apartment 2

AP1

e

STA

Channel: 6

STA

AP2

Channel: 6

STA

airtime(AP1)= 0.5

airtime (AP2)= 0.5

40/170



-I.E Detecting the medium state

Clear channel
assessment

T
=) [
Sense (CS)

« Carrier sense (CS): decode the WiFi preambles

« Energy detection (ED): detect that there is some (e.g., non-
WiFi) signal present in the channel above some ED threshold

411170



-I.E Detecting the medium state

Clear channel
assessment

TN

Carrier
-82 dBm | Sense (CS) .62 dBm

« Carrier sense (CS): decode the WiFi preambles

« Energy detection (ED): detect that there is some (e.g., non-
WiFi) signal present in the channel above some ED threshold

421170



szc::;;';flls Main challenge: chaotic Wik deployments

Berlin

- Enterprise WLANS:
- centrally-managed, easier coexistence
 Residential/uncoordinated WLANS: chaotic deployment
- independently controlled APs (or novice user control)
- need for coexistence mechanisms

» Co-channel interference, adjacent-channel interference, non-WiFi
interference, high channel occupancy

 Main mechanism for coexistence in WLAN:
- Channel selection, LBT parameter tuning, power control

43/170



Ji?fe",‘i,-‘éma Residential WLANS

Berlin

Wifi Analyzer

”L¥L

expected
to
increase
utilization

WLAN-165305_5G

Wifi Analyzer

2.4G

RITZ!Box 7362 SL

FRITZ}BOX 7412

Highly
congested

Berlin urban
residential area
441170




-I.E WiFi moving to 5 GHz

Jan. 2014 | Jan. 2015

802.11¢g 99.9% 99.9%
11n 95.7% 97.7%

5 GHz 48.9% 64.9%
z channels 4% .8%
802.11ac 2.5% 18.0%
Two streams 7.7% 19.3%
Three streams 2.4% 3.8%
Four strcams 0.7% 1.8%

Table 4: Client capabilities advertised by all clients that
connected during the same week in January for two con-
secutive years.

Source: Biswas, Sanjit, et al. "Large-scale measurements of wireless network behavior." ACM SIGCOMM15  45/170



A brief overview of unlicensed LTE (ﬂ)

46/170



;:;c::;;;:-llﬁ LTE in unlicensed bands

* Cellular operators benefit from WiFi a lot, but

* WiFI has low spectral efficiency under high number of users
due to losses in contention based access

* MAC efficiency<

Licensed Unlicensed

Solution: LTE in the unlicensed bands (Qualcomm, 2013)

471170



-'.E Why LTE in unlicensed bands”?

*Unified control at the same core:

- authentication, management, and security procedures
*higher spectral efficiency in the unlicensed bands

- Centrally-scheduled access
«Better error control at LTE

- HARQ vs. ARQ

» other interesting convergence solutions not discussed here:
MuLTEfire, LWA

481170
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l'ﬁ Boosting capacity with unlicensed carriers

Licensed Unlicensed Licensed

Secondary
carrier (data)

(o

« Augment the licensed capacity with unlicensed capacity when the
data boost is needed (opportunistic use)

e carrier aggregation: two or more carriers combined in a virtual bw.
 supplementary downlink (SDL), downlink: 80-90 % of total traffic

49 70

Primary carrier
(anchor, control
messages)

Downlink
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mee i E Available spectrum in unlicensed bands

Berlin

H
Bandwidth (MHz) / g ec’[;t erz
200 - / candidate
Already
highly
occupied
\ . 120
75
6I5
2.4 5.1 53 54 5.8 59
Frequency (GHz)

Source: Cui, Haixia, et al. "LTE in the Unlicensed Band: Overview, Challenges, and Opportunities." IEEE Wireless
Communications (2017). 50/170



Berlin

szc::;ims Regional regulations for 5GHz bands

US, Europe, Japan US, Europe,| US, India,
India, China UNII-2B Japan China

Current | UNI-1 | UNT-2a | (120MF2) | yN1oc | UNI-3 | UNI4
Rules | (100 MHz) | (100 MHz) [NoTechnicall (555 Mbyz) | (100 MHz) | (75 MHz)

50mW 250mW Rules 250mW 1W No Technical

NoDEFS DEFES DES No DFS Rules

Indoor Only
\\ T

5.150 GHz 5.250 GHz 5.350 GHz\ 5.470 GHz | 5.725 GHz 5.850 GHz 5.925 GHz

DFS: dynamic frequency selection for radar avoidance

Wang, Xuyu et al. "A survey of LTE Wi-Fi coexistence in unlicensed bands." GetMobile: Mobile Computing and 11170
Communications 2017 -



sz:ce;,;;;;llﬁ LTE unlicensed for small cell deployment

« Current trend: small cells for better frequency reuse
« But additionally,

« Unlicensed spectrum: power restrictions

« 5 GHz: lower coverage compared to 2.4 GHz
* Hence, LTE unlicensed is for small cells

" LTE Network ' WiFi Network ~

M Cell . .
acrote Small Cell < Wi-Fi AP

«‘g”\ ) i)

= )
Source: Korea Communication Review, Jan. 2015



=00 Unlicensed LTE and WiFi coexistence

Channel access Scheduling
LTE: centralized, strict time slots LTE: multiple users (time and freq)
WiFi: contention-based random WiFi: one user
access
Interference

Channel usage
LTE: always on, frames
WiFI: demand based, on-off

LTE: Cross/co-tier interference
WiFi: Hidden/exposed terminal,
collision

LTE frame (10 ms) >

<
(Su b-frameISub-frame) ------- (Su b—frame) ----------- (SIOtI Slot)

