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Abstract

Information-centric networking (ICN) has been proposed asa paradigm for overcoming the networking challenges of the current
Internet involving the explosion of content consumption and the widening gap between traffic and capacity growth. Although new
communication systems and protocols are deployed in the field to meet the broadband traffic surge, the ubiquitous proliferation of
mobile broadband access and advanced user devices outpacesimplemented countermeasures and aggravates this capacitycrunch
issue. Moreover, the expanding networking infrastructureis expected to be more energy-efficient conforming to “green commu-
nications” concept while serving burgeoning traffic demands. In this paper, we study the application of cachingmechanisms to
the edge of an infrastructure-based mobile network supporting ICN and explore their impact on the energy consumption ofthe
investigated system. We devise a greedy heuristic cache management strategy for this setting and evaluate its performance. Our
scheme incorporates energy reward, popularity, Time-To-Live (TTL) and delay (i.e. chunk loss due to delay sensitivity) factors and
provides energy savings with low-complexity operation.
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1. Introduction

The Internet usage has drastically evolved from a point-to-
point communication and exchange paradigm to a content dis-
semination and retrieval context. This circumstance has neces-
sitated a more content-centric rather than a host-centric design.
Information-centric networking (ICN) builds on this premise to
overcome the shortcomings of address based routing/operation
in the emerging era of pervasive and ubiquitous networking.
ICN identifies content rather than network locations enabling
the addressing schemes facilitated by application-level/social
considerations. The incumbent design factor of resource shar-
ing for the conventional IP is translated to a requirement for
more service- and content-oriented operation [1].

Another emerging condition is the mobile broadband explo-
sion propelled with new services and content available anytime-
anywhere. Hence, the upcoming broadband wireless standards
are putting a bigger burden on mobile networks for serving
the Internet traffic surge. Moreover, this diverse range of ser-
vices and modalities bring forth new players and factors such
as OTT (Over-The-Top) service providers (e.g. Netflix, Skype
and YouTube) and P2P (Peer-to-Peer)-based content sharing,
which heavily tax the network resources. However, the net-
work operators generally cannot charge for these high band-
width services while the network resources are stretched topro-
vide adequate QoS levels. Additionally, administrative parti-
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tioning of networks among content and network providers im-
pedes cooperation leading to lack of optimization on the end-
to-end path. Therefore, countermeasures and remedies are cru-
cial to mitigate these problems in next-generation IP networks.
Information-centric operation is posed as a vital apparatus to-
wards this goal.

In this work, we consider an infrastructure-based wireless
network which utilizes ICN paradigm for content (or informa-
tion) based networking. Caching is a fundamental capability
for ICN systems in order to enable scalable and cost-efficient
content dissemination [1]. We elaborate on this aspect and pro-
pose an energy-aware cache replacement mechanism for im-
proving the system performance. Energy efficiency (EE) at each
network component has become more critical with the dwin-
dling energy supplies and the deepening environmental issues.
Accordingly, it is paramount to devise widely-applicable al-
gorithms and solutions for energy-efficient network operation
[2]. Although the adoption of information-centric approach
for network architecture has the potential for enabling energy-
efficient content dissemination, this new approach has to be
energy-efficient in addition to being an energy-efficiency en-
abler [3]. Therefore, our main focus as the performance objec-
tive is EE in this work. We develop our proposed mechanism
considering the prominent factors on caching from the perspec-
tive of EE and low complexity.

The intersection of ICN and wireless networks are yet to
be explored comprehensively, especially for the prospective 5G
systems. Similarly, caching has been typically studied forad
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hoc wireless systems and usually dealing with performance met-
rics other than EE. In that regard, the contributions of our work
are as follows:

1. We propose a heuristic cache management scheme for
energy-efficient operation of ICN in wireless content dis-
semination.

2. We devise a system model for caching at the edge of
infrastructure-based mobile networks.This model is fo-
cused on EE analysis. However, it can be extended for
other analytical purposes.

3. We investigate the effect of caching on the energy con-
sumption of these systems. We present multifaceted ex-
perimental results on the interplay between different fac-
tors such as cache size, object size composition and pop-
ularity distribution in this setting.

In the next section, caching for wireless networks is de-
scribed with a brief overview of related issues. Section 3 presents
related work in the literature. In Section 4, we present the sys-
tem model and system requirements. We also describeEnergy
Aware Caching for Wireless ICN (ENACI) which is a greedy
algorithm for energy-efficient cache management problem for
this setting. In Section 5, the experimental results are discussed
for performance evaluation. Finally, we draw conclusions in
Section 6 with a perspective on potential research directions.

