
Proactive Controller Assignment Schemes in SDN
For Fast Recovery

Selcan Güner
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Abstract—A sizeable software defined network with a single
controller responsible for all forwarding elements is potentially
failure-prone and inadequate for dynamic network loads. To
this end, having multiple controllers improves resilience and
distributes network control load. However, when there is a dis-
ruption in the control plane, a rapid and performant controller-
switch assignment is critical, which is a challenging technical
question. In this work, we propose a proactive switch assignment
approach in case of controller failures using a genetic algo-
rithm based heuristic that considers controller load distribution,
reassignment cost and probability of failure. Moreover, we
compare the performance of our scheme with random and greedy
algorithms. Experiment results show that our proposed PREF-
CP framework has better performance in terms of probability
of failure and controller load distribution.

I. INTRODUCTION

Conventional computer networks consist of network el-
ements such as switches and routers with many compli-
cated protocols, policies and communication interfaces. Their
structure is restrictive for network operators to change the
network according to the needs of changing traffic demands
and service requirements, which are becoming more taxing
with the increasing number of mobile devices and impact
of big data flows [1], [2]. Furthermore, the proliferation of
advanced wireless systems such as Beyond 5G networks and
massive connectivity of IoT impose stringent performance
requirements on the wired networks such as backhaul and core
networks [3]. The idea of Software Defined Networking (SDN)
was proposed to facilitate network evolution while addressing
these challenges to realize the Future Internet concept [4].
With SDN, control decisions and network intelligence is
moved out of individual network nodes, which transforms
the network to simpler forwarding hardware augmented with
decision making network controllers.

For various software-defined systems, a single controller
might be sufficient since a single controller may meet the ser-
vice level requirements under specific conditions [5]. However,
resilience is an important aspect when designing a network
architecture. As the system is performing, failures can occur
in both control and forwarding planes. A switch, a controller
or links between them may fail. For instance, when a switch
is disconnected from its controllers, it can not forward new
flows and becomes unresponsive except residual flows in time.

A failure may eventually cause loss of data which reduces the
reliability of the system. Therefore, it is of great importance
to improve resilience of software-defined networks [2]. In a
network with a single controller, when that controller fails,
the network will be left without a control framework, i.e.
become “headless”. To overcome this single point of failure
problem, control plane is distributed over multiple controllers
to increase resilience and simultaneously provide adaptation
to dynamic network loads [6]. The distribution of switches
to controllers influences multiple aspects of network system
such as controller-switch latency, load balancing and network
reliability. Therefore, with use of multiple controllers, the
dynamic and responsive controller-switch assignment becomes
crucial.

In this work, we focus on this problem and investigate the
efficient controller-to-switch assignment problem in SDN to
overcome effects of failures. We propose a proactive switch
assignment scheme against controller failures via genetic al-
gorithm considering controller load distribution, reassignment
cost and probability of failure. The main premise is to have a
pre-calculated mapping for the network calculated at run-time
and applied rapidly when failure incidents happen.

II. RELATED WORK

When calculating controller-switch assignment for multiple
controller environment in SDN, multiple parameters such as
controller load, probability of failure between network com-
ponents or reassignment cost are considered [7]. Controller
failure recovery mechanisms in the literature, are consider-
ing controller reliability of the network, or switch-controller
delay, or controller load. For considering controller load, [8]
proposed to reassignment algorithm which chooses a con-
troller with highest controller capacity. For considering switch-
controller delay, [6] proposed a failure recovery mechanism
that, for switches under control by a failed controller, the
nearest controller takes over these switches. As studied in
[8], [9], controller capacity and controller overload are critical
issues on switch assignment planning.

To assure the reliability of the control plane, the most
important aspect is keeping switches connected to controllers
which are up and running. For making it happen, failures
of the controllers must be prevented that they can work



properly [10]. In [11], probability of failure is defined as
possibility of communications failure from node a to node
b. Another important requirement is related to recovery speed
after failures: to minimize disruptions in case of controller
failure, quick reactions are needed with failover mechanism
ensuring that recover connectivity with remaining components.
[6].To prevent long restoration and back up calculation time,
[12], [6] and [9] generates a back up map proactively. There
are also other papers which calculates reassignment on the
fly when a failure occurs [8]. Depending on the back-up
calculation time both of the approaches have pros and cons.
Proactive approaches may be faster to recover from a failure.
On the other hand, calculation on the fly may use live network
data while proactive calculations will use the last state of the
system when the calculation algorithm is run.

