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Abstract—In contrast to conventional network planning where
a mobile network operator (MNO) has to overprovision its
network resources according to its peak load, an MNO can
alternatively expand its capacity whenever, wherever needed
with secondary spectrum discovered via spectrum sensing. While
outsourcing the spectrum discovery to a crowd of sensing units
may be more advantageous compared to deploying sensing
infrastructure itself, the MNO has to offer incentives in the
form of payments to the units participating in the sensing
campaign. A key challenge for this crowdsensing environment
is to decide on how many sensing units to employ given a certain
budget under some performance constraints. In this paper, we
present a profit-maximizing sensor selection scheme for crowd-
sensed spectrum discovery (PoMeS) for MNOs who want to
take sensing as a service from the crowd of network elements
and pay these sensors for their service. Compared to sensor
selection considering the strict sensing accuracy required by the
regulations, our simulations show that an MNO can increase its
profit by deciding itself the level of sensing accuracy based on
its traffic in each cell site as well as the penalty it has to pay for
not satisfying the required sensing accuracy.

I. INTRODUCTION

Mobile network operators (MNO) crave for more radio
spectrum to meet the challenging traffic requirements of their
customers whose interest is moving towards video-intensive
services. Rather than costly over-provisioning, an MNO can
expand its capacity with secondary spectrum, which is owned
by primary users (PU) but is spatio-temporally unused. How-
ever, this opportunistic utilization brings the challenge of
discovering the idle spectrum and evicting the channel when
the primary licensed owner appears in the band. While the
regulations have moved from spectrum sensing techniques to-
ward spectrum query from white spectrum databases (WSDB)
which store all information about the PU transmitters, there
is still a need for spectrum sensing as WSDBs aim only at
protecting the PUs. Moreover, they do not coordinate spectrum
sharing among opportunistic secondary users (SU) [1].

Recent studies [2–6] propose crowdsensing rather than
having an MNO deploy its own sensor infrastructure as the
latter might lead to higher CAPEX and OPEX. In this paper,
we build on previous works, e.g., [6], and address the problem
of sensor selection considering the demand as well as the PU
traffic activity in each cell. As depicted in Fig.1, the MNO
via its management system can collect statistics about its own
traffic as well as the traffic in the PU spectrum to make more
informed decision for sensor selection. While deciding on
which sensors to select in each cell, the MNO has to consider
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Fig. 1. An MNO can increase its capacity by using the secondary spec-
trum discovered by the spectrum sensors. The traffic load across the MNO
cells (hotspots vs. coldspots) might differ as well as the primary users’ activity.

the related costs of sensing, e.g., payments to the sensors, and
its gain via the discovered spectrum. This gain depends on the
spectrum bandwidth that will be discovered via sensors and
the additional traffic that could be served with that resource.
As traffic characteristics may vary among cells, particularly
for small cells where the statistical multiplexing is minimal
compared to macrocells, deploying sensors may not payoff
if the traffic load is low in a cell. While sensing cost and
efficiency are important for the MNO’s profit, the regulatory
bodies assert sensing accuracy requirement to protect the
incumbent users, i.e., PUs, which might lead to higher sensing
cost for the MNO. For example, requiring a PU detection
accuracy as well as the false alarm probability below a certain
threshold regardless of the PU traffic or secondary network’s
traffic might result in wasteful sensing by the sensors. To go
beyond this inflexibility and address more realistic scenarios
in this work, we explore a relaxed case where the MNO can
prefer maintaining a lower sensing accuracy and then pay
for the resulting PU collisions due to its lower PU detection
performance. This approach provides the MNO flexibility to
maintain its sensing accuracy at different levels in each cell
depending on the expected PU traffic (and thereby collision-
related penalties) and its traffic load (i.e., operation at different
points of cost-benefit trade-off).

In this work, we make the following key contributions
regarding spectrum discovery and sensor selection for crowd-
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sensing:
• We propose spectrum discovery via crowd-sensing under

a budget constraint. While there is a rich literature on
crowdsourced sensing and sensor selection such as [3–6],
the business aspects of this problem is largely overlooked.
Our goal in this paper is to analyze how the profit model of
an MNO might affect its decisions for sensor selection.

