

PART OF SPEECH TAGGER FOR TURKISH

 by

 Levent Altunyurt & Zihni Orhan

Submitted to the Department of Computer Engineering

in partial fulfilment of the requirements

for the degree of

Bachelor of Science

in

Computer Engineering

 Bo�aziçi University

 June 2006

 - 2 -

1. ABSTRACT

Project Name : Part Of Speech Tagger for Turkish

Term : 2005/2006 2. Semester.

Keywords : Part of Speech Tagger for Turkish, POS Tagging, Part of Speech

Tagging

 Summary : This document explains the procedures, methodologies, design

decisions that we made while we are building a part of speech tagger for Turkish

language. The aim of the project was bringing something new to this topic which is

relatively not researched very much. There are lots of part of speech taggers for English

for example but it is very rare for Turkish. We tried to buid our own project with our new

ideas which we think can improve the performance of the current systems and can be a

basis for the future work in this area.

 - 3 -

Table Of Contents :

1. ABSTRACT ..- 2 -
Table Of Contents :...- 3 -
2. INTRODUCTION ..- 4 -

2.1 What is Part-Of-Speech Tagging ?..- 4 -
2.2 Literature Overview...- 4 -

3. A NEW APPROACH TO POS TAGGING...- 7 -
3.1 Overview..- 7 -

3.1.1 Description ..- 7 -
3.1.2 Input ..- 7 -
3.1.3 Output ...- 8 -
3.1.4 Resources ..- 9 -
3.1.5 Process ..- 10 -

3.2 Methodology..- 11 -
3.2.1 High Level Description..- 11 -
3.2.2 Middle Level Description ..- 20 -
3.2.3 Low Level Description ..- 20 -

4. RESULTS AND CONCLUSSION..- 30 -
5. REFERENCES ...- 32 -
6. APPENDIX : LISTING OF THE PROGRAM (important parts)- 33 -

 - 4 -

2. INTRODUCTION

2.1 What is Part-Of-Speech Tagging ?

Part-of-speech tagging is the process of marking up the words in a text with their

corresponding parts of speech reflecting their syntactic category.

2.2 Literature Overview

There are many approaches to automated part-of-speech tagging, but the commonly

approved ways will be discussed in this document, as an introduction.

Figure 1 : Classification of POS Taggers

Supervised vs Unsupervised distinction between POS taggers comes from the

distinction of processes they use for tagging in terms of the degree of automation. [2]

Supervised taggers typically rely on pre-tagged corpora1 to serve as the basis for creating

any tools to be used throughout the tagging process, for example: the tagger dictionary,

the word/tag frequencies, the tag sequence probabilities and/or the rule set.

Unsupervised models, on the other hand, are those which do not require a pretagged

corpus but instead use sophisticated computational methods to automatically induce

word groupings (i.e. tag sets) and based on those automatic groupings, to either

calculate the probabilistic information needed by stochastic taggers or to induce the

context rules needed by rule-based systems. [1]

1 corpus (singular form corpara) is a large and structured set of texts (usually electronically stored and processed)

POS Tagging

Supervised Unsupervised

Simple

Rule-
Based

Stochastic Neural

Baum-
Welch

Rule-
Based

Stochastic Neural

N-grams

HMM

 - 5 -

Rule based POS taggers use contextual information to assign tags to unknown or

ambiguous words.2 [3] These rules are often known as context frame rules. As an

example, a context frame rule might say something like: If an ambiguous/unknown word

X is preceded by a determiner and followed by a noun, tag it as an adjective.

det - X - n = X/adj

In addition to contextual information, many taggers use morphological information to aid

in the disambiguation process. One such rule might be: if an ambiguous/unknown word

ends in an -ing and is preceded by a verb, label it a verb (depending on your theory of

grammar, of course).

Some systems go beyond using contextual and morphological information by including

rules pertaining to such factors as capitalization and punctuation. Information of this type

is of greater or lesser value depending on the language being tagged. In German for

example, information about capitalization proves extremely useful in the tagging of

unknown nouns.

Rule based taggers most commonly require supervised training; but, very recently there

has been a great deal of interest in automatic induction of rules.

The stochastic taggers3 disambiguate words based solely on the probability that a word

occurs with a particular tag. In other words, the tag encountered most frequently in the

training set is the one assigned to an ambiguous instance of that word[4]. The problem

with this approach is that while it may yield a valid tag for a given word, at can also yield

inadmissible sequences of tags.

An alternative to the word frequency approach is to calculate the probability of a given

sequence of tags occurring. This is sometimes referred to as the n-gram approach,

referring to the fact that the best tag for a given word is determined by the probability that

it occurs with the n previous tags. The most common algorithm for implementing an n-

gram approach is known as the Viterbi Algorithm[5], a search algorithm which avoids the

polynomial expansion of a breadth first search by "trimming" the search tree at each level

2 An unknown / ambigious word is a word that can belong to different syntactic catagories in different context. For
instance “yakacak” may belong to one of adjective, noun or verb syntactic catagories according to context in Turkish.
3 Any part of speech tagging model which somehow incorporates frequency or probability, i.e. statistics, may be
properly labelled stochastic.

 - 6 -

using the best N Maximum Likelihood Estimates (where n represents the number of

tags of the following word).

The next level of complexity that can be introduced into a stochastic tagger combines the

previous two approaches, using both tag sequence probabilities and word frequency

measurements. This is known as a Hidden Markov Model. [6]

Hidden Markov Model taggers and visible Markov Model taggers may be implemented

using the Viterbi algorithm[7], and are among the most efficient of the tagging methods

discussed here. HMM's cannot, however, be used in an automated tagging schema,

since they rely critically upon the calculation of statistics on output sequences (tagstates).

The solution to the problem of being unable to automatically train HMMs is to employ the

Baum-Welch Algorithm, also known as the Forward-Backward Algorithm. This algorithm

uses word rather than tag information to iteratively construct a sequences to improve the

probability of the training data.

 - 7 -

3. A NEW APPROACH TO POS TAGGING

3.1 Overview

3.1.1 Description

The aim of this project is to develop a Turkish part-of-speech tagger which not only uses

the stochastic data gathered from Turkish corpus but also a combination of both

morphological background of the word to be tagged and the characteristics of Turkish.

3.1.2 Input

The input of the system is;

§ 85 percent of the corpus, namely 6000 sentences of 7000 in METU-Sabancı

Turkish Treebank.

§ 15 % of the corpus ,the remaining 1000 sentences in METU-Sabancı Turkish

Treebank, which the program will try to anlayze the POS of each word in it. Words will be

analyzed as a whole, in other words the morphological root of the word will not be

considered.For instance, for the word “evdekiler” the main considiration is on the word

“evdekiler” while gathering stochastic data, not morphological root of it “ev”. Although any

word sequence can be given as input, for ease of analyzing the success of program part

of speech taged word sequence – a part of corpus - is used.

§ Detailed information about the corpus will be given in ”Resources” section.

3.1.2.1 Assumptions

§ As most of the stochastic based part-of-speech taggers, the success of our new

system mainly depends on the percent of the word found in the training corpus. It is

assumed that at least 50 percent of the input words found in the corpus.

3.1.2.2 Restrictions

§ The main restriction is the incompetence of a large enough training corpus.As

mentoined, the size of training corpus has direct effect on the success. Although a very

 - 8 -

large amount of whole corpus is used for training purposes the size of the traing corpus is

still very small when compared to studies in some other languages.

§ There are some restrictions because of the characteristics of Turkish. For instance,

in English it is sufficent to find “go” or “goes” in the corpus, but on the other hand for only

the verb “gitmek”, “gittim”,”gittin”, “gitti”, “gittik”, “gittiniz”, and “gittiler” should be found in

order to tag this word appropirately.