III. PROACTIVE SDN CONTROLLER-SWITCH
ASSIGNMENT

There are different assignment algorithms that can be used
in case of controller failure at runtime. For instance, the
switches of failed controller(s) can be randomly assigned to
other controllers. However, such a strategy does not provide
satisfactory performance [7]. Thus, in this work, we develop
an assignment scheme using genetic algorithm to increase
the reliability of a running system. The proposed scheme
calculates a back-up switch assignment map considering each
controller might fail and taking load-balancing into account
to adapt to new conditions if a failure occurs despite all
the efforts. It operates in an online manner and proactively
determines assignment maps for different failure cases. It
determines a backup controller for each forwarding node
according to load of controllers, switch reassignment cost and
maximum probability of failure for the shortest paths from a
controller to its switches. In the case of controller failure, a
switch will be assigned to its proactively calculated backup
controller.

Software or hardware malfunction on the machine hosting
the controller can cause failures on control plane. Since
controllers are the most essential devices in the system, the
probability of their failures is typically lower than the others
[13]. However, a broken controller can no longer get flow
request from its switches, and messages from other controllers.
Basically, when a controller fails, its switches must be assigned
to other controllers.

A. Assignment Parameters

For an assignment to increase connectivity between network
components and improve resilience, it should utilize existing
network connectivity among the switches. Moreover, the load
distribution should be considered to minimize load-induced
catastrophic incidents. The cost of assignment is also another
factor since reassignment requires on-the-fly configuration
of controller framework as well as switches. Therefore, to
develop efficient reassignment algorithms with resilience ob-
jectives, probability of failure, controller load distribution and
reassignment costs are important elements to be considered.

1) Probability of Connectivity Failure: If the connection
between controller and the forwarding planes is severed, some
switches will be left without any controller and become unre-
sponsive for new traffic flows. Therefore, network connectivity
should be ensured to increase reliability of SDN. To formalize
this factor, it is defined as the probability of failure 1 of a path
from a switch to its controller(s). To consider this issue for an
efficacious switch assignment, our algorithm tries to minimize
probability of failure P defined as:

1−
∏

ei,vj∈Rab

(1− Pei)(1− Pvj ) (1)

2) Controller Load Distribution: Optimal load distribution
directly affects network performance, thus improving load
balancing is important for the network resilience [14]. In
case of a controller failure, when the switches are assigned
to other controllers, an ignorant assignment may lead some
controllers to overload and even cause cascaded failures.
Thus, reassignment in case of failures should be done taking
prospective controller loads into account. For controller load
Lc,

ControllerLoad(Lc) =
∑
i∈n

xC,nRn (2)

a relevant assignment criterion is the load variance defined as:

LoadV ariance(σ2) =
1

c

∑
i∈c

(L− Lc) (3)

3) Reassignment Cost: When a controller fails, its con-
trollers will be distributed among other controllers. Reassign-
ment cost is considered when calculating reassignment map to
to measure the cost of applying reassignment. It is calculated
as in (4), the total number of switches whose controllers are
changed during reassignment. Number of reassigned switches
will be at least as much as switch number of failed controller.
Beside that, when network size increases, it is possible that
reassignment cost will also increase. Thus, when are setting
reassignment cost as a constraint, we scale it to the number
of switches S with a scale factor γ.∑

i ∈ s, j ∈ Cxijzij ≤ γ ∗ S (4)

B. PREF-CP Implementation

PREF-CP works proactively to enable system continue
working in case of a controller failure in an SDN architecture.
A controller backup approach to ensure that network can be
prevented from failures; and even if failure occurs, network
can recover from failures quickly. PREF-CP evaluates the cur-
rent switch-to-controller assignment and calculates a backup
map considering each controller might fail. For k number of
controllers, k backup maps are calculated. If a reassignment is
performed, the PREF-CP recalculates the switch-to-controller
assignment considering possible future failures. PREF-CP
contains two modules as depicted in Figure 1 and explained
below:



TABLE I: Model Parameters.

