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Abstract—This paper discusses the implications of facilitating
higher energy efficiency in Cognitive Radio Networks (CRN) from
the perspective of fundamental trade-offs, i.e. what needsto be
sacrificed to be energy efficient? These trade-offs are identified
as QoS, fairness, PU interference, network architecture, and
security, which are also essential network design dimensions. We
analyze each dimension considering their interactions with each
other and with energy efficiency. Furthermore, future research
directions which are related to the integration of CRN with
other networking paradigms regarding the energy efficiencyare
introduced and discussed.

I. I NTRODUCTION

Energy efficiency (EE) is now at the interest of cognitive
radio (CR) research, as networks become more and more
energy-demanding. This demand has been under spotlight due
to environmental concerns and rising energy costs. However,
ensuring high EE in a CRN setting is formidable due to the
difficulty in satisfying the competing demands of different
stakeholders such as Primary Users (PU), CRs, and the CR
operator. For example, the PUs put strict requirements on
interference and channel usage of CRs while CRs expect high
quality-of-service (QoS) from the operator, and operator de-
sires low operating and management costs. This multifaceted
challenge constitutes the essence of our paper: how to provide
EE in CRNs while meeting the expectations of different actors
and elements in the system? Taking this question as our
motivation, we focus on five fundamental trade-offs which
are paramount since they affect all the constituents of CRN
design and implementation: QoS, fairness, PU interference,
network architecture, and security. Although we elaborateon
each trade-off separately, we should note that the relationbe-
tween these trade-offs is inextricably intertwined. For example,
potential solutions such as relaying for balancing EE vs. PU
interference trade-off lead us to EE vs. network architecture
trade-off, e.g. complexity and deployment cost.

The investigated trade-offs are depicted in Fig. 1 from
a cognitive map perspective. Deployment and network level
factors can be decomposed into various sub items such as
offloading, heterogeneous network architecture, and relaying.
Cooperation mechanisms in that domain affect all system-
level items in that figure. Security establishes another trade-
off which affects cooperation item due to trust mechanisms.It
is a system-wide attribute which might override EE concerns
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Fig. 1: Interaction between EE related concepts for CR.

due to criticality. PU interference is a factor that is CR-native
and critical for CR feasibility. It interacts with QoS factor,
which in turn complicates the fairness trade-off. There arealso
general issues such as learning, complexity, and dynamicity,
which emerge when elaborating on EE trade-offs. Therefore,
the distinction among trade-offs is not that clear-cut. In this
work, we hope to provide an insight on the EE trade-offs and
highlight some research endeavors.

II. EE VS. QOS

The explosive growth in the use of real-time applications
on mobile devices and proliferation of multimedia traffic have
resulted in stricter QoS guarantees in terms of sustainable
data-rates, packet drop limits, and delay bounds. CRNs have
to address the relevant operational environment under these
circumstances. This situation complicates EE concerns since
QoS requirements become harder to implement when EE
requirements are also applied. The interaction between QoS
and EE is depicted in Fig. 2. It is apparent that the QoS
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improvement mechanisms may be contradictory to the EE
requirements. Moreover, there are also inherent complicating
factors such as interference limitations, the power budget
of the CR system, and imperfect channel sensing. Hence,
this problem configuration is typically reflected in resource
allocation and assignment optimization works for CRNs [1].

QoS for CRNs or CR embedded networks have been ex-
amined typically from the dynamic spectrum access (DSA)
perspective. Disruptions from fundamental operations involved
in DSA protocols render deployment of QoS mechanisms
challenging. In that regard, QoS can be considered in three
directions, the first being thePU-centric approachwhere the
primary focus is to protect QoS of PUs while facilitating DSA.
For this purpose, probability of misdetection is important. The
sensing and medium access mechanisms should be highly
conservative and SU-insensitive. Thus, the main constraint
is not to disturb while maintaining QoS and EE. The EE
dimension is not substantially critical for this case. The second
approach is to prioritize SUs without harming PUs to have
a SU-centricQoS environment. For this setting, interference
limitations are relaxed and the problem is more flexible. In
this case, the aim is to reduce probability of false alarm as
much as possible. For both of these approaches, the spe-
cific probability criterion can be reduced by either increasing
signal-to-noise (SNR) ratio and/or by increasing sensing time
and sampling frequency. As the SNR is beyond the control
of the CRN and the sampling frequency is device related,
increasing sensing time is the only viable solution. However,
this also results in more energy consumption for the network,
especially considering the periodic nature of sensing. Another
dimension is to differentiate among SUs especially when their
QoS requirements cannot be met. It is desirable to have the
spectrum access opportunity related to the user priority ifthey
belong to different priority classes [2]. A natural extension of
these two former approaches is to have ahybrid setting where
QoS of PUs and SUs are not differentiated categorically but
evaluated in a more flexible manner.

