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ABSTRACT
An accurate traffic matrix (TM) is essential for network design,
management and optimization. Software-defined networking (SDN)
provides flow level statistics with global centralized control which
enables construction of more accurate traffic matrices. However, re-
trieving all the flow statistics can cause a very significant overhead
in the system. In this work, we propose an inference framework
which utilizes Kalman filtering to create an accurate and timely
traffic matrix. In our scheme, only a small number of flow statistics
are measured at a time, yet the estimate of the TM is highly accu-
rate. Besides, we propose a switch selection strategy which aims
to minimize the entropy of the estimate, that is to maximize the
information obtained by the estimation. Using simulation-based
experiments, we show that our framework provides a very accurate
TM estimate compared to the one constructed by using all the flow
statistics in the network.
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1 INTRODUCTION
A traffic matrix (TM) stores all the flow rates for each pair of source
and destination nodes in a network. Constructing a TM for a net-
work is an active research topic since the emergence of data and
communication networks. This interest mostly stems from the fact
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that an accurate TM is the key for solving many problems such as
mitigating network congestion and anomaly detection. In addition,
having the knowledge of an accurate network TM significantly
eases the process of performance measurement and traffic engi-
neering. For such reasons many researchers, especially network
engineers, have a great interest in themethods of obtaining accurate
TM information with reasonable overhead.

The Software-Defined Networking (SDN) paradigm [8] provides
useful methods for obtaining more network information regarding
TM. Using SDN, the number of packets matching specific rules can
be stored in network devices. One such rule might consist of source
IP, destination IP, source port, and destination port tuples. As a
result, with such rules, specific flow attributes can be calculated or
accurately estimated for a time interval. In SDN, switches can be
queried for flow statistics, that is, the number of packets which have
passed through the queried switch up to that time point. Moreover,
matching rules can be added or removed by the controller via a
protocol such as OpenFlow.

Even though SDN can greatly ease the process of obtaining flow
information, a computational challenge still exists. To construct an
accurate TM, one needs to observe nearly all network devices to
obtain each flow information. However, querying so many switches
may impose a communication and computation overhead and such
approach is not scalable for large networks. Another method would
be to add the necessary flow rules to a few number of switches and
periodically query them to obtain statistics regarding TM. Neverthe-
less, such approach has its flaws too. The switches can only capture
the flows passing through them and repetitively querying the same
switches could disrupt their operation. Furthermore, the number of
rules matching the flows is usually too large to be stored in valuable
and limited Ternary Content Addressable Memory (TCAM). Given
these conditions, a reasonable approach could be querying a small
subset of switches which is changed over time without introducing
new flow table rules.

In this paper, we propose a framework to infer the network traffic
matrix using only the available partial information. Our approach
utilizes Kalman filtering for constructing an accurate TM. We con-
sider time-varying property of TMs and estimate the current TM
by using our previous measurements. We also provide an entropy-
based switch selection strategy for the measurement part. The goal
of our selection strategy is to find the switch subset that maxi-
mizes the certainty of the TM computed by the Kalman filter. We
show that our method estimates a TM from partial measurements
accurately compared to the full measurement case.

The rest of the paper is organized as follows: Section 2 gives an
overview of network state estimation techniques and approaches.
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In Section 3, we present the problem statement. Our model and
methodology are explained in Section 4. In Section 5, we discuss
some possible extensions and application areas of our method. Our
experiment design and results are described in Section 6. Finally,
Section 7 concludes the paper.

2 BACKGROUND AND RELATEDWORK
Traffic matrix (TM) estimation in operational networks is attracting
a lot of research effort recently. The approaches for this task can
be divided into two domains: i) traditional IP network methods
and ii) SDN-based methods. In general, traditional methods make
use of link loads to estimate the TM. Those loads can be retrieved
via a protocol such as SNMP[2]. For modelling TM, traditional ap-
proaches define three different types of models as temporal, spatial
and spatio-temporal[18]. In temporal models, the difference of flows
between different time points are analyzed, such as in [14]. In spa-
tial models, the focus is on the flow between source and destination
[22]. In spatio-temporal models, both time varying and distance
related properties of network traffic are considered [23], [21]. There
are also machine-learning based methods for TM estimation, such
as [12] which utilizes deep learning. Although the models defined
in these studies are generally applicable, we can acquire much more
accurate TMs by making use of SDN paradigm. Thus, we focus
on the studies regarding TM estimation in SDN environment in
the remaining part of this section. For more detailed information
regarding traditional TM estimation methods, please refer to the
study in [18].

