Energy Efficiency is a Subtle Concept: Fundamental
Trade-offs for Cognitive Radio Networks

Salim Eryigit', Gurkan Giir*, Suzan Bayhanand Tuna Tugcu
*Dep. of Computer Engineering, Bogazici University, Istaln@urkey.
Email: {eryigit, tugcd @boun.edu.tr
TProgress R&D Center, Provus Information Technologiesnlstll, Turkey.
Email: gurkan.gur@provus.com.tr
IDept. of Computer Science, University of Helsinki, Finlafi@mail: bayhan@bhiit.fi

Abstract—This paper discusses the implications of facilitating -7
higher energy efficiency in Cognitive Radio Networks (CRN) fom
the perspective of fundamental trade-offs, i.e. what need® be
sacrificed to be energy efficient? These trade-offs are ideified
as QoS, fairness, PU interference, network architecture, rad

/ PU
security, which are also essential network design dimengis. We CENERAL 7
analyze each dimension considering their interactions wit each ,/
other and with energy efficiency. Furthermore, future reseach ! ~
directions which are related to the integration of CRN with !

other networking paradigms regarding the energy efficiencyare S -
introduced and discussed. e

Efficiency
energy-demanding. This demand has been under spotlight iiue

Trust level
to environmental concerns and rising energy costs. However securiry .
ensuring high EE in a CRN setting is formidable due to the
difficulty in satisfying the competing demands of different
stakeholders such as Primary Users (PU), CRs, and the CR
operator. For example, the PUs put strict requirements on
interference and channel usage of CRs while CRs expect high = A = -
quality-of-service (QoS) from the operator, and operat@r d Fig. 1: Interaction between EE related concepts for CR.
sires low operating and management costs. This multifdcete
challenge constitutes the essence of our paper: how tod&oviiye to criticality. PU interference is a factor that is CRive
EE in CRNs while meeting the expectations of different atoand critical for CR feasibility. It interacts with QoS facto
and elements in the system? Taking this question as GQhich in turn complicates the fairness trade-off. Thereadse
motivation, we focus on five fundamental trade-offs WhiCbenerai issues such as |earning’ Compiexity’ and dynqn‘iiCit
are paramount since they affect all the constituents of CRbhich emerge when elaborating on EE trade-offs. Therefore,
design and implementation: QoS, fairness, PU interferengge distinction among trade-offs is not that clear-cut. His t

network architecture, and Security. AIthough we elabooate work, we hope to provide an insight on the EE trade-offs and
each trade-off separately, we should note that the reldt&n highlight some research endeavors.

tween these trade-offs is inextricably intertwined. Faareple,
potential solutions such as relaying for balancing EE vs. PU
interference trade-off lead us to EE vs. network architectu IIl. EEVvs. QoS
trade-off, e.g. complexity and deployment cost. The explosive growth in the use of real-time applications
The investigated trade-offs are depicted in Fig. 1 fromn mobile devices and proliferation of multimedia trafficvba
a cognitive map perspective. Deployment and network levedsulted in stricter QoS guarantees in terms of sustainable
factors can be decomposed into various sub items suchdasa-rates, packet drop limits, and delay bounds. CRNs have
offloading, heterogeneous network architecture, and irgday to address the relevant operational environment undeethes
Cooperation mechanisms in that domain affect all systemircumstances. This situation complicates EE concernsesin
level items in that figure. Security establishes anothetetra QoS requirements become harder to implement when EE
off which affects cooperation item due to trust mechanidins.requirements are also applied. The interaction between QoS
is a system-wide attribute which might override EE concerand EE is depicted in Fig. 2. It is apparent that the QoS

Energy

I. INTRODUCTION i

Energy efficiency (EE) is now at the interest of cognitiv
radio (CR) research, as networks become more and more

