
Reactive Controller Assignment for Failure
Resilience in Software Defined Networks
Faruk Açan

Dept. of Computer Engineering
Bogazici University

İstanbul 34342, Turkey
faruk.acan@boun.edu.tr

Gürkan Gür
Inst. of Applied Information Technology

Zurich University of Applied Sciences (ZHAW)
Winterthur 8401, Switzerland

gueu@zhaw.ch

Fatih Alagöz
Dept. of Computer Engineering

Bogazici University
İstanbul 34342, Turkey
fatih.alagoz@boun.edu.tr

Abstract—Resilience in SDN control plane is a challenging goal
when a single controller is employed. Thus, distributed controllers
are deployed to realize a resilient and reliable software defined
network. However, such a strategy can not succeed without an
efficacious controller-switch assignment scheme. In addition to
zero-day assignment, online re-assignment is crucial since due
to network failures, the connections between controllers and
switches may break off intermittently and impair the network
operation. In this paper, we propose a reactive assignment model
against network failures using integer linear programming based
on load distribution of controllers. We augment our proposal
with simulated annealing and random assignment approaches
for switch, link and controller failures. The experimental results
show that our model gives resilience against network failures and
load-awareness is a effective strategy for controller assignment.

I. INTRODUCTION

In recent years, the idea of programmable networks has
re-gained significant momentum due to the emergence of
Software-Defined Networking (SDN) paradigm [1]. SDN is an
important enabler for Future Internet solutions with two main
characteristics: the decoupling of the control plane from the
data plane and the programmability for network applications.
Both of these characteristics are not new, but combining them
brings potential benefits of enhanced configuration, improved
performance and boosted innovation in network design and
operations [2].

The emergence of software-defined networks is accompa-
nied with the the fact that data communications and network-
ing infrastructure is becoming the indispensable part of human
activities. From daily mundane tasks to critical infrastructure
operation, networks have become the underlying substrate of
human civilization. Therefore, it is crucial to achieve robust
and flexible communication networks against interruptions and
failures. Accordingly, various research works have focused on
the performance and resilience of SDN as a key networking
technology in the literature [3]–[6]. In that regard, archi-
tectures with distributed controllers have been proposed to
mitigate performance bottlenecks and improve resilience [7].
For instance, Tootoochan et al. proposed HyperFlow [8] which
is an application running on each controller and provides
synchronization among them via a cloud system. Another tool

This work was partially supported by the Scientific and Technical Research
Council of Turkey (TUBITAK) under Grant 117E165.

FlowVisor [9] developed by Sherwood et al. enables multi-
ple controllers in an OpenFlow network by slicing network
resources and delegating the control of each slice to a single
controller. However, their approach increases latency.

When multiple controllers are employed, a key technical
challenge becomes how to assign them to switches for re-
silience objectives. In [5], Killi et al. proposed an optimization
model for deploying controllers but they achieved resilience
against only a pre-determined number of controller failures.
Hu et al. argues that balancing the controller loads provides
scalable and reliable control plane in [6]. They improved
the controller throughput with low migration costs when
the network scale changes. In another work, Gillani et al.
implemented Resilient Control Network architecture (ReCON)
that minimizes the sharing of critical resources among data
and control traffic to improve resilience against DDoS attacks
in SDN [10]. Moreover, Savaş et al. proposed an algorithm
for recovery-aware switch-controller assignment to enable fast
data-path recovery after a set of failures, and they achieved
shorter data-path restoration times after any failure with a
minor increase in resource consumption of control paths [11].

In this paper, we focus on the failure resilience problem
for more reliable and resilient software defined networks
while considering performance and overhead. Although the
studied problem stems from the SDN’s very own paradigm
(i.e. centralized control plane), to achieve these goals, SDN
provides extra features via its programmability. We propose a
reactive controller-to-switch assignment framework for SDN
(RAFRES) which monitors the network and re-assigns for-
warding elements according to control plane loads when a
calamity occurs. RAFRES entails three different methods to
perform controller-switch assignment, namely random, simu-
lated annealing (SA) and Integer Linear Programming (ILP).