• We propose to relax the sensing accuracy constraints to save
from the sensing cost, especially for cells without a high
traffic demand, and yet motivate the MNO to attain a higher
PU detection accuracy. We achieve this goal by introducing
a penalty to the MNO if it cannot satisfy the required
minimum detection accuracy. However, we believe that there
should be no penalty for the divergence from the maximum
false alarm probability since the MNO will inherently have
incentives to minimize the false alarm probability under
high traffic load. In line with that expected behavior, our
simulations show that the MNO favors higher PU detection
accuracy and low false alarm rate under high traffic load.

• We present a thorough analysis of our proposals for different
system parameters including allocated budget, traffic load,
and fraction of hot spots. Our simulations show that an
MNO benefits from relaxing the strict requirements on
the sensing accuracy. In our proposal, an MNO can target
different accuracy levels (e.g., lower false alarm if the need
for the required capacity is higher) depending on its traffic
in each cell site as well as the penalty it has to pay for not
satisfying the required sensing accuracy.
The rest of the paper is organized as follows. First, Section II

presents the considered system model for the network and the
sensors. Next, Section III introduces the cost and utility of
spectrum discovery. It also formulates the profit-maximizing
sensor selection (PoMeS) problem, while Section IV provides
several polynomial-time complexity heuristics for PoMeS.
Section V presents a detailed assessment of the performance
of the devised heuristics in comparison to the baseline which
has to ensure the sensing accuracy requirements imposed by
the regulatory bodies. Section VI discusses the practical issues
toward implementing our proposed solutions in a practical
network followed by an overview of the related work on sensor
selection for crowdsourced spectrum discovery in Section VII.
Finally, Section VIII concludes the paper with a brief discus-
sion of future directions.

II. SYSTEM MODEL

Consider an MNO with A = [Ai, · · · , AK ] cell sites. Each
cell site hosts users with a certain demand denoted by ri
requests/sec. Each request requires a minimum rate, e.g., cmin

bits/sec, and for each request the user pays µ monetary units.
The bandwidth of the PU’s channel is denoted by B Hertz.

In this channel, the PU has an activity with probability pi1 in
Ai. Hence, the MNO can use the channel with pi0 = 1−pi1 if it
can discover the spectrum opportunities with perfect accuracy
and without any overhead. However, depending on the length
of the sensing and reporting duration as well as number of
sensors, there will be an overhead as illustrated in Fig. 2.
Moreover, the spectrum sensors might falsely conclude the
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Fig. 2. A frame starts with the sensing period and continues with the reporting
period. Each sensor reports its sensing outcome via a TDMA uplink during
the reporting slot allocated to it. After completion of the reporting period, the
BS at each cell applies majority logic to decide on the spectrum state.

state of the channel as occupied due to errors in sensing or
fluctuations in the channel, which then decreases the amount
of discovered spectrum.

The MNO has a budget of B (in currency units C) to pay
for its crowdsensing campaign. With this budget, it needs to
decide on how many sensors (and in case of heterogeneous
sensors, considering their sensing capabilities and price of
sensing) to employ for sensing in each cell site Ai. We denote
the total number of sensors by N and the price of sensing
by µs C per bps. After the sensors are selected (e.g., S out
of N ), they start sensing with the requested sensing rate (βs)
during the sensing period Ts in a frame with duration T . Each
sensor reports its one bit sensing outcome, i.e., {0: idle, 1:
busy}, to the base station (BS) of its cell using TDMA in a
slot of duration Tr as in [7]. As a result, the time left after
sensing and in-band reporting in a frame of length T equals
to T − Ts − STr. Hence, the normalized sensing overhead is
ω = Ts+STr

T . We assume identical sensing characteristics for
the sensors, i.e., they have identical local probability of false
alarm (Pf ) and local probability of PU detection (Pd). Given
that each sensor applies energy detection, we can derive the Pf
and Pd values based on SNR and noise at each sensor [7, 8].