+—1ms—> 0.5 ms

/170



=00 Unlicensed LTE and WiFi coexistence

* Main problem: different PHY and MAC rules

---------
- ~

.
A Y

Somebody

in the \ /

channel — LTE
Exponential Y '
back off

~~~~~
______

Expected result: WiFi suffers from LTE, if LTE does not adapt
coexistence mechanisms! 54/170



-l'E Two variants: LAA and LTE-U

e | BT required or not
e License Assisted Access LAA: LBT mandatory
e LTE Unlicensed (LTE-U): no LBT
e | AA: by 3GPP, LTE-U: by LTE-U forum
o | AA: Europe, Japan, LTE-U: US, Korea, China
e | AA: Release 13 (requires changes to LTE air interface)
o | TE-U: Release 10/11/12
e | AA: a global standard, LTE-U: faster time to market

55170
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LTE-U

LTE-U duty (:yc:Ie>

<
ON OFF ON ON
Time
LBT ON | IDLE
Time

56/170



-'.E LTE-U duty-cycle

LTE-U duty cycle
< >

Ton

<

>

ON Toff

ON

ON

\—@/ Time

« MAC time sharing
o Duty cycle: Ton/(Ton+Toff)

can transmit during OFF periods

57170



-'.E LTE-U duty-cycle

Ton
< >

ON Toff ON ON
A \‘@/ Time

.Medium sensing
- CSAT (carrier sense adaptive transmission): adaptive duty cycle

- Adaptation according to WiFi medium utilisation and number of
WiFI nodes observed by user devices or small base stations

<

>

58/170



-l'E How to set the ON-OFF durations®?

 Medium sharing: if X is LTE’s duty-cycle, airtime for WiFi is (1-X)
« But some caveats:

* Length of ON-duration: WiFi has to wait till the end of ON
period which may affect latency-sensitive applications, e.g., high
QoS frames.

59/170



-I.E How to set the ON-OFF durations®?

 Medium sharing: if X is LTE’s duty-cycle, airtime for WiFi is (1-X)
« But some caveats:

* Length of ON-duration: WiFi has to wait till the end of ON
period which may affect latency-sensitive applications, e.g., high
QoS frames.

 subframe puncturing
« max ON duration 20 ms

iuzbframe puncturing period ¢ CSAT ON-period
MSEc gaps CSAT OFF-period >
LTE-U < >
SBS - - B ~ 60/170




-l.s How to set the ON-OFF durations®?

 Medium sharing: if X is LTE’s duty-cycle, airtime for WiFi is (1-X)

 But some caveats:

* Length of ON-duration: WiFi has to wait till the end of ON
period which may affect latency-sensitive applications, e.g., high

QoS frames.

» Length of OFF-duration: typically 40/80 ms

LTE (ﬂ) ON

Off

ON

Rate adaptation

X

Packet collisions ——» (oW rates)

@ backoff

Exponential backoff
61/170
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el E Moderate LTE interference more detrimental
to WikFi than high interference
Severe impact on
WiFi
Hidden LTE node

A Moderate interference

3 below -62 dBm

L B

(@)
R |
s S Weak
= £ |'ea High interference

interference
>

Received LTE-U power at the WiFi AP

N. Jindal et al, “LTE-U and Wi-Fi: A coexistence study by Google,” Wi-Fi LTE-U Coexistence Test Workshop,
2015. https://goo.al/x6r0Ac 62/170
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éit.'
in

>

throughput

Moderate LTE interference more detrimental
to WiFi than high interference

Moderate interference

Severe impact on
WiFi
Hidden LTE node

?/r:/teeer]fkerence High interference Less impact on LTE:
LTE PHY more
» resilient to
Received LTE-U power at the WiFi AP interference

N. Jindal et al, “LTE-U and Wi-Fi: A coexistence study by Google,” Wi-Fi LTE-U Coexistence Test Workshop,
2015. https://goo.gl/x6r0Ac 63/170
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release 14

-'.E LAA medium access oL 00D

release 13
DL

- LBT:

* default -72 dBm ED threshold: adaptation based on
pbandwidth and transmission power

* Congestion window size adaptation based on HARQ NACK
- DTX (Discontinuous transmission):
 transmission time limited to 10 ms (4 ms in Japan, as
opposed to 20 ms in LTE-U)
- A new frame type

- Type 3 frame: DL transmission can start at the next slot not next
subframe

Kwon, Hwan-Joon, et al. "Licensed-Assisted Access to Unlicensed Spectrum in LTE Release 13." IEEE 54 /170
Communications Magazine 55.2 (2017): 201-207.



5 GHz not congested yet, but it is highly likely that it
will soon

Coexistence mechanisms to be implemented

65/170



ﬂﬁ Coexistence goal of LTE unlicensed

Universitat

A better neighbour than WiFi

« with WiFi: no worse impact in terms of both throughput and

latency than another WiFi network
X 7

/

« with LTE: fair resource sharing

66/170
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Peaceful Coexistence in Unlicensed Spectrum

| AN\

67170
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|' Coexistence scenarios in the unlicensed bands

* Homogeneous scenario: WiFi-WiFi
* Intra-technology coexistence, self-coexistence

* Heterogenous scenario: LTE-U and WiFi coexistence
* Inter-technology/cross-technology coexistence

f\( Priority of the networks J/\é
C Horizontal ) )

Vertical
v
[Heterogenousj ( Communication nws )
Homogeneous WiFi-LTE
WiFi-WiFi Communication &non-
LTe-LTE | Hybrid ) comm. systems J

64170



i 'l Current literature on Wik self-coexistence

* Have a control channel among APs for coordination
* ResFi [Zehl16], SAW [Herzen13]

* Have a controller. e.g., APs of the same network provider,
OpenFlow SDN

* COAP [Patro15]
* Beacon analysis based channel selection
* Min-#0of-STAs [AchantaOo6]

* For a more complete set of proposals, see:
Surachai Chieochan et al, Channel Assignment Schemes for
Infrastructure-Based 802.11 WLANSs: A Survey, IEEE Tut.&Surveys, 2010
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i -.E Coexistence solutions

G( Channel selection )

time sharlng

CW fixed /varlable fixed/adaptive || Subframe
size backoff threshold ON time punctures

¢ Tuning these parameters efficiently not straightforward and
depends on the scenario
e Duty-cycle: LTE defines the degree of fairness/sharing

70170



-I.E Selected Literature

Make LTE and WiFi communicate via a control channel

* LtFi [Gawlowicz17]

Make LTE Base Station transmit WiFi channel reservation messages
« ULTRON [Chai16]

Cooperation through a cloud-based controller

* [Maglogiannis7],[Al-Dulaimii5]

Embed LTE-U within Wi-Fi Bands

* Hyper AP[Chen17]

Make WiFi estimate LTE airtime and duty cycle
* WIPLUS [Olbrich17]

71170



coexistence in the unlicensed bands is vital for everybody

difference in WiFi and LTE: random access vs. time scheduled
access

iIndustry: LTE unlicensed is coexistence-friendly

research and experiments: it is not, e.g., [ChaiMobicom16, Jindral2015]
