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Boğaziçi University

2011



ii

USING GENETIC ALGORITHMS WITH LEXICAL CHAINS FOR AUTOMATIC

TEXT SUMMARIZATION

APPROVED BY:
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ABSTRACT

USING GENETIC ALGORITHMS WITH LEXICAL

CHAINS FOR AUTOMATIC TEXT SUMMARIZATION

With the rapid increase in the amount of online text information, it became

more important to have tools that would help users distinguish the important content.

Automatic text summarization attempts to address this problem by taking an input

text and extracting the most important content of it. However, the determination of

the salience of information in the text depends on different factors and remains as a

key problem of automatic text summarization.

In the literature, there are some studies that use lexical chains as an indicator

of lexical cohesion in the text and as an intermediate representation for text sum-

marization. Also, some studies make use of genetic algorithms in order to examine

some manually generated summaries and learn the patterns in the text which lead to

the summaries by identifying relevant features which are most correlated with human

generated summaries.

In this study, we combine these two approaches of summarization. Firstly, lexical

chains are computed to exploit the lexical cohesion that exists in the text. Then, this

deep level of knowledge about the text is combined with other higher level analysis

results. Finally, all these results that give different levels of knowledge about the text

are combined using genetic algorithms to obtain a general understanding.
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ÖZET

OTOMATİK METİN ÖZETLEME İÇİN GENETİK

ALGORİTMALARIN SÖZCÜK ZİNCİRLERİ İLE

KULLANIMI

Elektronik ortamda bulunan bilginin miktarının hızla artmasıyla, kullanıcılara

bu bilginin içindeki önemli içeriği ayırt etmekte yardımcı olacak araçlar önem kazandı.

Otomatik metin özetleme, bir girdi metni alıp içindeki en önemli içeriği seçip çıkartarak

bu probleme hitap etmeyi amaçlamaktadır. Ancak metindeki belli başlı bilginin be-

lirlenmesi değişik unsurlara dayanmakta ve otomatik metin özetlemenin önemli sorun-

larından birini oluşturmaya devam etmektedir.

Literatürde bazı çalışmalar metindeki sözcüksel bağlılığın göstergesi ve metin

özetlemenin ara gösterimi olarak sözcük zincirlerini kullanmıştır. Ayrıca, elle yaratılmış

özetlerle en çok ilintili metin özelliklerini ayırt ederek, özetlere götüren kalıpları öğrenmek

için genetik algoritmalardan faydalanan çalışmalar da bulunmaktadır.

Bu çalışmada, özetlemenin bu iki yaklaşımını birleştiriyoruz. Öncelikle, metinde

bulunan sözcüksel bağlılıktan yararlanmak için sözcük zincileri hesaplanıyor. Ardından,

metinle ilgili bu derin seviyedeki bilgi, daha üst seviye analiz sonuçları ile birleştiriliyor.

Sonunda, metinle ilgili değişik seviyelerde bilgi veren bütün bu sonuçlar, genetik algo-

ritmalar kullanılarak birleştiriliyor.
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1. INTRODUCTION

1.1. Automatic Text Summarization

The document of ISO 215 standards in 1986 formally defines a summary as a

“brief restatement within the document (usually at the end) of its salient findings

and conclusions” that “is intended to complete the orientation of a reader who has

studied the preceding text” [1]. It contains the most important information about

the document. Automatic text summarization (ATS) is the process where a computer

automatically produces such a summary.

The goal of automatic summarization is to take an information source, extract

content from it, and present the most important content to the user in a condensed

form and in a manner sensitive to the user’s or application’s needs [2].

ATS has been an active research area for many years. Although it is very difficult

to implement the automation of human skills needed in summarization, the exponential

growth in the quantity and complexity of information sources on the internet has

exposed the need to quickly process and digest this huge amount of information. This

situation has attracted researchers’ attention. Even if they can not perfectly imitate the

human summarizers, automatic text summarizers can be used, for instance, to select

the most relevant information from the many results that a search engine returns for

a search.

1.2. Summarization Types

The most fundamental distinction that can be made between summarization types

is the one between extracts and abstracts . An extract is a summary consisting

entirely of material copied from the input. On the other hand, an abstract is a summary

at least some of whose material is not present in the input [2].
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Extracts are generally produced by shallow approaches, where the sentences of

the text are analyzed to a syntactic level. These approaches extract salient parts of the

source text and present them. Here, the analysis phase of summarization is important.

The classic work of Edmundson (1969) set a framework for work on extraction [3].

He considered different text features like cue words, title words and sentence location,

and gave scores to sentences based on these features. He adjusted the feature weights

by hand, however subsequent work used machine learning approaches using a training

corpus to adjust feature weights. For example, [4] used genetic algorithms and math-

ematical regression models to train their summarizer and learn the feature weights,

while [5] used genetic programming.

On the other hand, abstracts are produced by deeper approaches. These ap-

proaches analyze the source text to a sentential semantics level. In order to retrieve

important information from the text, approaches like template filling [6], term rewrit-

ing [7] and concept hierarchy [8] are used. After the analysis phase, these approaches

go through a synthesis phase, which usually involves natural language generation.

Most of the studies in this area are based on extraction. While abstraction deals

heavily with natural language processing, extraction can be viewed as selecting the

most important parts of the original document and concatenating them to form the

summary.

1.3. Evaluation

Evaluation is an essential part of ATS. Summarization is currently a practical

discipline where no deep theory exists. There are, however, theoretical frameworks that

are being investigated. For this reason, evaluating the outputs of these frameworks is

very important.

Intrinsic evaluation methods test the ATS system within itself. Typically, an

ideal summary is created (generally by human summarizers) and then the output of

the automatic summarizer is compared with this ideal summary. The quality of the
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summaries is mostly measured by precision and recall [9].

Extrinsic methods try to determine the effect of summarization on some other

tasks. These tasks may include, for instance, relevance assessment. That is, a subject

is asked to determine the relevance of a given topic to the given text. Or, another task

may be executing the instructions, if the summary is of a detailed technical manual. It

is possible to measure the efficiency in executing the instructions by simply following

the summary, when compared to following the original manual. The variety of tasks is

in fact very large.

There are also new summarization areas that need large-scale formal evaluation,

like summaries as answers to questions, narrative summarization, multi-lingual sum-

marization, etc.