Symbol Definition

Pv Probability of switch failure
Pe Probability of link failure
P̃ Probability of failure
R̃ Reassignment cost
α Objective function weight multiplier
γ Reassignment cost multiplier
σ Controller load distribution of

PACKET IN messages
Uc Maximum number of requests that con-

troller C can handle
Rn Number of requests of each device n

• Monitoring Module - MM tracks controllers’ health and
pulls relevant statistics. The statistics contain xcn:current
assignment, Lcn controller loads, Probability of Failures
Pn. Monitoring module also detects failures occurred
in control plane, and in case of controller malfunction
informs reassignment module.

• Reassignment Module - RM periodically checks the
collected statistics from the monitoring module and calcu-
lates reassignment map accordingly. In case of controller
failure, reassignment module performs new assignment
based on pro-actively calculated backup map.

Fig. 1: PREF-CP Architecture

IV. PROBLEM FORMULATION

A. System Model

In our system model, the SDN physical network is presented
as a graph which is denoted as G(V,E), where V is the set
of nodes and E is the set of links. The set of controllers is
denoted as Vc ∈ V .

Objective. The goal of the proposed strategy is to keep in
balance with minimizing controller load distribution, minimiz-
ing probability of failure. when a failure occurs, new place-
ment of the controllers or the reassignment of switches should
be calculated as probability of failure and load distribution are
minimized.

Min(σ + P̃ ) (5)

Constraints.

Fig. 2: Genetic Algorithm

Device will be controlled by exactly one controller∑
c∈C

xn,c = 1, ∀n ∈ N (6)

Controller Capacity Cannot be Exceeded∑
n∈N

xc,nRn ≤ (1− αc)Uc (7)

α values fall in range [0,1]

0 ≤ α ≤ 1 (8)

Reassignment Cost γ can not exceed 0,8 of S in the network∑
i ∈ s, j ∈ Cxijzij ≤ γ ∗ S (9)

V. ASSIGNMENT ALGORITHMS

A. Random Assignment

Although this is usually not a practical algorithm, it is
typically used as a baseline case for performance evaluation.
In random assignment algorithm, each candidate controller
have a uniform probability of hosting a switch. In that case,
assignment algorithm randomly chooses a controller among
all potential ones.

B. Genetic Algorithm

A genetic algorithm is a search heuristic that reflects the
process of natural selection where the fittest individuals are
selected for reproduction in order to produce offspring of the
next generation.

1) Fitness Function: The performance of a genetic algo-
rithm relies on how well a fitness function is derived. Fitness
function in our approach considers minimizing maximum
probability of failure of the shortest path of a switch of the con-
troller (P) and minimize load distribution among controllers
(σ).

Equation 10 is used during crossover for choosing which
controller a switch will be assigned to, chrome evaluation.
That is, when the crossover operation has to choose a better
gene from two parent genes during the crossover, equation 10
is used to evaluate these two parent genes.

Eval = α ∗ σ + (1− α) ∗ P (10)



Algorithm 1 Genetic Algorithm

Require: Input: Topology, Load, CrossoverFunction, Popula-
tionSize

Ensure: Generate solution xc initialize Rmax and Sbest

1: Population ← InitializePopulation(PopulationSize)
2: Evaluate population
3: Sbest ← BestSolution(population)
4: while population has not converged do
5: Selection : Parents ← SelectParent(Population, Popu-

lationSize)
6: Children ← 0
7: Crossover
8: Compute fitness
9: if Better fit then

10: Pick Parent
11: end if
12: end while

C. Inter-controller Greedy Algorithm (ICA)

This algorithm generates a list of the potential assignments,
which is ranked increasingly based on failure probabilities
of the shortest path from switch to controller and load of
switches. Then, it chooses one switch at a time for assigning
to controllers. The algorithm iterates until all switches are
assigned [15].