Cooperation
level



improvement mechanisms may be contradictory to the EE 'Vgﬁg:gﬁz;:;g
requirements. Moreover, there are also inherent compiigat QoS mechanism implementation
factors such as interference limitations, the power budget
of the CR system, and imperfect channel sensing. Hence,
this problem configuration is typically reflected in resaurc
allocation and assignment optimization works for CRNs [1]. QoS
QoS for CRNs or CR embedded networks have been ex
amined typically from the dynamic spectrum access (DSA) r
perspective. Disruptions from fundamental operationslired

in DSA protocols render deployment of QoS mechanisms

- Interference limitations
- Network dynamicity
- Power limitations
- Wireless channel

uncertainty
- Multimedia traffic

Simpler QoS mechanisms

challenging. In that regard, QoS can be considered in three —Looser QoS requirements

directions, the first being thBU-centric approachwhere the
primary focus is to protect QoS of PUs while facilitating DSA

For this purpose, probability of misdetection is importdrite not mature enough regarding experimental results fram th

. . . i
sensing and medium access mechanisms should be h|g§ S
conservative and SU-insensitive. Thus, the main con:*‘,traln,:¥N testbeds on the cost of channel switching.

is not to disturb while maintaining QoS and EE. The EE In multi-hop QRNS.' ensuring QoS becomes more challeng-
dimension is not substantially critical for this case. Theand Ing due to routing since the pathg among network.nodes are
approach is to prioritize SUs without harming PUs to ha\)_%'ghly d_gpendent on channel availability [5.]' A typlt_:al eas
a SU-centricQoS environment. For this setting, interferencl® ::obglj_mrt:ve an hot% net\_/glr:) rks whe(rjeba r((;ut_lgt% algorithm ?Ian
limitations are relaxed and the problem is more flexible. | Stablis Qolt' ﬁa ts Wi .res_erveF an t'WI th 0? adsgle ow
this case, the aim is to reduce probability of false alarm SIS In a multi-hop transmission. Forrouting, the fun

ﬁ_s mechanism is to establish bandwidth guaranteed routes

much as possible. For both of these approaches, the s | idering EE. H d icity of CRN
cific probability criterion can be reduced by either inciags while considering - However, dynamicity o S com-

signal-to-noise (SNR) ratio and/or by increasing sensimg t p||cat_es this clafss .Of solutions. Eor CRs, as the number of
and sampling frequency. As the SNR is beyond the COmljaﬁ)psmcrease_s finding a stable/reliable pa_th between titese
of the CRN and the sampling frequency is device relateaf‘d the receiver becomes more of an issue as the channel
increasing sensing time is the only viable solution. Howgyctupancy may change frequently between hops.
this also results in more energy consumption for the netywork
especially considering the periodic nature of sensing.theo I1l. EE vs. FAIRNESS
dimension is to differentiate among SUs especially wheir the
QoS requirements cannot be met. It is desirable to have thdairness for a communication system refers to the degree
spectrum access opportunity related to the user prioritydy at which users utilize a fair share of the system resources [6
belong to different priority classes [2]. A natural extemsof Since CRs allow SUs to share the spectrum with PUs in a dy-
these two former approaches is to haveyarid setting where namic manner, the fairness between SUs is crucial. Spectrum
QoS of PUs and SUs are not differentiated categorically ba¢cess and allocation methods should let each user geincerta
evaluated in a more flexible manner. amount of spectrum regardless of its spectral environment,
In centralized CRNs, once the list of available opportesiti location, or neighbor distribution. The typical trade-mifEE
are determined, the Cognitive Base Station (CBS) assigsgiting is that being unfair in certain settings can be beragfi
the spectrum opportunities using one of the above-merdiorfer EE. The basic underlying requirements are to allocate
approaches. The CBS can exploit various diversities tanattgpectrum as fairly as possible while using spectrum resourc
the highest trade-off among EE and QoS goals. Conceptualtyaximally and maintaining EE [7].
these diversity techniques can be categorized into founmai For fairness on the downlink of centralized systems, EE
groups: link diversity, spatial diversity, channel divigrsand is usually not mandatory but desired in order to adopt less
CR diversity [3]. CBS can consider the time-varying channebmplex hardware and decrease operational costs. However,
conditions and CR diversity in assigning the most favorabfer the uplink, this is usually required due to mobility and
channels. However, CRs are to operate in a wide range battery-powered operation of network end devices. The fair
frequencies, which may be spectrally distant from eachrothaess lends itself to a multiobjective optimization problgince
Overhead of channel switching have to be accounted esfyecidl is not usually considered as the sole objective for CRN
for fragmented spectrum (i.e., spectrum is non-contiguess design and operation. Thus, the fairness trade-off is aliyic
well as each channel’s throughput promise and energy demaaahibedded in QoS and resource optimization settings. For
Since a CR spends nonnegligible time in radio reconfigunatilnstance, [4] introduces aatisfaction ratiofor each SU in
for tuning to the new channel, time spent during channetder to make the scheduler fairness-aware and incorgorate
switching reflects as throughput loss. Moreover, CR consunthis term as a multiplicative term in the resource allogatio
power in channel reconfiguration, which translates intagye optimization problem. However, the trade-off between EH an
expenditure. Therefore, a channel switching should be péairness is yet to be explored adequately. The infrastractu
formed only if the new channel can provide net gains in Egharing concept is also interesting to explore this traffle-o
of this CR [4]. To the best of our knowledge, the literaturd@hat case introduces another layer of complexity wherera fai