need for smarter and adaptive co-existence schemes
coexistence test scenarios defined by Wi-Fi Alliance in 2016

hanks!
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commons: A case study of Wi-Fi and LTE in the 5-GHz unlicensed band." IEEE JSAC 2016

731170



Part |l
A very brief overview of Machine Learning

* Supervised Learning

* Unsupervised Learning

* Reinforcement Learning
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pet 1? An apstraction of a system in operation

~

(e.q., AP)

~

A decision unit

Algorithm
Input: X Mapping Input to

Output

Output:Y
>

Objective
function

* the algorithm: if this then that

?

) Not always easy

to write an algorithm

751170



-I'E Why machine learning?

* For some tasks, we cannot easily write the algorithm: if this then that
* there is no simple algorithm, e.g., autonomous cars
* it is very challenging to define rules (e.g., dynamic environments)

76/170



Technische

-I.E Learn from data or past experience

* When we cannot write algorithm directly, we use learning from data
or past experience (meta-programming)

* Machine learning: generalisation from examples, e.g., detect certain
patterns or regularities

« Because mapping from input to output is not random!

Wireless communication: complex interactions

77170



-|.E How to learn the mapping?

Universi
Berlin

Based on the available data:
1.both the inputs and outputs are available: (x,y)
2.only the inputs are available (x)

3.Nn0 direct access to the «correct» output, but some measure of the
quality of (x,y) mapping

ing?
Input: X »[Maplp:)lng.] Output:Y
J 781170




;,e;,eg;;;;;fllﬁ How to learn the mapping?
Supervised Learning
both the inputs and outputs are available (x,y)
predict output y for a new x

Learning
Algorithms

categorized by the
amount of knowledge
or feedback provided

to the learner Reinforcement Learning
no direct access to the «correct» output

an agent learns to select an action to maximize its
payoff, e,g., AlohaGo

Unsupervised Learning

only the inputs are available (x)
uncovering hidden patterns from unlabelled data

791170



bt -.E Supervised Learning

Examples fed to the system

80/170



Berlin

training data set (Dtrain)

Input Target
4 - )
example 1 im o
\_ : Y,

example K

Jz:c:::.zms Terminology

Input: N-dimensions (features, attributes)
X1= (X1,1, X1,2, X1,3, --., X1,N)—> Yo

X2 = (X2,1, X2,2, X2,3, "y X2,N) _> Y1

K examples

Xi = (Xi,1, Xi,2, Xi,3, ..., Xi;N) — Y

Xk = (XK,1, X2, X3, ..., XK,N) —» Yk

Y: category or a class {cat, dog}
81/170



-I'E Classification and Regression

* Supervised Learning: given x, predicty 7
« Classification: y is discrete > Predictive models
* Regression: y is continuous J

- Unsupervised Learning: Descriptive models

82/170



Jﬁff:fzgsf-l.s What to learn”

Berlin

* Learn a predictive function f: X = Y , which maps the input variables
into the output domain

Domain(Y)

Domain(X)

Dtrain(x)
X1 o—

83/170



J::e:::.-;s:-llﬁ What to learn”

Berlin

* Learn a predictive function f: X = Y , which maps the input variables
into the output domain

* Approach: f predicts well on the training set Dirain

* 1(X) is a good predictor for the value of Y (f is called the hypothesis)

Domain(Y)

Domain(X)

Dtrain(x)
X1 o—
X2 o—
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gs,,fc;:;;;:-ﬂﬁ What to learn?

Berlin

* Learn a predictive function f: X = Y , which maps the input variables
into the output domain

* Approach: f predicts well on the training set Dyrain

* 1(X) is a good predictor for the value of Y (f is called the hypothesis)

Domain(Y)

Domain(X)
Dtrain(Y)
Dtrain(x) —VY‘I
X1 o— . .
X2 o— Goal: f predicts well on ALL possible

Inputs
Generalization capability

85/170




Techn ische

Berl n

1.
2.
3.

\l

-I.E Supervised Learning Methodology

Decide what the input-output pairs are.

Decide how to encode inputs and outputs (X and ).
Choose a class of hypotheses/representations F:

* F known as function family of f.

. Choose an error/loss function L to define the best hypothesis f* in F

* Error, loss, cost function to assess how wrong a hypothesis f predicts

. Choose a way for finding the best function * in F efficiently through the

space of hypotheses
Find the best function f* in F, using L on Dirain

. Tune your model
. Test your model

slide credit:Doina Precup
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E Dataset split into three disjoint sets

Dataset

(split into disjoint sets for train+validation and test 80-20, 70-30)
Feature vectors

: l N

\

h ) Training data [ alidation data Test data
( Loss function \-’" Train the modelh

Dtrain Dvahd Dtest
Tune the model

k-fold cross validation RMSE, true positives,
(k = 5 or 10) false positives

Assess the model




Jﬁ??:!:.-iﬁf.'g Bias-variance problem: overfitting, underfitting

Training data M
[ ) [
. [ . Q 9 o [ - o °
¢ o oo ¢ e o

*Underfit: model is too simple (high bias)
* even the prediction error on Dirain IS high
 Increase the complexity of the hypothesis
*Overfit: a model failing to generalize well (high variance)
* learning even the noise or the random errors! Not desirable
* add more training data
» decrease complexity 88/170




" 15 Checking for bias-variance error: validation
data

Remember that Dirain and Dvaig and Diest disjoint sets

Tune the best parameter using validation data

Error
Val|dat|on

Tralnlng

‘—1D-_1.L-

0 1 2 3 4 9|
Complexity of the hypothesis (degree of the polynomial)

89/170



Technische
Universitat

ﬂﬁ Checking for bias-variance error: validation
Berlin da‘ta

Similarly, learning curves to see the number of training
examples needed (better to have smarter data than
smarter models)

Error
‘\\F\/alidation
\\‘—1
_elraining

‘—‘.iiiﬁlL.

# of training examples

90/170



- S<—>Regression

Technische o ' U Cl ifi ion
-'.E Classification -RL assticatio

Berlin

* |s this observed signal a WiFi signal, a Bluetooth, a ZigBee
or Microwave Oven"?

ZigBee WiFi Bluetooth —— Microwave
20 ZigBee transmissions 20 WiFi transmissions 20 Bluetooth transmissions 20 . ON slot :OFF SIOt:
E 40 E 40 E 40 E 40| ¢ ' ~
% % / \ % @ {4 '
= -60 = -60 = 60 = 60 | .
] noise floor A noise floor A noise floor %
¢ -80 | x -80 | xr -80 | £ -80
| -
-100 -100 -100 -100 . ' '
-120 -120 -120 -120
0o 1 2 3 4 5 6 0o 1 2 3 4 5 6 0o 1 2 3 4 5 6 0 5 10 15 20 25 30 35 40
Time (ms) Time (ms) Time (ms) Time (ms)
(a) ZigBee (b) WiFi (c) Bluetooth (d) Microwave oven