After collecting the sensing outcomes, the BS fuses this
sensory data (Hi denoting sensor i’s binary decision) from
S sensors using majority logic, which is known to be ro-
bust against sensing errors [6]. Simply, the BS checks if∑S
i=1Hi > dS/2e. If this inequality holds, it concludes that

the spectrum is in use by its primary owners, hence it cannot
use this spectrum. Otherwise, it can serve its users through
this spectrum, e.g., via carrier aggregation with the existing
licensed spectrum as currently specified in LTE. We denote
the spectral efficiency of the MNO by κ bps/Hz.

Since regulatory bodies target high utilization of this scarce
resource without harming the PUs, they might assert certain
sensing accuracy constraints at a cell: Qf denoting global
probability of false alarm and Qd denoting global probability
of PU detection in a cell. We assume that the MNO is required
to sustain Q∗d and can target different Qf based on the user
demand in each cell site. However, for cell sites where the
MNO has only low traffic activity (yet higher than the available
capacity), it might consider employing a lower number of
sensors which would result in lower Qd, possibly lower than
Q∗d. In this case, we assume that the MNO will have to
pay a certain penalty for not meeting the required accuracy.
This approach aims at relaxing the strict requirements on the
detection accuracy and giving the MNO ability to maintain
different sensing accuracy levels across its cells. Yet, the



3

MNO would essentially be driven towards higher sensing
accuracy due to the penalty mechanism. In the next section,
we introduce our proposal for sensor selection in a wireless
network represented by this system model.

III. PROFIT-MAXIMIZING SENSOR SELECTION (POMES)

Let us first define the utility of crowdsensing in terms of
the amount of spectrum discovered by the sensors. If there
are m sensors participating in sensing, then the amount of the
spectrum that will be discovered can be calculated as:

U(m) = p0B

(
T − Ts −mTr

T

)
(1−Qf (m)) Hz, (1)

where Qf (m) is the false alarm probability if m sensors
participate in sensing. We can calculate false alarm probability
for majority voting as below [6, 7]:

Qf (m) =

m∑
n=dm2 e

(
m

n

)
(Pf )n(1− Pf )m−n. (2)

Similarly, we calculate Qd(m) as follows:

Qd(m) =

m∑
n=dm2 e

(
m

n

)
(Pd)

n(1− Pd)m−n. (3)

We can model the profit of an MNO from each cell
considering the number of requests that will be served with
the discovered capacity. The discovered capacity is simply Uiκ
bps. Hence, the number of requests that can be served with
this capacity is:

Rmax
i = min(ri,

Uiκ
cmin

) requests/s. (4)

Consequently, we calculate the MNO’s income in currency-
per-second (C/s) from its customers in Ai as follows:

Π+
i = Rmax

i µ C/s. (5)

Moreover, the MNO has to pay for the sensing service to the
selected Ni sensors. If each sensor has to perform sensing
with rate βs bps and the cost of sensing is µs per sensing bit,
then the total payment for Ai is as follows:

Π−i = µsβsNi C/s. (6)

We introduce a penalty of low PU detection accuracy for the
MNO to avoid low sensing accuracy. We denote this penalty
by µc and the gap between the required Qd and the realized
one by ∆Qd,i = max(0, Q∗d−Qd,i) for cell Ai. The resulting
penalty in monetary terms equals to µc∆Qd,iR

max
i . Note

that other options for the penalty function is possible, e.g.,
an exponential function of ∆Qd,i which is more punishing
compared to the linear function used here. Next, we calculate
the net profit using (5) and (6), which gives us the following:

Πi = Rmax
i µ− µsβsNi − µcRmax

i max(0, Q∗d −Qd,i). (7)

Now, let us present the optimization problem which will
be solved by the MNO to decide on the number of sensors

to be selected for each cell. Profit-maximizing sensor selec-
tion (PoMeS) problem is formally defined as follows:

max
Ni

∑
Ai∈A

Rmax
i µ−µsβsNi−µcRmax

i max(0, Q∗d−Qd,i) (8)

subject to:

µsβs(
∑

Ni) 6 B (9)

Ni 6 b
T − Ts
Tr

c ∀Ai ∈ A (10)

Ni > 0 ∀Ai ∈ A. (11)

Const.(9) determines the maximum number of sensors to
employ in the sensing campaign due to the budget constraint
while Const.(10) restricts the number of sensors due to the
finite size of the frame. While the constraints are linear in
the decision variable Ni, the objective function is non-linear
function due to non-linearity of (1), (2), and (3). Hence, our
problem is a non-linear integer problem whose complexity is
typically high. In addition, our problem has to account for
combinations across all cells, which makes this problem com-
putationally hard. Hence, we devise polynomial complexity
heuristics in the next section.