2. ICN and Caching at the Edge of Infrastructure-Based
Wireless Networks

The challenges faced by the current Internet architecture
have led to numerous proposals for Future Internet protocols
and architectures. The explosion of video and P2P traffic are
among the prominent driving factors in these efforts. Although
application-layer solutions, namely CDNs (Content Delivery
Networks), P2P overlays and HTTP proxies, have already been
deployed through the current Internet ecosystem, more sub-
stantial architectural changes are evident. For instance,CDNs
are generally effective in shortening transport paths resulting
in smaller delays and better throughput [4]. But the deploy-
ment cost of CDNs and scalability issues are also prevalent [5].
Therefore, research projects such as SAIL, PSIRP, COMET and
4WARD have proposed various networking models to realize
Future Internet concept [6]. ICN has been an active field in that
regard with related efforts and proposals such as Data Oriented
Network Architecture (DONA), Content-Centric Networking
(CCN), and Publish/Subscribe Internet (PURSUIT) [7].

An example ICN network is shown in Figure 1. The ICN
approach implies context resolution/service resolution instead
of machine resolution [8]. Receiver-driven model and caching
are two salient features of ICN. Clearly, this approach bene-
fits the delivery of popular content (e.g. reduced delivery de-
lay) and reduces resource requirements (e.g. bandwidth and
server load) in the network [9]. Thus, the loose coupling be-
tween content and its originator provides opportunities tofacil-
itate mechanisms for many of the prevalent issues with the cur-
rent network architecture such as multicast, multipath routing
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Figure 1: An ICN example considered in CCN (Content-CentricNetworking)
proposal (AS: Autonomous System, FIB: Forwarding Information Base).

and mobility [10]. However, there are also substantial obstacles
such as security and object naming/identification against ICN
proliferation. Simply, the content has to be secure with proper
confidentiality and credentials while being uniquely identifiable
among a huge number of objects present in the network. De-
ployment of caches and in-network storage at different points
in the interconnection, backbone and aggregation levels ofa
network is critical to improve the system performance for con-
tent consumption in ICN[11]. According to [4], main trends
and forecasts regarding the Internet traffic envisage the dou-
bling of global IP traffic through 2013 with video becoming
the major source of traffic (video traffic will account more than
90% of consumer traffic in 2013). Meanwhile, P2P traffic is
expected to grow in volume, however with a decreasing per-
centage on the overall. ICN provides a pervasive storage infras-
tructure enabling efficient utilization of network resources in a
flexible manner to serve that end. For CSPs (communication
service provider) providing mobile broadband services, there is
the P2P stress on their infrastructure due to the overlay distribu-
tion of content in their networks. In-network storage alleviates
this issue especially addressing file sharing and streamingser-
vices. However, the energy consumption of these capabilities
have to be optimized for enabling green communications and
networking.

Why caching closer to the edge (smaller localized caches)
is important? The tradeoffs related to cache location in an IP
network are shown in Figure 1. Caching closer to the content
consumer shorthens the transmission path providing significant
load reduction and smaller latency in the network. The hop
count reduction during content dissemination implicitly pro-
vides substantial energy savings. Also, for CSPs, there is some
popular content which is already identified by the system man-
agers such as operator’s web portals. These services will also
benefit from caching at the edge, leading to a significant sav-
ing on traffic propagation into the core and aggregation net-
works. This multifactor issue has been explored with different
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Figure 2: The investigated network setup for ICN in wirelessnetwork. The network nodes employ caches (CXYi’s) enabling in-network storage. The node instances
closer to the edge follow the LTE terminology (provided in parantheses) but can be any wireless cellular broadband technology with assumed capabilities.

approaches in the literature [8].
In general, the ultimate edge of the network is the networked

user equipments. However, user centric approaches (networked
caching at the user devices) suffer scalability and feasibility dif-
ficulties due to the requirement of software and hardware sup-
port among disparate entities managed by individual users.In
a wireless cellular network, Access Points (APs) exhibit both
advantages of spatial configuration and economies of scale due
to centralization, and may act as conjoint devices for storing
and forwarding information in addition to their traditional ca-
pabilities. Thus, we do not consider the effect of user-resident
caching in our analysis but focus on APs [12]. Although caching
capability in this type of nodes is not practically available in
current wireless cellular networks, it is expected to be feasi-
ble with the emergence of 5G networks such as LTE Advanced
where wireless APs act as IP routers in addition to radio func-
tionalities [13]. Although spatial and temporal spectrum reuse
will substantially improve with these new systems, it is ex-
pected that the network backhaul will become a major system
bottleneck and necessitate edge-caching in these elementsfor
the exploitation of the inherent spatial and temporal redundancy
of user demands [14].

In this work, we elaborate on caching at APs in the net-
work layout as shown in Figure 2.AP is a generic term which
represents the access point node for a communication deviceto
attach and communicate through the network wirelessly. Forin-
stance, this node corresponds to the base station (BS) in GSM,
wireless access point (WAP) for IEEE 802.11 or eNB/Home-
eNB in LTE standards. We develop a centralized decision logic
for cache replacement, i.e. which chunks to keep and which
to evict from the cache, based on a greedy heuristic algorithm
for this setting and evaluate its performance. Our scheme in-
corporates Time-To-Live (TTL) and delay (i.e. chunk loss due
to delay sensitivity) factors on the energy consumption of the
investigated system to improve EE.