Fig. 2: EE and QoS interaction.



PU frequencies F = {fu, fz,---. fn} CEve step of the cognitive cycle. Solutions at the sensing step

Hardware include period adaptation (considering PU traffic pattéd}) [
channel 7 \_complexity and playing with the sensing accuracy. Alternatively, a CR
aggregation can meetP]**" restriction and can control the interference via

EE vs. regulating its transmission powePy,). Given that perceived
interfF;lrJence interference at the victim node is a function Bf,, a CR can
Relayg' decrease the PU interference by decreagimg However, as
the Shannon’s formula shows, channel capacity also (loga-
A rithmically) decreases wittF,,. Consequently, both methods
complexit result in a trade-off between EE and PU interference. Avgjdi
PU caollision is not only essential to protect the PUs, bub als
—» CRixtoCRx direct link [[] Aggregated channels to avoid any retransmissions of CR traffic and to achieve the
T 7> CRuIoCRx relayink Unused channel maximum capacity of the channel. CR transmitter’s traffic
— CRtx to PU interference link D nused channets . . p y ’ .
P Transmissi A . colliding with a PU may not be decodable at the CR receiver,
.y Transmission power from transmitter x to receiver y

which in turn may require retransmission(s) due to the QoS
Fig. 3: A CR can control its interference on a PU by adjustingquirements. Hence, from the EE viewpoint, simultaneous
its sensing accuracy and power adaptation along with megayitransmission with the PU must be kept at minimum.
and channel aggregatiof;, ,, > Piy1 and Pry g > Pi g In order to change the EE-PU interference trade-off in
favour of EE, CRs can benefit from relaying [9] and channel
allocation is desired among different CRNs while satisfyinaggregation [3]. As depicted in Fig. 3, relaying lets the CR
the inherent “PU-biased unfairness”. transmit with lower power but via multiple hops while chahne
aggregation facilitates CRs to transmit simultaneously vi
multiple channels. In case some intermediate nodes reay th
CR traffic, capacity improvement due to shorter transmissio
The fundamental restriction on CR operation is that CRfistance may compensate the channel capacity loss due to
must not harm the PU communications. In other words, thiee lower P,,,. Similarly, channel capacity loss due to lower
resulting interference due to CR transmission at the nearBy, is compensated by higher bandwidth of the aggregated
PUs must be below theolerable interference limitdor un- channels. Regarding the cost, relaying may require a change
derlay CRNs, and the simultaneous transmission time wiifi the network architecture if relays are supposed to be ded-
the PUs must be considerably short for overlay CRNs. Theated devices for assisting CRs. The dedicated relay dgvic
interference arises under two cases: PU misdetection and &ktlently add to the energy consumption of the network. We
reappearance. To cope with the first case, CRs must segieuld recall that providing EE adhering to the PU interfieee
with high detection accuracy, i.e;, so that they rarely restrictions requires us to tune EE vs. network architectur
transmit with a PU simultaneously at the same channelade-off. Alternatively, each CR may serve as a relay fer th
This calls for highP;, which might be achieved by variousothers at the expense of increased energy consumption for
techniques: cooperative sensing, longer sensing duraiwh relaying. On the other hand, channel aggregation demands fo
higher sampling frequency to name a few. On the other hanflore capable hardware at the CRs. Both schemes lead to new
these highP; promising solutions may be costly in termshallenges that deserve further analysis, such as howeotsel
of energy consumption compared with a solution demandiagrelay, how to place the relays, and how to allocate power at
less reliability (lowerP; which is yet higher than minimum each channel for the optimal EE.
reliability 27" required by the PU regulations). Furthermore,
for the second case no matter how high the achielgds,
CRs may still result in PU interference due to the nature of
periodic sensing Different types of network architecture are possible for
CRNs typically operate on a frame by frame basis in whickchieving higher EE in CRNs. Almost all of these different
certain duration of the frame is dedicated for sensing aed tarchitectures try to benefit from adding additional hops or
rest for transmission. The duration between two conseeutimfrastructure layer between the CR and the core network in
sensing periods determines the performance of spectrum opder to decrease the required transmission energy of CR by
portunity discovery (thus the throughput) and resulting Ptecreasing the transmission distance. These architeatare
interference. In periodic sensing, a CR does not noticeba listed as small cells, relays, ad hoc networks, and clogte
reappearing PU until the next sensing period. Frequentragns The goal of deploying cognitive small cells is to offload user
results in increased energy consumption while improvintgaffic from the CBS to small cell access point (SAP), be it a
the sensing performance, which directly affects throughpfiemtocell or a microcell, etc. Interpreting the usage stiat
Hence, tuning the sensing and transmission durations ds weht majority of traffic originates from indoors, small cll
as the period [8] is of major concern for playing with the Ekleployed either by users or operators can provide high dspac
vs. PU interference trade-off. at small localities, e.g. home for femtocells or shopping
To account for these two cases, a CR may select to bells/airports for pico/micro cells. Small cells benefiorfr
conservative at the sensing step and/or at the transmissspatial diversity to achieve better frequency reuse thatide