3.1.3 Output

There are two types of output :

§ Tagged Text - “assignedTags.txt”

After completing the tagging process for each word in the Text To Be Tagged file -

“input.txt” the “Tester” will write the result to the file “assignedTags.txt”.

The format is following;

Figure 2: Tagged Text Output File

§ The Success Rate - “taggingSuccess.txt”

The evaluation of the result is in following format;

Number of Words 1500

Words Assigned Correctly 1165

Word Assigned Wrong 335

Word Assigned Tag

Bu Adjective

Yılın Noun

Yakacakları Noun

Alındı Verb

. Punctiation

.....

 - 9 -

Success Rate 77.6

 Figure 3: Success Rate Output File

3.1.4 Resources

METU-Sabancı Turkish Treebank is used as corpus in the system.

§ The corpus is a .xml document in the following format:

where;

 1) sentences: <Set>Total number of sentence.

2) No: <S> Sets the place of the sentence in the queue

3) IX: <W> Sets the words place in the sentence

4) LEM: <W>The root in the Turkish lexicon.

5) MORPH: <W> Morphological root of the word.

6) IG: <W> Morphological analyze of the word.

7) REL: <W> Relative dependence to other words.

8) ORG_IGN: <W> Analyze of word sequence.

The tag set is taken also from the same study;

§ The main tags are;

+Noun: Noun or derived noun

+Adj: Adjective or derived adjective

+Adv: Adverb or derived adverb

+Verb: verb or derived verb

+Pron: Pronoun or derived pronoun

 - 10 -

+Conj: Conjunction

+Det: Determinant

+Postp: Postpronoun

+Ques: wrods written aprt coming after question adjuncts

+Interj: Interjection

+Num: Numbers

+Dup: Duplicate reflectives i.e. açık saçık

+Punc: Punctuations

§ The corpus will be used both for training the POS Tagger and as a resource for

testing the rate of success.

§ Tag set gives all possible tags that any Turkish word can be set.

Stochastic models need lexicon in order to assign possible tags to do words at the

beginning of the tagging process. Since there is no available lexicon in Turksh, a need for

a tool appeared for initial tag assignment. For this purpose we have used “PCKimmo”.

§ PCKimmo not only gives the probable initial tags for a word but also the

morphological background of the word which is also used in the middle tagging process.

The output taken from the PCKimmo is turned into the format :

Yakacak N N V Adj

Means “Yakacak” word is 50 percebt Noun 25 percent Verb and 25 percent Adjective

morphologically.

3.1.5 Process

§ Statistical Information Gathering

“Statistics Analyzer” is responsible for constructing “Statistics Database” by using the

“Training Corpus”. The process is called “Training” and at the end of the process the

unigram, bigram, trigram and statistics(consisting the tag probabilities of the words at the

beginning and at the end of the sentences.) are constructed.

 - 11 -

§ Assigning Tag Probabilities To Each Word

This is the core part of whole system and “Tagger” is responsible for the process with the

help of “Tag Set Finder”. By means of “PCKimmo” and “Statistics Database” “Tagger”

assigns the probability of tag for some word. For instance, “Yakacak” is “Adjective” with

probability p1 and is “Noun” with probability of p2 and is “Verb” with probability of p3.

§ Computing The Most Probable Path

The next phase is computing the most probable path for each sentence. The attention is

on sentence in this part and “Tagger” is also responsible the maintanence of this process.

Firstly number of possible paths is computed. Then by multiplying the probabilities of

each tag for each word the probability of the path found.

§ Assigning Tags To Words

According to most probable path tags are assigned to each word. This is the last

responsibility of the tagger. And the result is added to “Tagged Text” file.

• Testing The Result

After tags are assigned to each word to “Text To Be Tagged” , “Tester” will compare the

result found by the POS Tagger and the actual result and give a success rate. And also a

statistical result will be written to a result file explained above.

The detailed information about the process will be given in the following section.

3.2 Methodology

3.2.1 High Level Description

The project consist of several modules which have different tasks in whole tagging

process. Since our model is a supervised, stochastic model, the process begins with

geting stochastic data from the training corpus. Statistics analyzer is responsible for

preparing necessary files for the subsequent steps. The constructed files and

construction period is defined detaily below:

§ Computing Unigram Probabilities:

 - 12 -

Each word will be counted according to their appearance in the training corpus. How

many times it appeared total, how many of them was with the tag “Noun”, “Adj” ... is

calculated for each word in the corpus. As mentoined word encountered as a whole, for

instanse the main considiration point is “selamla�ma” in a word, it is not root of

“selamla�ma” “selam”. The constructed file is in the following format:

 Figure 4: Counting in Unigram Process

Then, we calculate the probability for a word w given a tag t: P(w|t). This is done by

counting the occurrences of word w tagged with t in the treebank divided by the number

of occurrences of tag t , as stated above:

P(w|t) = C(w, t) / C(t)

Then calculated probabilities for each word is written into “unigram_prob.txt” file. The

format is the following:

 Figure 5: A part of unigram_prob.txt

 Total Noun Adj Adv Verb Pron Conj ... Dup Interj

yaz 1000 280 120 0 600 0 0 ... 0 0

ben 500 215 o 0 285 132 0 ... 0 0

oku 863 203 0 0 660 0 0 ... 0 0

yarım 124 245 60 0 25 0 0 ... 0 0

YaSamInIz Noun 33
YaSamInIz Adj 0
YaSamInIz Adv 0
YaSamInIz Verb 66
YaSamInIz Pron 0
YaSamInIz Conj 0
YaSamInIz Det 0
YaSamInIz Postp 0
YaSamInIz Ques 0
YaSamInIz Interj 0
YaSamInIz Num 0
YaSamInIz Dup 0
YaSamInIz Punc 0
....

 - 13 -

§ Computing Bigram Probabilities

Each word couple will be counted according to their appearance in the training corpus, in

a similar way done in finding unigram probabilities. Their tags will be hold also in the

occurrence. For example “Ali gel” occurred 23 times together and in 20 of them “Ali”

appeared as “Noun” and “gel” appeared as “Verb”. Since every combination of tags (if

there are 30 tags for example, the probable occurrences are comb(30,2) which is a very

big number) are so big that we cant hold in a table(it will be inefficient), we will have a

table holding the frequencies of the tags that the words took separately. The format will

look like the following :

Figure 6: Counting in Bigram Process

Then, for each word couple probabilitiy is computed with the following fomula :

P(ti|ti-1) = C(ti−1ti)/ C(ti)

The results are written into bigram_prob.txt. A part from the file given below. For instance

“DükkancIm bunlarI Noun Pron 50 ” means that 50 percent of “DükkancIm bunlarI” couple

have “Noun Pron” as tags.

 Figure 7: A part of bigram_prob.txt

 Ali gel Eve gitti Sarı gelin

Total 45 23 36

 Ali gel eve gitti sarı gelin
Noun 12 34 3 20 23 2
Adj 32 23 12 1 2 12
Adv 0 2 7 2 12 13

dersten cekilme Noun Noun 100
DükkancIm bunlarI Noun Pron 50
bunlarI söyledikten Pron Verb 100
söyledikten YaSamInIz Verb Noun 100
YaSamInIz boyunca Noun Postp 100
boyunca birçok Postp Det 100
birçok korkunuz Det Noun 100
DükkancIm bunlarI Noun Verb 50
korkunuz oldu Noun Verb 100
oldu Bir_ara Verb Det 100
......

 - 14 -

§ Computing Trigram Probabilities

The computing in triples is similar to bigram probability finding process, each word triple

will be counted according to their appearance in the training corpus. For example,

consider the sentence “ali ak�am eve gitti.” The word triples here are “ali ak�am eve” and

”ak�am eve gitti.” There will be an entry for this two triples and the format of the table will

be similar to the one that we draw for the previous option but this time a little bit bigger.