A study where SDN is used to obtain traffic matrix is conducted
by Jose et al. in [7]. They mainly focus on the trade-off between
state accuracy and switch overhead in this work. They propose
to sacrifice some of the accuracy in favor of less overhead. An-
other study regarding TM estimation in SDN environment is con-
ducted by Tootoonchian et al. in [17]. The estimation system in
that work is called OpenTM since it estimates the traffic matrix
(TM) in OpenFlow networks. OpenTM uses a subset of switches for
obtaining flow statistics. It proposes different approaches to choose
the appropriate switches to query, such as uniformly-random selec-
tion, non-uniform random selection, and least-loaded switch selection.
The results show that the strategies which give priority to the
switches that are closer to the destination point perform much bet-
ter compared to alternatives. On the other hand, querying based on
the least-loaded switches increases the performance while causing
worse state estimations.

A recent study for monitoring network utilization is FlowSense
by Yu et al. [20]. FlowSense does not query the switches at pre-
defined time intervals like OpenTM. Instead, it uses PacketIn and
FlowRemoved messages to estimate link utilization. In OpenFlow,
these messages are sent by the switches to the controller when
a new flow starts and a flow expires, respectively. Although this
approach enjoys high performance when the network is stable, it
suffers in large networks. This is due to the fact that flows arrive
at high rates in these systems, causing a large number of control
packets which impose significant overhead.

Another study in network trafficmeasurement topic is conducted
by Atary and Bremler-Barr in [1]. In that study, a framework called
GRAMI (Granular RTT Measurement Infrastructure) is presented.

GRAMI provides Round-Trip Time (RTT) measurements across any
switches in the network. It uses pre-selected vintage points and
turns them into monitoring points, which use active probing to
measure the network traffic. Since probes are sent by such moni-
toring points, OpenFlow controller in the system is not used for
the online monitoring function. Therefore, the overhead in the
controller plane is highly reduced.

Gong et al. [5] focus on the problem of trafficmatrix estimation in
SDN under the network resource constraints such as TCAM entries
and processing power. The authors suggest two novel strategies
for generating rules that are to be installed on TCAM entries of
SDN switches. One of these strategies is called Maximum Load Rule
First (MLRF) which selects the rule with largest load, and creates a
new rule that transfers approximately half the load of old rule to
itself. The second strategy is called Large Flow First (LFF) which
aims to measure the largest flows to achieve a better estimation of
the traffic matrix. Based on the simulation results, these strategies
seem to achieve feasible and accurate traffic estimation.

Another study regarding traffic matrix estimation using SDN is
conducted by Polverini et al. in [13]. The study focuses on Internet
Service provider (ISP) networks and uses SDN paradigm to propose
a method for estimating TM in such networks. The authors make
use of a concept named flow spread. Considering the solution space,
the difference between the maximum and the minimum values of a
flow is defined as the flow spread of that flow. Then, the method
selects which flows are more important and should be queried
based on that parameter. However, the study considers IE (Ingress-
Egress) TM in themodels. Thus, amethod for estimatingOD (Origin-
Destination) TM in SDN environment is still an open problem.