3. Related Work

Content cache management has been an important topic es-
pecially for ad hoc networks [15]. For instance, a cooperative
cache-based content dissemination framework to carry out the
cooperative soliciting and caching strategies for the two en-
countering nodes in a mobile ad hoc networks is proposed in
[16]. In [17], Fiore et al. focus on diverse cache features,
specifically different cache sizes, and design a content replace-
ment strategy for intermittent and peer-to-peer information ex-
change.

Information dissemination has been under focus especially
for wireless sensor networks. Dimokaset al. present a coopera-
tive caching solution particularly suitable for wireless multime-
dia sensor networks (WMSNs) in [18]. The proposed caching
solution exploits sensor nodes which reside in positions ofthe
network that allow them to forward packets or communicate
decisions within short latency. In [19], optimizations forpro-
cessing queries by using adaptive caching structures in WSN
are discussed and an approximative update policy is presented.
In the wired domain, CDNs have been a driving factor to uti-
lize caching for content delivery. CDNs are characterized by
robustness in serving huge amounts of requests and content vol-
umes [20]. Caching can be managed using various mechanisms
in CDNs. In [21], Chen et al. use an application level multi-
cast tree as a cache replacement policy for each CDN surrogate
server. Prestiet al. [22] determine the caching benefit of con-
tent replicas by a non-linear integer programming formulation
whereas Bartoliniet al. decide whether to add a new content
replica or remove an existing one using a semi-Markov decision
process (SMDP)[23]. Caching can also be affected by the tem-
poral popularity patterns of the contents. In that regard, Famaey
et al. focus on a cache replacement strategy for multimedia
content and presents a generic popularity prediction algorithm
which fits a set of functions to the cumulative request pattern of
content items [24]. It uses the predicted request patterns to de-
termine the subset of all available content to store in the cache.
The emergence of cloud-based storage and green datacenters
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concept have also supported these endeavors [25]. However,
the intersection of wired and wireless networks has been rela-
tively unexplored from the energy-efficient caching perspective.

4. System Model

In this section, we layout the system model analytically and
setup the optimization problem for cache management from the
perspective mentioned above. The system parameters and no-
tation are shown in Table 1. Throughout the paper, we may
restate the definitions for the sake of clarity.

The network setup is shown in Figure 2. The wireless net-
work has an access segment with an aggregation stage and a
core part interconnected to other IP networks through a back-
bone network. For the sake of simplicity, “Universal Source”
is a logical shorthand representation for chunk stores/servers in
the rest of Internet. As noted in Section 2, we focus on the ac-
cess segment of the wireless network. There areL UEs consum-
ing content represented as chunkso j of sizeso j throughN APs
in the system. These distinct objects constitute the globalset
of chunksI. EachAPi has a local cache with sizeMi contain-
ing the set of cached chunksCi. During content consumption,
a chunk not present in the local caches is fetched from the uni-
versal source with an average hop-count (N{br,cr,er}) and energy
cost per hop (e{br,cr,er}) through the network segments resulting
in eik

tr . This is a prudent assumption since we do not distinguish
among the chunks in the system according to their location in
the network or their respective stores. For an energy-aware/-
efficient cache management scheme, the network nodes should
be aware of transport cost among themselves. This is feasi-
ble via information sharing due to relatively static natureof the
infrastructure. For that purpose, the energy cost of signaling
between two network nodes, node i and node k, is also present,
which is usually dependent on their distance:eik

req = f (dik).
The consumption figureseik

tr, eik
req andei

pr (energy cost for cache
replacement) contribute to the energy cost of fetching froman-
other node’s (node k) cache toAPi, namelyeik

g which is related
to processing and transmission cost for transport of chunks. If
o j is already available (cached) atAPi, eg value is 0. More-
over, the energy cost of caching per unit chunk inAPi (ei

c) and
the energy cost of transmission per unit chunk betweenAPi and
UEl (eil

f ) are accumulated into the total energy consumption for
contento j access atAPi, denoted asEi j. At the expense of
this energy dissipation, the cache management strategy yields a
cache hit ratiohi for APi.

For quasi-stationary or fixed access probabilities for con-
tent, a near-optimum strategy policy for EE is to estimate the
probabilities via profiling and to keep the most popular items
in the cache considering the energy cost as well [26]. This is
more evident for dense user populations with correlated access
characters such as enterprise users in business districts.These
users follow a relatively packed access profile in time, space
and content dimensions. In individual user-centric caching, this
is inefficient since each node (user equipment) has to cache the
similar content. However, this correlation can lead to higher
efficiency for network-based local caches adapted to user com-
munities [4]. In this work, we assume a fixed/slowly varying

Table 1: System parameters.