Source: Zheng, Xiaolong, et al. "ZiSense: towards interference resilient duty cycling in wireless sensor networks."
ACM Sensys, 2014.
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- S<—>Regression

Technische N ol ' U CI |f| t|
-'.E Classification -RL TR

Berlin

* |s this observed signal a WiFi signal, a Bluetooth, a ZigBee
or Microwave Oven"?

RSSI (dBm)
o & AN
o O O O O

0 1 2 3 4 5 8
Time (ms)

-100
-120

Source: Zheng, Xiaolong, et al. "ZiSense: towards interference resilient duty cycling in wireless sensor networks."
ACM Sensys, 2014.
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-I.E Classification algorithms

o K-Nearest Neighbour (KNN) Classifier
e Support Vector Machine (SVM)
e | ogistic regression (probabilistic classifier)

93/170



-I'E K-nearest neighbours (KNNJ

 Memorize the example set Two classes
- Majority voting among the K 30.0f | |
nearest neighbours 250l
o 2000
= | ‘ s | s
S 15.0F @ @ @ gy i
2 3 o © = ] 3
.I 0 "l m ° %
100 8% 8 e R SR -
B g DB - ‘
500 2 = B @gm o= PR
0.0 5.0 10.0 150 200
feature 1

94/170



 Memorize the example set

* Majority voting among the K
nearest neighbours

Which class?
4 Neighbors

Point 1

Point 2

-I.E K-nearest neighbours (KNN)

Two classes

30.0- %
25.0}
~
o 200 | | |
= 3 3 3 3
8150 o’: fffffffffff O g g
°. 8 By = "

100 @85 B T TR R R = 1 =
B 5y BB =

sof % = B g= g4 90
0.0 5.0 10.0 5.0 200

feature 1
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-I.E K-nearest neighbours (KNN)

« Memorize the example set Two classes
* Majority voting among the K 30.0} | |
nearest neighbours 250l
@ 200/
= i ® s ? |
S150 0 B @ g m o
lngf Be s 7
100w T s Sy Tn
By BB . u s
500 2 = B @gm o= PR
Point 2 0.0 50 100 150 200
feature 1

96/170



Deal with ties (odd number of neighbors)

Distance measure, e.g., euclidean
Weighted distance

How to choose K?

Imbalanced data problem
Accuracy of classification:

* Precision: TP/(all predicted pos.)
« Specificity: TN/(TN+FP)

» Recall: TP/(all real positives)

* ROC curve

Fraction of examples

Having a good
dataset is very

important

971170



“E Unsupervised Learning

* No labeled data

* (Can we group our data according to their feature?

* The main goal is to classify or cluster the input, find outliers
* Extracting useful information out of (big) data

* Dimension reduction (or summarization): identify the
important components of the data while preserving much
of the Information

98/170



-I.E K-means clustering

* Measure of similarity
 Number of clusters, K

* Goal: maximum similarity within a cluster, low similarity among
clusters




-I.E K-means clustering

« Step 1: Pick K random points as cluster centers (centroid)
« Step 2: lterate till no points’ assignments change
1. Assign data points to the closest centroid

2. Change the cluster centroid to the average of its cluster
members

(OO

K-means Is a heuristic o
. . cDO
sensitive to outliers

selection of initial cluster centers is important

Run K-means multiple times and select the solution with
the smallest cost function




—

S
- F
RL

;ﬁgg;;;,;;f-llﬁ Reinforcement Learning (RL)

action a \

[ Environment]
reward r/

* No explicit supervision

« Learn through self-experience (refine the behavior based on
reward or punishment)

101/170



“E Modeling approach: Markov Decision
Processes (MDP)

Four elements (S, A, R, P)
S: finite set of states (remember scalability)
A: actions (discrete)

R: reward signal (a real number) for each (state, action) pair from the
environment

 (should reflect the purpose of the task)
* undesired actions can be discouraged with a negative reward value
P: state transition model P(s|s, a) with s’eS P(s’|s, a) = 1.

Goal: Find the policy that maximize the expected reward

102/170



Jﬁ:c::;;ms Reward (r)

Berlin

Discount factor in [0,1), used to scale future
rewards in the total value of a policy

Immediate reward /

(®.9)
, . . 2,. _ o
=0

Value of a state;:
cumulated discounted value
starting in st following arbitrary policy T

103/170



Jﬁ;gen;;;;l'ﬁ Q-learning: the most popular RL method

« Q-value: expected discounted reward for executing action a at
state s and following policy T

« Select action a at state s with probability ~ Q(a,s)
 Initiate Q-values
 gstore values in Q-table

104/170



-I.E Practice makes perfect

« Exploit the past actions that have resulted in high reward
« Explore new/untried actions to discover reward-producing actions
* Tradeoff
* Examples: e-greedy, softmax
* g greedy policy:
« probability €, act randomly
« probability 1-g, act according to current policy

* |ess exploration after some number of interactions: lower € over
time

105/170



Jﬁfc::;ims Flowchart of RL

Berlin

Exploration:
Random selection [——,
of an action Execute the
Explore action
or exploit
(Exploitation A
Choose the best action
) with max Q-value(s,a) Observe the
at the current state state and reward
r N \_ \ J
Set of
actions Q-table
( (s,a) Update Q-
\_ \ ’ values

source: Yau, Kok-Lim Alvin et al. "RL for context awareness and intelligence in wireless networks: Review, new features and open issues." JNCA12. 106/170



Features of Reinforcement Leaming

—_ ]
State . Reward
representation representation
——
[ I 1
Environment Spuce Scalability Stute i i
| I IE=AEN S
Tnterna’ (ie. Continuous Neural POMDP
| Quevesize) 1 (ie. Gaussian | (] network Immediate || Discounted | | Positive || Negative
External e, | | Jisttibution ) | | M g fie. e Badto- | | (called || (called cost)
Wireless b s distance Queuu:g end delay) | [ reward) (x.e: (i.e. Delay)
medium) T delay] Throughput)
L Small ranges)
I I '
: " Agent
Event Action Rule interaction and
rep jon preseniation || representation coordination
1 I | ]
Environment Approaches Approaches SARL | MARL
Internal (ic. Message Countar —1—|
Timeour) axchange |L’mbeddcd in | Approaches Embedded Approaches:
External (i.c. Backoff Langragian . n Coutlfi;:tiun
andoff) mechanism Centalized FET— it
Centralized | Environ- Dlsttnbutfd
“Cease o Dynamic network ment _ fetvor : 1
act” rules (Grid Auction- Fuch Single-hop ” Multi-hop l
Base | | poin) based host —
station Coordinated Distributed Extended
C(J()(;nR%e)L Value Payoff
Exploraticn Fach ¢ Lunction Propagation-
versus host (DVL) (LIPP) based
exploitation Global
I Reward-
isms . | based
Mechanisms Approaches Leaming
I . I X (GRL)
[ Exploration | [Expleitation| [ Greedy |[ Softmax | Distributed
Reward and

RL relevant
terms