In centralized CRNs, once the list of available opportunities
are determined, the Cognitive Base Station (CBS) assigns
the spectrum opportunities using one of the above-mentioned
approaches. The CBS can exploit various diversities to attain
the highest trade-off among EE and QoS goals. Conceptually,
these diversity techniques can be categorized into four main
groups: link diversity, spatial diversity, channel diversity, and
CR diversity [3]. CBS can consider the time-varying channel
conditions and CR diversity in assigning the most favorable
channels. However, CRs are to operate in a wide range of
frequencies, which may be spectrally distant from each other.
Overhead of channel switching have to be accounted especially
for fragmented spectrum (i.e., spectrum is non-contiguous) as
well as each channel’s throughput promise and energy demand.
Since a CR spends nonnegligible time in radio reconfiguration
for tuning to the new channel, time spent during channel
switching reflects as throughput loss. Moreover, CR consumes
power in channel reconfiguration, which translates into energy
expenditure. Therefore, a channel switching should be per-
formed only if the new channel can provide net gains in EE
of this CR [4]. To the best of our knowledge, the literature
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is not mature enough regarding experimental results from the
CRN testbeds on the cost of channel switching.

In multi-hop CRNs, ensuring QoS becomes more challeng-
ing due to routing since the paths among network nodes are
highly dependent on channel availability [5]. A typical case
is cognitive ad hoc networks where a routing algorithm can
establish QoS paths with reserved bandwidth on a per flow
basis in a multi-hop transmission. For routing, the fundamental
QoS mechanism is to establish bandwidth guaranteed routes
while considering EE. However, dynamicity of CRNs com-
plicates this class of solutions. For CRs, as the number of
hops increases finding a stable/reliable path between the sender
and the receiver becomes more of an issue as the channel
occupancy may change frequently between hops.

III. EE VS. FAIRNESS

Fairness for a communication system refers to the degree
at which users utilize a fair share of the system resources [6].
Since CRs allow SUs to share the spectrum with PUs in a dy-
namic manner, the fairness between SUs is crucial. Spectrum
access and allocation methods should let each user get certain
amount of spectrum regardless of its spectral environment,
location, or neighbor distribution. The typical trade-offin EE
setting is that being unfair in certain settings can be beneficial
for EE. The basic underlying requirements are to allocate
spectrum as fairly as possible while using spectrum resource
maximally and maintaining EE [7].

For fairness on the downlink of centralized systems, EE
is usually not mandatory but desired in order to adopt less
complex hardware and decrease operational costs. However,
for the uplink, this is usually required due to mobility and
battery-powered operation of network end devices. The fair-
ness lends itself to a multiobjective optimization problemsince
it is not usually considered as the sole objective for CRN
design and operation. Thus, the fairness trade-off is typically
embedded in QoS and resource optimization settings. For
instance, [4] introduces asatisfaction ratio for each SU in
order to make the scheduler fairness-aware and incorporates
this term as a multiplicative term in the resource allocation
optimization problem. However, the trade-off between EE and
fairness is yet to be explored adequately. The infrastructure
sharing concept is also interesting to explore this trade-off.
That case introduces another layer of complexity where a fair
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allocation is desired among different CRNs while satisfying
the inherent “PU-biased unfairness”.

IV. EE VS. PU INTERFERENCE

The fundamental restriction on CR operation is that CRs
must not harm the PU communications. In other words, the
resulting interference due to CR transmission at the nearby
PUs must be below thetolerable interference limitsfor un-
derlay CRNs, and the simultaneous transmission time with
the PUs must be considerably short for overlay CRNs. The
interference arises under two cases: PU misdetection and PU
reappearance. To cope with the first case, CRs must sense
with high detection accuracy, i.e.Pd, so that they rarely
transmit with a PU simultaneously at the same channel.
This calls for highPd, which might be achieved by various
techniques: cooperative sensing, longer sensing duration, and
higher sampling frequency to name a few. On the other hand,
these highPd promising solutions may be costly in terms
of energy consumption compared with a solution demanding
less reliability (lowerPd which is yet higher than minimum
reliability Pmin

d required by the PU regulations). Furthermore,
for the second case no matter how high the achievedPd is,
CRs may still result in PU interference due to the nature of
periodic sensing.