Parameter Explanation

o j A distinct chunk,o j ∈ I, j = 1, ..., I.

so j The size of chunko j, so j ∈ S, set of chunk
sizes

N The number of access points (APi) operating
in the zone

Mi The cache size ofAPi

Ci The set of cached chunks inAPi,
∑

s(o j∈Ci) ≤

Mi

I The set of chunks (distinct objects) in the sys-
tem

L The number of user equipments (UEs) in the
area

pi j The request probability of item (chunk)j
throughAPi

di j The distance betweenAPi ando j. If o j is al-
ready available (cached) atAPi, this quantity
is 0.

eik
g Energy cost of fetching per unit chunk from

another node’s (node k) cache toAPi. This
quantity is related to processing and transmis-
sion cost for transport of chunks among net-
work nodes. Ifo j is already available (cached)
at APi, its value is 0.

ei
c Energy cost of caching per unit chunk inAPi

eil
f Energy cost of transmission per unit chunk be-

tweenAPi andUEl

eik
req Energy cost of signalling betweenAPi and

node k for cache coordination and information
sharing

eik
tr Energy cost of transmission per unit chunk be-

tweenAPi andnode k

ei
pr Energy cost of processing per unit chunk for

cache replacement atAPi

Ĉi The set of decached (removed from cache)
chunk(s) due to incoming request inAPi

hi The cache hit ratio forAPi

N{br,cr,er} Number of{backbone, core, edge} routers on
the path for fetching an object

e{br,cr,er} Energy consumption per unit chunk on a
{backbone, core, edge} router on the path for
fetching an object
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access pattern for the network users. The chunk request prob-
abilities, pi j’s, are estimated through a sliding window mech-
anism. For a specificAPi, the sliding window scheme records
the time gap∆T between the current time andKth most recent
reference for a chunkj and calculatesp j = K/∆T as the esti-
mated values utilized by the relevant algorithms.

4.1. General Assumptions

The key assumption is that we consider a receiver-driven
chunk-based ICN where the content is stored and identified
as uniquely identifiable chunks (segments). These chunks are
transported at chunk level with built-in network storage for caching.
We do not make any assumptions on specific naming or content-
based routing mechanisms employed in ICN [10]. We assume
necessary mechanisms such as FIB caching and hierarchical de-
ployment are already employed in the routing nodes. Moreover,
the Zipf-nature of the Web content consumption implies thatfor
a relatively small period of time, a limited set of ICN is utilized
by an FIB to forward flows of interest messages [27], which
helps the scalability issue.

As noted in Section 2, we do not consider the caching at
the wireless user nodes, rather focus on the network-centric
optimization in the infrastructure-based wireless network, es-
pecially next-generation wireless networks such as LTE Ad-
vanced. The main reason is the emerging capability due to the
standardization of wireless acccess points acting as IP routers
for these systems. Figure 2 provides LTE naming of nodes in
addition to general node types such as core router for exempli-
fying the mapping for a next-generation wireless system.

We assume that the cache operates in aweakly-consistent
manner, i.e. the applications can be servedstale data from
the cache occasionally [28, 29]. The consistency mechanism
employs Time-To-Live (TTL) monitoring in order to invalidate
stale chunks in the cache.

4.2. Energy Consumption Model and Reward Structure

We focus on a single of AP, namelyAP0, in a so-called
cache zone for optimization purposes. Therefore, we can drop
the indicei identifying the specific AP. The energy consump-
tion for contento j access atAPi, Ei j, is constituted of three
main components, namelyec, e f andeg:

E0 j = E j =

{
ec(o j) + e f (o j) if di j = 0
e f (o j) + eg(o j) otherwise

(1)

whereec is the cost of caching and locally serving the chunk,e f

is the energy cost for wireless transmission of the chunk from
AP0 to the requester user equipment andeg is the energy cost
of fetching the chunk from other caches or the source. The
quantityec(o j) is equal to so j ·ec while e f (o j) is a function of
wireless transmission power, transceiver circuitry consumption
and channel conditions between AP and UE. The last quantity
eg(o j) in (1) is written as

eg(o j) = ereq(o j) + etr(o j) + epr(o j) (2)

= ereq + etr(o j) + epr · so j (3)

Table 2: Energy consumption figures for the wired segment [3].

Node Absolute Normalized Hop

Type Consumption Consumption count

(W/Gbps) (unit energy

per unit data)

Backbone router 15 1 5

Core router 28.6 1.9 6

Edge router 80 5.3 1

For eg(o j), etr(o j) component is based on the availability of the
chunk in the network as a cached item or from the original pub-
lisher. The chunk is assumed to be located by the ICN infras-
tructure and transmitted over the wired network to the serving
AP. For that case, we employ the trace-based analysis of chunk
propagation in [3] for hop-count estimation and related power
consumption through the transmission over the wired core and
edge networks. The energy consumption figures for various
network nodes given in [3] are shown in Table 2. Then

etr(o j) = so j · [Nbr · ebr + Ncr · ecr + Ner · eer] (4)

which is basically dependent on the distance between AP and
the chunk’s location, i.e. the hop count and the hop types over
the route.