Since the Turkish Treebank used in training process is not big enough, almost all of the

triples and assigned tags have the 100 percent, when the probability calculated using

thee following formula:

P(ti|ti-2ti-1) = C(ti-2ti-1ti)/C(ti-2ti-1)

At the end the results are written into the file trigram_prob.txt :

 Figure 8: A part of trigram_prob.txt

§ Computing the Tag Probabilities of the Words at the beginning or at the end

of a Sentence

Another statistics table has some grammatical information that we use if we don’t have

any information about a word that has never occurred in the training corpus. This table

have entries like the following; what is the most probable tag of a word that appears in

the beginning of a sentenceand what is the most probable tag of a word that is at the end

of a sentence? These kinds of information is kept for the words that we don’t have much

hep birileri yanInIzda Adv Pron Noun 100
birileri yanInIzda olsun Pron Noun Verb 100
yanInIzda olsun istediniz Noun Verb Verb 100
Sonra ne oldu Adv Ques Verb 100
ne oldu BabanIz Ques Verb Noun 100
oldu BabanIz bir Verb Noun Det 100
BabanIz bir hastanede Noun Det Noun 100
bir hastanede tüm Det Noun Det 100
hastanede tüm sevdikleri Noun Det Verb 100
tüm sevdikleri yanIndayken Det Verb Verb 100
......

 - 15 -

information about it. After counting and computing process, the data is written into the

“statistics.txt” file in the following format:

 Figure 9: The statistics.txt file

These statistical operations will be done once and the results will be used many times by

the program. But if any new corpus arrives, the operation may be repeated and new

tables may be hold.

The next and curicial part of the whole project is tagger part. The Tagger uses several

methods to decide the most probable tag of a word. The steps are as follows;

1. First of all, The “text to be tagged” is written from input file “input.txt”. The

processing is sentence by sentence. For each word in the input sentence, each possible

tag is assigned to word is computed by using “pckimmo” program. The results are written

into “tags.txt”. A part of the created file is given below:

first_noun 36 last_noun 2
first_adj 0 last_adj 0
first_adv 17 last_adv 2
first_verb 9 last_verb 95
first_pron 17 last_pron 0
first_conj 7 last_conj 0
first_det 7 last_det 0
first_postp 0 last_postp 0
first_ques 2 last_ques 0
first_interj 2 last_interj 0
first_num 0 last_num 2
first_dup 0 last_dup 0
first_punc 0 last_punc 0

yeni N N ADJ
bir N
dOneme N V
kayIt N V
zamanInda N N
ders N
ekleme N V N
bIrakma V N
sUresinde N ADJ
veya CON
dersten N
Cekilme V N V N
ders N
....

 - 16 -

 Figure 9: A part of tags.txt file

2. As seen above file PCKimmo is not ony giving only possible tags but also different

ways of producing the tag for the word. We add this mosrphological data about word into

considiration, also. The morphological backgraound has a direc effect on the computed

probability. The probabilities for each tag are also computed from the pckimmo output file

and written into tagProbabilities.txt file. The format of the file is given below:

 Figure 10: A part of tagProbabilities.txt file

3. After the tag probabilities for each word in the input sentence is computed, the

unigram effect state starts.

a. If the word is appeared in the corpus, it has an unigram probability for each tag.

The new score for each word is computed by the following formula:

pckimmo+unigram_tag_probability = 0.5* pckimmo_tag_probability + 0.5 *

unigram_tag_probability

b. Else If the word is not appeared in the corpus but it is the first word in the

sentence, the new score is computed by the formula :

pckimmo+unigram_tag_probability = 0.5* pckimmo_tag_probability + 0.5 *

statistics_first_tag_probability

c. Else If the word is not appeared in the corpus but it is the first word in the

sentence, the new score is computed by the formula:

pckimmo+unigram_tag_probability = 0.5* pckimmo_tag_probability + 0.5 *

statistics_lastt_tag_probability

yeni 66.0 33.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bir 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dOneme 50.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
zamanInda 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ders 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ekleme 66.0 0.0 0.0 33.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bIrakma 50.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sUresinde 50.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
veya 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dersten 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cekilme 50.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.......

 - 17 -

d. Else If the word is not appeared in the corpus, the following formula is used:

pckimmo+unigram_tag_probability = pckimmo_tag_probability

The results are updated and written into kimmoUnigramProbabiities.txt file in the

following format :

 Figure 11: A part of kimmoUnigramProbabilities.txt file

4. After the tag probabilities and unigram effect for each word in the input sentence

is computed, the bigram effect state starts.

a. If the word(i) and word(i+1) is appeared in the corpus, it has an bigram probability

with the tags tag(i) and tag(i+1). The new score for each word is computed by the

following formula:

pckimmo+unigram+bigram_tag_probability = 0.5* pckimmo+unigram_tag_probability

+ 0.5 * bigram_tag_probability

b. Else (the word has no bigram probability) , the following formula is used:

pckimmo+unigram+bigram_tag_probability = pckimmo+unigram_tag_probability

The results are updated and written into kimmoUnigramBigramProbabilities.txt file in

the following format :

kayIt Det 3.5
kayIt Postp 0.0
kayIt Ques 1.0
kayIt Interj 1.0
kayIt Num 0.0
kayIt Dup 0.0
kayIt Punc 0.0
yeni Noun 33.0
yeni Adj 66.5
yeni Adv 0.0
yeni Verb 0.0

 - 18 -

 Figure 12: A part of kimmoUnigramBigramProbabilities.txt file

5. After the tag probabilities and unigram and bigram effect for each word in the

input sentence is computed, the trigram effect state starts.

a. If the word(i) , word(i+1) , word(i+2) is appeared in the corpus, it has an trigram

probability with the tags tag(i) , tag(i+1), tag(i+2). The new score for each word is

computed by the following formula:

pckimmo+unigram+bigram+trigram_tag_probability = 0.5*

pckimmo+unigram+bigram_tag_probability + 0.5 * trigram_tag_probability

b. Else (the word has no bigram probability) , the following formula is used:

pckimmo+unigram+bigram+trigram_tag_probability =

pckimmo+unigram+bigram_tag_probability

The results are updated and written into kimmoUnigramBigramTrigramProbabilities.txt file

in the following format:

 Figure 13: A part of kimmoUnigramBigramProbabilities.txt file

kayIt Postp 0.0
kayIt Ques 1.0
kayIt Interj 1.0
kayIt Num 0.0
kayIt Dup 0.0
kayIt Punc 0.0
yeni Noun 33.0
yeni Adj 83.25
yeni Adv 0.0
yeni Verb 0.0
yeni Pron 0.0
yeni Conj 0.0

kayIt Interj 1.0
kayIt Num 0.0
kayIt Dup 0.0
kayIt Punc 0.0
yeni Noun 33.0
yeni Adj 91.625
yeni Adv 0.0
yeni Verb 0.0
yeni Pron 0.0
yeni Conj 0.0
....

 - 19 -

6. In order to determine the tag, we first look at the table that holds the information

for the triples. If the triple occurred in the text, we put the tags in the tag set of the words.

We keep on doing this until the end of the sentence.

7. When do the same thing for the couples. Since we cant expect the triple to occur

very frequently, we try to find the couple and the possible tags.

8. Lastly we look at the table that holds the information for individual words. We

determine the tags from here and put it in the tag set.

9. There can still be some words that never occurred in one of these tables. That

have never appeared in the text. This time we have some options. We may look to the

lexicon for the words that are in the form of a root. There is another option that we can

use a program that determines the tag set of a word. these programs can be used as an

API for the tagger.

10. After determining the tag set, now we compute the possible paths for the

sentence. The paths are defined as follows. For the sentence “ali eve geldi” a possible

path can be “isim isim fiil”. According to the number of tag sets, all possible paths will be

calculated.