Algorithm 2 ICA.

Require: Input: Topology G, Switch Load S, Number of
Controllers N, Probability of Failures P
for i in Devices Size do weight[i] = CalculateDeviceWeight
(L, P)
end for
Sort switches s in ascending order of their weights consid-
ering failure properties Pf and loads Ln as set S’
while Devices left to add to Assignment Map do

for j in Controllers Size do
Among all devices select the device lowest weight

from S’
Add switch si to Controller cj’s backup map

end for
end while
return AssignmentMap

VI. PERFORMANCE EVALUATION

We used ONOS Nightingale 1.13.1 as SDN controller to
implement the controller plane and Mininet 2.2.1 for creating
network topologies to implement data plane. All simulations
are ran on a physical machine installed operations system
Ubuntu 14.1 with 8GB RAM and Intel Core i7 6700HQ
CPU. In our system, controllers are running inside Docker
containers. We ran Mininet on that physical machine and five
ONOS instances in Docker 17.09 containers for simulating the
distributed controller plane. The switches run in Open vSwitch
mode to deliver OpenFlow functionality.

For network traffic, we generated the traffic flows of VoIP,
video and two game traffic with Counter Strike characteristics
related to the active phase of the game or an idle player using
D-ITG traffic generator 2.8.1 [16]. We run our experiments tree
topologies T1:40 switches, T2:85, T3:63, T4:121 and internet2
OS3E topology T5:34 switches. T2 and T4 are used for testing
algorithms runtime. Simulations are run on topologies T1, T3
and T5.

TABLE II: Simulation Parameters

Parameter Symbol Value

Number of switches S {34, 40 , 63, 85, 121}
Weight parameter α {0.0, 0.5, 0.7, 1.0}

Maximum Population Size θ 50
Number of controllers V 5

Reassignment Cost Multiplier γ 0.8

A. Simulation Results

1) Load Distribution: Load distribution characteristics can
be affected by several parameters of the network; specifically
reassignment algorithms, α values and number of switches
in the network. To see the effects of these parameters, we
compared load variance of number of PACKET IN messages
that are distributed among controllers. Increasing α, increases
weight of the load distribution as defined in Equation 5,
thus load distribution σ decreases as α increase. The test
results are showing that in Figure 3, PREF-CP distributes
controller load by 8.38 %, 11.5 % ,16.6% better from ICA
for α values 0, 0.5, 1, respectively. Random assignment is
plainly for reference and it is not affected by the α since
it assigns switches to random controllers without considering
load distribution. For random algorithm, load distribution value
equals to 9284.9 messages, which is higher than both PREF-
CP:3933.9 messages and ICA: 4438.9 messages. Although
ICA algorithm outperforms random assignment, it is not as
good as PREF-CP algorithm. The load distribution σ per
algorithms can be seen in Table III.

Fig. 3: Number of PACKET IN Messages Distribution for
Algorithms

The results of normalized values for load distribution of
PREF-CP on different sized topologies: T1-40 switches, T3-
63 switches and T5-34 switches is displayed incTable IV. For



TABLE III: Load Distribution For Single Controller Failure

Algorithm Load Distribution σ

PREF-CP 3933.9
ICA 4438.9

Random 9284.9

α = 0, topology sizes affect load distribution performance
more than for α ≥ 0.5. Increasing number of switches does
not negatively impact the performance of PREF-CP algorithm.
For greater α values, the network size is less important at load
distribution performance of PREF-CP algorithm.

TABLE IV: PREF-CP Load Distribution vs S

Number of Switches (S) α = 0 α = 0.5 α = 1

34 0,373 0,360 0,356
40 0,369 0,363 0,356
63 0,364 0,359 0,350

2) Impact of α on PREF-CP performance: As we change
α to prioritize load distribution or probability of failure in our
optimization objective, these components behave as expected.
When α is 0, PREF-CP tries to find an assignment algorithm
with lower PoF. As stated in constraint-8, α values range in
[0,1]. We expected that as α increase, PREF-CP will choose
calculate assignment map considering load distribution σ over
PoF in Table V.