Yau, Kok-Lim Alvin et al. "RL for context awareness and intelligence in
wireless networks: Review, new features and open issues." JNCA12,
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Jf’ff{fé%?"ﬁ Summary: important points

* Representation is very important: What are the right features?
* Curse of dimensionality
* Domain knowledge

* Data comes in all shapes and sizes

* Normalization such that each feature has a mean of zero and unit
variance

* Train, validate, test
* Overfitting, underfitting analysis

Thanks!
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Jz:c::;zms Please see below for more details

Berlin

e Pascal Vincent, Introduction to Machine Learning, Deep Learning Summer School, 2015. http://
videolectures.net/deeplearning2015_vincent machine learning/

e Doina Precup, Introduction to Machine Learning, Deep Learning Summer School, 2016. http://
videolectures.net/deeplearning2016_precup_machine_learning/?q=Doina%20Precu

e Kulin, Merima, et al. "Data-driven design of intelligent wireless networks: An overview and tutorial.”
Sensors 16.

e Yau, Kok-Lim Alvin et al. "Reinforcement learning for context awareness and intelligence in wireless
networks: Review, new features and open issues." JNCA12.

e Jiang, Chunxiao, et al. "Machine learning paradigms for next-generation wireless networks." |IEEE
Wireless Communications 24.2 (2017): 98-105.

e Bkassiny, Mario, Yang Li, and Sudharman K. Jayaweera. "A survey on machine-learning techniques
in cognitive radios." IEEE Communications Surveys & Tutorials 15.3 (2013): 1136-1159.

e Ding, Guoru, et al. "Kernel-based learning for statistical signal processing in cognitive radio networks:
Theoretical foundations, example applications, and future directions." IEEE Signal Processing
Magazine 30.4 (2013): 126-136.
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Technische l
Universitat
Berlin

Part IV
Machine Learning for Coexistence in Wireless
Networks
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-'.E Case Studies

1.Is the channel idle or busy? Classification

R

2 \Which carrier should LAA BS select?

R

3.How to select the carrier and ON-time for LAA?

4.Can WiFi exploit ML for LTE-U duty cycle estimation”? Clustering

5. Traffic analysis in a WiFi residential network”? Regression

111/170



Attention!

Please see the original papers for more details
ACK: figures are adapted or copied from the relevant papers
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Case study #1

s the channel idle or busy”?

Classification

Thilina, K.M., Choi, K.W., Saquib, N. and Hossain, E., Machine learning techniques for cooperative spectrum sensing
in CRBNs. [EEE JSAC 2013 113/170



~
D Fusion center
Idle CR«
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-'.E Is the channel idle or busy”?

e Cooperative spectrum
sensing (CSS): N radios

Fusion center deciding on the state of the
channel
IdIe CIR k " -

¢ Traditional approach: decision

Busy fusion with AND, OR, k-out-of-N
IdIe rules
CRi  Performance metrics:

CR; - PU detection probability (true+)?
- False alarm probability (false+) ¢
Conflicting! 115/170

CRN



-I.E ML approach for CSS in CRNs

- Binary classification problem:
- class 1: idle, class 2: busy
- Different classifiers
- unsupervised: K-means, Gaussian MM - more practical
- supervised: KNN, SVM - needs real state of the channel
* Features:
- Energy level detected by each CR, N-dimensional vector

Y:(Y‘], ey YJ y v ’YN)T

A

0 O 0

CR; CR; CRnN 116/170
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CSS as binary classification problem

« M static primary users, N static cognitive radios
* Energy vector at the fusion centre: Y =(Y1,... ,YN)T

detected
energy level  Fusion center
Y. ) training test energy
| > energy vector vector
Y Trained v
Y training classifier (classification channel
o I dule module availability
/= (idle, busy}

* KM Thilina et al. “ML techniques for cooperative SS in CRNs." IEEE JSAC (2013) 170



e -.E Unsupervised learning for CSS

* M primary users

* State of all PUs: S = (S Sw)T Y: mult|v?r|ate Gaussian \
oy My |S=s = \UVy;|S=ss- - - NY\HQ

* Probability of state s = v(s) = Pr[S=g]

* 2Mcluster: {all PUs off, at least one is on, ....}

diy|s=s = dla.g((,TYl S=sr- U}A \S_s)

*Only cluster 1: channel is idle Ikm

* Other clusters: channel is busy " ﬂ
O A O
SU 1 PU 1 SU 2
A
PU 2




-I.E Unsupervised learning for CSS

1 km o o Channel available class
o Y7 % Channel unavailable class
" " D 1300 - Decision surface X XX
CD 1250 X
O A O qa 1200
SU 1 PU 1 SU2 | — 5
)
> 11004
il) 1050 -
S, 1000~
D) o504
A GC) 900 -
PU2 L 850 -
800 —
. 800 850 ¢
*Only 1 cluster: channel idle Energy Level of SU1
* Others: channel busy Training vectors are generated from a

Gaussian mixture distribution for all
PU state combinations (0,0), (0,1), (1,0), (1,1)
119/170



1 km

E

A
PU 2

A
PU 1

O
SU

2

*Only 1 cluster: channel idle
* Others: channel busy

Energy Level of SU2

(a) Scatter

7'5 Unsu pervised

1400
1350
1300
1250
1200
1150
1100
1050
1000

9

850

800

earning for CSS

o Channel available class
X Channel unavailable class
- Decision surface

idle channeljf

X

at least 1
PU is active

800

of each PU is 200 mW.

decision boundary

ot of energy vectors in Scenario I when the transmit power

120/170



-I.E K-means based classification

 Training phase:
* Training examples: y = {y, ..., yb}
* Apply K-means to training examples
* First cluster centroid «a] fixed to the mean of (Y|no primary signal)
* Other centroids: mean of training energy vectors in that cluster

* On-line classification phase: given y* as test energy vector,
channel is busy if:

First cluster Tune probability of
|y* — af]
1

. > pa .
ming—1 ... x ||y* — aj| = detection vs.

Vol false alarm
centroid of cluster k found in training phase 1211170




l'ﬁ KNN-based classification
» Real labels a provided for each training example
« Training examples: y = {(y", a), ...,(yb, ab)}

Two classes

* majority voting of neighbors

* define a distance function 30.0/-

» choose K nearest neighbors 25 ol
* busy if following holds Y 200

NNbusy N ,8 3 15.0¢

= 5

N Nigie 1008

Tune the tradeoff 5g|. | | ‘ ‘
detection vs. 0.0 5.0 100 150 200
false alarm feature 1




-I.E Comparison of classifiers

- training time, classification delay, ROC curve

/ approach

AND
OR

—-— AND Rule
== ORRule
—— Fisher
== = GMM
—— K-Mean

©o+ SVM Poly.
%+ KNN-Euclidean
© - KNN-Cityblock