11. Now is the time for processing all the paths. We will use Hidden Markov Model to

determine the probabilities for each word triple, couple or individual table that we already

have. After calculating the probabilities, we give a score to each path.

12. Then we compare all the scores and take the one with highest score. According to

the path we give the tags and write the sentence to a text file with its tags in the format of

Turkish tree bank.

The last part of the project is calculating the performance. There will be a module that

takes the tagged text that we processed and another tag text that was tagged before and

by comparing word by word, prints a result of the system.

 - 20 -

3.2.2 Middle Level Description

3.2.3 Low Level Description

pc_kimmo_parser.java

This java file analyses the output of the pc_kimmo, and creates a file named

“tags.txt”. The input for the file is the name of the output file of pc_kimmo. By using

pattern matching, this file selects the words from the output of pc_kimmo and writes the

possible tags of the word. On the command line type;

Java pc_kimmo_parser file_name

Here, the file_name is the file created by the pc_kimmo. The main purpose of the file is

learning the all possible tags of a given word.

After executing the file, programme creates a file called “tags.txt” in the same directory as

the pc_kimmo_parser.java. It includes lines as the following;

yeni N N ADJ

bir N

 - 21 -

dOneme N V

kayIt N V

Here, first word of each line is the word and each word after it are the possible tags. One

tag may appear more than once, meaning that there can be different meanings of that

word but in the same morphological category.

bigram_test_provider.java

This java file is used for creating a text file for further use in other programmes.

Bigram.java , trigram.java and input_provider.java files uses the output of this file. It

simply the xml files which are included in Turkish tree bank and analyses them. After

analyzing, takes the words and determines their tags and write them to a file named

“bigram_test.txt”. On the command line type;

Java bigram_test_provider file_name

Here, the file_name stands for the file that is included in the Turkish tree bank, ex:

00084111-4.xml

After entering these xml files one by one, new sentences are appended to the end of the

bigram_test.txt file, which is later used in other programmes. The text file contains rows

as the following;

 Çocukluk Noun

 yIllarInIzI Noun

 bu Det

 aptalca Adv

 korku Noun

 size Pron

 zehir_etti Verb

 . Punc

Here each line contains a word and the tag of the word. The “.” is also included

with its category.

 - 22 -

input_provider.java

This file is used for preparing a appropriate input file for the main program which

guesses the tags for the given input. We have a format for inputs and this file provides

this format. It takes the bigram_test.txt file and creates a file named “tagger_input.txt”.

since the bigram_test file contains the tags of the words, we have to get rid of the tags

and have a simple file containing one word or a “.” in each line. On the command line

type;

Java input_provider file_name

Here, the file_name stands for the “bigram_test.txt”. but it can be used for different

purposes later, so we preferred to get the file name from the command line as an

argument.

The format of the created file “tagger_input.txt” is as the following;

Simdilerde

yeni

bir

korku

edindiniz

.

OGlunuzun

öleceðini

sizden

önce

ölebileceGini

düsünüyorsunuz

.

There is a word in each line and the sentences are separated by the “.” Also “;”

appears if it is used in the original corpus.

 - 23 -

unigram.java

This java file is used for creating a text file including the words and their tags in

each line. The corpus of Turkish tree bank is analysed and the relevant information is

gathered by this file. Each xml file is taken and the words and tags are appenden at the

end of the unigram.txt file. On the command line type;

Java unigram file_name

file_name stands for the names of the xml files in the Turkish tree bank. Enter

each xml file one by one and what you get is a big text file including words and the tags

they get in the corpus. This information is further used in the tagger.

The content of the unigram.txt is as follows;

YaSamInIz Noun

 boyunca Postp

 birçok Det

 korkunuz Noun

 oldu Verb

 Bir_ara Det

 YaSamInIz Verb

 babanIzla Noun

In each line, there is a word and the tag it takes in the corpus. This information is

used for producing statistics showing which word is used in which tag how often. The

unigram_prob.txt file is created by using this unigram.txt

bigram.java

This java file is used for creating a text file including the a couple of words and the

tags they get . The corpus of Turkish tree bank is analysed and the relevant information is

gathered by this file. “bigram_test.txt” file is used for this purpose. The file is opened and

the words are taken two by two. The aim is to identify which tag of a word is generally

used after a known word and tag of it.

 - 24 -

 On the command line type;

Java bigram file_name

file_name stands for the “bigram_test.txt”.. This information is further used in the tagger.

The content of the bigram.txt is as follows;

DükkancIm Noun bunlarI Pron

bunlarI Pron söyledikten Verb

söyledikten Verb YaSamInIz Noun

YaSamInIz Noun boyunca Postp

boyunca Postp birçok Det

In each line, there are two words and two tags. The order is word1 tag1 word2

tag2 .This information is used for producing statistics showing word couples are used

together in which tags. We know that the mostly used ones are more probable than

others. The bigram_prob.txt file is created by using this bigram.txt

trigram.java

This java file is used for creating a text file including the triples of words and the

tags they get . The corpus of Turkish tree bank is analysed and the relevant information is

gathered by this file. “bigram_test.txt” file is used for this purpose. The file is opened and

the words are taken three by three. The aim is to identify which word triples are used

together and in which tags mostly. On the command line type;

Java trigram file_name

file_name stands for the “bigram_test.txt”.. This information is further used in the tagger.

The content of the bigram.txt is as follows;

DükkancIm Noun bunlarI Pron söyledikten Verb

bunlarI Pron söyledikten Verb YaSamInIz Noun

söyledikten Verb YaSamInIz Noun boyunca Postp

 - 25 -

YaSamInIz Noun boyunca Postp birçok Det

boyunca Postp birçok Det korkunuz Noun

birçok Det korkunuz Noun oldu Verb

korkunuz Noun oldu Verb Bir_ara Det

In each line, there are three words and three tags. The order is word1 tag1 word2

tag2 word3 tag3.This information is used for producing statistics showing word triples are

used together in which tags. We know that the mostly used ones are more probable than

others. The trigram_prob.txt file is created by using this trigram.txt

unigram_prob.java

This file provides statistics about words by using the previously created

“unigram.txt” file. A new file named “unigram_prob.txt” which contains probabilities of the

words taken a particular tag. Each tag is included and the probability with that tag.

Unigram.txt file is taken and all words are counted. Then then the relative probabilities

are calculated and written to the unigram_prob.txt for further use in the tagger.

On the command line type;

Java unigram_prob file_name

File_name stands for “unigram.txt” in this case. This is taken as an argument. This

file should be in the same directorory as the unigram_prob.java. A new file containing

probabilities is created in the same directory. The newly created file “unigram_prob.txt”

contains the information as follows;

boyunca Noun 28

boyunca Adj 0

boyunca Adv 14

boyunca Verb 42

boyunca Pron 0

boyunca Conj 0

boyunca Det 0

boyunca Postp 14

 - 26 -

boyunca Ques 0

boyunca Interj 0

boyunca Num 0

boyunca Dup 0

boyunca Punc 0

Each line contains a word, a tag and the relative probability of that word with that tag.

bigram_prob.java

This file provides statistics about word couples by using the previously created

“bigram.txt” file. A new file named “bigram_prob.txt” which contains probabilities of the

word couples taken particular tags. Each tag set is included and the probabilities with

those tags. bigram.txt file is taken and all word couples are counted. Then then the

relative probabilities are calculated and written to the bigram_prob.txt for further use in

the tagger.