IV. SENSOR SELECTION HEURISTICS

Equal budget per cell (EQ): This heuristic divides the budget
by the number of total cells and finds the best decision for
each cell under the cell’s budget constraint, i.e., B/K. Then,
the maximum number of sensors that could be employed is
Nmax = min(bT−Ts

Tr
c, b B

Kµsβs
c). Next, this heuristic exhaus-

tively searches for the setting that maximizes the objective
function Πi with constraint Ni 6 Nmax. If Πmax

i is non-
negative, the corresponding number of sensors is assigned
to this cell. Otherwise, no sensor is deployed. Note that if
the sensors have different cost and sensing accuracy, then the
sensor selection problem would be more complex. Here, due
to our assumption of a homogeneous setting, EQ only needs
to decide on the number of sensors. Moreover, although the
MNO’s profit is zero for the considered time period, i.e.,
Πmax
i = 0, the MNO may still prefer deploying sensors to

this cell to increase its service availability. Because better
availability might increase the reputation of the MNO, which
may attract more customers in the long run. In case Nmax

is zero which is expected to happen under low budget, EQ
finds the minimum required number of sensors for satisfying
Q∗d. Then, EQ selects the cells with the highest loads and
employs the minimum number of sensors satisfying Q∗d in
those cells. Computational complexity of EQ is O(KNmax)
as EQ calculates the profit for each cell while considering each
possible number of sensors lower than or equal to Nmax.

Budget proportional to the serving capacity of the
cell (PROP): Rather than allocating equal budget to each cell,
this heuristic allocates the budget proportional to the number
of requests Rmax

i that could be served by each cell. For the
ease of computation, we set Qf,i = 0. Then, the maximum
number of requests that could be served for a cell equals to

Rmax
i = min(ri,

Bpi0(1− ω)κ

cmin
).
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Then, PROP allocates to cell Ai a budget of Bi:

Bi =
BRmax

i∑
Ai∈AR

max
i

. (12)

Under Bi, PROP exhaustively searches for the best number
of sensors to be selected for each cell. Computational com-
plexity of PROP is O(KNmax).

Incremental gain based greedy assignment (INGA): In this
case, the sensor allocation starts from the cell with the highest
incremental gain defined as ∆Πi = Πi,m+1 −Πi,m where m
is the current number of sensors deployed in the cell. One
more sensor is allocated to this cell with the highest ∆Πi

resulting in m+ 1 sensors in the cell. The iteration continues
with the next cell which attains the highest incremental gain
with one more sensor deployed. The assignment halts either
when globally budget is depleted or when maximum ∆Πi is
negative. Complexity of INGA is O(NK log(K)) as INGA
finds for each sensor the cell with the maximum incremental
gain via a sorting algorithm.

Baseline satisfying (Q∗d, Q∗f ) required by the regulatory
body (REG): This heuristic has two variants: REG-EQ and
REG-PROP where the former follows the same budget alloca-
tion approach as EQ and the latter as PROP. However, while
performing exhaustive search, a solution is considered to be
feasible only if the sensing constraints for both Q∗d and Q∗f
are satisfied. If the cell budget is not sufficient to deploy the
minimum required number of sensors, then sensing service is
not available for this cell resulting in no additional spectrum
in the cell. We consider this scheme to be the baseline which
regulatory bodies have proposed in earlier proposals, e.g., (0.9,
0.1) for IEEE 802.22 [7]. Computational complexity of REG
is the same as EQ and PROP, i.e., O(KNmax).