IV. EE vs. PU INTERFERENCE

V. EEVS. NETWORK ARCHITECTURE



PU 4 to be effective. In a dynamic cellular network, the solusion

Interference ..
for these problems are not trivial.

RN ISR S :....'/PlainCeIIuIar Another concern about the choice of a specific network
. architecture is to decide whether to utilize internal segsi

boee AdHOC‘:‘.;_FgS‘e”":?/ - or external sensing (i.e., spectrum sensing vs. geolc_n;atio
ot g Retay A o databases). For the supporters of the latter, sensing &iti-in

(Throughput)y ~ gence can be located at the network (i.e., Radio Environment
- Maps, a.k.a. REM) instead of individual CRs. Putting the

ettty 2 S ot CI'Sma" Cell discussion aside that this approach contradicts with theree

g i of the CR, REMs have to be deployed at various scales (e.g.,

Network o Rem - country-wide or campus-coverage). Therefore, each device
ooty contributes to the energy consumption required for prasgss

cooling, and synchronization. Besides, it is not consideoe
Fig. 4: Three dimensions of CRN protocol design. be greento deploy such machines everywhere. On the other
hand, REM can ease the learning process by processing the
to a higher spectral/throughput efficiency. When coopegatigathered data by sensors (e.g., CRs or other externalesititi
sensing is employed, the energy burden for spectrum sensgi@l deriving the characteristics of the radio environmeornf
may be on the CRs served by the SAP. Furthermore, theénore complete data. Thus, a CR can improve its environment
number of handoffs a CR performs during operation increas@&areness instead of using its less complete perceptidreof t
drastically, especially for high mobility cases. We shoalso operating environment. Hence, we have to consider the-trade
mention that the handoff procedure is more complicated aBff between deployment and operating cost introduced bsethe

more energy consuming in a heterogeneous CRN comparegifities and the performance improvement (e.g., highertt§E)
a classical CRN architecture. However, cognitive smallscela more enhanced learning scheme.