3 PROBLEM STATEMENT
In this section, we construct the traffic estimation problem in a
mathematical formulation for laying out the purpose of the pro-
posed framework. Consider a network with n hosts andm switches.
Let x be the vector representation of the TM where x i is the rate
of OD flow i . An OD flow is defined as the traffic between a pair
of source and destination hosts. The length of x is the number of
possible OD flows which is c = n(n − 1)1. Let r be the total number
of the rules in all flow tables and y denote the vector of all flow
statistics corresponding to these rules. The idea here is the amount
of change in the flow statistics vector y in a certain time interval
can be described by superpositions of the elements of the TM vector
x.

yt+1 = yt + ∆tAxt (1)

For the sake of simplicity, we henceforth assume ∆t is fixed and
equal to 1. We also assume that flows are not bifurcated, that is,
a single flow between a source node and destination node passes
through only one single path. The matrix A can be constructed
by using the routing information and the rules in the flow tables,
which are available via software-defined networking. The element
Ai j is 1 if the OD flow j passes through the switch that the rule i
belongs to and the rule i matches the flow, and 0 otherwise. We

1We consider a single aggregate macroflow between end-points and do not discern
different microflows.
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can see A and y can be easily expanded by port statistics by adding
imaginary rules matching input ports of the flows.

Only a small number of elements of y can be measured at a
time since measuring all the elements y is most likely to introduce
impractical overhead. Let z be the vector of measured flow statistics
calculated by the following formula,

zt = Mtyt + ϵt (2)

Here ϵt is the measurement error andM is a binary matrix which is
to say, it has a single entry of 1 in each row and each column, and 0s
elsewhere. In a full measurement,M becomes a r × r permutation
matrix. Our first goal is to compute the joint posterior distribu-
tion, p (xt ,yt |,z1:t ,M1:t ) of the flow statistics and the underlying
OD flows given all the previous measurements. Here we use the
notation a1:t :={a1, . . . ,at }.

Now suppose we are given a set of measurement matricesM. At
each time step we are supposed to use one of the matrices in this set
for measurement. Our second goal is to identify the matrixM∗ ∈ M
to be used in the next measurement which makes the estimate the
most certain. To put into a more formal manner, we want to find
Mt+1 whichminimizes the entropy ofp (xt+1,yt+1 |z1:t ,M1:t ,Mt+1),

M∗ = argmin
Mt+1

{
h(p (xt+1,yt+1 |z1:t ,M1:t ,Mt+1))

}
(3)

where h(·) denotes the entropy of a probability density function.

4 METHODOLOGY
Our methodology can be analyzed in three main parts: i) the system
model which is used to model the network traffic and the measure-
ments, ii) the Kalman filtering approach for traffic estimation, iii)
the switch selection strategy which improves our estimations.

4.1 System Model
We model the temporal evolution of the OD flows as a hidden
Markov process. That is, given the current OD flows xt , the future
OD flows xt+1 are independent of all the previous OD flows. Ad-
ditionally, we assume xt+1 is a linear combination of the current
flows perturbed by a Gaussian white noise νt ,

xt+1 = Cxt + νt (4)

In most of the cases the OD flows are independent, therefore we
can think of C as an identity matrix. In this case, the model becomes
a Wiener process which has the self-similarity property, one of the
main characteristics of flows in network traffic, as shown in [3] and
[10].

Using this notation, we design a state space model (SSM) that
describes the evolution of the flows and the flow statistics. We
define the state vector st as the composition of xt and yt . The state
vector is the latent variable of the SSM since it cannot be measured
directly. The transition matrix F of the SSM could be constructed
by combining the matrices C and A. We can illustrate st and F with
the block matrix representations,

F =

[
C 0
A I

]
, st =

[
xt
yt

]
(5)

Here 0 is a c × r zero matrix and I is r × r identity matrix. The state
vector st evolves according to the following linear system,

st+1 = Fst +wt , wt ∼ N (0,Q) (6)

The transition noise wt is a zero mean Gaussian process with
covariance matrixQ. The upper left c×c part ofQ captures the flow
correlations and fluctuations. The lower right r × r part indicates
the reliability of flow statistics. For instance, if a switch is prone
to malfunction, the flow statistics provided by this switch are not
reliable and therefore the corresponding entries in Q are large.