On the command line type;

Java bigram_prob file_name

File_name stands for “bigram.txt” in this case. This is taken as an argument. This

file should be in the same directorory as the bigram_prob.java. A new file containing

probabilities is created in the same directory. The newly created file “bigram_prob.txt”

contains the information as follows;

DükkancIm bunlarI Noun Pron 50

bunlarI söyledikten Pron Verb 100

söyledikten YaSamInIz Verb Noun 100

YaSamInIz boyunca Noun Postp 100

boyunca birçok Postp Det 100

birçok korkunuz Det Noun 100

DükkancIm bunlarI Noun Verb 50

korkunuz oldu Noun Verb 100

 - 27 -

The structure of each line is as follows; word1 word2 tag1 tag2 probability. This

order is preserved and the tag couples that have never occurred are not included.

trigram_prob.java

This file provides statistics about word triples by using the previously created

“trigram.txt” file. A new file named “trigram_prob.txt” which contains probabilities of the

word triples taken particular tags. Each tag set is included and the probabilities with

those tags. trigram.txt file is taken and all word triples are counted. Then then the relative

probabilities are calculated and written to the trigram_prob.txt for further use in the

tagger.

On the command line type;

Java trigram_prob file_name

File_name stands for “trigram.txt” in this case. This is taken as an argument. This

file should be in the same directorory as the trigram_prob.java. A new file containing

probabilities is created in the same directory. The newly created file “trigram_prob.txt”

contains the information as follows;

DükkancIm bunlarI söyledikten Noun Pron Verb 66

bunlarI söyledikten YaSamInIz Pron Verb Noun 100

söyledikten YaSamInIz boyunca Verb Noun Postp 100

YaSamInIz boyunca birçok Noun Postp Det 100

boyunca birçok korkunuz Postp Det Noun 100

birçok korkunuz oldu Det Noun Verb 100

korkunuz oldu Bir_ara Noun Verb Det 100

oldu Bir_ara babanIzla Verb Det Noun 100

Bir_ara babanIzla annenizin Det Noun Noun 100

The structure of each line is as follows; word1 word2 word3 tag1 tag2 tag3

probability. This order is preserved and the tag triples that have never occurred are not

included.

 - 28 -

Statistics.java

This file uses the “bigram_test.txt” file and produces some statistics about the

words according to their position on the sentence. The first word and the last word of the

sentence is considered here. This heuristics is used in the tagger.

On the command line type;

Java statistics file_name;

File_name stands for the bigram_test.txt in this case. The output file is named

“statistics.txt”. It includes rows as follows;

first_noun 36

last_noun 2

first_adj 0

last_adj 0

first_adv 17

last_adv 2

first_verb 9

last_verb 95

There is a word and a number with it in each line. The word says if it is in the

beginning of the sentence or at the last. For example nouns at the beginning of a

sentence has a probability of %36 in this case.

Usage summery

Java pc_kimmo_parser zOrnek.out

Java bigram_test_provider 122564.xml

Java input_provider bigram_test.txt

Java unigram 423454.xml

 - 29 -

Java bigram bigram_test.txt

Java trigram bigram_test.txt

Java unigram_prob unigram.txt

Java bigram_prob bigram.txt

Java trigram_prob trigram.txt

Java statistics bigram_test.txt

 - 30 -

4. RESULTS AND CONCLUSSION

Part of speech tagging is a wide research area in computational linguistics. While

we were looking for papers in order to understand the concept, we found lots of papers

written about part of speech tagiing for English. But we see that there is not enough

research on this topic for Turkish. During our literature research, we couldn’t find so

much paper which is related to part of speech tagging for Turkish.

Our study is an introduction to the topic and there can be further improvements on

it. What we aim in this project is first of all understand the part of speech tagging and try

to create our own techniques on it. We wanted to add something new. The process of the

project was so exciting and we learned from it very much. After all we believe that we

created a part of speech tager which contains our own ideas and approximations to the

problem. The steps that we went through was literature survey, proposal preperation, and

coding. By combining different techniques and other programs as a supporter for the

project, we reached to a satisfactory correctness level.

We have made 3 different tests by using the different parts of the curpus as an

input text. The test are made on both only using PCKimmo and using stochastic data and

Pckimmo both. The results are given below.

Number Of Sentences 300 220 576

Number Of Words 942 1253 1662

Tags Assigned

Correctly Using PC

Kimmo

653 787 1132

Success Rate 69.3 % 62.8% 68.1%

Tags Assigned

Correctly Using PC

Kimmo and Stochastic

Data

798 1002 1367

Success Rate 84.7 % 79.9% 82.2%

 - 31 -

The drawbacks of the program :

• Initial tag probabilities assigned to words at the beginning of the tagging

process depend on PCKimmo, but PCKimmo do not always assign proper tags

to words. For instance “terliklerini ADJ ADJ ADJ ADJ”, “neyi N N ADJ ADJ” are

outputs of PCKimmo. As a result the probability of assigning true tag to word is

highly decreases.

• The tag set of PCKimmo and the tagset of Treebank we have used is not one

to one correspondent. For instance where “det” is a tag in Treebank’s tagset,

there is no “det” output in PCKimmo.

• Most of the bigrams and trigrams found in the corpus have the probability 100

percent, because the corpus is neo big enough. As a result if a couple or triple

is found in the corpus, the score of their tag gets the most probable tag.

• Complexity of the program is very high, at each word for instance, it searches

all unigram text file which is about 6 MB. As a result running program for big

input is very time consuming.

Futurework:

• The program will give beter performance with bigger training corpus. If a large

enough corpus can be constructed, the programs output will be more

satisfactory.

• The code can be fixed due to problems occur because of allignment problems

in the input text. Such us punctuations.

• Since searching operations takes very long time in the program. Time

complexity of the program can be decreased by using a Database

Management System instead of text files.

• More heuristics can be add to process in order to come up with a better result.

 - 32 -

5. REFERENCES

1. Brill, Eric. 1995. Unsupervised learning of disambiguation rules for part of speech

tagging.

2. Schütze, Hinrich. 1993. Part-of-speech induction from scratch. Proceedings of the

31st Annual Meeting of the Association for Computational Linguistics, 251-258.

3. Brill, Eric. 1992. A simple rule-based part of speech tagger. Proceedings of the

Third Annual Conference on Applied Natural Language Processing, ACL.

4. Allen, James. 1995. Natural Language Understanding. Redwood City, CA:

Benjamin Cummings.

5. Brill, Eric & Marcus, M. 1993. Tagging an unfamiliar text with minimal human

supervision. ARPA Technical Report.

6. Baum, L. 1972. An inequality and associated maximization technique in statistical

estimation for probabilistic functions of a Markov process. Inequalities 3:1-8.

7. Kupiec, J. 1992. Robust Part-of-speech tagging using a hidden Markov model.

Computer Speech and Language 6.

 - 33 -

6. APPENDIX : LISTING OF THE PROGRAM (important parts)

Assign_Tags.java
import java.io.*;
import java.util.regex.*;
import javax.swing.*;
import java.beans.*;
import java.util.*;

public class Assign_Tags
{

 public static double [] tagProbabilityArray;

 public static void main(String[] argv)
 {
 String foundProbabilityFileName = argv[0];
 initialize_tag_probabilities();

 assign(foundProbabilityFileName);
 }

 public static void initialize_tag_probabilities()
 {
 tagProbabilityArray = new double[13];

 for (int i=0; i<12;i++)
 {
 tagProbabilityArray[i]= 0.0;
 }
 }

 public static void assign (String probabilityFile)
 {
 File inputFile = new File(probabilityFile);

 File outputFile = new File("assignedTags.txt");

 String maxProbabilityTag = null;
 double maxProbability = 0.0;

 String inputLine = null;
 String [] inputLineString = null;
 inputLineString = new String[10000];

 int inCounter = 0;

 try
 {
 BufferedReader inputReader = new BufferedReader(new
FileReader(inputFile));
 BufferedWriter outputWriter = new BufferedWriter(new
FileWriter(outputFile,true),100);

 while ((inputLine = inputReader.readLine()) != null)
 {
 inCounter = 0;