can cope with the interference issue arising with the unpdn

deployment of small cells to some extent by utilizing the Regarding learning and CR'’s intelligence, we should con-
unused PU spectrum opportunities. sider environment monitoring along with the dynamicity oé t
Another alternative is to use relays together with amplifyfRF/CR environment. In other words, tracking and collecting
and-forward or decode-and-forward type of cooperative-comata on the network is beneficial only if the conclusion about
munications to save transmission energy by both decreasihg network state via the inference of the collected data
the distance and retransmissions. If CRs are used for nglayremains valid at the time of the inference. If the cognition
packets (which may not be the case as they may not kuires long-term information keeping and computatinal
willing to consume their energy for other users), they wélle long time compared with the dynamicity of the CR or PU
an additional energy consumption. Moreover, some CRs magtwork, CR decision using this obsolete inference may
become bottlenecks due to their location (it may be the ondyen hurt the CRN performance. Consequently, CRNs need
alternative for relaying) and their battery may drain répid computationally efficient learning algorithms that can kee
Even if dedicated relays are used, it has been shown thahifaster pace with the changing nature of the agents in the
the traffic load is low or channel conditions are good or theperating environment. REMs deployed at small localities
transmitter is close to the receiver, relaying may not be aad cooperative learning can be explored further for their
energy-efficient as it seems [10]. Hence, it would be betier ¢tapabilities of faster cognition.
decide whether to relay or not on a case by case basis. In a
highly dynamic environment (i.e. channel conditions) othwi  Fig. 4 presents a rough comparison of various network
highly mobile CRs, this decision induces extra overhead &pchitectures in terms of PU interference, network archi-
the network. Another problem with relaying is that the timgecture complexity, and CR throughput. This analysis may
it takes for successful transmission is doubled. This may nehange based on specific equipment, communication proto-
be feasible for some applications. The delay also increiisegsols and technology. All issues related to traditional ad ho
relaying is performed in a multi-hop manner. networks and clustering apply to the cognitive countegpart
Both of the discussed approaches bring an additional layeith the challenge of establishing a reliable common con-
to the system. The monetary and energy cost of operatimgl channel. These architectures are simple but their un-
additional hardware, like relays or SAPs, is usually neigiéc controlled/distributed operation may degrade CR perforrea
However, it is known that idling (waiting idle for possibleand can have difficulty in efficiently managing PU inter-
packet reception) consumes almost as much energy as fegence. Assuming that REMs implement efficient learning
ception [11]. Therefore, clever mechanisms are needed foechanisms and store up-to-date information, they provide
reducing operating costs such as sleep scheduling, which fiigh throughput at the expense of high complexity. Plain
duces additional overhead together with decreased thpuigh cellular network with high power transmitters creates more
This should then be considered from an EE vs. QoS trade-Bff) interference whereas small cells achieve high throughpu
viewpoint. Moreover, the locations and the number of thesad low interference owing to offloading and close proximity
additional network components should be selected cayefulb SAP.



Weak ties

VI. EE vs. SECURITY <

Equipping CRs with security protocols requires taking some @—3) .- Strong ties
precautions, which result in additional processing botthat i
transmitter and the receiver. In secure environmentsethes o

cautions may seem to decrease the EE of the network as each Utility of the link between node 2

entity spends processing power/time and some of the channel and node 3. _
capacity for transmitting these authentication and iritegr A S AR I (oo e
H H H - Degree centrality - Remaining battery
messages. On the _other hf';md, in problema!tlc environments " Ego centrality " Sensing reiabity || Nodes 2, 3: Bridge
with malicious or misbehaving nodes, security mechanisms, - Friendship - Channel conditions || noges connecting the
- Community - QoS requirement two ends of the network

although resulting in overhead, may improve EE by avoiding
interactions with malicious users and appropriately detgc Fig. 5: A CRN as a social network with different social ties.
the misbehaving nodes. For example, a CR with its security ) ) ) ) )
protocols may detect PU emulation attacks and can use gagial network in which CRs may have various ties with others
idle spectrum that would be wasted without an attack demectidePending on their spatial and social properties. Henaegwn

mechanism. Hence, effect of security precautions on CRN m@§jnd the interconnections among CRs and designing pristoco

be intricate if assessed from an EE viewpoint. accordingly can substantially improve the CRN performance