II. REACTIVE ASSIGNMENT FRAMEWORK FOR RESILIENT
SDN (RAFRES)

For failure cases in SDN, connectivity, capacity, and recov-
ery must be considered to achieve resilience and robustness.
To serve this objective, RAFRES works re-actively against
network failures in a software defined network architecture.
These failures can cause from device failures, security attacks
or any user error. When a change due to failure occurs in the

{C, N, Hn, Pn,m}

Assignment Result

Network

Monitoring Agents

trigger over SSH connection

RAFRES
APP

OPTIMIZER
APP

O
p

e
n

F
lo

w

Fig. 1: RAFRES architecture.

topology, the application detects and re-assigns the network
nodes onto controllers. Both switch-to-switch and switch-
to-controller connectivity must be assured and the load of
network nodes should be considered not to exceed the capacity
of controllers in controller assignment. After re-assignment, all
network devices can be managed by a controller node despite
the incumbent failure. Overall mechanism is shown in Figure
1. The tuple (C,N,Hn, Pn,m) denotes controllers, network
nodes, hosts of node n and number of paths between node n
and m, respectively.

Architecturally, RAFRES consists of three components: (1)
a controller application, (2) monitoring software agents in
the network edge and (3) remote optimization engine. The
controller application has the whole topology view by the
help of centralized control and is aware of changes in the
network. Edge-resident monitoring agents are used as beacons
to monitor the network from the point of end users. The
specific use-case is the monitoring of link quality and recovery.
They send heartbeats, measure the round trip time (RTT)
information for each controller instance, send them to the
controller application via REST API. Hereafter, when a change
in the network occurs, the application sends the aggregated
network information to the optimization engine via REST
API and triggers it using a remote connection. During this
process, the engine uses RTT values to decide the forbidden
controller C̃ by calculating average RTT D̂ for each switch
with monitoring agent hosts. The decision rule is simply “mark
the controller with the highest D̂ as C̃”. After the calculation
of reassignment, the engine sends the results back to the
application. Finally, the application applies the assignment via
the controller and returns back to the monitoring mode for a
prospective change in the network.

A. RAFRES Algorithms

Three different algorithms are used to decide on controller-
switch assignments in RAFRES, namely random assignment,
simulated annealing and integer linear programming (ILP).
Although ILP aims the optimal result, the other algorithms

exploit the complexity vs. objective-performance tradeoff as
well as provide a benchmark for evaluating ILP method.

For devising our algorithms, we represent the system as a
network graph G(N,L, F,H), where N is the set of network
nodes, L is the set of links, F is the set of monitoring agents
and H is the set of hosts. Additionally, let C denote the set
of controllers and Pn,m denote the number of paths between
node pairs n ∈ N and m ∈ N .

1) Random Assignment: Using random assignment, the
algorithm randomly assigns each network node n ∈ N to
a controller c ∈ C. When assigning a network node to
a controller, RAFRES ensures that each node n will be
controlled by exactly one controller c. The main advantage of
this naive approach is simplicity and reduced response time.

2) Simulated Annealing (SA): SA is a generic probabilistic
meta-heuristic which is based on the analogy between the
simulation of the annealing of solids and the problem of solv-
ing large combinatorial optimization problems [12]. Reducing
search space and shortening the computing time to find near
optimal solution are major benefits of simulated annealing. It is
an iterative procedure that continuously updates one candidate
solution until a termination condition is reached as listed on
Algorithm 1. In this model, the algorithm tries to create node
clusters up to the number of controllers according to Gain
function. In every iteration, a candidate model is created with
a small change, and accepted or rejected according to our
conditions. Along the run, the model develops the result, and
at the end, it is completed with a more accurate outcome. The
gain function of the clustering solution is calculated by use of
ratio cut formula [13] shown in (1):

Gain =

∑
A⊂C

∑
n∈A

∑
m∈A′

Pn,m∏
A⊂C

|A|
(1)

where |A| is the cardinality of cluster A, and A′ is the
complementary set of cluster A. The ratio cut formula is
the ratio of total number of inter-cluster paths to the product
of cardinality of cluster sets. We aim to minimize the gain
formula to increase resilience on our system.