Lastly, we construct proper measurement matrices Ht for the
SSM model. We simply add c columns of zeros to the left hand side
of aforementionedMt matrices,

Ht =
[
0 Mt

]
(7)

We cannot measure the values of OD flows, that is why the left part
of Ht consists of zeros, and the OD flows must be inferred from the
noisy measurements of flow statistics,

zt = Ht st +mt , mt ∼ N (0,R) (8)

We assume the measurements are obtained with an error mt pos-
sibly caused by the latency or the traffic created by the controller.
Nevertheless, the accuracy of the measurements are usually quite
high in practical SDN. Thus, we expect that the values in the co-
variance matrix R are small.

4.2 Kalman Filtering
We now introduce our Kalman filtering approach that infers the hid-
den state st , the OD flows and the flow statistics, from the available
information z1:t . In a state space model the posterior distribution
p (st |z1:t ) can be expressed by two recursive equations which are
called prediction and update. The predicted prior distribution can
be obtained by using the Markov property,

p (st |z1:t−1) =
∫

p (st |st−1)p (st−1 |z1:t−1) (9)

And the prior distribution can be updated via Bayes rule when zt
becomes available,

p (st |z1:t ) =
p (zt |st )p (st |z1:t−1)

p (zt |z1:t−1)
(10)

Since our model is a linear Gaussian SSM, the prediction (9) and
update (10) equations linearly transform a Gaussian distribution
to another one. Therefore we are able to compute the mean and
the covariance matrices of p (st |z1:t−1) and p (st |z1:t ) optimally by
using the Kalman techniques. Let st |t−1 and Pt |t−1 denote the
mean and the covariance matrix of the predicted prior distribution
p (st |z1:t−1) and similarly let st |t and Pt |t denote the mean and
the covariance matrix of the updated distribution p (st |z1:t ) after
the measurement. The Kalman filter calculates these variables in
an online manner, i.e. it only requires the previous state estimate
st−1 |t−1 and its covariance matrix Pt−1 |t−1. The Kalman filter [6]
can be summarized as follows,
• Prediction Phase: The state vector and the covariance ma-
trix are predicted by using the transition model,

st |t−1 = Fst−1 |t−1 (11)

Pt |t−1 = FPt−1 |t−1F
T + Q (12)
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• Update Phase: The state vector and the covariance matrix
is updated by combining the prediction and the information
obtained through the measurement

Gt = Pt |t−1H
T
t (R + HtPt |t−1H

T
t )
−1 (13)

st |t = st |t−1 + Gt (zt − Ht st |t−1) (14)
Pt |t = (I − GtHt )Pt |t−1 (15)

The basic idea behind the Kalman filter is to estimate the state
as a weighted average of the predicted state and the measured
state. The weights (the Kalman gain G) are calculated using the
covariance matrices such that the more certain values have larger
weights, and therefore the new state obtained by the weighted
average is closer to the more trusted values. For details, please refer
to [6].

4.3 Switch Selection
The Kalman filter does not require a fixed measurement matrix
Ht . Therefore, another problem is how to choose the matrix Ht+1
to be used in the next measurement. Here we want to construct a
Ht+1 so that after measurement we obtain the most certain state
estimate. Obviously measuring all the elements in the state vector,
i.e. using (c + r ) × (c + r ) identity matrix as Ht+1 gives the most
certain estimate. However, querying all the switches is a costly
operation, therefore we are constrained to select a small number (a
subset) of switches at a time, say k switches.

Assume we have a set H of measurement matrices for all the
combinations of the switches. Calculating the entropy for each
matrix in H and choosing the one that minimizes the entropy is
not a feasible solution due to the exponentially growing cardinality
|H| =

(m
k

)
. Instead, we use the following greedy algorithm, namely

min-entropy switch selection, to find a suboptimal solution,

Algorithm 1Min-Entropy Switch Selection

H∗ ← [ ] # Empty Matrix
for i = 1,2, . . . ,k do
min_h ← h(p (st+1 |H∗))
for j = 1,2, . . . ,m do

H̃←
[
H∗

H(j )