1.4. Motivation

In extract generation, scoring sentences based on text features and using machine

learning methods to learn the feature weights has been studied before. Moreover, some

studies used lexical chains as an intermediate representation in the text summarization

process, in order to detect the lexical cohesion between sentences and select the most

semantically related ones [10] [11] [12]. In this thesis, we combined these two approaches

to generate extract based summaries. In addition to shallow, syntactic text features,

we used lexical chains as a feature to score sentences. These chains are expected to

identify the cohesion that exists throughout the text, and assign higher scores to the

sentences that are semantically related to each other.

1.5. Thesis Organization

The remainder of this thesis is organized as follows:

In section 2, some background information is introduced. Together with the logic

behind using lexical chains for automatic text summarization, genetic algorithms and
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their use in summarization are explained. We describe the details of our study in

sections 3, 4 and 5. In section 6 we present the results of our evaluations. Then we

conclude our thesis with section 7.
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2. BACKGROUND

2.1. Lexical Chains

Cohesion can be defined as the way certain words or grammatical features of a

sentence can connect it to its predecessors and successors in a text. Cohesion occurs

where the interpretation of some element in the discourse is dependent on the interpre-

tation of another element [13]. As described in Haliday and Hasan [14], cohesion is a

device for “sticking together” different parts of the text. It is achieved through the use

of semantically related terms, reference, ellipsis and conjunctions in the text. Among

these types, lexical cohesion, which is created by using semantically related words, is

the most frequent one [13].

Lexical cohesion can be classified into reiteration category and collocation cat-

egory. Reiteration occurs when one lexical item reminds the meaning of an earlier

item in the text. It can be created by using repetition, synonyms and hyponyms.

Collocation refers to words that tend to co-occur in the text.

Lexical cohesion can occur not only between two terms but also among sequences

of related words. These sequences of words are called lexical chains. Lexical chains can

be distributed over sentences and different text parts. Words may be grouped in the

same lexical chain when: [11]

• Two noun instances are identical and are used in the same sense.

(The house on the wood is large. The house is made of wood.)

• Two noun instances are used in the same sense (i.e., synonyms).

(The car is fast. My automobile is faster.)

• The senses of two noun instances have a hypernym/hyponym relation between

them.

(John owns a car. It is a Toyota.)

• The senses of two noun instances are siblings in the hypernym/hyponym tree.
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(The truck is fast. The car is faster.)

Barzilay and Elhadad used lexical chains first [10], as an intermediate step in

the text summarization process to extract important concepts from a document. They

showed that cohesion is one of the surface signs of discourse structure and lexical chains

can be used to identify it. They relied on WordNet [15] to provide sense possibilities

for word instances as well as semantic relations among them. Senses in the WordNet

database are represented relationally by synonym sets (synsets) which are the sets of

all the words sharing a common sense. Words of the same category are linked through

semantic relations like synonymy and hyponymy.

Lexical chains were constructed in three steps:

(i) Select a set of candidate words

(ii) For each candidate word, find an appropriate chain according to a relatedness

criterion

(iii) If such a chain is found, insert the word into the chain and update the chain

Once the chains were constructed, they showed that picking the concepts repre-

sented by strong lexical chains gives a better understanding of the central topic of a

text than picking only the most frequent words in the text. Finally they used these

strong chains to extract sentences from the original text to construct a summary.

After Barzilay and Elhadad, many researchers followed this approach to use lexi-

cal chains in text summarization. Silber-McCoy proposed a new algorithm to compute

lexical chains that was based on Barzilay-Elhadad method but was linear in space and

time [11]. Since the method proposed in [10] had exponential complexity, it was hard

to compute lexical chains for large documents. For this purpose, Silber and McCoy

recompiled the WordNet noun database into a binary format and memory-mapped

it. Then, they created metachains that represent every possible representation of the

text. These metachains were used to disambiguate word senses and to create the lexi-

cal chains. Since WordNet was recompiled into a new format, it could be accessed as
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a large array, and this allowed the algorithm to compute the lexical chains in linear

time. After the chains were computed, the strong chains were selected, and summary

sentences were extracted like [10] did.

Brunn-Chali-Pinchak also used the lexical cohesion approach as the driving engine

of their summarization system [12]. In order to identify the most important portions of

the text which are topically most salient, they used the degree of connectiveness among

the chosen text portions. The architecture of their model consisted of a preprocessor

(a text segmenter + a part of speech tagger + a parser), a noun filtering module that

removed nouns that did not contribute to the subject, a lexical chainer and a sentence

extractor. The lexical chainer first selected candidate words and then represented

each word sense by distinct sets considered as levels. Then chains were constructed

according to the semantic relationships between word senses. Finally, longest chains

were determined according to the following preference criterion:

word repetition � synonym/antonym � ISA-1/INCLUDE-1 � ISA-2/INCLUDE-2

Moreover, Li et al. proposed a model for a query-focused multi-document sum-

marizer based on lexical chains [16]. A set of lexical chains were built for each document

by creating a chain for each sense of a candidate word. Chains were created until half

of the candidate words had been processed. The resulting chains were then merged.

In the second step for multi-chain building, all strongest chains from each document

were merged into a new chain set as the final result of lexical chain building. Two

chains were merged if they had at least a common word with the same sense. Finally,

candidate sentences were scored based on their inclusion of strong chain words, and

sentences with the highest scores were extracted.

Furthermore, Fuentes and Rodriguez proposed a system that combined lexical

chains, co-reference chains and NamedEntity (NE) chains [17]. Lexical chains was

the primary source for ranking text segments, the others were complementary. The

extractive unit in their work was paragraph.
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2.2. Summarization With Genetic Algorithms

One of the biggest problems in text summarization is to find a salience function

which determines what information in the source is important and should be included

in the summary. Usually, sentence scoring methods are used for this purpose. These

methods score sentences in the source text based on some text features.

These features may include for example location. The sentences that lead the

text are assumed to give the most important information about the text and they are

included in the summary. Edmundson (1969) combined positional importance and word

frequency with the presence of cue words (presence of words like significant, or hardly)

and the skeleton of the document (whether the sentence is a title or heading) [3]. This

was the earliest work in extraction. Later on, Paice and Jones (1993) used stylistic

clues and constructs that can be gained during a scan of a source text [18]. They

claimed that as highly structured technical papers’ content can be organized using a

semantic frame, candidate fillers for the slots of this frame could be extracted using

these clues.