First, SA randomly distributes the nodes into clusters
and calculates the gain. The algorithm starts with starting
temperature T0. Then, in each iteration, M move states
occurs. For each move state, algorithm randomly selects a
node n to move from one cluster to another and calcu-
lates a new gain. The moves can be accepted according
to AcceptGainChange(∆Gain, T) function. If the moves
are accepted, the current gain is updated and the algorithm
continues. If the moves are rejected, then node n returns the
original cluster, and the algorithm continues. After each itera-
tion, system temperature T cools down by the rate of cooling
factor α. The algorithm stops if there have been no changes
to the solution after ts iteration. While this scheme is based
on the model that was proposed by Manikas et al. in [14], we
improved their model by adapting the gain function for more

Algorithm 1: Simulated Annealing Algorithm
T = T0;
tstop = ts;
CurrentGain = CalculateGain();
while tstop > 0 do

AcceptMove = FALSE;
for i = 1 to M do

randomly select node n to move from one cluster to another;
NewGain=CalculateGain();
∆Gain = NewGain− CurrentGain;
if AcceptGainChange(∆Gain, T) then

CurrentGain = NewGain;
AcceptMove = TRUE;

else
return n to original cluster;

end
end
if AcceptMove then

tstop = ts;
else

tstop = tstop − 1;
end
T = T ∗ α

end

than two sets, and making AcceptGainChange(∆Gain, T)
function load-aware.

3) Optimal Model: For ILP, a mathematical model is con-
structed as descibed below. Our model is originated from
Survivor [15] and extended by using the load distribution
of controller instances as a new objective function. It tries
to partition network nodes to achieve nearly equal requests
for each controller. Moreover, placement-related constraints
are omitted since we do not pursue placement problem and
additional capacity-related constraints are added in for a
more consistent model. The mathematical model used for ILP
solution is presented below:

Input: Tuple I = {G(N,L, F,H);C; fn,c;Uc;αc;β; γ;ω;
Hn;Fn;Bn} is the input of our mathematical model. Graph
G denotes the physical topology of the network. The set of
controller instances is shown as C. The capacity of each
controller represented by Uc : c ∈ C and αc indicates the
percentage of backup capacity set to each controller. | · |
denotes cardinality. β, γ and ω are weight constants for hosts,
monitoring agents and bytes that are received by forwarding
nodes in order. Hn and Fn shows hosts and monitoring agents
those are connected to node n ∈ N . Lastly, Bn denotes
number of bytes those are received by node n.

Output: Tuple V = {xn,c;wc;Rn} represents the variables
of the output. Device assignments are given by xn,c ∈ {0,1};
they indicate whether node n is assigned to controller c. wc ∈
R+ denotes total load of controller c. Lastly, Rn ∈ Q+ is
number of requests of each device n.

Objective Function: The aim of this mathematical model
is to minimize the difference between controllers’ loads. This
goal is represented as:

min

∑
c∈C

(wc − µc)
2

|C|
(Objective)

TABLE I: ILP Model Parameters

Symbol Definition

fn,c ∈ {0, 1} Whether controller c is forbidden for node n
Uc Maximum number of requests that controller c can

handle
αc Percentage of capacity reserved as backup in con-

troller c
β Weight of requests of hosts
γ Weight of requests of monitoring agents
ω Weight of bytes received by nodes
Hn Set of hosts that are connected to node n
Fn Set of monitoring agents connected to node n
Bn Number of bytes that are received by node n

xn,c ∈ {0, 1} Whether device n is mapped to controller c
wc ∈ R+ Number of total requests of each controller c
Rn ∈ Q+ Number of requests of each device n

which minimizes the variance of total number of requests for
controller c. µc denotes the average number of requests for
each controller.

Constraints: There are two types of constraints for this
model: assignment-related and capacity-related.

The first three constraints (1-3) are assignment-related. They
provide the correctness of controller-switch assignments.∑

c∈C
xn,c = 1,∀n ∈ N. (C1)

Constraint 1 ensures that each node n will be controlled by
exactly one controller c.∑

n∈N
xn,c ≥ 1,∀c ∈ C. (C2)

Constraint 2 guarantees that each controller c will control at
least one node n. This additional constraint guarantees that no
idle controllers will remain.

xn,c ≥ 1− fn,c,∀c ∈ C, ∀n ∈ N. (C3)

Constraint 3 provides that each node n will not be assigned
to its forbidden controller c. Forbidden controllers are decided
according to round-trip times to controllers from monitoring
agents.