TABLE V: Load Distribution For Two Controller Failure
Scenario - PREF-CP on Internet 2 Topology

Objective Function α = 0 α = 0.5 α = 1

Load Distribution σ 0.371 0.359 0.356
PoF 0.389 0.433 0.465

3) PoF Characteristics: We compared the reliability pa-
rameter, probability of connectivity failure, for different algo-
rithms to see the performance of algorithms.

There are basically two aspect in network that effects PoF.
First one is α, lower α values result in better PoF. As seen in
Figure 4, PREF-CP outperforms ICA and random assignment
algorithms. ICA algorithm is slightly higher than random.
However, the random algorithm is for reference since it assigns
switches randomly regardless of load or PoF.

Second one is, as seen in Figure 5, when number of hops
in topology increase probability of failure is also increasing.
This outcome is expected because PoF directly depending on
the number of the switches and links between from node a to
b. If we compare two tree topologies T1 and T3; T1 has depth
of 4 and T3 has depth 6; average PoF values are 0,373 and
0,509 respectively for average of α values.

4) Computational Time: For the complexity aspect, com-
putational time of the proposed PREF-CP algorithm was
compared with ICA, for different network sizes, i.e. number
of switches(S) to see the effect of number of switches.

Fig. 4: PoF calculated by different algorithms

Fig. 5: PoF values for different topologies

As seen in Table VI, when S increases in the network,
calculation time for reassignment map also increases. For
PREF-CP, it is substantially higher compared to ICA algorithm
as expected. This result renders the complexity-assignment
quality trade-off since PREF-CP is most time-consuming albeit
being better in optimization.

B. Cascaded Failure Characteristics

When two controllers fail in tandem, the residual load is
distributed among the remaining V − 2 (three in our case)
controllers. In Figure 6, load distributions are shown with
respect to different topologies. Tree topologies are effected
by multiple controller failures more than Internet2 topology.

Figure 7 shows load distribution for all algorithms in case
of one controller failure and two controller failures. PREF-CP
algorithm outperforms both random and ICA algorithms. The
presented results shown in Figure 6 are the average of load
distribution for three different topologies.

To see more in details, how control load is distributed on
each individual controllers on Internet2 topology with 34-
switches for α : 0.5. In this case, Controller-1* and then
Controller-3* fails one after another and we compare PREF-
CP performance in handling two controller failures. Load
distributions on average for before-failure, after-one-failure
and after-two-failures are shown in Table VII.

TABLE VI: Run-times for different assignment algorithms (in
msec).

Assignment
Algorithms

Number of switches
40 85 121

GA 2480 7540 12100

ICA 12 27 80



Fig. 6: Load distribution under controller failures for different
topologies.

Fig. 7: Load distribution under two controller failures for
different algorithms.

TABLE VII: Load Distribution For Two Controller Failure
Scenario - PREF-CP on Internet 2 Topology

Time Load Distribution σ

Before Failure 4260.1
After C1 Fails 3773.9
After C3 Fails 5182.2

VII. CONCLUSION

In this paper, we consider control plane failures and how
to recover from them with an efficient proactive reassignment
approach. To address this challenge, we propose a proactive
switch assignment PREF-CP in case of controller failures
using genetic algorithm considering controller load distribu-
tion, reassignment cost and probability of failure. Moreover,
we compare the performance of our scheme with random
assignment and greedy algorithm ICA. Our test results show
that when controllers’ load distribution and probability of con-
nectivity failure are considered PREF-CP performs better than
ICA algorithm. Secondly, When reassignment map calculation
time is considered, ICA is a faster algorithm as expected.
However, since are making our calculation before a failure
happens the impact of that calculation time may not have that
much of importance.

For future work, these algorithms can be run on differ-
ent topology types and larger network sizes. For a more
valid comparison, latency and throughput results can also
be considered. The loads of controllers may be distributed

efficiently, however if latency between controller-switch is
higher, network performance might be affected negatively. One
more heuristic algorithm can be implemented to have a more
wider scope comparison.
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