Another feature may be similarity between sentences. Skorokhodko (1972) pro-

posed an adaptive method that used relationships between sentences depending on the

semantic relatedness of their words in order to set up a graphical representation of

the text [19]. Pollock and Zamora (1975) used a word control list (WCL) in order to

determine the presence or absence of certain syntactic features in a sentence [20]. It

is based on the idea that the information content of a word is less if the word occurs

rather commonly. Kupiec, Pedersen, and Chen (1995) checked the presence of proper

names [21].

Miike et al. (1994) claimed that the nuclei of a rhetorical structure tree could pro-

vide a summary of the text for which that tree was built [22]. Marcu (1997) confirmed

this hypothesis and showed that one can build extractive summaries of short texts at

high levels of performance by using a scoring schema that assigned higher importance

to the discourse units found closer to the root of a rhetorical structure tree than to the
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units found at lower levels in the tree [23].

Statistical measures of term prominence that is derived from word frequency and

distribution were also used. The first steps in this area were made by Luhn (1958) [24]

and Brandow et al. (1995) followed that work [25].

Moreover, measures of prominence of certain semantic concepts and relationships

were used as a text feature. Maybury (1995) described a system on summarizing events

[26], whereas Fum, Guida, and Tasso (1985) used a set of rules to assign importance

values to the different parts of a text [27].

Generally, a number of features drawn from different levels of analysis may con-

tribute to the salience of a sentence. For this reason, a summarization system must

have an automatic way of finding out how to combine different text features for a given

summarization task.

One of the approaches to this problem is to use machine learning on a training

corpus of documents and their extraction based summaries. There have been studies

that applied statistical learning approaches [21] [28]. However, they require a very large

amount of training sets to learn accurately. An alternative way is to use evolutionary

methods as the learning mechanism. In many researches, Genetic Algorithms (GAs) are

employed to learn the importance of different text features for a given summarization

task.

For example, [29] used machine learning on a training corpus of documents and

their abstracts to discover salience functions which describe what combination of fea-

tures is optimal for a given summarization task. Here, the aim was to construct rules

or functions which label any new sentence as a summary sentence or not. Later on,

Alfonseca and Rodriguez used genetic algorithms to select the best summary among

summaries that are composed of randomly selected sentences [30]. They were scoring

the summaries. Moreover, [1] [5] and [31] scored sentences based on some text features

and used genetic algorithms to learn the appropriate set of feature weights to score the
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source sentences. In these works, the summarization task is seen as a two-class classi-

fication problem, where a sentence is labeled “summary” if it belongs to the extractive

reference summary or as “non-summary” otherwise. The trainable system is expected

to learn the patterns which lead to the summaries by identifying relevant features which

are most correlated with the classes “summary” and “non-summary”. When a new

document is given to the system for summarization, the “learned” patterns are used

to classify that sentence into one of the two classes. This classification will be used to

decide which sentences will be included in the summary.
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3. PROPOSED APPROACH

3.1. Genetic Algorithms with Lexical Chains

The aim of this study is to combine these two approaches of summarization.

Firstly, lexical chains are computed to exploit the lexical cohesion that exists in the

text. Then, this deep level of knowledge about the text is combined with other higher

level analysis results such as location analysis and thematic analysis. Finally, all these

results that give different levels of knowledge about the text are combined to obtain a

general understanding.

In this thesis, we use a sentence extraction procedure that makes use of these

properties of the text to weight the sentences. Each sentence in a text is given a

sentence score that is calculated using the different text feature scores. After that, the

sentences are sorted in descending order of their score values. And then appropriate

number of highest score sentences are selected from the text to form the summary,

according to the summarization ratio.

While weighting the sentences, not all the properties of the text will have the same

importance. However, weighting the text feature scores with predetermined constant

weights does not seem to be powerful enough for a good summarization. For this

reason, the system first goes through a training phase, where the weights of each text

feature are learned using machine learning methods.

In order to be able to learn the weights of different text features, a set of manually

summarized documents is used. These human generated extracts are expected to give

an idea about the patterns which lead to the summaries. In this study, we use the

manually summarized documents from the CAST (Computer-Aided Summarization

Tool) corpus [32]. The documents in the corpus are taken from the Reuters corpus and

consist of 20 sentences in the average.
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Each document in the corpus is represented by a document object in the system.

A document object consists of a title, and a list of sentences. Every sentence in a

document has an importance flag. This flag is set to “summary” if the sentence is

selected as a summary sentence by human summarizers; it is set to “non-summary”

otherwise.

After the feature score weights are learned through the training phase, the system

will go through a testing phase where new documents are introduced to the system for

summarization. In this phase, sentence scores will be calculated for each sentence in

a document using the text feature scores for that sentence and their respective score

weights. Then the sentences will be sorted in a descending order of their score values,

and the highest score sentences will be selected to form the extractive summary.

3.2. Text Features

In this system, the sentences are modeled as vectors of features extracted from

the text. The system uses 12 text features to score sentences. For each sentence of

a document, a sentence score will be calculated using the feature scores of these text

features for that sentence. Each feature score can have a value between 0 and 1.

The text features used in this system are grouped into three classes, according

to their level of text analysis. Table 3.1 shows the features and their corresponding

classes.

There is a sample source text to be summarized shown in Figure 3.1. The text

consists of a title and 11 sentences. Assume that the sentences of this text are being

scored using the 12 text features of this study. The last sentence of the sample text

will be used as an example in order to show the calculation of the feature scores.
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Table 3.1. Text features.

Location Features Sentence Location

Sentence Relative Length

Thematic Features Average TF

Average TF-IDF

Sentence Resemblance to Title

Sentence Centrality

Sentence Inclusion of Emphasize Words

Sentence Inclusion of Name Entities

Sentence Inclusion of Numerical Data

Cohesion Features Number of Synonym Links

Number of Co-occurrence Links

Lexical Chain Score

Figure 3.1. Sample source text to be summarized.
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3.3. Location Features

These features exploit the structure of the text at a shallow level of analysis.

Depending on the location and length of the sentence, the importance of its content is

tried to be predicted. Based on this prediction, a sentence will be given a higher or a

lower score.