The other three constraints (4-6) are capacity-related. They
guarantee that the controller assignments will not exceed the
controllers’ capacity.

Rn = β · |Hn|+ γ · |Fn|+ ω · Bn∑
n∈N

Bn

,∀n ∈ N. (C4)

Constraint 4 calculates the number of requests for each node n
using Hn, Fn and Bn. This is the key element of our proposed
mathematical model. It calculates the instant load of network
nodes to use for load-distribution.∑

n∈N
xn,cRn ≤ (1− αc) · Uc,∀c ∈ C. (C5)

Fig. 2: WAN of major cities in Turkey.

Constraint 5 provides that the controller capacity will not be
exceeded taking into account the backup capacity.

wc =
∑
n∈N

xn,cRn,∀c ∈ C. (C6)

Constraint 6 defines the number of total requests for each
controller c.

III. PERFORMANCE EVALUATION

In this section, we investigate the performance of RAFRES
for different cases. We first describe the experimental environ-
ment, followed by the evaluation results.

A. Experimental Environment

To test our framework, we use a machine with Intel®
Core™ i7-4790 (3.60GHz × 8), 16GB RAM and 1TB HD to
host four virtual machines (VMs). Each VM has 4GB memory
and 100GB HD space and is running a controller instance.
Three of them are used for distributed controller mechanism.
We use ONOS Nightingale 1.13.1 as SDN controller and
controller application is developed using Java. Mininet 2.2.1
[16] is used for creating network topologies on Ubuntu 14.04
LTS with Open vSwitch 2.0.2. Gurobi Optimizer 8.1.0 [17] as
the ILP solver and Distributed Internet Traffic Generator (D-
ITG) 2.8.1 [18] to generate traffic from hosts and monitoring
agents are used in our experiments.

For our experiments, a Wide Area Network (WAN) topology
is used. It is based on ULAKNET academic network in Turkey
as shown in Figure 2 This network includes the important
cities for Turkey such as border cities, the biggest cities in
every region and cities with large universities. The topology is
created according to real connections between these cities and
is changed by creating redundant links for more complicated
test cases in the Mininet simulation environment. Monitoring
agents provide a heartbeat mechanism from some edge users
which are connected to critical switches for the network. For
network traffic, we generated the traffic flows of VoIP, video
and five different types of online games with D-ITG traffic
generator. The parameters of these traffic types are obtained
from the literature which rely on actual traffic flows [19], [20].

B. Algorithmic Run-time Analysis

To evaluate the framework, run-times of three controller
assignment algorithms on topologies of various sizes are
tested. The computational complexity of random assignment is
O(N) where N stands for number of switches in the topology.
SA and ILP run with O(M ∗ N2) and O(2N), respectively,

5 10 25 50 100 250 500 1000
Number of Switches

0

20x103

40x103

60x103

80x103

100x103

120x103

140x103

Al
go

ri
th

m
 R

un
tim

e
(m

s)

Random
SA(1,1)
SA(1,3)
SA(1,5)
SA(3,5)
SA(5,5)
Optimal

(a) Runtimes of RAFRES algorithms.

5 10 25 50 100
Number of Switches

0

50

100

150

200

250

Al
go

ri
th

m
 R

un
tim

e
(m

s)

Random
SA(1,1)
SA(1,3)
SA(1,5)
SA(3,5)
SA(5,5)
Optimal

(b) Runtimes for up to 100 switches (zoomed from (a)).

Fig. 3: Runtimes of RAFRES algorithms. For topology with
five switches, SA has no results because it needs at least two
switches for each controller instance to operate.

and M represents the number of move states. These theoretical
time complexities render run-time behavior expected from
RAFRES algorithms and guide to establish a trade-off between
run-time and network performance. During these run-time
experiments, we used eight different sizes of topology, i.e. 5
to 1000 switches. These topologies were generated artificially
in different sizes after examining a sample topology in terms
of traffic, number of hosts and link structure. For SA, different
stopping values (tstop) and number of move states per iteration
(M) values are tested. All algorithms were run 100 times and
the mean values were reported in the graphs.