1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1
False Alarm Probability

+ K-means close to best classifier (supervised, SVM)
+ classification delay, detection capabillity, and training time

— Traditional
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Case study #2
Which carrier should LAA BS select?

Sallent, O., Péerez-Romero, J., Ferrds, R. and Agusti, R., 2015, June. Learning-based coexistence for
LTE operation in unlicensed bands 2015 IEEE International Conference on Communication Workshop



Channel selection via learning for LAA inter-

Technische .
Universitat

operator coexistence
. Challenge:
- Setting [Sallent—l(?C15]: Select a channel at each
- Indoor scenario small cell to achieve high
- M small cells from 2 operators throughput in a cell
- K channels
- Bandwidth B MHz
- LBT . . Learning approach:
- Assumptions: downlink-only, full buffers Q-learning
. 120m >
f 15m :
£ SC5 SC6 SC7 SC8 Why learning:
QI A ®-@ - - @ -—---------- - @ --------- ®-0----1 ) _ _
SC1 | 5C2 sC3 sca quasi-static environment
: E_T (deployment)
| - 125/170




he

-lls Agent-environment framework

select a carrier

/ action a \

, other LAA SBS
LAA BS Agent Environment traffic

V\{ reward r /

observed throughput in the channel

126/170



1. E Channel selection via learning for LAA inter-
operator coexistence

* Reward: observed throughput in the channel
* Q-value (k, i) for small cell i if it selects channel k
* |nitiate Q-values to some random value

Qi k) «+— (1 —a)Q(i, k) + ar(i, k

reward of the transmission at ch k:
Learning rate throughput normalised by maximum
exp. throughput

« Select a channel k with probability Px ~ F(Q(i,k))
 F: exploitation vs. exploration (softmax)

« Decrease exploration by time (logarithmic cooling function)
/170



ﬂg Channel selection via learning for LAA
ot inter-operator coexistence
« Convergence analysis

* K >= M (one frequency for each LAA BS)
. . . Another SC Continues
* K < M (requires time sharing) [ j

appears on ch 3 learning!

SC3 SC4

Converges ch1

08"l toch3

e Pr(k=1)
e Pr(k=2)
e Pr(k=3)
s Pr(k=4)

0.6

0.4

0.2

Time steps

Time steps % 10* 128 )



Universitat

ﬂ ] E Performance of Q-learning based carrier
selection

* Throughput analysis
- comparison with optimal and random

——K=4, Optimum  —¢—K=4, Q-learning = —= = K=4, Random

0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Throughput

Fig. 8. CDF of the achieved normalized throughput for K=4 when the two
operators apply Q-learning. 129/170



-. ] E Channel selection via learning for LTE-WiFi
Coexistence: frequency domain coexistence

Q-learning for inter-operator coexistence
Extension to WiFi coexistence is straightforward
Many parameters to tune

What happens till convergence?
* harmful interference, coexistence is an issue

130/170
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Case study #3

Carrier Selection and On-time Adaptation in LAA

Galanopoulos, Apostolos et al. "Efficient coexistence of LTE with WiFi in the licensed and unlicensed
spectrum aggregation." IEEE Transactions on Cognitive Communications and Networking, 2016.



WiFi channel occupancy estimation using Q-
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learning in LAA
Challenge:
- @ et bont covese which unlicensed carrier
Nodes | _——— = _ @ Uniicersed band coverage to aggregate?
” “““““ : Q wreue How Iong to transmit on

& WiFi users

E WiFi Access Point

this carrier?

» |Interference link
= Transmission link

Learning approach:
Fig. 1. Licensed Assisted Access (LAA) Deployment Model. Q-Iearnlng

Setting: What to learn?
Single LAA cell, multiple WiFi nodes/channels

unlicensed band activity
Goal: both high WiFi and LTE performance
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-. ] E LAA on-time based on WiFi channel
et occupancy

* Channel-occupancy based channel and ON-time selection (COT)
*tune LAA ON-time according to channel occupancy

* Occupancy measurement of each channel via ED on subframes when
LTE is not transmitting

* Channel occupancy = # of busy samples/ # of all samples
* ON-time = (1-occupancy)* 10 ms

* Switch channel in the next frame if it has a smaller occupancy than the
current one

* Q-learning based channel and ON-time selection
* learn from experience
* [dle time measurement of each channel via ED
133/170



-I.E Agent-environment framework

Select a carrier
Select ON duration

% action a \
LAA BS [ Agent ]

( | ] WiFi CSMA/CA
Environment

Poisson traffic
v\{rewarol r /

Time difference between the actual OFF-time
and estimated OFF time

* (Carrier selection: every frame

* Information collection: every subframe when LAA is not
transmitting check WiFi traffic activity 134/170



-'.E Q-learning framework

« States: The channel selected for carrier aggregation {1,.., N}
* Actions: Transmission time in the selected carrier i {1,..., 9}ms
« Action time: At the beginning of each frame

 Reward: difference between real off time of the carrier - off-time
from the previous sensing period (Toff updated after each
sensing)

r(s,a) = Tfﬁ, — T

Negative reward (punishment) for degrading WiFi performance!
135/170



-I.E Q-value initial value and update rule

Select a channel with low o
occupancy (high off Select transmission time

duration) \ /matching the channel off time

Qo(s,a) =T — |a—T°TF|, Vs e N,Va € A
Qt+1(8t, at) < (1 — a)Q(st, ar) + ar(st, at)

\ Only immediate reward,
discount factor = 0

* Optimal action (a: LAA transmission duration) depends on the
selected channel’s availability time

S — arg max S.a
t+1 gseNQt( ; )
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.'E Q-learning overperforms COT under high
WiFi load Low WiFi traffic

a5 COT is better

ol i gig:{::ﬁgnsiic: carrier /
COT estimation, A=1 ~
as | T G 2 e Y - -
v Q-learning, )\=3”_ _ﬁ"// MOderate tO hlgh WIFI
/g— 30 F |_—9— COT estimation, \=3 c2(,/ t ﬁ:.
Nl rafic
Ef"’ S — Q-learning is better
ST " COT predictions may
£ [/ s T
=15 Ay not represent real
tof ; channel occupancy
5 under high WiFi load
06— ' - ' - !
3 10 12 14 16 18 20
SNR (dB)
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-I.E WiFI performance analysis

1 I T
oot W | WiFi performance Q-

— | learning over performs
COT-based access

o o
~ (u o]
T T

o
fa))

WiFi Throughput (%)
o o
A (&)

o
w
T

0.2 I \ViFi
N WiFi/LTE (Q-Learning, LBT 4)
0.1 T WIFILTE (Q-Learning, LBT 2) |
[__1WIiFi/LTE (COT, LBT 2)
0 _lll_u_l_llLIl |
1 2 3