3.3.1. Sentence Location

This feature scores the sentences according to their position in the text. In this

work, we assume that the first sentences of the text are the most important ones. So,

the first sentence of a document gets a score value of 1, the second sentence gets 0.8,

the fifth sentence gets 0.2 and the rest of the sentences get 0. The example sentence

will get a score value of 0 since it is the 11th sentence of the text.

3.3.2. Sentence Relative Length

This feature uses the sentence length to score a sentence, assuming that longer

sentences contain more information and have a higher possibility to be in the summary.

Thus, shorter sentences are penalized. The feature score is calculated as follows for the

sentence s in the document d:

SRL(s, d) =
length(s)

maxSentenceLength(d)
(3.1)

The length of the example sentence is 28, and the length of the longest sentence

in the document, which is sentence number 4, is 44. So, the example sentence will get

a score value of 0.63.
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3.4. Thematic Features

These features study the text more deeply to analyze the term based properties.

The term frequencies of each document and each sentence are calculated, after removing

the stop words. The list of the stop words used in this work can be found in Appendix

A.

3.4.1. Average TF

This feature calculates the Term Frequency (TF) score for each term in a sentence

and takes their average. The TF metric makes two assumptions:

(i) Multiple appearances of a term in a document are more important than single

appearances.

(ii) Length of the document should not affect the importance of the terms.

The TF score for a term t in the document d is calculated as follows:

TF (t, d) =
frequencyOfTermInDocument(t, d)

maxTermFrequency(d)
(3.2)

So, the feature score for a sentence s is the average of the TF scores of all the

terms in s. The example sentence has an average TF score of 0.23.

3.4.2. Average TF-IDF

This feature calculates the Term Frequency - Inverse Document Frequency (TF-

IDF) score for each term in a sentence and takes their average. The TF-IDF metric

makes one more assumption in addition to the two assumptions of the TF metric:
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(iii) Rare terms are more important than frequent terms.

This metric takes into account not only the frequency of a term within a document

but also the frequency of a term throughout all the documents in the corpus. This way,

if a term exists in too many documents, its importance in a single document is decreased

proportionally.

The TF-IDF score for a term t in the document d given a corpus c is calculated

as follows:

TF − IDF (t, d, c) = TF (t, d) ∗ log(
n

df(t)
) (3.3)

where n is the total number of documents in corpus c, and df(t) is the number of

documents in corpus c in which term t occurs.

So, the feature score for a sentence s is the average of the TF-IDF scores of all

the terms in s.

3.4.3. Sentence Resemblance to Title

This feature considers the vocabulary overlap between a sentence and the doc-

ument title. If a sentence has many words in common with the document title, it is

assumed to be related to the main topic of the document. So, it is assumed to have

more chance to be in the summary.

The feature score is calculated as follows for a sentence s:
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SRT (s) =
|m ∩ k|
|m ∪ k|

(3.4)

where m is the number of terms that occur in sentence s, and k is the number of terms

that occur in the title. Since the example sentence and the title of the sample text

have no common words, the example sentence gets a feature score of 0.

3.4.4. Sentence Centrality

This feature considers the vocabulary overlap between a sentence and the other

sentences in the document. If a sentence has many words in common with the rest of

the document, it is assumed to be about an important topic in the document. So, it is

assumed to have more chance to be in the summary.

The feature score is calculated as follows for a sentence s in the document d:

SC(s, d) =
m

k
(3.5)

where m is the number of terms that occur both in sentence s and in a sentence of

document d other than s, and k is the total number of terms in document d.

In the example sentence, the words result, weight, period, per, and share exist

respectively in the sentences 6, 9, 8, 1 and 1. So, m is 5 and k is 41. For this reason,

the sentence gets a score value of 0.12.
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3.4.5. Sentence Inclusion of Emphasize Words

This feature counts the number of emphasize words (such as especially, certainly

etc.) in a sentence, assuming that a sentence that contains these words is an important

one and will probably be included in the summary. The list of the emphasize words

used in the system can be found in Appendix B.

The feature score is calculated as follows:

SEW (s) =
numEmphasizeWordsInSentence(s)

length(s)
(3.6)

Since there are no emphasize words in the example sentence, its score value will

be 0.

3.4.6. Sentence Inclusion of Name Entities

This feature counts the number of name entities (proper nouns) in a sentence,

assuming that a sentence that contains name entities is an important one and will

probably be included in the summary. In this work, name entities are recognized using

the University of Illinois Named Entity Tagger [33].

The feature score is calculated as follows:

SNE(s) =
numNameEntityInSentence(s)

length(s)
(3.7)

Since there are no name entities in the example sentence, its score value will be
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0.

3.4.7. Sentence Inclusion of Numerical Data

This feature counts the number of numerical terms in a sentence, assuming that

a sentence that contains numerical data is an important one and will probably be

included in the summary. The feature score is calculated as follows:

SND(s) =
numNumericalDataInSentence(s)

length(s)
(3.8)

Since there are no numerical data in the example sentence, its score value will be

0.

3.5. Cohesion Features

Cohesion can be defined as the way certain words or grammatical features of a

sentence can connect it to its predecessors and successors in a text [13]. Cohesion

is brought about by linguistic devices such as repetition, synonymy, anaphora and

ellipsis [29]. In this system, three cohesion based features are used.

3.5.1. Number of Synonym Links

In order to compute this feature, first the nouns in a sentence are extracted by the

LingPipe part-of-speech tagger [34]. Then nouns in the given sentence s are compared

to the nouns in other sentences in the document d. This comparison is made by taking

two nouns from the two sentences and looking whether they have a synset in common

in WordNet. For instance, if a noun from sentence s has a synset in common with a

noun from another sentence t, this means there is a synonym link between the sentences

s and t.
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So, the feature score is calculated as follows for a sentence s in the document d:

NSL(s) =
n

k
(3.9)

where n is the number of synonym links of sentence s (i.e., the number of sentences t)

and k is the total number of sentences in document d.

The word share in the example sentence appears in every sentence in the text,

except the sentence 5. Moreover, the word quarter appears both in the sentence 5

and in the example sentence. So, the example sentence shares a term with every other

sentence in the text. Sharing the exact same word is not necessary for two sentences

to have a synonym link, but of course, it counts. For this reason, the example sentence

has 10 synonym links, and its feature score is 0.90.

This is a very high feature score value. However, the score values of each sentence

in this text for this feature will be likewise high, since 10 of the sentences share a

common word. So, this feature will not be a distinctive property for sentences in this

text, even though their score values will be very high.