]

if h(p (st+1 |H̃)) < min_h then
Ĥ← H̃
min_h ← h(p (st+1 |H̃))

end if
end for
H∗ ← Ĥ

end for

Here H(j ) is the matrix used to measure the flow statistics in
the flow tables of switch j, and h is the following function that
calculates the entropy of p (st+1 |H̃),

h(p (st+1 |H̃)) =
1
2
ln( |2πePt+1 |t+1 |) (16)

where | · | denotes the determinant operation. We do not need the
value of the measurement to calculate Pt+1 |t+1, therefore we can

use the Kalman equations as if the state vector is measured by Ĥ to
obtain Pt+1 |t+1 as seen in Equations (13)-(15).

The Algorithm 1 constitutes a query list ofm switches inm steps.
In each step, it calculates the amount of decrease in the entropy to
be gained for each switch when the switch is added to the query
list, then it adds the best switch. We note that the algorithm tries
to form a list of switches having mostly independent flow statistics.
In other words, it is unlikely that the algorithm adds a switch to
the list whose flow statistics can be calculated by the flow statistics
of the other switches already in the list.

We can also determine the number of switches to be queried
with an adaptive strategy. In this case, we start with an empty query
list, and we continue to add switches to the list until the entropy
decreases below a given threshold. We can make the Algorithm 1
perform this adaptive strategy by simply changing the outer for
statement with a while statement whose condition ismin_h < τ
where τ is the threshold.

5 DISCUSSION AND EXTENSIONS FOR KEY
USE-CASES

In this section, first we discuss how the Kalman parameters can
be learned by using Markov Chain Monte Carlo (MCMC) methods.
Then we demonstrate how the marginal likelihood computed by
the Kalman filter can be used to detect anomalies. Lastly we show
how to build a robust Kalman filter in dynamic networks where
topology changes over time.

5.1 Parameter Estimation
In our framework, we need to know the initial state s0 |0 and its
covariance P0 |0 as well as the covariance matrices of the transition
and the measurement models, Q and R, to apply the Kalman filter.
Let θ denote these unknown parameters. The posterior distribution
of θ given all the measurements can be written in terms of the
likelihood and the prior distributions using Bayes rule,

p (θ |z1:t ) =
p (z1:t |θ )p (θ )

p (z1:t )
(17)

The computation of the denominator is known to be hard. In fact,
it usually does not have an analytical solution. Nevertheless, the
Metropolis-Hastings method (MH) [16] allows us to draw samples
from p (θ |z1:t ) using unnormalized p (z1:t |θ )p (θ ). MH draws can-

Algorithm 2 Metropolis-Hastings for Parameter Estimation

θ (0) ∼ q(·)
for i = 1,2, . . . do
θc ∼ q(·|θ (i−1) )

α ←min
(
1,

p (z1:t |θc)p (θc)
p (z1:t |θ (i−1) )p (θ (i−1) )

q(θ (i−1) |θc)

q(θc |θ (i−1) )

)
u ∼ U (0,1)

θ (i ) ←



θc, if u ≤ α

θ (i−1) , otherwise
end for

didate samples from a proposal distribution q(·|θ (i−1) ) and then
accepts the samples with a probability α . After a burn-in period,
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MH produces samples from the target distribution p (θ |z1:t ). In Al-
gorithm 2, we run the Kalman filter for each sample θ to calculate
the marginal likelihood p (z1:t |θ ). In Kalman filtering, p (z1:t |θ ) is a
product of Gaussian densities and can be computed recursively as
follows,

p (z1:t |θ ) =
t∏
i=1

p (zi |z1:i−1,θ ) (18)

=

t∏
i=1
N (zi ;Hi si ,Si ) (19)

where Si := R + HtPt |t−1HT
t . At each time step, the marginal

likelihood is updated by the density of the new measurement [16].