CRNs typically operate on a frame by frame basis in which
certain duration of the frame is dedicated for sensing and the
rest for transmission. The duration between two consecutive
sensing periods determines the performance of spectrum op-
portunity discovery (thus the throughput) and resulting PU
interference. In periodic sensing, a CR does not notice a
reappearing PU until the next sensing period. Frequent sensing
results in increased energy consumption while improving
the sensing performance, which directly affects throughput.
Hence, tuning the sensing and transmission durations as well
as the period [8] is of major concern for playing with the EE
vs. PU interference trade-off.

To account for these two cases, a CR may select to be
conservative at the sensing step and/or at the transmission

step of the cognitive cycle. Solutions at the sensing step
include period adaptation (considering PU traffic pattern [8])
and playing with the sensing accuracy. Alternatively, a CR
can meetPmin

d restriction and can control the interference via
regulating its transmission power (Ptx). Given that perceived
interference at the victim node is a function ofPtx, a CR can
decrease the PU interference by decreasingPtx. However, as
the Shannon’s formula shows, channel capacity also (loga-
rithmically) decreases withPtx. Consequently, both methods
result in a trade-off between EE and PU interference. Avoiding
PU collision is not only essential to protect the PUs, but also
to avoid any retransmissions of CR traffic and to achieve the
maximum capacity of the channel. CR transmitter’s traffic
colliding with a PU may not be decodable at the CR receiver,
which in turn may require retransmission(s) due to the QoS
requirements. Hence, from the EE viewpoint, simultaneous
transmission with the PU must be kept at minimum.

In order to change the EE-PU interference trade-off in
favour of EE, CRs can benefit from relaying [9] and channel
aggregation [3]. As depicted in Fig. 3, relaying lets the CR
transmit with lower power but via multiple hops while channel
aggregation facilitates CRs to transmit simultaneously via
multiple channels. In case some intermediate nodes relay the
CR traffic, capacity improvement due to shorter transmission
distance may compensate the channel capacity loss due to
the lowerPtx. Similarly, channel capacity loss due to lower
Ptx is compensated by higher bandwidth of the aggregated
channels. Regarding the cost, relaying may require a change
in the network architecture if relays are supposed to be ded-
icated devices for assisting CRs. The dedicated relay devices
evidently add to the energy consumption of the network. We
should recall that providing EE adhering to the PU interference
restrictions requires us to tune EE vs. network architecture
trade-off. Alternatively, each CR may serve as a relay for the
others at the expense of increased energy consumption for
relaying. On the other hand, channel aggregation demands for
more capable hardware at the CRs. Both schemes lead to new
challenges that deserve further analysis, such as how to select
a relay, how to place the relays, and how to allocate power at
each channel for the optimal EE.

V. EE VS. NETWORK ARCHITECTURE

Different types of network architecture are possible for
achieving higher EE in CRNs. Almost all of these different
architectures try to benefit from adding additional hops or
infrastructure layer between the CR and the core network in
order to decrease the required transmission energy of CR by
decreasing the transmission distance. These architectures can
be listed as small cells, relays, ad hoc networks, and clustering.

The goal of deploying cognitive small cells is to offload user
traffic from the CBS to small cell access point (SAP), be it a
femtocell or a microcell, etc. Interpreting the usage statistics
that majority of traffic originates from indoors, small cells
deployed either by users or operators can provide high capacity
at small localities, e.g. home for femtocells or shopping
malls/airports for pico/micro cells. Small cells benefit from
spatial diversity to achieve better frequency reuse that leads
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to a higher spectral/throughput efficiency. When cooperative
sensing is employed, the energy burden for spectrum sensing
may be on the CRs served by the SAP. Furthermore, the
number of handoffs a CR performs during operation increases
drastically, especially for high mobility cases. We shouldalso
mention that the handoff procedure is more complicated and
more energy consuming in a heterogeneous CRN compared to
a classical CRN architecture. However, cognitive small cells
can cope with the interference issue arising with the unplanned
deployment of small cells to some extent by utilizing the
unused PU spectrum opportunities.