3.5.2. Number of Co-occurrence Links

In order to compute this feature, first all the bigrams in the document are con-

sidered and their frequencies are calculated. If a bigram in a document has a frequency

greater than one, then this bigram is assumed to be a collocation. This is the case for

the bigram “per share” in the sample text.

Secondly, terms of the given sentence s are compared to the terms in other sen-

tences in the document d. This comparison procedure checks if a term from sentence

s forms a collocation with a term from another sentence. If it does, this means there
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is a co-occurrence link between this sentence and the sentence s.

So, the feature score is calculated as follows for a sentence s in the document d:

NCL(s) =
n

k
(3.10)

where n is the number of co-occurrence links of sentence s and k is the total number

of sentences in document d.

The word “per” in the example sentence forms a collocation with every instance

of the word “share” in each of the sentences 1, 2, 3, 4, 6, 7, 8, 9, and 10. So the number

of co-occurrence links for the example sentence is 9, and the score value is 0.81. Like

the synonym links feature, the score value for this feature will be very high for almost

every sentence in the sample text, and this feature will not be distinctive. However, this

is because the saying “per share” appears too much in this text. In another text where

this much of repetition does not exist, these features may give a better understanding

about the importance of the sentences.

3.5.3. Lexical Chain Score

In order to use lexical chains as a means for scoring the sentences of a document,

first the chains are computed for the whole document. Then these constructed chains

are scored and the strongest ones among them are selected. Finally, sentences of the

document are scored according to their inclusion of strong chain words.

The details of the lexical chain computing and scoring processes are explained

in section 4. When the sample text is put through these lexical chain computing and

scoring processes, the following chains are selected to be the strongest ones:
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• income, earnings, net

• year, periods, quarter

• acquisition, loss

• amounts, shares

So, after the chains are constructed and scored for a document d, the lexical chain

score of a sentence s is as follows:

LC(s) =

∑
i

frequency(i)|i ∈ s and i is a word in a strong chain

maxLCScore(d)
(3.11)

The example sentence contains the words earning, amount and share which ap-

pear in strong chains. When the frequencies of these words are added up and the

maximum lexical chain score of sentences in the sample text are computed, the lexical

chain feature score value for the example sentence turns out to be 0.5.
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4. COMPUTING LEXICAL CHAIN SCORES

Lexical chains are composed of words that have a lexical relation. In order to find

these relations among words, WordNet lexical knowledge base is used. In WordNet,

words have a number of meanings corresponding to different senses. Each sense of a

word belongs to a synset (a set of words that are synonyms). This means, ambiguous

words may be present in more than one synset. Synsets may be related to each other

with different types of relations (like hyponym, hypernym, antonym, etc.).

In computing lexical chains, each word must belong to exactly one lexical chain.

There are two challenges for this. First, there may be more than one sense for ambigu-

ous words and a heuristic must be used to determine the correct sense of the word.

Second, a word may be related to words in different chains. For example, a word may be

in the same synset with a word in one lexical chain, while having a hyponym/hypernym

relationship with another word in another chain. The aim here is to find the best way

of grouping words that will result in the longest and strongest lexical chains.

This process consists of four steps:

• Selecting candidate words

• Constructing lexical chains from these words

• Scoring these chains

• Selecting the strong chains

4.1. Selecting Candidate Words

Candidate words for lexical chains are the nouns. So, firstly, the text is put

through part of speech (PoS) tagging. This tagging process is necessary to determine

the nouns in the document. After the nouns are determined, they are added to the

lexical chain candidate words list.
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The part of speech tagger used in this work comes from LingPipe project version

3.8.1 [34].

4.2. Constructing Lexical Chains from Candidate Words

When the candidate words list is constructed, the words in the list are sorted in

ascending order of their number of senses. This way, the words with the least number

of senses (i.e., the least ambiguous ones) are treated first.

For each word, the system tries to find an appropriate chain that the candidate

word can be added, according to a relatedness criterion among the members of the

chain and the candidate word. This search continues for every sense of the candidate

word, until an appropriate chain is found. If such a chain is found, the current sense

of the candidate word is set to be the disambiguated sense, and the word is added to

the lexical chain.

This relatedness criterion compares each member of the chain to the candidate

word to find out if

• the sense of the lexical chain word belongs to the same synset as the sense of the

candidate word

• the synset of the lexical chain word has a hyponym relation with the synset of

the candidate word

• the synset of the lexical chain word has a hypernym relation with the synset of

the candidate word

• the synset of the lexical chain word share the same parent with the synset of the

candidate word in a hyponym relation

• the synset of the lexical chain word share the same parent with the synset of the

candidate word in a hypernym relation

If the system cannot find an appropriate lexical chain to add the candidate word

for any sense of the word, a new chain is constructed for every sense of the word. For
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instance, this will create five new lexical chains in the system for a word that has five

different senses. This way, when a new candidate word is compared to these chains,

it will be possible to find a relation between the new candidate word and any of these

five senses of the previous word.

The problem here is that, there may be more than one chain in the system for

the same word, that continue growing at the same time. For example a word with two

senses will create two different lexical chains. When a second word arrives, it may be

related to the first sense of the first word and be added to the first chain. After that, if

a third word arrives and is related to the second sense of the first word, it will be added

to the second chain and the two chains will continue growing independently. This will

conflict the requirement that says each word must belong to exactly one lexical chain.

This problem is eliminated by removing the rest of the chains for the word in the

system, as soon as a second word is related with one of the senses of the word. This is

illustrated in Figure 4.1. At the beginning, there are no chains in the system. When

the first word plant arrives, since there are no existing chains, four new lexical chains

are created for the four different senses of the word. When the second word flower

arrives, it is compared to these four chains successively. No relations can be found

with the first chain. However, one sense of the word flower (a plant cultivated for its

blooms or blossoms) is related to the sense of the word plant in the second chain (a

living organism lacking the power of locomotion) with a hypernym relation. So, the

word flower is added to the second chain. This means both the word flower and the

word plant are disambiguated. So, the chains that contain only the word plant are

removed from the system.