5.2 Anomaly Detection
The marginal likelihood p (z1:t |θ ) provided by the Kalman filter can
also be used to detect abrupt flow related changes and inconsis-
tencies in a network. After obtaining the new measurement zt , we
calculate the probability of measuring zt given previous measure-
ments, p (zt |z1:t−1) = N (zi ;Hi si ,Si ), and check if the probability is
below a given threshold. If the probability is too small, it means that
the measured flow statistics are not normal and cannot be explained
by the current state and the model. Furthermore, by looking at the
state covariance Pt |t we are able to find the responsible switch. For
instance, we measure a packet count of a certain rule in a flow table
and observe that the packet count is reset to zero, although the
state estimate says that there is an active flow matching with the
rule. This may indicate the corresponding switch is malicious or
malfunctioning. That capability enables utilization of our scheme
for monitoring various network requirements such as security and
availability.

5.3 Estimation in Dynamic Networks
The proposed scheme is highly flexible for addressing dynamic
networks with changing structure, flows and management mech-
anisms since the Kalman filter allows the transition matrix F to
be changed over time. This property enables us to build a scalable
and robust Kalman filter. In our method, whenever the state of the
network is changed or some rules in the flow tables are updated,
we update the transition matrix F. For example, suppose a new
switch is connected to the network, and in response, the controller
updates the rules in the flow tables to change the routing. In this
case, first we wait until the rules are updated, then we construct
a new F. During this transitional period, we may skip a couple of
measurements in our scheme, which is also allowed by the Kalman
filter.

We note that in the networks where the number of hosts is
large but the number of active flows is small, F and Pt |t become
extremely large sparse matrices since they grow at the order of
O (n4). However, this problem can be easily mitigated by using
sparse matrix computations.

6 EXPERIMENTS
In this section, we explain our experiment design and environment.
We provide our experimental results and evaluate our method by
comparing it to alternative techniques.

6.1 Experiment Design
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Figure 1: The random topology used in the simulations. The
red circles represent switches and the green squares repre-
sent hosts.

In our experiments, we utilizedMininet [9] to simulate a software-
defined network consisting of switches supporting OpenFlow v1.3
specification [11]. We created a random topology with 15 switches
and 15 hosts using Watts-Strogatz graph model [19]. The experi-
mental topology is shown in Figure 1, where red circles and green
squares represent switches and hosts, respectively. We generated
flows between each pair of hosts using the tool iperf [4].

We built our SDN application on top of Python-based Ryu [15]
controller. Our application first detects the network topology and
adds the routing rules (in-port,destination-mac) to the flow tables
according to the shortest path algorithm. Subsequently, it starts to
periodically query the switches and construct the traffic matrix at
fixed time intervals (in our experiments ∆t = 10 seconds). After
gathering the packet counts, the controller estimates the TM by
using the Kalman filtering scheme explained in Section 4.2. Then it
decides the subset of switches to be queried in the next cycle. The
overall mechanism is depicted in Figure 2.

Figure 2: Overview of the inference mechanism.
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We adopted a simple transition and measurement model in the
experiments. In our model, the initial packet rates of OD flows are
independent and normally distributed with mean µ0 and variance
σ0. They fluctuate independently and normally with variance σ 2

ν .
The packet count vector yt is a zero vector, because we reset all the
count values to zero in the flow tables at the initialization step. The
measurement errors of the packet counts are independent white
noises with variance σ 2

ϵ . Using these simplifications, we constructed
the parameter set of the Kalman filter as θ = {µ0,σ0,σν ,σϵ }.

We generated flows for two hours and recorded all the packet
counts in the flow tables. In order to test the stability of our method,
we deliberately kept all the virtual switch processors busy for 10
seconds in the second hour, which made some switches malfunction
and unable to properly count the packets. As a result, we obtained
packet counts inconsistent with the linear system in (1).

We used the first hour of the trace to learn the Kalman parame-
ters. We ran the Metropolis-Hastings (Algorithm 2) to sample from
p (θ |z1:t ) in (17). At each iteration, we ran the Kalman filter with the
complete measurement matrix (r × r identity matrix) to calculate
the likelihood in (18), and we used a uniform prior of θ . We gener-
ated 32K samples and discarded first 2K as burn-in samples. After
that, we constructed the approximation p̃ (θ |z1:t ) and we chose the
sample θ∗ which produces the maximum likelihood. We do not
here include the plots of the marginals of p̃ (θ |z1:t ) due to the lack
of space.