 System.out.println (inputLine);

 - 34 -

 StringTokenizer inputTokens = new StringTokenizer(inputLine);

 while (inputTokens.hasMoreTokens())
 {
 inputLineString[inCounter] = inputTokens.nextToken();
 inCounter++;
 }

 tagProbabilityArray[0] =
Double.parseDouble(inputLineString[2]);

 maxProbabilityTag = inputLineString[1];
 maxProbability = tagProbabilityArray[0];

 for (int i = 1; i<13; i++)
 {
 inCounter = 0;
 try
 {
 inputLine = inputReader.readLine();

 StringTokenizer inputTokens2 = new
StringTokenizer(inputLine);

 while (inputTokens2.hasMoreTokens())
 {
 inputLineString[inCounter] =
inputTokens2.nextToken();
 inCounter++;
 }

 tagProbabilityArray[i] =
Double.parseDouble(inputLineString[2]);

 if (tagProbabilityArray[i] > maxProbability)
 {
 maxProbability = tagProbabilityArray[i];
 maxProbabilityTag = inputLineString[1];
 }

 }
 catch(NullPointerException e)
 {}

 }

 outputWriter.write(inputLineString[0] + " " +
maxProbabilityTag + " " +maxProbability);
 outputWriter.newLine();
 }

 inputReader.close();
 outputWriter.close();
 }
 catch(IOException e)
 {
 System.err.println(e);
 System.out.println("Cannot read the input file");
 }//end of catch
 }

 - 35 -

}

Find_Tags.java

import java.io.*;
import java.util.regex.*;
import javax.swing.*;
import java.beans.*;
import java.util.*;

public class Find_Tags
{

 public static double [] tagProbabilityArray;
 private static int [] tagCounterArray;
 private static double [] firstWordArray;
 private static double [] lastWordArray;

 public static void main(String[] argv)
 {
 String inputFileName = "input.txt";
 String tagsFileName = "tags.txt";
 String unigramFileName ="unigram_prob.txt";
 String bigramFileName ="bigram_prob.txt";
 String trigramFileName = "trigram_prob.txt";
 String statisticsFileName = "statistics.txt";

 initialize_tag_probabilities();
 initialize_tag_counter();
 initialize_first_last_word_probabilities(statisticsFileName);

 find_tag_probabilities(inputFileName,tagsFileName);
 unigram_effect(inputFileName,unigramFileName);
 bigram_effect(inputFileName,bigramFileName);
 trigram_effect(inputFileName,trigramFileName);
 }

 public static void initialize_tag_probabilities()
 {
 tagProbabilityArray = new double[13];

 for (int i=0; i<12;i++)
 {
 tagProbabilityArray[i]= 0.0;
 }
 }

 public static void initialize_first_last_word_probabilities(String
statistics)
 {
 firstWordArray = new double[13];
 lastWordArray = new double[13];

 String statisticsLine = null;
 String [] statisticsLineString;
 statisticsLineString = new String[5];

 File statisticsFile = new File(statistics);

 - 36 -

 try
 {
 BufferedReader statisticsReader = new BufferedReader(new
FileReader(statisticsFile));
 int i = 0;
 int stCounter = 0;

 while ((statisticsLine = statisticsReader.readLine()) != null)
 {
 StringTokenizer statisticsTokens = new
StringTokenizer(statisticsLine);

 while (statisticsTokens.hasMoreTokens())
 {
 statisticsLineString[stCounter] =
statisticsTokens.nextToken();
 stCounter++;
 }

 firstWordArray[i]= Double.parseDouble(statisticsLineString[1]);

 stCounter = 0;
 statisticsLine = statisticsReader.readLine();
 StringTokenizer statisticsTokens2 = new
StringTokenizer(statisticsLine);

 while (statisticsTokens2.hasMoreTokens())
 {
 statisticsLineString[stCounter] =
statisticsTokens2.nextToken();
 stCounter++;
 }

 lastWordArray[i]= Double.parseDouble(statisticsLineString[1]);

 i++;
 stCounter = 0;
 }
 }

 catch(IOException e)
 {
 System.err.println(e);
 System.out.println("Cannot read the input file");
 }

 }

 public static void initialize_tag_counter()
 {
 tagCounterArray = new int[13];

 for (int i=0; i<12;i++)
 {
 tagCounterArray[i] = 0;
 }
 }
public static void unigram_effect(String input,String unigram)
 {
 File inputFile = new File(input);
 File unigramFile = new File(unigram);
 File tagProbabilityFile = new File("tagProbabilities.txt");

 - 37 -

 File outputFile = new File("kimmoUnigramProbabilities.txt");

 try {
 BufferedReader inputReader = new BufferedReader(new
FileReader(inputFile));
 BufferedReader unigramReader = new BufferedReader(new
FileReader(unigramFile));
 BufferedReader tagProbabilityReader = new BufferedReader(new
FileReader(tagProbabilityFile));

 unigramReader.mark(100000);
 tagProbabilityReader.mark(100000);

 BufferedWriter outputWriter = new BufferedWriter(new
FileWriter(outputFile,true),100);

 String inputLine = null;
 String tagProbabilityLine = null;

 String [] inputLineString = null;
 inputLineString = new String[100000];

 String currentInputWord = null;

 String unigramLine = null;

 String [] unigramLineString = null;
 unigramLineString = new String[3];

 String [] tagProbabilityLineString = null;
 tagProbabilityLineString = new String[14];

 String currentUnigramWord = null;
 String currentUnigramTag = null;
 int currentUnigramProbability = 0;

 String outputString=null;

 int inputTokenCounter = 0;

 int inCounter = 0;
 int tagProbabilityCounter = 0;

 while ((inputLine = inputReader.readLine()) != null)
 {
 StringTokenizer inputTokens = new StringTokenizer(inputLine);
 inputTokenCounter = inputTokens.countTokens();

 while (inputTokens.hasMoreTokens())
 {
 inputLineString[inCounter] = inputTokens.nextToken();
 inCounter++;
 }
 }

 boolean inputFound ;
 int curIndex = 0;
 int uniCounter = 0;
 int inFoundCount = 0;

 while ((unigramLine = unigramReader.readLine()) != null)

 - 38 -

 {
 uniCounter = 0;
 inputFound=false;

 StringTokenizer unigramTokens = new
StringTokenizer(unigramLine);

 while (unigramTokens.hasMoreTokens())
 {
 unigramLineString[uniCounter] = unigramTokens.nextToken();
 uniCounter++;
 }

 currentInputWord = inputLineString[curIndex];
 currentUnigramWord = unigramLineString[0];
 currentUnigramTag = unigramLineString[1];
 try
 {
 currentUnigramProbability =
Integer.parseInt(unigramLineString[2]);
 }
 catch(NumberFormatException e)
 {
 currentUnigramProbability = 0;
 }

 try
 {
 if (currentInputWord.equals(currentUnigramWord))
 {
 boolean tagProbabilityNotFound = true;
 while ((tagProbabilityLine =
tagProbabilityReader.readLine()) != null && tagProbabilityNotFound)
 {
 StringTokenizer tagProbabilityTokens = new
StringTokenizer(tagProbabilityLine);

 tagProbabilityCounter = 0;

 while (tagProbabilityTokens.hasMoreTokens())
 {
 tagProbabilityLineString[tagProbabilityCounter]
= tagProbabilityTokens.nextToken();
 tagProbabilityCounter++;
 }
 if
(currentInputWord.equals(tagProbabilityLineString[0]))
 {
 for (int k = 0; k < 13; k++)
 {

tagProbabilityArray[k]=Double.parseDouble(tagProbabilityLineString[k+1]);
 }
 tagProbabilityNotFound = false;
 }
 }
 tagProbabilityReader.reset();
 if (currentUnigramTag.equals("Noun"))
 {