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-'.E Case study #4

Can WiFi exploit ML for protecting itself from LTE
interference”

yves, WiPLUS!

%

Olbrich, M., Zubow, A., Zehl, S. and Wolisz, A. "WIiPLUS: Towards LTE-U Interference Detection,
Assessment and Mitigation in 802.11 Networks", in European Wireless 2017 (EW2017), Best
Paper Award, May, 2017. 139/170




-I.E WIPLUS: detecting LTE duty cycle

« Estimate LTE-U ON and OFF phases
* Quantify available airtime for WiFi on each link

* Online algorithm running on WiFi AP, )|
* MAC-layer passive and low-complexity monitoring [

* commodity 802.11 hardware =
* covering the whole LTE-U interference range

Atheros AR95xx 802.11n
chip
140/170



=Ml Koy idea of WIPLUS

« Analyse MAC Finite State Machine (FSM) transitions of the
Network Interface Card (NIC)

 States: RX, TX, IDLE, OTHER_BUSY (=ED)

* Analyse the Automatic Repeat reQuest (ARQ) frame
retransmissions

* ACK_FAIL
|f LTE is detected, calculate airtime and LTE-ON duration for a link

(" )

MAC >(WiPLUS)
</ MAC FSM, ARQ

PHY ) samples
J

WiFi NIC
Y
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>

Weak

throughput

WiFi

O,

interference

\( N\

MAC FSM: No _ED MAC FSM: No ED| |MAC FSM: ED
Packet reception ARQ: ACK Fails | |No packet reception
No ACK Fails

\_ \_ \_

~

J

Moderate interference @

High

interference

Received LTE-U power at the WiFi AP
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\( N\ ( )
MAC FSM: No _ED MAC FSM: No ED| |[MAC FSM: ED
Packet reception ARQ: ACK Fails | |No packet reception
No ACK Fails
\_ \ _ I J
_A Moderate interference
5 ®
2 B
T 3 |Weak LTE ON time
= < |interference High
@ interference
>

Received LTE-U power at the WiFi AP
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Intel Core i5-6600K
Compex WLE350N5-23
Atheros AR9590

Debian 8.5 x86 64

Netgear WNDA3200
Atheros AR9280

Approach: data collection from the
testbed

R&S SMBV100A
w/ external 5 dBi antenna

TPLink TL-WDR4300
Atheros AR9344 + AR9580
OpenWRT 15.05.1
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-I.E ML approach: data analysis

Data:

» data collection via periodic samples from the NIC

« Fraction of time in each MAC-state, ARQ number of
packet retransmissions during the respected sampling

Raw data
Si%, S, SPTHER (GACKIAL vt e 0. W

total MAC time spent in
transmission in the
sampling period

More useful
representation R: which represents (possible) LTE ON-time - 4+,
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K-means clustering to
detect the clusters of
transmission duration
and clean the outliers \

Spurious signal
extraction

J

Read MAC state &

ARQ info

@

[

ca |

YES

=
(@)
( )

Enough samples?

NO

fPW M

Periodic gpectrum?
YES

__»\

N

FFT
| J

CCI(f)

Y
PWM signal

L detection )
( )

Cluster detection

J

I
cal(t)
v

[ Low pass FIR filter J

~l
ccr(t)
A 4

Estimation of eff. } {
. . Ton
medium airtime

LTE-U ON time
estimation

J

WiPLUS detector pipeline

I=rurs i




10 WIiPLUS protoype

Universitat
Berlin Ground Truth = = = = = Simple Detector ———#&—— WIPLUS
Simple detector: Only ED

_ 10000  feeecccccccecccccccceccccsccceceee———— 10000 —
S : S

I P
z < : — g
£ 9000 energy ' missing ACK 90.00 -§,

. ] .
> detection detection o
= - =
(_ﬂ L o
T 80.00 h 80.00 B
< )
g g
® 70.00 ~a-rmerrrmemreemr s e B > 70.00 =
@ @ ® ¢
- 2
60.00 60.00

0 -3 -6 -9-10-11-12-13-14-15-16-17-18-19-20-21-24-27-30-31-32-33-34 -35-36-39-42-45-48
LTE-U TX Power [dBm] - WiFi TX Power [dBm]

« WIPLUS can estimate airtime quite accurately! (RMS < 3% for DL)

* Possible use of this capability: select channel based on observed LTE
activity
* Python’s Scikit-learn 47170



Case study #5
WiFI performance estimation

<<>>

(O) AP2<§ %AFg

Herzen, Julien, Henrik Lundgren, and Nidhi Hegde. Learmng Wi-Fi performance." IEEE SECON 2015




e ﬂﬁ Selecting the best link in a multi-AP WiFi setting

Uni

* 802.11ac variable bandwidths (20, 40, 80, 160 MHz)
» QOverlapping channel interference
* How to estimate the link capacity for a

given configuration (bandwidth, center f)? fi f

<<< ) % ()
AP 2 @AP 3
AP 1
Traditional approach: C/> 6
SINR based E )

O 149/170




“E Coexistence in Uncoordinated WiFi Networks

Universitat
Berlin

* Modelling performance realistically due to complex PHY-MAC interactions is difficult
* channel width, partial-overlaps with other links, transmission power, PHY rate

* Proposed approach: learn Wi-Fi Performance via measurements

* Estimate link capacity and decide on the best setting

first link pair: second link pair:
I k1 lo ko
Oo—0 Oo¢—O O¢—O Oo—=>0 .
Z 500 5 The trend similar to LTE-U
2 160 heoretic 40 ... moderate interference level
£ 120 30 s /\
q§ 80 measured 20 . i .
B, T, -\ Takeaway: the_oretlc analyss may fall
-2 . short of capturing the reality
3:: 0O 5 10 15 20 25 0O 5 10 15 20 XS
tx npower of link & [dBm] tx power of link k£ [dBmyl

High power, high rate, quick completion

more airtime for link 12



“ Coexistence in Uncoordinated WikFi Networks

Universita
B

State parameters

- transmission power
traffic load

channel quality
transmission bandwidth
transmission channel

—_—

Link performance
e.g., throughput

151/170



-'.E Methodology

* Step 1: Real-world measurements from a testbed (public data: http://
www.hrzn.ch/data/lw-data.zip)

* Step 2: Supervised learning: different link configurations -> measured
throughput

« Step 3: Prediction of a link throughput based on the learned black-box
model

« Step 4: An AP selects the configuration using Gibbs sampling and
estimated capacities

152/170



-I.E Supervised learning framework

* Features (X): (commodity hw. can capture)

* All received powers: 5K + 1
* channel width of /, and its NL: K+1

* spectral separation of channel of / and its
NL: K

* average traffic loads of NL: K

* PHY rates of NL: K link of interest /
* Labels (Y): measured throughput on link | | neighbouring links (NL):

* Goal: Answer the question “given a setting, ki, ko
what is the expected throughput of [?”

/170



-I.E Supervised learning framework

* Features (X): (commodity hw. can capture)

* All received powers: 5K + 1
* channel width of /, and its NL: K+1

* spectral separation of channel of / and its
NL: K

* average traffic loads of NL: K

* PHY rates of NL: K link of interest /
* Labels (Y): measured throughput on link | | neighbouring links (NL):

* Goal: Answer the question “given a setting, ki, ko