As shown in Figures 3a and 3b, random assignment is the
quickest algorithm to find a solution as expected. The results
show that the algorithms give the expected results according
to their run-time complexities. SA is a greedy heuristic and
ILP finds the optimal solution which is a time-consuming
process. However, when the number of switches exceeded
a certain level, since the number of test solutions increased
exponentially due to increasing number of iterations based
on tstop and M , SA starts to work more slowly than ILP.
However, SA with the parameters M=1,ts=5 runs quicker
than ILP for large-sized networks, specifically in less than half
of ILP’s run-time. Therefore, ILP can be used for small and
medium sized networks, but SA with appropriate parameters
must be chosen for large topologies.

C. Experimental Results

To assess the RAFRES performance, we first analyzed
the distribution of number of PACKET_IN messages on

6 Mbit/s
Video Traffic

0

30 Time (seconds)
Game Traffics

Video Traffic
VoIP Traffic
Background Traffic

Network Failure (switch, link etc.)

FL
O
W
S 42 Kbit/s

Puzzle Game Traffic

1.44 Gbit/s
Background Traffic

81 Kbit/s
FPS Game Traffic

86 Kbit/s
Flight Game Traffic

1 Kbit/s
VoIP Traffic

68 Kbit/s
Sports Game Traffic

30 60 90 120 150

Fig. 4: Timeline for Experiment Scenarios.

Random
SA(1,1)

SA(1,3)
SA(1,5)

SA(3,5)
SA(5,5)

Optimal
0

500

1000

1500

2000

2500

3000

3500

N
um

be
r

of
 P

AC
K

E
T_

IN
 m

es
sa

ge
s

Controller-1
Controller-2
Controller-3

Fig. 5: Number of PACKET_IN Messages

controllers. Latency and throughput of data traffic were also
examined under various failure scenarios with the dynamic
RAFRES mechanisms. All experiments in this section were
run ten times and mean results are reported.

Experiments are started with a base traffic to establish
the background load on the network throughout the entire
scenario. Then, at various intervals, different types of traffic
are generated over certain periods of time among the randomly
selected users for a dynamic traffic behavior. A network failure
(e.g. switch or link) happens at some point in the timeline.
Failure type is decided before the scenario starts, and failure
occurs at a randomly selected element in the topology. The
overall test duration is 150 seconds and follows the timeline
shown in Figure 4.

We measured the number of PACKET IN messages to ex-
amine the impact of RAFRES on controller load. To measure
the statistics, we utilized Control Plane Management Appli-
cation (CPMAN) [21] which is a built-in ONOS application.
After performing the scenario in Figure 4, we calculated the
average number of the packets received by the controller
instances. The results can be seen in Figure 5. ILP gives the
best results and random assignment is the worst among the
algorithms. SA(5,5) gives nearly same results with the optimal
one, but run-times differ at that point with a SA having a very
low run-time. However, as seen in Fig. 3, for a large network
(e.g. 1000 switches), the advantage of SA disappears and, to
achieve equivalent load distribution performance, it takes more
than 140 seconds with the SA(5,5) while the optimal model
calculates the assignment in 20 seconds.

TABLE II: Experimental results for link and controller failure
cases.

Link Failure
Assignment
Algorithms

Average Bitrate (Kbit/s) Maximum
Delay (sec)Mean Std.Dev.

Random 183.47 27.77 0.14
SA(1,1) 236.78 24.14 0.11
SA(1,3) 246.08 13.11 0.10
SA(1,5) 246.78 6.13 0.08
SA(3,5) 239.21 6.09 0.09
SA(5,5) 242.56 5.33 0.09
Optimal 247.35 5.03 0.05

Controller Failure
Assignment
Algorithms

Average Bitrate (Kbit/s) Maximum
Delay (sec)Mean Std.Dev.

Random 153.32 12.58 0.15
SA(1,1) 166.58 12.53 0.11
SA(1,3) 167.02 10.41 0.11
SA(1,5) 169.17 8.10 0.10
SA(3,5) 209.13 4.11 0.09
SA(5,5) 227.07 3.29 0.08
Optimal 235.78 1.18 0.07

To examine the framework against network failures, we
apply switch, link and controller failures in the experiments.
While the traffic flows according to the dedicated scenario, a
failure is triggered at a certain time point. For each type of
failure scenario, average delay, maximum delay and average
bitrate values were measured as performance metrics after
RAFRES performed reassignment as a response to failure.