In the above analysis, we also droppedik identification since
we assumeeik

x = ex for all i, k values. Then the expected total
energy consumption atAP0 is simply

Etot =

|I|∑

j=1

p j · E j (5)

representingp0 j asp j since we only focus onAP0.
The expected caching benefit for a chunk is simply the ag-

gregate saving due to the avoidance of accessing that item in
other nodes, i.e.,

reward(ox) = pox · [Epull(ox) − Elocalaccess(ox)] (6)

where
Elocalaccess = sox · ec (7)

and
Epull = eg(ox) (8)

In other words, the expected reward of caching an item in
AP0 is the expected avoidance of energy consumption for fetch-
ing the item from any of the network nodes other thanAP0 mi-
nus the cost of having and fetching that chunk locally inAP0.
C is the set of items in the cache at the time when the caching
replacement decision is started.̂C denotes the set of decached
(removed from cache) chunk(s) due to incoming request. The
caching benefit of newly comingok due to access request is not
controllable since it is determined exogenously by the incoming
request. However, the cache replacement algorithm controls the
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victim chunkso j ∈ Ĉ and therefore which chunks to keep un-
der the constraint of vacant space forok. Then the optimization
problem for cache replacement becomes

maximize
∑

o j∈C

reward(o j) · 1[o j<Ĉ+
] (9a)

subject to
∑

o j∈C

so j · 1
[
o j<Ĉ+

] ≤ M − sok , (9b)

j ∈ {1, 2, ..., I}.

where1[x] is the indicator function which is equal to 1 ifx is
true and 0 otherwise, andok is the newly cached chunk.̂C+

refers to the decached setĈ after the decision is finalized. The
constraint (9b) states that after decaching, the total sizeof items
remaining in the cache should be such that there is vacant space
(at least with the size ofok) for the incoming chunkok.

This problem can be mapped to 0-1 knapsack problem which
is known to be NP-hard [30, 29]. Given a knapsack with maxi-
mum capacity W, and a set S consisting of n items with weight
wi and benefit valuebi (wi, bi,W ∈ Z), the problem is how
to pack the knapsack (to select the subset of items) to achieve
maximum total benefit of packed items. A possible brute force
solution is to try all 2n subsets of S, which is not scalable due
to complexity. In this work, we propose a greedy heuristic,
namely ENACI, which incorporates energy reward, popularity,
TTL and delay (i.e. chunk loss due to delay sensitivity) on the
energy consumption of the investigated system and is tailored
for wireless access networks.

The optimal solution for 0-1 knapsack problem is available
as a dynamic programming solution [30]. The pseudocode is
shown in Algorithm 1. V[n,W] is a two-dimensional array of
size (n,W) that is updated to keep temporary values and to con-
tain the the final solution at the completion of the algorithmrun.
The time complexity for this algorithm isO(I · M), whereI is
the number of cacheable chunks andM is the cache size. This
O(I ·M) times operation is compromised of the following steps:
O(I · M) times to fill the V-table, which has (I + 1) · (M + 1)
entries, each requiringO(1) time to compute.O(I) time to trace
the solution, because the tracing process starts in row I of the
table and moves up 1 row at each step. Therefore, lower com-
plexity heuristic algorithms are important for this problem. The
complexity of our algorithm described in Section 4.3 isO(I)
since it runs over cached items and performsO(1) operations
for each item in the cache.

We compare our algorithm ENACI to the Least Recently
Used (LRU) algorithm and to the baseline case BASE solved
using dynamic programming algorithm. The baseline controller
does not utilize TTL or delay and thus a less ”intelligent” de-
cision maker solving the cache management based on (1) via
dynamic programming. In addition toBASE case, the packet
drops due to delay violations and TTL evictions are integrated
into ENACI model as described below. The third algorithm,
LRU, replaces the chunk(s) least recently accessed until the
space is sufficient for ok. LRU is a very common algorithm
employed extensively in hardware and software-based caches.

Algorithm 1 Optimal solution algorithm for 0-1 knapsack
problem.

1: procedure KnapsackSolver(v,w, n,W)
2: for w← 0,W do
3: V[0,w] ← 0
4: end for
5: for i← 1, n do
6: for w← 0,W do
7: if (w[i] ≤ w)∧ (v[i] + V[i − 1,w−w[i]] > V[i−

1,w]) then
8: V[i,w] ← v[i] + V[i − 1,w − w[i]]
9: keep[i,w] ← 1

10: else
11: V[i,w] ← V[i − 1,w]
12: keep[i,w] ← 0
13: end if
14: end for
15: end for
16: K ← W
17: for i← n, 1 do
18: if keep[i,K] == 1 then
19: outputi
20: K ← K − w[i]
21: end if
22: end for
23: return V[n,W]
24: end procedure

Please refer to [31] for a more detailed and analytical treatment
of LRU.

4.3. Energy Aware Caching for Wireless ICN (ENACI)

We layout the design space for ENACI scheme followed by
its detailed description in this section. In addition to theprimary
objective of conveying ENACI, we render the rationale behind
its structure and design.