We used the second hour of the trace to evaluate our inference
framework. We simulated our application as if it ran on a network
where the packet counts in the flow tables were the same as the
ones in the trace. We used three strategies for switch selection:
Round-Robin, Random and Min-Entropy. In Round-Robin, we gen-
erate a random permutation of the switches and select the subset
of switches in circular order, in Random, we choose the subset uni-
formly at random, and inMin-Entropy we use the method described
in Section 4.3. We ran the simulation for different sizes of the query
list, k = 1, . . . ,10. We recorded the TM vectors xt in (14) for each
time step, strategy and size of the query list. Lastly, we repeated
the experiment N = 100 times to reduce the random variation in
Round-Robin and Random strategies.

6.2 Experimental Results
We construct a baseline TM by using all the packet counts for
each time step. In our case, the routing matrix A in (1) is a full
rank matrix with more rows than columns. The linear system (1) is
overdetermined and in general has no solution. Thus, we want to
find the approximate TM which best fits the packet counts in the
trace.

bt = argmin
xt



(yt+1 − yt ) − Axt 

2 (20)

The least squares problem in (20) could be solved using A†, the
Moore-Penrose pseudoinverse of A, which can be algebraically
formulated as follows,

bt = A† (yt+1 − yt ) (21)

= (ATA)−1AT (yt+1 − yt ) (22)

In Figure 3, we depict the packet rate estimates of a specific
OD flow along with the baseline rate. The estimates are calculated
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Figure 3: Estimated and baseline packet rates of a specific
OD flow. (for k = 5⇒ 33.3%)

by three switch selection strategies querying only 5 switches at a
time. For better visualization, we only show a short time interval
from t = 250s to t = 600. We see that all the strategies are able
to track the baseline flow. However, the Min Entropy estimate is
much closer to the baseline than the other estimates for most of the
time. Moreover, the deviations of Random and Round Robin from
the baseline become quite large at some time points.

We evaluate the overall performance of our inference framework
by using the relative root-mean-square error (RRMSE) metric,

E =

√∑N
j=1
∑c
i=1
∑T
t=t0 (x

i,j
t − b

i
t )
2√

N
∑c
i=1
∑T
t=t0 (b

i
t )
2

(23)

Here the superscript j denote the trial number and N is the total
number of trials, and we discard first t0 = 250 seconds as warm-up
period. We plot the relative errors of the switch selection strategies
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Figure 4: RRMSE vs percentage of queried Switches. The
error bars correspond to the worst and the best trials. (for
m = 15)

for different number of queried switches in Figure 4. We also plot
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the error bars indicating the relative errors of the best and the worst
trials. We observe as the number of queried switches increases, the
error of Min-Entropy drops faster than the other strategies, and it
reaches zero at pointk = 6. This is becauseMin-Entropy chooses the
switches that give the most information about the OD flows when
combined, and for k ≥ 6 it is able to constitute a query list that
solves the linear system (1). On the other hand, the other methods
choose a switch without considering whether the information it
brings could be inferred from the existing query list. We see Random
and Round-Robin exhibit roughly similar error profiles. However,
the largest errors of Round-Robin are much smaller. Moreover, we
point out Min-Entropy is deterministic, i.e. given the same model it
always produces the same query list, thereby does not have error
bars in that figure. Figure 4 also displays the trade-off between the
accuracy and the measurement overhead. The measurement over-
head could be decreased in exchange for loss of accuracy, though
it is apparent that querying a large number of switches, i.e. k ≥ 6,
using Min-Entropy leads to overkill.
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Figure 5: RRMSE of the switch selection strategies at each
time step. (for k = 5⇒ 33.3%).

Next, we consider spatial and temporal errors for a fixed size of
the query list k = 5. The temporal error is the RMSE of the overall
estimation errors of OD flows at a particular time.