1) Switch Failure: Results of this experiment can be seen
in Figure 6. Optimal model achieves average bitrate of 307
Mbps with a small variance. SA is able to provide a maximum
bitrate of 297 Mbps for different values of M and ts. In terms
of maximum delays, random assignment gives the worst value
as 128 msec, while the optimal model has the smallest value
with 30 msec. SA managed to achieve 56 msec at best with
the parameter values of M=1 and ts=5.

2) Link Failure: Results can be seen in Table II for the
link failure scenario. Optimal model has the best value of
average bitrate with the value of 247 Mbps. The second
most successful assignment method is SA(1,5) which achieves
246 Mbps. SA(3,5) and SA(5,5) have worse results for all
three metrics than expected, but these these results show a
glimpse of the trade-off between performance and the number
of iterations. During the link failure incident, optimal model
has a maximum delay of 54 msecs and there is no better result
among the other algorithms.

3) Controller Failure: After one of the controllers fails, the
switches that are assigned to the failed controller remain idle.
After the failure incident, ONOS makes an election to choose
a master for controller instances and RAFRES reassigns the
switches to surviving controllers based on the current number
of requests. Results can be seen in Table II. Election of the
master among the controllers decreases the average bit-rate
and increases the delays. On the other hand, it balances the
reassignment calculation time of SA(3,5) and SA(5,5) with
others, therefore they can end up with more usual results. ILP
achieves 235 Mbps and SA(5,5) follows the optimal with 227

Random
SA(1,1)

SA(1,3)
SA(1,5)

SA(3,5)
SA(5,5)

Optimal
0

50

100

150

200

250

300

Av
er

ag
e

bi
tr

at
es

 (M
bi

t/
s)

(a) Average bitrate.

Random
SA(1,1)

SA(1,3)
SA(1,5)

SA(3,5)
SA(5,5)

Optimal
0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
ax

im
um

 d
el

ay
s

(s
ec

)

(b) Maximum delay.

Fig. 6: Experimental results for switch failure case.

Mbps. Random assignment has the lowest bit-rate with 153
Mbps. In terms of maximum delay, ILP has the best result with
74 msecs and random assignment causes nearly 150 msecs
of delay. Maximum delay values are higher than the other
scenarios due to the election of master controller.

Overall, experimental results show that random assignment
has the worst results, and the proposed ILP based model
outperforms the others. Because SA is a meta-heuristic, it has
a variety of results in every setting. However, on average,
it scores between random and ILP algorithms. It also has
worse results for some parameter values. These results can be
explained by the slowness of the assignment calculation which
causes higher latency and lower throughput in the network.
This degradation is caused from also the number of switches
in the network. Therefore, SA with suitable parameters is
a better choice for large networks. For instance, SA with
the parameters M=1 and ts=5, may be preferred for large
networks because the calculation times for optimal model may
be too long according to the experimental results. If the effects
of switch, link and controller failures on the network are
considered, controller failure is the most impactful according
to all three metrics as expected. It causes smallest average
bit-rate and higher delays. When switch and link failures are
compared, link failure seems to affect system performance
more than the switch failure considering the maximum delays.

IV. CONCLUSIONS

The adoption of distributed controllers is not solely adequate
to achieve resilience and reliability goals in SDN. Such an
architecture must employ a dynamic and high-performance
controller-switch assignment strategy. In this paper, we pro-
pose a reactive assignment framework RAFRES based for
failure resilience in SDN. We also use edge-resident software

agents as network beacons via the flexibility of SDN. As
future work, using both reactive and proactive mechanisms
and taking into account new performance metrics are planned.

REFERENCES

[1] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks,” IEEE Communications Surveys
and Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[2] K. Kalkan, L. Altay, G. Gür, and F. Alagöz, “JESS: Joint entropy-based
DDoS defense scheme in SDN,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 10, pp. 2358–2372, Oct 2018.