4.3. Scoring the Chains

Once the lexical chains are computed, each chain is given a score number that

shows its strength. This score number will be used to select the strongest chains of

the document and the sentences that contain words that occur in strong chains will be

given a higher sentence score.
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(i) No chains

(ii) Chain1 ⇒ plant: buildings for carrying on industrial labor

Chain2 ⇒ plant: a living organism lacking the power of locomotion

Chain3 ⇒ plant: something planted secretly for discovery by another

Chain4⇒ plant: an actor situated in the audience whose acting is rehearsed but

seems spontaneous to the audience

(iii) Chain2⇒ plant: a living organism lacking the power of locomotion; flower:

a plant cultivated for its blooms or blossoms

Figure 4.1. Lexical chain management.

The score of a chain depends both on its length and on its homogeneity. The

length of a chain is the number of occurrences of members of the chain. Its homogeneity

is inversely related with its diversity. For instance, if there are three distinct words

in a chain that has seven members, this chain is assumed to be stronger than a chain

with the same number of members, but five distinct words.

So, the score of a chain is calculated as follows:

score = length ∗ homogeneity (4.1)

where

homogeneity = 1− numberOfDistinctOccurrences

length
(4.2)
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4.4. Selecting the Strong Chains

In this work, strong lexical chains are assumed to be the ones whose score exceeds

the average of the chain scores by two standard deviations. That is, a strong chain

must satisfy the criterion;

score(chain) > average(chainScores) + 2 ∗ standardDeviation(chainScores)

Moreover, chains that contain only one word are not accepted as strong chains.

Therefore, a strong chain must also satisfy the criterion;

wordCount(chain) > 1
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5. FEATURE WEIGHTS

In this thesis we use 12 different text features to score sentences. After each

sentence of a document is scored, the sentences of the document are sorted according

to their scores and the highest scored sentences are selected to form the summary of

that document.

However, not all the feature scores have the same importance while calculating

the sentence score. A sentence score is a weighted sum of that sentence’s feature

scores. Each feature may have a different weight and these weights are learned from the

manually summarized documents, using machine learning methods. Thus, a sentence’s

score is calculated as follows:

Score(s) = w1f1(s) + w2f2(s) + w3f3(s) + w4f4(s) + w5f5(s) + w6f6(s)

+w7f7(s) + w8f8(s) + w9f9(s) + w10f10(s) + w11f11(s) + w12f12(s) (5.1)

fi are the feature scores of each sentence and their values can range from 0 to 1.

They are computed separately for each sentence s. wi can range from 0 to 15. They

are learned using genetic algorithms.

The system has two modes of operation: Training Mode (where the feature

weights are learned from the corpus) and Testing Mode (where new documents are

summarized using the weighted feature scores). Figure 5.1 shows these two modes.

5.1. Training Mode

In the training mode, the weights of each feature are learned by the system, using

the manually summarized documents.
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Figure 5.1. Model of the automatic summarization system.

Firstly, the text feature scores are calculated for every sentence. Since these scores

are constant for each sentence, they are calculated once before the machine learning

procedure starts. The algorithm is shown in Figure 5.2.

Then, these feature scores are integrated by a weighted score function in order

to score each sentence. On each iteration of the training routine, random weights are

assigned to 12 text features, and thus sentence scores are calculated. According to

these sentence scores, a summary is generated for each document in the corpus. The

precision of each automatically generated summary when compared to its manually

generated summary is calculated using the following formula:

P =
|S ∩ T |
|S|

(5.2)
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for each manually summarized document do

for each feature do

for each sentence do

calculate the feature score of the sentence

end for

end for

end for

Figure 5.2. Feature score calculation.

where T = reference summary and S = machine generated summary.

The average of these precisions gives the performance of that iteration. This

performance metric shows how appropriate the random weights of that iteration were

for this summarization system. The best of all iterations is selected using genetic

algorithms.

5.1.1. Genetic Algorithms

Genetic algorithms (GAs), invented by John Holland in the 1960s, are the most

widely used approaches to computational evolution. GAs derive their name from the

fact that they are loosely based on models of genetic change in a population of indi-

viduals [35]. The algorithms start with a random set of individuals (the population)

and evolve by carrying the offspring of the fittest individuals of the population to the

next generation. The algorithms consist of three basic parts: a fitness notion that

indicates how worthy an individual is to be carried to the next generation, a mating

operator to produce the offspring for the next generation, and genetic operators

that determine the genetic structure of the offspring according to the genetic structure

of the parents.
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In this work, each individual of the population is a vector of feature weights.

There are 12 features and each feature weight can have a value between 0 and 15.

When these weights are represented in binary mode using 4 bits, they form a vector of

length 48. This vector is the individual of the GAs.

The fitness of an individual is the performance metric mentioned in section 5.1.

Each individual represents a set of feature weights. Using these weights, sentence

scores are calculated and summaries are generated for each document in the corpus.

The precision of the automatically generated summary when compared to the manually

generated summary is calculated for each document and the average of these precision

values is the fitness of that individual. There is no need to calculate the recall values

because precision is equal to recall for every document. This is because the length

of the automatically generated summary is equal to the reference summary, since the

summarization ratios are the same.

The algorithm for the fitness function is given in Figure 5.3.

In this study, there are 1000 individuals in the population. At each generation, the

mating operator selects the fittest 50 of the population and carries these individuals

directly to the next generation. The other 950 are produced by a selected pair of

parents. Each individual can be selected to be a parent according to a probability rate

calculated from the fitness value of that individual. A child is produced by merging

the first n bits of the vector of one parent and the last 48-n bits of the vector of the

other parent. n is random for each reproduction.

After a child is produced, it is put through mutation with a predetermined proba-

bility. If it goes through mutation, one of its bits will be set to a random value. Finally,

after mutation, the produced child is added to the population for the next generation.

The selection algorithm is given in Figure 5.4.

The GAs are run for 100 generations to obtain a steady combination of feature
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for each document do

for each sentence do

using the weights of this individual and precalculated feature scores, calculate

the sentence score

end for

sort sentences in a non-ascending score order

pick the top X sentences according to the summarization ratio

calculate the precision of this summary when compared to the reference sum-

mary

P = |S∩T |
|S|

where T = reference summary and S = machine generated summary

end for

calculate the average precision

Figure 5.3. Fitness function.
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pass the fittest 50 individuals to the next generation automatically

for the rest 950 individuals do

calculate a probability rate according to the fitness values

select a pair of parents for cross over according to these probabilities

(an individual can be selected to be a parent more than once)

child ⇐ crossover(parent1, parent2)

set a constant probability

mutation(child, probability)

add child to the population of next generation

end for

Figure 5.4. Selection algorithm.

weights. The best individual that is produced after these iterations is selected to be

the set of feature weights that will be used in the testing mode.