4.3.1. Design Space for an Energy-Aware Caching Heuristic fx

For an energy-aware caching scheme, we need a simple yet
effective heuristic regarding two aspects:

• Simple computation: The main premise behind a heuris-
tic is to have reduced complexity compared to optimal
solutions or to come up with a scheme when algorith-
mic approaches are not attainable. An effective caching
scheme should exhibit computational advantage in that
regard.

• Limited data support requirements for decision logic: The
more data support needed for decision logic (i.e. param-
eter values used in computations), the lower feasibility
and the higher overhead. Since caching infrastructure is a
distributed system, the availability of information such as
metric values can render a caching management scheme
infeasible due to lack of access to those data. Thus, data
requirements should be minimized.
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Considering these factors, we employ the most salient fac-
tors for chunk selection or eviction in our ENACI heuristic.
These parameters and their interactions are shown in Figure3.
They can be listed as:

• Energy reward: This is the main factor, for whichfx aims
to opt for chunks with higher values.

• Popularity: Keeping the more popular chunks facilitates
the exploitation of statistical nature of chunk requests.

• Delay sensitivity: Preferring delay sensitive chunks alle-
viates energy consumption with retransmissions due to
latency. For caching related literature focusing solely on
the “edge”, that factor is not rather apparent. However,
when an infrastructure-based wireless network with an
end-to-end chunk transmission is considered, it becomes
more important. This quantity is more application-oriented
compared to TTL, which is typically applied in a compre-
hensive setting in the caching framework.

• TTL: Cached chunks with larger TTL values improve EE
since cache replacements are less common. However,
TTL value is typically chunk-content independent and
adopts a single value or a value from a set of very lim-
ited size.

• Chunk size: For chunk diversity and count, smaller chunks
are preferable. Although this tendency may increase the
complexity of a cache management scheme due to larger
number and diversity of chunks, such a drawback is neg-
ligible compared to the overall gain.

Data support requirements for our scheme (the practical-
ity of the heuristic considering information input) can be an-
alyzed regarding these parameters. While the content popu-
larity can be estimated using access statistics as explained in
Section 4, we assume availability of energy consumption quan-
tities ex through information sharing among nodes. Although
this capability may appear as an emerging overhead, it is not
significant since the mean statistics of these figures are suffi-
cient. These data are not very dynamic and simple to calculate
using simple averaging methods. Moreover, another required
parameter value, the chunk size(s), is already available inthe
cache. TTL can be a system-wide parameter configured into
the caching framework or can be embedded in the chunk head-
ers for more flexible operation. Finally, the delay sensitivity is
application-dependent and can be preconfigured in caches ac-
cording to general traffic classes or embedded in chunk headers
as an additional data field.

4.3.2. ENACI Scheme
ENACI is a greedy algorithm which eliminates the least

benefit chunk(s) from the cache in each step, until the available
space is sufficient for caching the new chunkok. This benefit
is a function of popularity, TTL, size, delay sensitivity (σ) and
energy benefit of the replaced chunk(s). Specifically,

bene f it(o j) = f (reward j, s j, TT L j, σ j) (10)
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Figure 3: Design space and imperatives for heuristic design.

where the delay sensitivity,σ j, is modeled as a metric repre-
senting the delay factor on the object drop probability foro j

due to delay threshold violation.
The benefit is directly proportional to energy reward and

inversely proportional to size, since having more chunks isfa-
vorable to increase hit ratio. Moreover, TTL is directly pro-
portional since the cached elements are valid for a longer pe-
riod of time for larger TTL values. From the delay perspec-
tive, the retransmissions caused by packet drops due to latency
also incur energy wastage and therefore needs to be considered
for caching decisions. In that regard, it is more favorable to
keep chunks for delay sensitive traffic in the caches, for instance
streaming video content. To address the delay sensitivity of ob-
jects, the delays caused by fetching items not found in the cache
should be considered. The delay sensitivity parameterσ j incor-
porates this factor into the benefit calculation. In that regard, the
objects that take longer to fetch should be preferentially cached
and retained in the cache [29]. Considering all these factors, we
use a composite metric for the benefit of havingo j in the cache:

bene f it(o j) =
reward j

s j
·

TT L j

TT Lmax
· (σ j)

γ (11)

whereσ j is the calculated drop probabillitypd
j according to

the delay thresholdt j for o j and the delay distribution for the
chunks in the network. This delay for chunk retrieval to APs is
modeled with an exponential distribution having a cut-off delay
equal to 200 unit energy. The exponentγ is a tuning parameter
for controlling the effect ofσ j on the benefit computation and
used as 2 in the performance evaluation. Each chunk belongs
to one ofT delay threshold classes, i.e.t j ∈ T, and are uni-
formly distributed to these classes in a random assignment at
the beginning of the performance evaluation.

For the cache replacement operation, at each query, if the
requested chunk is not already cached, the chunks starting from
the least benefiting according to (11) are decached till the space
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Figure 4: Probability distributionpi for chunk i for differentα values (I = 40).

is opened for the incoming chunk.