[3] K. Phemius and M. Bouet, “OpenFlow: Why Latency Does Matter,”
2013 IFIP/IEEE International Symposium on Integrated Network Man-
agement, 2013.

[4] A. Tootoonchain, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On Controller Performance in Software-defined Networks,” Proceed-
ings of the 2nd USENIX Conference on Hot Topics in Management of
Internet, Cloud and Enterprise Networks and Services, 2012.

[5] B. P. R. Killi and S. V. Rao, “Towards Improving Resilience of Con-
troller Placement with Minimum Backup Capacity in Software Defined
Networks,” Computer Networks, vol. 149, pp. 102–114, 2019.

[6] T. Hu, J. Lan, J. Zhang, and W. Zhao, “EASM: Effiency-aware Switch
Migration for Balancing Controller Loads in Software-Defined Net-
working,” Peer-to-Peer Networking&Applications, vol. 12, pp. 452–464,
2019.

[7] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN Control:
Survey, Taxonomy, and Challenges,” IEEE Communications Surveys
Tutorials, vol. 20, no. 1, pp. 333–353, 2018.

[8] A. Tootoochan and Y. Ganjali, “HyperFlow: A Distributed Control Plane
for OpenFlow,” Proceedings of 2010 Internet Network Management
Conference on Research on Enterprise Networking, 2010.

[9] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and P. G., “FlowVisor: A Network Virtualization Layer,” Open-
Flow Consortium, Oct. 2009.

[10] F. Gillani, E. Al-Shaer, and Q. Duan, “In-design Resilient SDN Control
Plane and Elastic Forwarding Against Aggressive DDoS Attacks,”
Proceedings of the 5th ACM Workshop on MTD, pp. 80–89, Oct. 2018.

[11] S. S. Savas, M. Tornatore, F. Dikbiyik, A. Yayimli, C. U. Martel, and
B. Mukherjee, “RASCAR: Recovery-Aware Switch-Controller Assign-
ment and Routing in SDN,” IEEE Transactions on Network and Service
Management, vol. 5, pp. 1222–1234, Nov. 2018.

[12] P. van Laarhoven and E. Aarts, “Simulated annealing,” in Simulated
Annealing: Theory and Applications. Mathematics and Its Applications.
Dordrecht: Springer, 1987, ch. 2, pp. 7–8.

[13] Y. Wei and C. Cheng, “Ratio Cut Partitioning for Hierarchical Designs,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits, vol. 10,
no. 7, pp. 911–921, Jul. 1991.

[14] T. W. Manikas and J. T. Cain, “Genetic Algorithms vs. Simulated
Annealing: A Comparison of Approaches for Solving the Circuit Parti-
tioning Problem,” Computer Science & Eng. Research, no. 1, 5 1996.

[15] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P.
Barcellos, “Survivor: an Enhanced Controller Placement Strategy for
Improving SDN Survivability,” 2014 IEEE Global Communications
Conference (GLOBECOM), Dec. 2014.

[16] B. Lantz, B. Heller, R., and N. McKeown, “A Network in a Laptop:
Rapid Prototyping for Software-defined Networks,” Proceeedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

[17] Gurobi Optimization Inc., “Gurobi Optimizer.” [Online]. Available:
http://www.gurobi.com

[18] Universita’ degli Studi di Napoli ”Federico II”, “D-ITG
(Distributed Internet Traffic Generator).” [Online]. Available:
http://traffic.comics.unina.it/software/ITG/

[19] Q. A. He, “Analysing the Characteristics of VoIP Traffic,” Master’s
thesis, University of Saskatchewan, Saskatoon, 7 2007.

[20] M. Manzano, M. Urueña, M. Sužnjević, E. Calle, J. A. Hernández, ,
and M. Matijasevic, “Dissecting the Protocol and Network Traffic of
the OnLive Cloud Gaming Platform,” Multimed. Syst, vol. 20, no. 5, pp.
451–470, Oct. 2014.

[21] J. Li, J.-H. Yoo, and J. W.-K. Hong, “CPMan: Adaptive Control Plane
Management for Software-Defined Networks,” IEEE Conference on
Network Function Virtualization and Software Defined Network (NFV-
SDN), pp. 121–127, Nov. 2015.