5.2. Testing Mode

In the testing mode, 20 English documents are summarized automatically by

the system. Using the feature weights learned by genetic algorithms as mentioned in

section 5.1, weighted scores are calculated for each sentence of these documents. Then

the sentences are sorted according to their scores and the ones that have the highest

scores are selected to form the summary. The algorithm for the testing mode is given

in Figure 5.5.
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for each document do

for each feature do

for each sentence do

calculate the feature score of the sentence

end for

end for

for each sentence do

using the learned weights for each feature, calculate the sentence score

end for

sort sentences in a non-ascending order

pick the top X sentences according to the summarization ratio

end for

Figure 5.5. Testing mode.
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6. EVALUATION

6.1. Training Corpus

The text corpus used in this project consists of 100 manually summarized doc-

uments taken from the CAST (Computer-Aided Summarization Tool) corpus [32].

CAST is a project of the Computer Linguistics Research Group of University of Wolver-

hampton, UK. One of the goals of the CAST project was to develop an annotated

corpus for automatic summarization that contains information about the importance

of the sentences.

The texts included in the corpus were taken from the Reuters Corpus. Their

genre is newswire. The documents consist of 20 sentences in the average. They are

manually summarized using a 30% summarization ratio. The annotators were native

English speakers. Figure 6.1 shows an example document together with its manual

summary.

80 of these documents were used as the training corpus to train the system. Other

20 were used as the testing corpus. For cross-validation, the tests were run 5 times

with different sets of training and testing documents. The results show the average of

these five runs.

6.2. Evaluation Method

We used the intrinsic evaluation method mentioned in [13]. This method judges

the quality of a summary based on the coverage between it and the manual summary.

We used precision as the performance measure. Assuming that T is the manual sum-

mary and S is the machine generated summary, the measurement of precision P is

defined as follows:
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Figure 6.1. An example document and its manual summary.
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P =
|S ∩ T |
|S|

6.3. The Effect of Each Feature on Summarization Performance

We investigated the effects of each text feature used in our model on the sum-

marization performance. In order to calculate these effects, we used the score function

in equation (5.1) with all feature weights equal to 0 but one feature weight equal to 1.

So, for the effect of the ith text feature, the equation is as follows:

Score(s) = fi(s) (6.1)

The aim of this work was to see if lexical chains could be used as a factor while

determining the importance of sentences. The other text features were used to score

sentences before, however, the effects of lexical chains were not included in these scor-

ing functions. We claim that if we use lexical chains as a representation of the lexical

cohesion among the words of a source text, we may get a different level of under-

standing about the importance of its sentences. For this reason, we wanted to see the

performance of each text feature on its own, and compare the performance of lexical

chains feature with the performances of other text features.

Table 6.1 shows the average precisions obtained by using each text feature to

summarize the documents in the testing corpus.

We can see that using only sentence location feature gives one of the best results.

This is predictable since the leading sentences in a document usually give a general

understanding about the topic of the document, and they have a high probability to



38

Table 6.1. The average summarization precision associated with each text feature

Feature Average Precision

P(f1) - Sentence Location 0.43

P(f2) - Sentence Relative Length 0.42

P(f3) - Average TF 0.32

P(f4) - Average TF-IDF 0.30

P(f5) - Sentence Resemblance to Title 0.39

P(f6) - Sentence Centrality 0.43

P(f7) - Sentence Inclusion of Emphasize Words 0.36

P(f8) - Sentence Inclusion of Name Entities 0.43

P(f9) - Sentence Inclusion of Numerical Data 0.29

P(f10) - Number of Synonym Links 0.42

P(f11) - Number of Co-occurrence Links 0.41

P(f12) - Lexical Chain Score 0.40
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be included in the summary. Sentence centrality gives also good results. This must

be because this feature favors the sentences that mention many of the topics that

appear throughout the text. This means these sentences are more important than the

sentences that mention only a single topic, and are included in the summary. Moreover,

sentence inclusion of name entities feature gives high performance. This may be a sign

that sentences that give information about specific people or organizations are likely

to be selected for the summary.

The result of lexical chain feature is also among the high performance results. This

shows that using lexical chains as an intermediate representation of lexical cohesion

that exists throughout the text can be used as a means to determine the importance of

sentences in that text. This feature makes better predictions than many of the other

text features.

One of the lowest performance results belongs to the sentence inclusion of numeri-

cal data feature. This feature considered only the appearance of numerical information

in a sentence. If this feature was not successful in predicting the sentences that will

be in the summary, then this means that human summarizers do not generally include

sentences with numerical information to a summary. Likewise, average TF and average

TF-IDF features also gave bad results. Although these features are commonly used

in ATS systems, it seems that tying to predict the importance of sentences depending

only on word frequencies is not enough to generate high quality summaries.

6.4. The Results of This Model

In this section, we will investigate the performance results of the system when

all the 12 text features are used. In order to select the sentences that will be included

in the summary, the score function in equation (5.1) is used. The weights of the text

features are taken from the results of the training mode.

In the training mode, genetic algorithms were run with the following properties:
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• There are 1000 individuals in a population.

• At each iteration, 50 fittest individuals are selected for the next generation.

• 950 more individuals are selected through selection, crossing over and mutation.

• The algorithms are run for 100 iterations.

• Summarization ratio is 30

Table 6.2 shows the weights of each text feature calculated by the training module,

and the average precision of documents summarized with these feature weights in the

testing mode.

We see that sentence location feature is given the highest weight among all the

features. This is predictable and commonly seen in automatic summarization systems.

Since the most important content of the text is usually given in the beginning, selecting

the leading sentences for summary gives better results than most of the automatic

summarization methods.

Following that feature, comes sentence centrality. This is also meaningful, because

this feature was the one that gave the highest precision among all features when used

alone.

The feature weight for lexical chains was not among the highest ones. However,

it supports and reinforces the results of the centrality and co-occurrence link features

as it analyses the cohesion in the text from a different perspective.