 - 39 -

 tagProbabilityArray[0]
=(0.5*tagProbabilityArray[0]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " + tagProbabilityArray[0]);
 outputWriter.newLine();
 }
 else if (currentUnigramTag.equals("Adj"))
 {

 tagProbabilityArray[1]
=(0.5*tagProbabilityArray[1]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[1]);
 outputWriter.newLine();
 }
 else if (currentUnigramTag.equals("Adv"))
 {
 tagProbabilityArray[2]
=(0.5*tagProbabilityArray[2]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[2]);
 outputWriter.newLine();
 }
 else if (currentUnigramTag.equals("Verb"))
 {
 tagProbabilityArray[3]
=(0.5*tagProbabilityArray[3]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[3]);
 outputWriter.newLine();
 }
 else if (currentUnigramTag.equals("Pron"))
 {
 tagProbabilityArray[4]
=(0.5*tagProbabilityArray[4]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[4]);
 outputWriter.newLine();
 }
 else if (currentUnigramTag.equals("Conj"))
 {
 tagProbabilityArray[5]
=(0.5*tagProbabilityArray[5]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[5]);
 outputWriter.newLine();
 }
 else if (currentUnigramTag.equals("Det"))
 {
 tagProbabilityArray[6]
=(0.5*tagProbabilityArray[6]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[6]);
 outputWriter.newLine();
 }

 - 40 -

 else if (currentUnigramTag.equals("Postp"))
 {
 tagProbabilityArray[7]
=(0.5*tagProbabilityArray[7]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[7]);
 outputWriter.newLine();
 }
 else if (currentUnigramTag.equals("Ques"))
 {
 tagProbabilityArray[8]
=(0.5*tagProbabilityArray[8]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[8]);
 outputWriter.newLine();
 }
 else if (currentUnigramTag.equals("Interj"))
 {
 tagProbabilityArray[9]
=(0.5*tagProbabilityArray[9]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[9]);
 outputWriter.newLine();
 }
 else if (currentUnigramTag.equals("Num"))
 {
 tagProbabilityArray[10]
=(0.5*tagProbabilityArray[10]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[10]);
 outputWriter.newLine();
 }
 else if (currentUnigramTag.equals("Dup"))
 {
 tagProbabilityArray[11]
=(0.5*tagProbabilityArray[11]) +(0.5*currentUnigramProbability);
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[11]);
 outputWriter.newLine();
 }
 else if (currentUnigramTag.equals("Punc"))
 {
 tagProbabilityArray[12] = tagProbabilityArray[12] +
currentUnigramProbability;
 inFoundCount ++;
 outputWriter.write(currentInputWord+" "+
currentUnigramTag + " " +tagProbabilityArray[12]);
 outputWriter.newLine();
 }

 if (inFoundCount%13==0)
 {
 inputFound = true;
 unigramReader.reset() ;

 - 41 -

 if (curIndex < inCounter-1)
 {
 curIndex++;
 }
 }
 }

 else if(currentUnigramWord.equals("#"))
 {
 unigramReader.reset();
 curIndex++;

 boolean tagProbabilityNotFound = true;

 while ((tagProbabilityLine =
tagProbabilityReader.readLine()) != null && tagProbabilityNotFound)
 {
 StringTokenizer tagProbabilityTokens = new
StringTokenizer(tagProbabilityLine);

 tagProbabilityCounter = 0;

 while (tagProbabilityTokens.hasMoreTokens())
 {
 tagProbabilityLineString[tagProbabilityCounter]
= tagProbabilityTokens.nextToken();
 tagProbabilityCounter++;
 }

 if
(currentInputWord.equals(tagProbabilityLineString[0]))
 {
 for (int k = 0; k < 13; k++)
 {
 try
 {

.................

.................

 }
 tagProbabilityReader.reset();
 }
 }

 catch(NullPointerException e)
 {}

 }
 outputWriter.close();
 inputReader.close();

 }
 catch(IOException e)
 {
 System.err.println(e);
 System.out.println("Cannot read the input file input.txt");
 }//end of catch

 - 42 -

 return;
 }
 public static void bigram_effect(String input,String bigram)
 {
 File inputFile = new File(input);
 File bigramFile = new File(bigram);
 File tagPreviousProbabilityFile = new
File("kimmoUnigramProbabilities.txt");
 File outputFile = new File("kimmoUnigramBigramProbabilities.txt");

 try
 {
 BufferedReader inputReader = new BufferedReader(new
FileReader(inputFile));
 BufferedReader bigramReader = new BufferedReader(new
FileReader(bigramFile));
 BufferedReader tagPreviousProbabilityReader = new
BufferedReader(new FileReader(tagPreviousProbabilityFile));

 bigramReader.mark(100000);
 tagPreviousProbabilityReader.mark(100000);

 BufferedWriter outputWriter = new BufferedWriter(new
FileWriter(outputFile,true),100);

 String inputLine = null;
 String inputNextLine = null;
 String tagPreviousProbabilityLine=null;
 String tagPPreviousrobabilityLine = null;

 String [] inputLineString = null;
 inputLineString = new String[100000];

 String currentInputWord = null;
 String nextInputWord = null;

 String bigramLine = null;

 String [] bigramLineString = null;
 bigramLineString = new String[10];

 String [] tagPreviousProbabilityLineString = null;
 tagPreviousProbabilityLineString = new String[3];

 String currentBigramWord = null;
 String currentBigramTag = null;

 String nextBigramWord = null;
 String nextBigramTag = null;

 String nextInputTag = null;

 double currentBigramProbability = 0.0;
 double previousProbability = 0.0;
 String previousTag = null;

 String outputString=null;

 int inCounter = 0;
 int tagProbabilityCounter = 0;

 - 43 -

 int curIndex = 0;
 int inFoundCount = 0;

 boolean markNext = false;

 while ((inputLine = inputReader.readLine()) != null)
 {
 StringTokenizer inputTokens = new StringTokenizer(inputLine);

 while (inputTokens.hasMoreTokens())
 {
 inputLineString[inCounter] = inputTokens.nextToken();
 inCounter++;
 }
 }
 int biCounter =0;

 int previousProbCount = 0;

 while ((bigramLine = bigramReader.readLine()) != null &&
curIndex<inCounter-1)
 {
 biCounter = 0;

 StringTokenizer bigramTokens = new StringTokenizer(bigramLine);

 while (bigramTokens.hasMoreTokens())
 {
 bigramLineString[biCounter] = bigramTokens.nextToken();
 biCounter++;
 }

 if (curIndex<inCounter-1)
 {
 try
 {
 currentInputWord = inputLineString[curIndex];
 nextInputWord = inputLineString[curIndex+1];
 }
 catch(NullPointerException e)
 {}
 }

 currentBigramWord = bigramLineString[0];
 currentBigramTag = bigramLineString[2];
 nextBigramWord = bigramLineString[1];
 nextBigramTag = bigramLineString[3];

 try
 {
 currentBigramProbability =
Double.parseDouble(bigramLineString[10]);
 }
 catch(NumberFormatException e)
 {
 currentBigramProbability = 0.0;
 }

 try
 {

 - 44 -

 if ((currentInputWord.equals(currentBigramWord) &&
nextInputWord.equals(nextBigramWord)) || (markNext && previousProbCount%13==0)
)
 {
 if (markNext)
 {
 currentBigramWord = bigramLineString[1];
 currentBigramTag = bigramLineString[3];

 // System.out.println(currentBigramWord+"-
"+currentBigramTag);
 }
 boolean tagProbabilityNotFound = true;
 // System.out.println("asil" + currentBigramWord+"-
"+currentBigramTag);