Security attacks can be generated either by an insider adjf- 5 illustrates a social network of CRs in which nodes have
spectrum sensing data falsificatigknown as SSDF attack) in different characteristics and diverse view of the same ogw
cooperative spectrum sensing, or by an external entity as3fcording to their social ties. Social graphs are key to igep
PU emulation attacksin the latter, the attacker emulates thd@ck of both interactions and social ties among users. The
PU signal to block CR transmission and instead transmittf its’"Mer is beneficial for estimating the structure of the raiw
at the idle spectrum band. All widely-recognized attacka aiSUCh @s connectivity and proximity of two users while thesiat

to collapse the CRN's sensing capability. These attacksemdRaY inform us about the trust among nodes and influential

the CRN fail at the very early stage of cognitive cycle (i.e_nodes in the network. This information can be exploited in

sensing) because of the shortage of transmission opptesini deSignir‘Q cooperative communications with higher EE, e.g.
Malicious users tend to report the existence of PU. AlthahibCOOPerative sensing and cooperative learning.
et. al. determine the optimal number of security bits in a "'€vious works on cooperative sensing largely overlook the
message for attaining the highest trade-off between atairPUrden of cooperation to the individual CRs (especially in
security level and EE for a CRN subject to SSDF attacks [13fTMS Of energy consumption) and implicitly assume thaheac
Optimal number of security bits depends on the fusion rule &% 1S cooperative. However, such a cooperative behaviour
the fusion center, number of SSDF attackers, and number B Not be applicable in practical CRNs. For instance, a user
legitimate users. that does not have any active communication, runs out of
To cope with security threats while not trading off the EE?ary only because it receives sensing requests freguent
CRNs can define cooperative protocols that encourage coo;ffaqm the other CRs and consumes much of its battery on

ation among trusted CRs and keep track of the trustworthine§nsing- Instead, we envision a more realistic operatiberse
of each other. We discuss this issue further in Section \etirfr N Which CRs’ cooperation willingness depends on the social
a social network perspective. ties among the users of these CR devices. Initial works show

that CRs benefit from such a social-aware cooperative sgnsin
scheme in which each CR selects a cooperation set based on
its friendship ties as well as the historical sensing penforce
The future directions for CR EE can be broadly divided intef the cooperating nodes [13], and CRs can benefit from other
two groups: CR’s recommendations on PU channels [14]. Thus, CRs are
« CR-native — endogenousich as more energy-efficientexpected to spend less effort for sensing and learning which
sensing schemes, learning frameworks or sensory déidurn lead to higher EE.
gathering, Environmental awareness improves the CR performance via
« Integration with other networking paradigm®&xogenous letting the CR proactively take the best action at the expefs
such as social networks, user behavior, and energy hereased energy consumption due to the constant envinanme
vesting. monitoring. Instead, CRs can share their experiences,hwhic

In this work, we focus on the latter which provides nevgduces this burden. However, this solution raises theviatig

degrees of freedom and opens new directions for CR resea@igstion: To which extent a CR carust to the other CRs’
reports and what if the recommendations are inaccurate?

) ) Although trust can be rather sophisticated in differenttexts,

A. Social Network Analysis (SNA) we can model trust among CRs based on their social ties (e.g.
A social network views a network as a group of nodes witlliendship and community) and can dynamically adapt the
their interrelations (e.g., physical distance, contaegfien- trust between CRs based on their interactions and feedbacks

cies) to benefit from these structural and social ties fohéiig For example, CRs with similar profiles may have high trust
efficiency. Taking this definition, a CRN is unquestionably towards each other as in human societies, but may decrease if

VIl. FUTURE RESEARCHDIRECTIONS



for this kind of behavior, the battery life is still reduced a

it is charged for a longer period of time than required and it
is recharged before being fully discharged. Furthermdre, t
circuitry still consumes a small amount of energy in the time
frame between the battery is fully charged and the user plugs
the device out in the morning. Since the number of users is
on the order of billions, even that small amount sums up to
a huge consumption. With user behavior learning, the device
can make the necessary adjustments to save energy.

Start the day with
less than full
battery

Start the day with
full battery

Morning

I Usage during I
— — theday _ __ __
Starting with full battery, | |

already consumed half of it
in one day. Tomorrow would

be a similar day, so this I

battery will not last for I NO
tomorrow, and | do not want

to recharge during the day I

because | will be on the

move/l do not want to carry
an extra battery or my
charger all day.