V. PERFORMANCE EVALUATION

A. Simulation Setting

We simulate a cellular network with K = 2000 cell sites
using our custom Python simulator and analyze the perfor-
mance of our proposed schemes. The PU’s off probability is
distributed uniformly in [0.2,0.8]. Other parameters (listed in
Table I) are set as follows: µs = 1, µ = 1, µc = 5, κ = 10
bps/Hz, (Pd, Pf )=(0.8, 0.1), and (Q∗d,Q∗f )= (0.98, 0.05). For
generating the request distribution, we first pick randomly σ
of the cells as hotspots. Total requests generated from these
cells will account for Rσ fraction of the requests. The rest
which we call as coldspots will account for (1-Rσ) fraction
of the requests. In each cell category, to have some variance
in traffic, we generate the requests uniformly distributed in an
interval, e.g., with 10% variance from the average load. If not
stated otherwise, we set Rσ = 0.6 and σ = 0.1.

B. Impact of Budget B
In Fig.3, we increase the total budget B = [1 − 10]

sensors/cell with a step size of one sensor/cell. For example,
when B = 1, this means that the MNO’s budget in total is
µsβsK and therefore can afford only allocating on average
one sensor to each cell.

TABLE I
KEY SIMULATION PARAMETERS.

Parameter Value
Number of cell sites (K) 300
Av. num. of requests per cell (Ri) 90
Duration of frame, sensing period, and
reporting slots (T, Ts, Tr)

(10, 1/6*10−3, 10*10−3) msec

PU’s idle probability (pi0) U(0.2, 0.8)
Sensing price (µs) 1
Service price (µ) 1
Collision penalty (µc) 5
Min.capacity requirement (cmin) 3 Mbps
Spectral efficiency (κ) 10 bps/Hz
Sensor sensing accuracy (Pd, Pf ) (0.8, 0.1)
Target sensing accuracy (Q∗

d,Q∗
f ) (0.98, 0.05)

Fig.3a shows the change in the total profit of the MNO.
As expected, increasing budget increases the profit. However,
each scheme experiences saturation after a certain budget. This
is due to the diminishing returns: deploying more sensors only
increases the capacity marginally. Hence, the resulting increase
in the MNO income via serving more traffic does not justify
the increased payment for sensors. Another reason might be
that the discovered capacity is already sufficient to serve all
traffic in the cell, which invalidates more capacity addition.
Observing Fig.3b, we see that the saturation is due to the
first reason as only a maximum of approximately 60% of the
requests are served. We observe diminishing returns in sensing
accuracy and thereby related utility with increasing number of
sensors. Therefore, our schemes might prefer deploying lower
number of sensors than the one required by the regulation-
conforming heuristics which have to ensure (Q∗d and Q∗f ).
This insight is supported by Fig.3d and Fig.3e which show
lower Qd and lower number of sensors deployed for our
heuristics, respectively. Fig.3f shows that under low budget
our heuristics might sacrifice from sensing accuracy and pay
for resulting penalty. In return, more cells can benefit from
capacity expansion via opportunistic spectrum discovery. For
example, as Fig.3c shows, our heuristics employ sensors from
a wide range of cells in contrast to REG-EQ and REG-
PROP schemes. As an example, for B = 1, EQ employs
one sensor/cell covering all cell sites while REG-EQ employs
sensors only in 17% of the cell sites as the minimum required
number of sensors is six in that setting.

Comparing all schemes in Fig.3a, we see that when budget
is low (e.g., B=1), INGA has the highest performance followed
by PROP. Later with increasing B, EQ gradually attains similar
performance. All these schemes have a significant performance
improvement (e.g., reaching 0.8x for low budget) over the
regulations-conforming heuristics REG-EQ and REG-PROP.
This improvement comes with a trade-off in sensing accuracy
as observed in Fig.3d where REG-EQ and REG-PROP have
the highest and exactly the same performance.

C. Impact of Traffic Load Ri
In Fig.4, we plot the impact of increasing load in terms of

number of requests per cell. Here, we set B = 5 sensors/cell.
Under all loads, INGA succeeds the highest profit with a gap
of around 5% from its closest follower PROP. All schemes
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(f) Penalty payment.

Fig. 3. Impact of increasing budget B allocated for the spectrum sensing service by the MNO.

have higher profit with increasing load, but there seems to be
a saturation point after which the profit improves very slightly.
The saturation point is reached when all the discovered band-
width is used for the requests.