Another alternative is to use relays together with amplify-
and-forward or decode-and-forward type of cooperative com-
munications to save transmission energy by both decreasing
the distance and retransmissions. If CRs are used for relaying
packets (which may not be the case as they may not be
willing to consume their energy for other users), they will have
an additional energy consumption. Moreover, some CRs may
become bottlenecks due to their location (it may be the only
alternative for relaying) and their battery may drain rapidly.
Even if dedicated relays are used, it has been shown that if
the traffic load is low or channel conditions are good or the
transmitter is close to the receiver, relaying may not be as
energy-efficient as it seems [10]. Hence, it would be better to
decide whether to relay or not on a case by case basis. In a
highly dynamic environment (i.e. channel conditions) or with
highly mobile CRs, this decision induces extra overhead to
the network. Another problem with relaying is that the time
it takes for successful transmission is doubled. This may not
be feasible for some applications. The delay also increasesif
relaying is performed in a multi-hop manner.

Both of the discussed approaches bring an additional layer
to the system. The monetary and energy cost of operating
additional hardware, like relays or SAPs, is usually neglected.
However, it is known that idling (waiting idle for possible
packet reception) consumes almost as much energy as re-
ception [11]. Therefore, clever mechanisms are needed for
reducing operating costs such as sleep scheduling, which in-
duces additional overhead together with decreased throughput.
This should then be considered from an EE vs. QoS trade-off
viewpoint. Moreover, the locations and the number of these
additional network components should be selected carefully

to be effective. In a dynamic cellular network, the solutions
for these problems are not trivial.

Another concern about the choice of a specific network
architecture is to decide whether to utilize internal sensing
or external sensing (i.e., spectrum sensing vs. geolocation
databases). For the supporters of the latter, sensing and intelli-
gence can be located at the network (i.e., Radio Environment
Maps, a.k.a. REM) instead of individual CRs. Putting the
discussion aside that this approach contradicts with the essence
of the CR, REMs have to be deployed at various scales (e.g.,
country-wide or campus-coverage). Therefore, each device
contributes to the energy consumption required for processing,
cooling, and synchronization. Besides, it is not considered to
be green to deploy such machines everywhere. On the other
hand, REM can ease the learning process by processing the
gathered data by sensors (e.g., CRs or other external entities)
and deriving the characteristics of the radio environment from
a more complete data. Thus, a CR can improve its environment
awareness instead of using its less complete perception of the
operating environment. Hence, we have to consider the trade-
off between deployment and operating cost introduced by these
entities and the performance improvement (e.g., higher EE)by
a more enhanced learning scheme.

Regarding learning and CR’s intelligence, we should con-
sider environment monitoring along with the dynamicity of the
RF/CR environment. In other words, tracking and collecting
data on the network is beneficial only if the conclusion about
the network state via the inference of the collected data
remains valid at the time of the inference. If the cognition
requires long-term information keeping and computationally
long time compared with the dynamicity of the CR or PU
network, CR decision using this obsolete inference may
even hurt the CRN performance. Consequently, CRNs need
computationally efficient learning algorithms that can keep
a faster pace with the changing nature of the agents in the
operating environment. REMs deployed at small localities
and cooperative learning can be explored further for their
capabilities of faster cognition.

Fig. 4 presents a rough comparison of various network
architectures in terms of PU interference, network archi-
tecture complexity, and CR throughput. This analysis may
change based on specific equipment, communication proto-
cols and technology. All issues related to traditional ad hoc
networks and clustering apply to the cognitive counterparts
with the challenge of establishing a reliable common con-
trol channel. These architectures are simple but their un-
controlled/distributed operation may degrade CR performance
and can have difficulty in efficiently managing PU inter-
ference. Assuming that REMs implement efficient learning
mechanisms and store up-to-date information, they provide
high throughput at the expense of high complexity. Plain
cellular network with high power transmitters creates more
PU interference whereas small cells achieve high throughput
and low interference owing to offloading and close proximity
to SAP.
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VI. EE VS. SECURITY

Equipping CRs with security protocols requires taking some
precautions, which result in additional processing both atthe
transmitter and the receiver. In secure environments, these pre-
cautions may seem to decrease the EE of the network as each
entity spends processing power/time and some of the channel
capacity for transmitting these authentication and integrity
messages. On the other hand, in problematic environments
with malicious or misbehaving nodes, security mechanisms,
although resulting in overhead, may improve EE by avoiding
interactions with malicious users and appropriately detecting
the misbehaving nodes. For example, a CR with its security
protocols may detect PU emulation attacks and can use the
idle spectrum that would be wasted without an attack detection
mechanism. Hence, effect of security precautions on CRN may
be intricate if assessed from an EE viewpoint.