C. Energy Harvesting

NO Night Energy harvesting or scavenging is basically the process by
l which the energy is extracted from external ambient sources
such as RF environment, thermal variations, or kinetic g@ner
Geor's chargmy for improving EE or enabling energy-source free operation.
decision It requires two main functionalities for being practical in
wireless systems: energy generation and storage. However,
o= the bursty nature of wireless traffic results in large spatio
g%oe0 ) . " :
temporal variances in system load. Additionally, the irgmér
randomness in the energy harvesting and thus energy flow
CRs'’ sensing performance result in performance decrease. p¥ediction leads to the problem of consumption-generation
expect such a cooperative learning scheme to have a pdtentiatching and storage planning.
in improving EE. Environment-awareness is a key enabler for optimization
All of these discussed CR-tasks can benefit from socialf energy harvesting functionality. Considering the fduatt
awareness to achieve higher performance (e.g., specfiral €Rs are expected to operate in a manner that is aware of
ciency) at a lower energy cost, and thereby can achieve higlieeir environment, they lend themselves to energy hamvgsti
EE. On the other hand, they require the CRs to share thparadigm with their intrinsic capabilities. For instanégrk
social information (e.g., community) which people are tegdi et al. explore how a CR with energy harvesting capability
to disclose for privacy concerns. Thus, social aware sceBenuan adapt in both spectrum-limited and energy-limitedmess
need to be enhanced with privacy preserving mechanisms.[15]. Moreover, the adaptation and learning capabilitiés o
CRs can be augmented with energy harvesting. The assumed
B. User Behavior capabilities of advancesense-decide-act-leacycle for CRs
hequire fundamental changes in RF, baseband, and power
nagement in wireless devices. These enhancements oan als
utilized for energy harvesting. At the single node level,

Is battery below
50%7?

Plug in for
charging before
going to bed

A
<
m

N

Fig. 6: Typical user behavior for mobile device chargin
problem).

The most important actor of any type of communicatio
network is the user. CR is a learning entity that senses g
decides based on the environment it operates. However,a&% _ ' . .
interaction between the user and the device is usually ehor S may schedule their d_e_lay-tolerant traffic lazily qcmgd
We discuss a couple of examples from state of the art cellulSr the location and mobility pattern of the user in order

devices about how the device-user interaction can savggne Oﬁ. u_t|I|zte upcomlr_lr% energy ?arvsstlng opportunlt!es n-an
but the arguments also apply to CR devices. efficient manner. They can also be more aggressive in case

Almost all of the modern cellular devices or smart phoneﬂgat they predict a sluggish user behavior and an increasing

come together with Bluetooth and Wi-Fi units in addition tGneray harvesting potential in time and location dimension

3G/4G. Moreover, these devices have both of these circdﬁg the network I_eve_l, CRs are enV|5|_oned_t0 be self-aware
on in their factory setting. On the other hand, an avera ents communicating and cooperating with each other. In

user scarcely uses these protocols, especially Bluetddid. hat rega_lrd_, cooperatlpn -for.network-level EE may rely on
critical point is that the user does not care about the ene -a-ltrwstlc load redistribution to make energy har_\@;tl
consumption of these circuits unless he/she has low battery ufficient for the energy-source operation of underprjeie
addition, some users even do not know how to turn them &?twork nodes.
to save energy. Thus, both protocols periodically seek some
pairing/association all the time. A CR device can learn and VIII. CONCLUSIONS
analyze the user behavior such that when and/or where thén this paper, we have highlighted the challenges of de-
user employs these types of additional communication unigggning for EE in CRNs with a focus on five major trade-
and turn them off when it predicts that they are not neededffs required to be balanced: QoS, fairness, PU interferenc
Another example is what we call the “50% problem”. Ametwork architecture, and security. We have also presented
average user usually plugs in his/her device at night justir vision for improving EE of CRNs. The social network
before going to bed for charging in order to start the nesgipproach is crucial due to central role of interaction and
day with full battery. The battery charging process is showeooperation among CRs. The CR device can also benefit
in Fig. 6. Although modern devices have developed circuitip terms of energy by learning the user behavior and act



accordingly. Moreover, the emerging CR capabilities can bf] S.-S.Byun, I. Balasingham, and X. Liang, “Dynamic speut allocation

utilized in an energy generation perspective where effggien

can be augmented with energy harvesting. We believe that
these research directions can enable new solutions thht wis]

facilitate higher EE with a good strike of the listed tradéso
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