what is the expected throughput of [?”

This Is a regression problem



Il Used tools for this regression problem

Technisc
Universit
Berl

* Regression tree, Gradient Boosted Regression Trees (GBRT),
Support Vector Regression (SVR)

* Comparison baseline: SINR-based model

* accuracy of predictions: coefficient of determination R2, RMSE
* Python scikit-learn package

* 50-fold cross-validation

155/170
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In terms of R2-score, learned SVR and GBRT models improve the prediction
accuracy by 54% and 71%, respectively, compared to SINR models

. E Improved prediction accuracy compared to SNIR model

SINR model learned model (SVR)
—_— I I I I
,8* 100 [ e«—— o.. N 100 | ge— ' .o N
E o ° .'. & 0. 2 !‘
ey o ® oo © °
- 50 |- ) .~.O .o..O | 50| o | P @ o |
%) ..o~ .'. ..."0 'g.o ® o®
:_8 ' ] '
8 ) ... ° ) : &
oy 0 'f 8 o | 0 do | |
0 50 100 0 50 100
measured ¢; [Mbps] measured ¢; [Mbps]

Figure 6: Predicted versus measured throughput, for SINR and a
learned model, on a test set of 200 points.
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» Select channel center frequency, bandwidth, and
transmission power

* Distributed algorithm

* An AP randomly wakes up and collects
information from its neighbours, e.g., via wired
backbone

* The AP predicts the achievable throughput on
each of its attached links, for each possible
configuration of spectrum and transmit power

» AP samples a new configuration using the Gibbs
distribution with more weight to configurations
with large achievable utilities

" How to use this information for coexistence”

Wired backbone

I I Setting of
AP2

(o)

157/170



-'.E Learning helps increasing fairness
* Prediction-based configuration selection over performs SINR-based
selection

* Fairness: key pillar of peaceful coexistence

A50F | ‘ 0.80
o BN total thr. 7] |fairness
~~
o)
= 400} 10.75 Zﬁ
2 E
B 350} o 10.70 @
s )
o =
< -
= 300} 10.65
b= %
+

250 0.60

random [ urrop U« K+ SINR
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2017
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Part IV
Summary and open research directions
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Jﬁ;g;;;;;gl's A taxonomy of the literature
[ Coexistence solution ]

(N

i R e @)

Berlin

v
at the WiFi AP at the controller at the LTE small cell
LTE duty cycle NP channel LTE-U ) WiFi )
identification f [carrier duty-cycle channel

periormance selection adaptation occupancy

SIENC estimation
\_ _J

LAA on-
time
adaptation
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Real coexistence scenario consisting of
many networks

(()) % LTE W

©) 72 zigbee
R @ g
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Be

* Hybrid scenarios are more realistic

* More complex requiring more intelligence/adaptation
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« standards compliance
e soft solutions rather than hardware based
e distributed vs centralized/controller based
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Jiffe;rg;;fllg Challenges of applying ML approaches
» Feasibility in practical settings

* Complexity

* Real-time convergence time

* \What happens till convergence?
* |s it really possible to learn?
* Mobile or other dynamic environments

* Where to implement ML?
* AP, nodes, network-core, cloud
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Jz:c::;;mﬁ Challenges for wireless researchers

Berlin

Machine learning requires lots of data to learn useful things
» bad news: researchers mostly are limited in access to such real data
» good news: publicly-available data (some better than none)

* https://crawdad.cs.dartmouth.edu/

« Limited applicability to computation-limited devices,

* bad news: ML requires high resources which are mostly not available in
e.g., embedded devices, loT devices

* good news: ML is very active and searching for smart algorithms with
lower complexity

* Fog/Cloud can be exploited for such devices

 Weka, R, Python 165/170
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-I.E DARPA challenge

Berlin

DEFENSE ADVANCED
RESEARCH PROJECTS AGENCY ABOUTUS / OURRESEARCH / NEWS /

Defense Advanced Research Projects Agency » News And Events

The Radio Frequency Spectrum + Machine
Learning = A New Wave in Radio Technology

The radio frequency spectrum is becoming increasingly crowded and a new DARPA program

will examine how leading-edge machine learning can help understand all the signals in the
crowd &

OUTREACH®@DARPA.MIL
8/11/2017

https://www.darpa.mil/
news-events/2017-08-11a
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Machine learning in 5G

Machine learning in 5G

Supervised learning

|

Unsupervised leaming

Reinforcement learning

Regression model,
KNN, SVM
apps in 5G:
massive MIMO channel
estimation/detection;
user |ocation/behavior
learning/dassification

Bayesian learning
apps in 5G:
Massive MIMO
channel estimation;
spectrum sensing/
detection and
learning in CR

K-means clustering
apps in 5G:
small cell clustering;
WiFi association;
device-to-device user
clustering; HetNet
clustering

PCAand ICA
apps in 5G:
spectrum sensing;
anomaly/fault{intrusion
detection; signal

dimension reduction smart

grid user classification

MDP, POMDP, Q-learning, multi-armed bandit
apps on 5G:
decision making under unknown network
conditions, resource competition in femto/small
cell channel selection and spectrum sharing for
device-to-device networks, energy modeling in
energy harvesting; HetNet selection/association

Technologies: massive MIMO, femto/small cells and heterogeneous networks (HetNets), cloud radio access networks, cognitive radio, full duplex, energy harvesting, etc.

Machine leaming applications: channel estimation/detection, spectrum sensing/access, cell/user clustering, switch and handover among HetNets,

signal dimension reduction, energy modeling, user behavior analysis, location prediction, intrusion/fault/anomaly detection,
cell/channel selection assodation.

FiGURE 2. Radio learning architecture.

Jiang, Chunxiao, et al. "Machine learning paradigms for next-generation wireless networks." IEEE Wireless
Communications 24.2 (2017): 98-105.
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 The future is unlicensed

» (Coexistence of such unlicensed networks is a big challenge
* ML can provide the capability to embrace uncertainty

hanks!
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