Security attacks can be generated either by an insider as in
spectrum sensing data falsification(known as SSDF attack) in
cooperative spectrum sensing, or by an external entity as in
PU emulation attacks. In the latter, the attacker emulates the
PU signal to block CR transmission and instead transmits itself
at the idle spectrum band. All widely-recognized attacks aim
to collapse the CRN’s sensing capability. These attacks make
the CRN fail at the very early stage of cognitive cycle (i.e.,
sensing) because of the shortage of transmission opportunities.
Malicious users tend to report the existence of PU. Althunibat
et. al. determine the optimal number of security bits in a
message for attaining the highest trade-off between attained
security level and EE for a CRN subject to SSDF attacks [12].
Optimal number of security bits depends on the fusion rule at
the fusion center, number of SSDF attackers, and number of
legitimate users.

To cope with security threats while not trading off the EE,
CRNs can define cooperative protocols that encourage cooper-
ation among trusted CRs and keep track of the trustworthiness
of each other. We discuss this issue further in Section VII from
a social network perspective.

VII. F UTURE RESEARCHDIRECTIONS

The future directions for CR EE can be broadly divided into
two groups:

• CR-native – endogenoussuch as more energy-efficient
sensing schemes, learning frameworks or sensory data
gathering,

• Integration with other networking paradigms –exogenous
such as social networks, user behavior, and energy har-
vesting.

In this work, we focus on the latter which provides new
degrees of freedom and opens new directions for CR research.

A. Social Network Analysis (SNA)

A social network views a network as a group of nodes with
their interrelations (e.g., physical distance, contact frequen-
cies) to benefit from these structural and social ties for higher
efficiency. Taking this definition, a CRN is unquestionably a
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social network in which CRs may have various ties with others
depending on their spatial and social properties. Hence, uncov-
ering the interconnections among CRs and designing protocols
accordingly can substantially improve the CRN performance.
Fig. 5 illustrates a social network of CRs in which nodes have
different characteristics and diverse view of the same network
according to their social ties. Social graphs are key to keeping
track of both interactions and social ties among users. The
former is beneficial for estimating the structure of the network
such as connectivity and proximity of two users while the latter
may inform us about the trust among nodes and influential
nodes in the network. This information can be exploited in
designing cooperative communications with higher EE, e.g.,
cooperative sensing and cooperative learning.

Previous works on cooperative sensing largely overlook the
burden of cooperation to the individual CRs (especially in
terms of energy consumption) and implicitly assume that each
CR is cooperative. However, such a cooperative behaviour
may not be applicable in practical CRNs. For instance, a user
that does not have any active communication, runs out of
battery only because it receives sensing requests frequently
from the other CRs and consumes much of its battery on
sensing. Instead, we envision a more realistic operation scheme
in which CRs’ cooperation willingness depends on the social
ties among the users of these CR devices. Initial works show
that CRs benefit from such a social-aware cooperative sensing
scheme in which each CR selects a cooperation set based on
its friendship ties as well as the historical sensing performance
of the cooperating nodes [13], and CRs can benefit from other
CR’s recommendations on PU channels [14]. Thus, CRs are
expected to spend less effort for sensing and learning which
in turn lead to higher EE.

Environmental awareness improves the CR performance via
letting the CR proactively take the best action at the expense of
increased energy consumption due to the constant environment
monitoring. Instead, CRs can share their experiences, which
reduces this burden. However, this solution raises the following
question: To which extent a CR cantrust to the other CRs’
reports and what if the recommendations are inaccurate?
Although trust can be rather sophisticated in different contexts,
we can model trust among CRs based on their social ties (e.g.
friendship and community) and can dynamically adapt the
trust between CRs based on their interactions and feedbacks.
For example, CRs with similar profiles may have high trust
towards each other as in human societies, but may decrease if
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CRs’ sensing performance result in performance decrease. We
expect such a cooperative learning scheme to have a potential
in improving EE.