………………

………………..
public static void trigram_effect(String input,String trigram)
 {
 File inputFile = new File(input);
 File trigramFile = new File(trigram);
 File tagPreviousProbabilityFile = new
File("kimmoUnigramBigramProbabilities.txt");
 File outputFile = new
File("kimmoUnigramBigramTrigramProbabilities.txt");

 try
 {
 BufferedReader inputReader = new BufferedReader(new
FileReader(inputFile));
 BufferedReader trigramReader = new BufferedReader(new
FileReader(trigramFile));
 BufferedReader tagPreviousProbabilityReader = new
BufferedReader(new FileReader(tagPreviousProbabilityFile));

 trigramReader.mark(100000);
 tagPreviousProbabilityReader.mark(100000);

 BufferedWriter outputWriter = new BufferedWriter(new
FileWriter(outputFile,true),100);

 String inputLine = null;
 String tagPreviousProbabilityLine = null;

 String [] inputLineString = null;
 inputLineString = new String[100000];

 String currentInputWord = null;
 String nextInputWord = null;
 String nextNextInputWord = null;

 String trigramLine = null;

 String [] trigramLineString = null;
 trigramLineString = new String[14];

 String [] tagPreviousProbabilityLineString = null;
 tagPreviousProbabilityLineString = new String[3];

 String currentTrigramWord = null;

 - 45 -

 String currentTrigramTag = null;

 String nextTrigramWord = null;
 String nextTrigramTag = null;

 String nextNextTrigramWord = null;
 String nextNextTrigramTag = null;

 String nextInputTag = null;
 String nextNextInputTag = null;

 double currentTrigramProbability = 0.0;
 double previousProbability = 0.0;
 String previousTag = null;

 String outputString=null;

 int inCounter = 0;
 int tagProbabilityCounter = 0;

 int curIndex = 0;
 int inFoundCount = 0;

 while ((inputLine = inputReader.readLine()) != null)
 {
 StringTokenizer inputTokens = new StringTokenizer(inputLine);

 while (inputTokens.hasMoreTokens())
 {
 inputLineString[inCounter] = inputTokens.nextToken();
 inCounter++;
 }
 }

 int triCounter =0;

 int previousProbCount = 0;

 while ((trigramLine = trigramReader.readLine()) != null &&
curIndex<inCounter-1)
 {
 triCounter = 0;

 StringTokenizer trigramTokens = new
StringTokenizer(trigramLine);

 while (trigramTokens.hasMoreTokens())
 {
 trigramLineString[triCounter] = trigramTokens.nextToken();
 triCounter++;
 }

 if (curIndex<inCounter-1)
 {
 try
 {
 currentInputWord = inputLineString[curIndex];
 nextInputWord = inputLineString[curIndex+1];
 nextNextInputWord = inputLineString[curIndex+2];
 }
 catch(NullPointerException e)
 {}

 - 46 -

 }

 currentTrigramWord = trigramLineString[0];
 currentTrigramTag = trigramLineString[3];
 nextTrigramWord = trigramLineString[1];
 nextTrigramTag = trigramLineString[4];
 nextNextTrigramWord = trigramLineString[2];
 nextNextTrigramTag = trigramLineString[5];

 try
 {
 currentTrigramProbability =
Double.parseDouble(trigramLineString[6]);
 }
 catch(NumberFormatException e)
 {
 currentTrigramProbability = 0.0;
 }

 try
 {
 if (currentInputWord.equals(currentTrigramWord) &&
nextInputWord.equals(nextTrigramWord) &&
nextNextInputWord.equals(nextNextTrigramWord))
 {

 boolean tagProbabilityNotFound = true;

 while ((tagPreviousProbabilityLine =
tagPreviousProbabilityReader.readLine()) != null && tagProbabilityNotFound)
 {
 StringTokenizer tagPreviousProbabilityTokens = new
StringTokenizer(tagPreviousProbabilityLine);

 tagProbabilityCounter = 0;

 while
(tagPreviousProbabilityTokens.hasMoreTokens())
 {

tagPreviousProbabilityLineString[tagProbabilityCounter] =
tagPreviousProbabilityTokens.nextToken();
 tagProbabilityCounter++;
 }
 if
(currentInputWord.equals(tagPreviousProbabilityLineString[0]) &&
currentTrigramTag.equals(tagPreviousProbabilityLineString[1]))
 {
 previousProbability =
Double.parseDouble(tagPreviousProbabilityLineString[2]);

 if (currentTrigramTag.equals("Noun"))
 {
 tagProbabilityArray[0]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " + tagProbabilityArray[0]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Adj"))
 {

 - 47 -

 tagProbabilityArray[1]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[1]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Adv"))
 {
 tagProbabilityArray[2]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[2]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Verb"))
 {
 tagProbabilityArray[3]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[3]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Pron"))
 {
 tagProbabilityArray[4]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[4]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Conj"))
 {
 tagProbabilityArray[5]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[5]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Det"))
 {
 tagProbabilityArray[6]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[6]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Postp"))
 {
 tagProbabilityArray[7]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[7]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Ques"))

 - 48 -

 {
 tagProbabilityArray[8]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[8]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Interj"))
 {
 tagProbabilityArray[9]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[9]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Num"))
 {
 tagProbabilityArray[10]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[10]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Dup"))
 {
 tagProbabilityArray[11]
=(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[11]);
 outputWriter.newLine();
 }
 else if (currentTrigramTag.equals("Punc"))
 {
 tagProbabilityArray[12] =
(0.5*previousProbability) +(0.5*currentTrigramProbability);
 previousProbCount++;
 outputWriter.write(currentInputWord+" "+
currentTrigramTag + " " +tagProbabilityArray[12]);
 outputWriter.newLine();
 }
 }
 else if
(currentInputWord.equals(tagPreviousProbabilityLineString[0]))
 {
 previousTag =
tagPreviousProbabilityLineString[1];
 previousProbability =
Double.parseDouble(tagPreviousProbabilityLineString[2]);

 outputWriter.write(currentInputWord+" "+
previousTag + " " + previousProbability);
 outputWriter.newLine();

 previousProbCount++;
 if(previousProbCount%13 == 0)
 {
 tagProbabilityNotFound = false;

 - 49 -

 curIndex++;
 }

 }
 }
 tagPreviousProbabilityReader.reset();

 trigramReader.reset() ;
 }

 else if(currentTrigramWord.equals("#"))
 {
 trigramReader.reset();

 boolean tagProbabilityNotFound = true;

 String tagPreviousProbabilityNextLine = null;

 while ((tagPreviousProbabilityLine =
tagPreviousProbabilityReader.readLine()) != null && tagProbabilityNotFound)
 {
 StringTokenizer tagPreviousProbabilityTokens = new
StringTokenizer(tagPreviousProbabilityLine);

 tagProbabilityCounter = 0;

 while
(tagPreviousProbabilityTokens.hasMoreTokens())
 {

tagPreviousProbabilityLineString[tagProbabilityCounter] =
tagPreviousProbabilityTokens.nextToken();
 tagProbabilityCounter++;
 }

 if
(currentInputWord.equals(tagPreviousProbabilityLineString[0]))
 {
 previousProbability =
Double.parseDouble(tagPreviousProbabilityLineString[2]);
 previousTag =
tagPreviousProbabilityLineString[1];

 outputWriter.write(currentInputWord+" "+
previousTag + " " + previousProbability);
 outputWriter.newLine();

 previousProbCount++;
 if(previousProbCount%13 == 0)
 {
 tagProbabilityNotFound = false;
 curIndex++;
 }
 }

 }
 tagPreviousProbabilityReader.reset();
 }
 }

 catch(IOException e)

 - 50 -

 {
 System.err.println(e);
 System.out.println("Cannot read the input file");
 }//end of catch
 }

 outputWriter.close();
 inputReader.close();
 }
 catch(IOException e)
 {
 System.err.println(e);
 System.out.println("Cannot read the input file");
 }//end of catch
 }