E (t ) =

√∑N
j=1
∑c
i=1 (x

i,j
t − b

i
t )
2√

N
∑c
i=1 (b

i
t )
2

(24)

Figure 5 shows that the initial temporal errors of the strategies are
significantly high. The reason for that is the Kalman filter is initial-
ized by a prior with a large variance (high entropy), and it requires
some time to converge to the OD flows, which we call warm-up
period t0. We observe that Min-Entropy converges immediately af-
ter the first measurement since its ultimate aim is to maximize the
certainty of the estimate. It also outperforms the other strategies for
the entire simulation. We see a peak in the figure around t = 630s
because some malfunctioning switches significantly corrupt the
packet counts at that time as explained in Section 6.1. However, the
Kalman filter successfully handles the outliers and corrects itself in
a very short time. We exclude the corrupted part and the warm-up

period in all other assessments since the large errors arising in these
exceptional cases degrades the overall performance evaluation of
the strategies.
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Figure 6: RRMSEof the switch selection strategies for largest
OD flows. (for k = 5⇒ 33.3%)

We also calculate the spatial errors, i.e. the errors of the estimated
OD flows, in a similar way.

E (i ) =

√∑N
j=1
∑T
t=t0 (x

i,j
t − b

i
t )
2√

N
∑T
t=t0 (b

i
t )
2

(25)

We sort the OD flows from largest to smallest and we plot the errors
of the first 28 OD flows for each strategy in Figure 6. These flows
constitute 95% of the entire flow load in the network. We note the
x-axis represents the rank of the OD flow instead of its id. As can
be seen in Figure 6, Min-Entropy experiences the smallest errors,
and the errors of the Random and Round-Robin are increasing as the
flows are getting smaller, partly because the errors are calculated
relatively. We also observe that Min-Entropy exhibits larger errors
for certain OD flows (7th and 8th) because these flows are harder
to estimate. The 7th and 8th flows traverse almost the same path,
and therefore the Kalman filter confuse them with each other.

Lastly, we plot the change in the marginal likelihood in Equation
(19) for k = 7 to show that the dramatic decrease in the probability
p (zt |z1:t−1) is a strong indicator of an anomaly in the network. In
Figure 7, we see that the likelihood of the corrupted measurement
at t = 630s is extremely small compared to the others. Furthermore,
the likelihood of the new measurements becomes normal right
after the switches start to work properly. This is because the new
likelihood is calculated using all the previous measurements and
the effect of the corrupted measurement is very small. For anomaly
detection, we recommend querying a large number of switches, e.g.
greater than 40%, because otherwise the Kalman filter might not
detect the inconsistencies.

7 CONCLUSION AND FUTUREWORK
In this paper, we present a Kalman filtering based scheme to esti-
mate an accurate and timely Traffic Matrix (TM) in SDN environ-
ment. The proposed method uses only partial information while
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Figure 7: Log-probability of eachmeasurement given all pre-
vious measurements. (for k = 7⇒ 46.6%)

constructing the TM in order to avoid the communication and com-
putational overhead. In addition, we propose a switch selection
strategy which aims to increase the accuracy of the constructed
TM by minimizing the information entropy of the estimate.

We use a network trace produced in Mininet environment to
evaluate our inference framework and the switch selection strategy.
We demonstrate that our framework estimates a TM almost as
accurate as the one obtained by using all the flow statistics even
when a few switches are queried at a time. We also compare our
switch selection strategy with some conventional methods such as
uniformly random selection and round robin selection, and show
that our strategy outperforms thesemethods in terms of both spatial
and temporal error characteristics.

In this study, we have assumed that the evolution of the network
traffic is simply a linear Gaussian state-space model (LGSSM). In
the future, we plan to design a more general framework capable
of working with the nonlinear non-Gaussian models by utilizing
Sequential Monte Carlo (SMC) methods instead of the Kalman filter.
Moreover, integration of a network management mechanism that
is based on our framework and instrumental in software-defined
networks is another research direction.
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