Another observation is that if the MNO prefers or has to
use REG approaches, it should choose equal division of its
budget across its cells as consistently REG-EQ over-performs
REG-PROP for about (5-15%) depending on the setting. While
increasing load improves the profit of the operator due to
higher payments from the customers, some of the requests
may be blocked as we see lower values of served requests in
Fig.4b. The selection of which cells to serve differs from one
scheme to another. For example, schemes with proportional
budget assignment prioritize hotspots, e.g., cells with higher
load. Fig.4c shows that REG schemes has a confined cell span,
i.e., employs sensors only a subset of cells. This is due to the
limited budget which can afford 5 sensors per cell, lower than
6 sensors required for (0.98, 0.05) sensing accuracy. Hence,
around 5/6(∼ 80%) of the cells are selected for sensor deploy-
ment under REG-EQ. For REG-PROP, the fraction of cells
with capacity extension is lower as proportional assignment
of the budget might employ more sensors in a highly-loaded
cell, thus leaving other cells without any sensors.

When it comes to sensing accuracy, we observe in Fig.4d
and Fig.4e that increasing load requires more spectrum, i.e.,
lower false alarm probability. Hence, each scheme prefers
deploying more sensors, which consequently also improves
probability of PU detection. Additionally, since penalty func-
tion incurs also the number of requests as its multiplier, the
penalty of a lower detection accuracy becomes higher under
high load. As a result, MNO is motivated to satisfy minimum
Q∗d. As Fig.4f shows, INGA results in a lower penalty cost for

possible collisions with the PU compared to other heuristics.

D. Impact of Fraction of Hotspots σ

In the earlier scenarios, only σ = 0.1 fraction of the cells
are hotspots accounting for 60% of the network traffic. Now,
we analyze the impact of traffic heterogeneity across cells.
With increasing values of σ = [0.1, 0.55], MNO’s traffic
becomes more homogeneously distributed across cells while
the total number of requests remains the same. Fig.5a plots the
observed traffic load balance which is calculated as the Jain’s
fairness index using the number of request distribution across
all cell sites. As we see in the figure, MNO’s traffic balance
is almost 0.9 when σ = 0.55 and around 0.3 when σ = 0.1.

Fig.5b plots the change in the fraction of served requests
with increasing σ. Under a more evenly distributed traffic, all
schemes can serve a higher number of requests (Fig.5b) by
discovering additional spectrum in more cells. As a result, the
total profit increases as shown in Fig.5c. The relative perfor-
mance of each scheme follows the same trend as observed in
other scenarios: our proposals outperform REG variants under
all traffic heterogeneity settings.

VI. DISCUSSION AND PRACTICAL CONSIDERATIONS

In this section, we discuss more on the applicability of
our heuristics in a practical setting. Our heuristics use traffic
demand in each cell site, the PU’s channel availability in-
formation, and the sensor accuracies. The first two statistics
can be collected at each cell site over an observation period.
The traffic demand model is easy to acquire using the received
requests from the MNO’s customers at each BS. As the earlier
research shows, e.g., [9], the network traffic has seasonality
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(b) Served requests.
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(c) Cells with sensors.
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(d) Probability of PU detection.
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(e) Probability of false alarm.

10 20 60 80 10
0

15
0

20
0

25
0

30
0

40
0

50
0

10
00

Average requests per cell

0.0

1.0

2.0

3.0

4.0

5.0

C
o
ll

is
io

n
 c

o
st

 p
e
r 

ce
ll EQ

INGA

PROP

REG-EQ

REG-PROP

(f) Penalty.

Fig. 4. Impact of increasing load (i.e., number of requests generated per cell).
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Fig. 5. Impact of increasing fraction of hotspots.

and is predictable to a good accuracy. For PU channel avail-
ability statistics, collected sensor data can be used to derive
the PU’s traffic pattern and thereby p0. The prior work on PU
traffic prediction, e.g., [10], can be used not only for estimating
p0 but also for more accurate estimation of the PU dynamics.
Last, each sensor’s accuracy can be computed at each BS by
comparing it with the final sensing outcome. Obviously, it will
take some time to converge to the sensor’s accuracy level.