5. Numerical Evaluation

For performance evaluation, the chunk popularity is mod-
eled as a cut-off Zipf distribution [32]. In other words, we
assume that the relative frequency with which the chunks are
accessed follows a generalization of Zipf’s law which is widely
employed in cache management and CCN works [31, 33, 34,
35, 36, 37]. Although there are other more-tailored popularity
models for specific kinds of application content, Zipf distribu-
tion provides a more general and widely-applicable model and
allows an application-agnostic analysis for performance inves-
tigation of cache management frameworks. Specifically, letthe
N chunks be ranked in order of their popularity whereo j is the
jth most popular object. Letpi j be the probability that an in-
coming access is foro j throughAPi. Focusing on a singleAP0

andp j with a cut-off Zipf-like distribution, for 1≤ j ≤ N and
α ≥ 0 [31]

p j =
Ω

jα
(12)

where

Ω =


N∑

j=1

1
jα



−1

. (13)

Zipf’s law implies that the top-ranked flow rates are exception-
ally large but rare and the lower-ranked rates are smaller but
more common [38]. Thus, a small number of the most popu-
lar contents account for a large portion of user requests [39].
Figure 4 plotsp j as a function ofα. Parameterα is the shape
parameter that describes the relative popularity of objects in the
distribution [40]. It is clear that the larger theα value, the better
the compactness of thep j distribution. We consider the range
of α observed in [32] using network traces from a variety of
sources. Whenα = 0, (12) is simplified asp j = 1/N for all i,
and the data access rates to all chunks are the same (equally-
likely case). As noted in [31], this corresponds to the worst
case since largerα value is expected to improve the cache per-
formance.

Table 3: Simulation parameters.

Parameter Value

M 42

|I| 700

TT L 500

K 2

S {6}, {4, 6, 8}, {3, 6, 9}, {1, 2, 6, 10,
11}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

α {0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.2, 1.4}

T {35, 45, 50, 55, 60}

γ 2

ec 4

e f 1

ereq 10

epr 9

N{br,cr,er} {5, 6, 1}

e{br,cr,er} {16, 32, 85}

The baseline simulation parameters are listed and summa-
rized in Table 3. The explanations for these parameters are
given in Table 1. The units for the energy, size, and time quan-
tities are unit energy, unit size, and unit time, respectively. Dur-
ing the performance evaluation, the relevant parameter values
are altered according to the case, which is explained in the cor-
responding subsection.

5.1. Effect of Zipf Parameter α

Largerα values imply more skewed data access probabil-
ity distribution as noted in Section 5. Typically, this kindof
popularity pattern favors caching and improves caching perfor-
mance. As seen in Figure 5(a), since it is in exponential re-
lation, the effect ofα starts to manifest itself more apparently
especially after it is above 0.5. For smaller values, the gain
due to caching is almost negligible. Asα gets larger, LRU
provides significant savings compared to no caching. More-
over, ENACI provides almost the same performance compared
to BASE. Forα = 1.2, it is slightly better [1750 unit energy per
chunk query (denoted as the unitue/cq) for ENACI vs. 1760
ue/cq for BASE].

In general, all caching algorithms behave as expected and
the apparent profile is the increasing energy EE with increas-
ing α value. For instance, the energy consumption of ENACI
decreases from 2616 ue/cq to 1145 ue/cq asα ranges from 0.1
to 1.4. This outcome is due to increasing cache hit ratio lead-
ing to energy savings while serving he requested chunks to the
consumers.

5.2. Effect of Cache Size M

Increasing cache size is expected to benefit EE due to two
factors. First, a larger cache is able to store more objects leading
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(a) Effect of α on the average energy consumption per object
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(b) Effect of cache sizeM on the average energy consumption
per object query (α = 1).

Figure 5: Performance comparison of caching mechanisms fordifferentα values and cache sizes.

to higher hit ratio. Second, storing and serving a chunk fromthe
cache typically outweighs fetching it remotely in terms of EE.
Figure 5(b) depicts the performance of evaluated schemes for
increasing cache size dimensioned as percentage of aggregate
chunk size, which is simply equal to|I| · so. Similar to Fig-
ure 5(a), the performance of ENACI is very close to BASE. As
the cache size increases from 0.5% to 8%, the energy consump-
tion for ENACI improves from 2284 ue/cq to 1542 ue/cq, which
corresponds to 32.4% decrease. It manages to keep an advan-
tageous performance gap with LRU ranging from 5% to 14%.
The minimum gap is for the smallest cache size which corre-
sponds to the convergence of all caching algorithms. The aver-
age energy consumption for no caching (NONE case) is 2632
ue/cq, compared to 2169 ue/cq, 1938 ue/cq, and 1916 ue/cq for
LRU, ENACI, and BASE, respectively.