All of these discussed CR-tasks can benefit from social-
awareness to achieve higher performance (e.g., spectral effi-
ciency) at a lower energy cost, and thereby can achieve higher
EE. On the other hand, they require the CRs to share their
social information (e.g., community) which people are hesitant
to disclose for privacy concerns. Thus, social aware schemes
need to be enhanced with privacy preserving mechanisms.

B. User Behavior

The most important actor of any type of communication
network is the user. CR is a learning entity that senses and
decides based on the environment it operates. However, the
interaction between the user and the device is usually ignored.
We discuss a couple of examples from state of the art cellular
devices about how the device-user interaction can save energy,
but the arguments also apply to CR devices.

Almost all of the modern cellular devices or smart phones
come together with Bluetooth and Wi-Fi units in addition to
3G/4G. Moreover, these devices have both of these circuits
on in their factory setting. On the other hand, an average
user scarcely uses these protocols, especially Bluetooth.The
critical point is that the user does not care about the energy
consumption of these circuits unless he/she has low battery. In
addition, some users even do not know how to turn them off
to save energy. Thus, both protocols periodically seek some
pairing/association all the time. A CR device can learn and
analyze the user behavior such that when and/or where the
user employs these types of additional communication units,
and turn them off when it predicts that they are not needed.

Another example is what we call the “50% problem”. An
average user usually plugs in his/her device at night just
before going to bed for charging in order to start the next
day with full battery. The battery charging process is shown
in Fig. 6. Although modern devices have developed circuitry

for this kind of behavior, the battery life is still reduced as
it is charged for a longer period of time than required and it
is recharged before being fully discharged. Furthermore, the
circuitry still consumes a small amount of energy in the time
frame between the battery is fully charged and the user plugs
the device out in the morning. Since the number of users is
on the order of billions, even that small amount sums up to
a huge consumption. With user behavior learning, the device
can make the necessary adjustments to save energy.

C. Energy Harvesting

Energy harvesting or scavenging is basically the process by
which the energy is extracted from external ambient sources
such as RF environment, thermal variations, or kinetic energy
for improving EE or enabling energy-source free operation.
It requires two main functionalities for being practical in
wireless systems: energy generation and storage. However,
the bursty nature of wireless traffic results in large spatio-
temporal variances in system load. Additionally, the inherent
randomness in the energy harvesting and thus energy flow
prediction leads to the problem of consumption-generation
matching and storage planning.

Environment-awareness is a key enabler for optimization
of energy harvesting functionality. Considering the fact that
CRs are expected to operate in a manner that is aware of
their environment, they lend themselves to energy harvesting
paradigm with their intrinsic capabilities. For instance,Park
et al. explore how a CR with energy harvesting capability
can adapt in both spectrum-limited and energy-limited regimes
[15]. Moreover, the adaptation and learning capabilities of
CRs can be augmented with energy harvesting. The assumed
capabilities of advancedsense-decide-act-learncycle for CRs
require fundamental changes in RF, baseband, and power
management in wireless devices. These enhancements can also
be utilized for energy harvesting. At the single node level,
CRs may schedule their delay-tolerant traffic lazily according
to the location and mobility pattern of the user in order
to utilize upcoming energy harvesting opportunities in an
efficient manner. They can also be more aggressive in case
that they predict a sluggish user behavior and an increasing
energy harvesting potential in time and location dimensions.
At the network level, CRs are envisioned to be self-aware
agents communicating and cooperating with each other. In
that regard, cooperation for network-level EE may rely on
the altruistic load redistribution to make energy harvesting
sufficient for the energy-source operation of underprivileged
network nodes.

VIII. C ONCLUSIONS

In this paper, we have highlighted the challenges of de-
signing for EE in CRNs with a focus on five major trade-
offs required to be balanced: QoS, fairness, PU interference,
network architecture, and security. We have also presented
our vision for improving EE of CRNs. The social network
approach is crucial due to central role of interaction and
cooperation among CRs. The CR device can also benefit
in terms of energy by learning the user behavior and act
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accordingly. Moreover, the emerging CR capabilities can be
utilized in an energy generation perspective where efficiency
can be augmented with energy harvesting. We believe that
these research directions can enable new solutions that will
facilitate higher EE with a good strike of the listed trade-offs.
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