When it comes to executing payment to sensors, an MNO
can prefer using smart-contract based solutions as proposed
in [6]. Smart contracts are digital counterparts of traditional
contracts which define the terms of an agreement as well as
dispute resolution approach. However, smart contracts do not
need a trusted third party or trust between trading parties.
Hence, it can fit to our setting where the sensors and the
MNO do not have to trust each other. But, using a smart-
contract network might entail additional monetary cost which
must be paid eventually by the MNO. Hence, the MNO has

to revise its profit calculation based on the additional cost of
using a smart contract network.

VII. RELATED WORK

The most relevant work to ours is on sensor selection
for crowdsourced spectrum sensing, e.g. [2–6, 11, 12]. In
[12], Ying et. al design a pricing mechanism with joint
consideration of sampling value, data quality and cost of
incentivized sensing. Their main contribution resides on the
integration of device heterogeneity reflected in sensing data
quality and costs. However, they do not consider constraints
such as regulatory requirements but focus on the intricacies
of REM construction under heterogeneous sensor settings.
In [3], Jin et al. similarly elaborate on the participant selection
in crowdsourced spectrum sensing systems and model it as
a reverse auction problem. Their main focus is the privacy
problem in such a system. To this end, they develop a
framework for the MNO to select sensing participants in a
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differentially privacy-preserving manner. However, they do
not address sensor selection problem under some regulatory
constraints as we do in our work but rather assume that the
MNO has pre-determined the sensing locations of each sensing
task according to existing methods. In [5], Zhang et al. address
the security of crowdsourcing-based spectrum sensing since
the cooperative process is vulnerable to malicious sensing data
injection attacks. Their approach considers the instantaneous
trustworthiness of mobile detectors in combination with their
reputation scores during data fusion for sensing decisions.
However, their key concern is security rather than optimal
sensor selection in compliance with regulatory requirements
or profit maximization for MNOs.

There are also works which investigate the practical impli-
cations of crowdsourced spectrum sensing. In [4], Nika et al.
propose real-time spectrum monitoring with strong coverage
using low-cost and commodity hardware. Although they do
not work on sensor selection or sensing constraints due to
regulations, their work is especially interesting as a feasibility
study and employs practical hardware for large-scale low-
cost sensing. In [2], Chakraborty et al. also crowdsource
spectrum monitoring to low-cost and low-power commodity
devices. To address the overhead drawback in the crowd-
sourced spectrum sensing, they propose three heuristics to
select the minimum number of spectrum sensors that can best
estimate the spectrum at the requested locations. In [11], they
further develop a crowdsensing framework for low-cost and
large-scale settings, which includes a technique for the sensor
selection and fusion problem based on sensor decorrelation
and clustering. However, they do not consider how the users
are incentivized or the broader economical aspects.

Overall, none of these works except [6] consider the op-
erator’s business strategy and more specifically its profit. Al-
though Spass [6] has a similarity with PoMeS and it also aims
at maximizing MNO’s profit, it has limited network coverage
focusing on a single cell. Moreover, the MNO considers the
monetary overhead due to usage of a smart-contract network in
order to pay the sensors participating in its sensing campaign
in that work. Different than Spass, in this paper, we consider
multi-cell setting with heterogeneous cell traffic and focus on
how many sensors to select in each cell.

VIII. CONCLUSION

Opportunistic spectrum access provides ample opportunities
for MNOs to increase their capacity cost-effectively whenever,
where-ever needed. For spectrum discovery, an MNO can buy
spectrum sensing service from the sensing-capable sensors
in exchange of payments for the sensing service. However,
the optimal number of sensors to be employed depends on
various factors such as the MNO’s own traffic in each cell,
spectrum occupancy, and sensing price. In this work, we have
first formulated a profit-maximizing sensor selection problem
as an integer non-linear problem and then devised several
heuristics with polynomial time complexity to decide on how
many sensors to select in each MNO cell. Our solutions
which might target a lower sensing accuracy at the expense
of some monetary penalty outperform traditional approaches

which have to ensure a certain level of sensing accuracy
regardless of the network dynamics, e.g., needed spectrum,
PU traffic, MNO traffic. Moreover, our simulations show that
the MNO prefers maintaining lower sensing accuracy only
when the network load is low and budget for spectrum sensing
payment is limited. As future work, we plan to consider a
more heterogeneous setting wherein sensors might be diverse
in their sensing accuracy as well as their sensing price.
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