5.3. Effect of Object Size Composition

The object size composition may have a significant effect
for cache replacement algorithms, especially for heuristics pa-
rameterized withso j . Therefore, we also investigate the perfor-
mance for different object size compositions. The object size
compositionS i ∈ S has a symmetric distribution around the
mean object size (so) equal to 6 units and is given in Table 3.
The composition IDi in the graph corresponds to the order of
elements inS in the table, i.e. 1 for{6} while 5 for {1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11}. The objects are assigned uniformly-
distributed to object sizes for a selectedS i. Figure 6 shows that
the sensitivity of our scheme to object size configuration islow
and thus it maintains a similar performance improvement un-
der varying size compositions. This robustness is beneficial for
a cache management scheme since the incoming object traffic
can be composed of diverse object sizes. Moreover, the perfor-
mance of ENACI is very close to BASE in all cases. The per-
formance gap between ENACI and BASE never exceeds 2.2%
of BASE results which occurs for the last case (ID= 5) with
EBAS E = 2155 ue/cq andEENACI = 2204 ue/cq.
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Figure 6: Effect of size composition on the average energy consumption per
object query (α = 0.9, M = 42, so = 6).

5.4. Impact of Caching on Network Traffic

Caching closer to the content consumer drastically reduces
network load and thus energy consumption caused by the trans-
portation of data to users. We also evaluate the impact of caching
on network traffic in our network layout. The network load in
our system is measured as the amount of data times the number
of hops it travels [41]. Specifically,

L = ρso[Neβe + (Nc + Ne)βc

+ (Nb + Nc + Ne)(1− βe − βc)] (14)

= (Nb + Nc)(1− βe) − Nbβc + Ne (15)

whereρ = 1 − h is the probability that a request is not served
from the AP cache, i.e. cache miss ratio. The probabilities
βe andβc represent the probability that a missed object in the
AP cache is found in the edge or core network, respectively.
These two values implicitly determine the probabilityβb that
the object has to be fetched from the universal source sinceβe+

βc+βb = 1. Theβ composition can be considered as an indicator
for the assumed performance of the caching in other network
segments. For instance,{βe, βc} = {0.25, 0.30}, i.e. βb = 0.45,
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Figure 7: Network traffic volume and cache hit ratio for varyingα andβ.

corresponds to a very effective in-network caching system since
55% of all requests not served in APs are served in the edge
or core network without leaping to backbone network for the
universal source.

Figure 7 shows the network traffic load and cache hit ratio
for BASE, LRU, ENACI and NONE with varyingα andβ val-
ues. For NONE case, we assume caching is absent not just in
APi but in any network segment, thus implying a baseline case.
In Figure 7(a), normalized network load forα = 0.9 with vary-
ing βe/βc pairs is shown. For the “cache-less” NONE mode, the
network traffic volume is much larger compared to the modes
with caching. This quantity is used for normalizing the perfor-
mance results of other schemes. Since we assume that the other
nodes in the network do not employ caching, the pull opera-
tion implies the transfer of a chunk from the universal source
in that mode. For the best case withβe = 0.3 andβc = 0.33,
the network load reduction for BASE, LRU, and ENACI are
59%, 53%, and 60%, respectively. These results support the
envisaged benefit of traffic localization (increasing proximity
between the data and the requester) for network and server load
reduction. Furthermore, the average network loads for BASE,
LRU, and ENACI over the entire range are 48.3%, 55.5%, and
47.3%, respectively.

In the last experiment, we investigate the effect ofα on the
network load figures. Figure 7(b) shows the simulation results
for network loadL as well as the cache hit ratioh for increasing
α. As α gets larger, the performance of caching improves in
general. Therefore, the resulting energy consumption exhibits
the same behavior. This trend is in accordance with Figure 5(a).
The load reduction is substantial even for moderateα values.
For instance, whenα = 0.7, ENACI provides 22% reduction
for network traffic. The results for BASE and LRU are similar
in that case. Forα = 1.1, the advantage of ENACI over LRU
becomes significant: 60% vs. 71% normalized network load.
Furthermore, ENACI outperforms BASE but with a minor gap
in this case.

6. Conclusions

In this work, we have discussed and evaluated cache re-
placement policies for information-centric operation at the edge
of infrastructure based wireless networks. We have focusedon
the objective of EE. ICN provides new degrees of freedom for
CSPs to meet mobile broadband requirements. Moreover, the
increasing content-centric access over wireless networksposes
ICN-based approaches more attractive. In that regard, caching
and in-network storage is a crucial constituent of this paradigm.
In our study, we investigate the utilization of caches in thewire-
less access nodes for increasing performance in terms of EE.
The flexible setup of edge caching to facilitate multimode net-
working (conventional or content-centric) is beneficial for EE.
The proposed greedy heuristic ENACI algorithm provides an
energy-efficient cache replacement scheme with relatively low
complexity for ICN based wireless access networks. As future
work, we plan to include a more elaborate energy consumption
model for remote retrieval of content from the providers in the
Internet. Another potential topic is the analysis for cooperative
AP caching embedded in a more realistic incumbent caching
infrastructure.
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