Finally, when all the feature scores are combined, the system gave higher average

precision than any of the single features. When the average precision of the combi-

nation of the features (0.46) is compared to the average precision of the best features

(0.43 of location, centrality and name entities), the difference is not much. However,

this situation probably stems from the genre of the corpus that the experiment was

performed on. The precisions of the single features reflect the feature performances

on the newswire genre. In another genre, the single feature performances may change.

On the other hand, the performance of the combination of features will still be higher.
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This shows that using the combination of different features increases the performance

of the summary and genetic algorithms were successful to learn a set of weights for

those features that would result in a better output.

Table 6.2. The system performance evaluation based on precision

Text Feature Feature Weight (over 15)

P(f1) - Sentence Location 14

P(f2) - Sentence Relative Length 3

P(f3) - Average TF 1

P(f4) - Average TF-IDF 5

P(f5) - Sentence Resemblance to Title 4

P(f6) - Sentence Centrality 13

P(f7) - Sentence Inclusion of Emphasize Words 12

P(f8) - Sentence Inclusion of Name Entities 11

P(f9) - Sentence Inclusion of Numerical Data 2

P(f10) - Number of Synonym Links 10

P(f11) - Number of Co-occurrence Links 12

P(f12) - Lexical Chain Score 5

Average Precision 0.46

Figures 6.2, 6.3 and 6.4 show the original, human generated summary and system

generated summary of a sample document, respectively. It can be seen that the first

sentence of the document is included in both the real summary and the system output.

This is predictable, because many features for this sentence will have high scores for

this sentence. For example, location feature will have a score value of 1. Relative

length score will be high, because this sentence is one of the longest sentences in the

text. Resemblance to title score will also be high, because the sentence has common

words with the title, like Serbs, party, and delegates. Finally, name entities score will

be high, because of the name entities found in the sentence, like Serbs, Croatia and

U.N.. Since these are features weighted with high coefficients, the score of the first
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sentence will be high and it will be selected to be in the summary.

Serbs throw bricks at Croatian HDZ party delegates.
(1) Hundreds of angry Serbs attacked delegates from Croatia’s ruling HDZ party who had to be rescued by U.N.

peacekeepers while trying to campaign for upcoming elections in Eastern Slavonia on Monday.

(2) U.N. spokesman Douglas Coffman said the Croatian Democratic party (HDZ) held a press conference in a

hotel in the town of Vukovar to present candidates who will run in the Serb enclave during nation-wide local

elections on April 13.

(3) The vote for county and municipal bodies will be the first in independent Croatia.

(4) Eastern Slavonia will revert to Croatian rule this summer.

(5) The HDZ members and a dozen Croatian journalists were first confronted by a small group of middle-aged

women but the demonstration grew until there were ”hundreds of protesters”, Coffman said.

(6) ”On their way out (of the hotel) HDZ activists and accompanying Croatian journalists were hit by a barrage

of eggs and bricks, but nobody sustained any serious injuries, only bruises,” he said.

(7) Croatian state radio said one journalist sustained a slight head injury while the bus in which they came was

completely destroyed.

(8) ”They had to be evacuated by Russian (peacekeepers) in armoured personnel carriers to the U.N. bases and

then they were escorted out of the region (to Croatian government territory),” said Coffman.

(9) Eastern Slavonia was one of three regions of Croatia in which local Serbs rebelled against Zagreb’s drive for

independence from federal Yugoslavia in 1991 and set up their own state.

(10) Croatia recaptured two other enclaves in 1995 and agreed to peacefully ”reintegrate” Eastern Slavonia, now

monitored by some 5,000 U.N. peacekeepers, whose mandate expires on July 15.

(11) The head of the U.N. mission (UNTAES), U.S. general Jacques Klein, was away during the visit, which was

the first time HDZ had campaigned there since 1991.

(12) Western officials are concerned that many Serbs, fearing reprisals or refusing to live under Croatian rule,

may leave Eastern Slavonia before Zagreb’s control is restored.

(13) Shortly after the incident, Ivica Vrkic, government official in charge of Eastern Slavonia urged the U.N. and

international police to step up security measures in the enclave.

(14) ”We remind you that it is the duty of UNTAES and the police duty to provide safety for such electoral

campaigns.

(15) But today’s incident will not postpone the election and the reintegration of Eastern Slavonia,” he wrote in

a letter.

Figure 6.2. Sample Original Document.

However, this was the only sentence that both the system and the human summa-

rizer included in the summary. The system failed to favor the third sentence, although

it was selected by the human summarizer. This may be because the content of the

sentence is important to understand the text, but it is independent from the rest of

the sentences. The words in the sentence can not be related to other sentences or the

title, so the system calculated a low score value for this sentence, and left it out of the
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summary. The system also underestimated the sixth sentence, probably because the

words egg, brick, injury or bruise did not have any lexical relation to other words in

other sentences of the text.

The sentences 9 and 10, which are selected in the human generated summary,

scored relatively high values in the system evaluation. However, their scores were not

as high as the selected sentences, and they were left out of the summary by the system.

Serbs throw bricks at Croatian HDZ party delegates.
(1) Hundreds of angry Serbs attacked delegates from Croatia’s ruling HDZ party who had to be rescued by U.N.

peacekeepers while trying to campaign for upcoming elections in Eastern Slavonia on Monday.

(3) The vote for county and municipal bodies will be the first in independent Croatia.

(6) ”On their way out (of the hotel ) HDZ activists and accompanying Croatian journalists were hit by a barrage

of eggs and bricks, but nobody sustained any serious injuries, only bruises,” he said.

(9) Eastern Slavonia was one of three regions of Croatia in which local Serbs rebelled against Zagreb’s drive for

independence from federal Yugoslavia in 1991 and set up their own state.

(10) Croatia recaptured two other enclaves in 1995 and agreed to peacefully ”reintegrate” Eastern Slavonia, now

monitored by some 5,000 U.N. peacekeepers, whose mandate expires on July 15.

Figure 6.3. Sample Human Generated Summary.

Serbs throw bricks at Croatian HDZ party delegates.
(1) Hundreds of angry Serbs attacked delegates from Croatia’s ruling HDZ party who had to be rescued by U.N.

peacekeepers while trying to campaign for upcoming elections in Eastern Slavonia on Monday.

(2) U.N. spokesman Douglas Coffman said the Croatian Democratic party (HDZ) held a press conference in a

hotel in the town of Vukovar to present candidates who will run in the Serb enclave during nation-wide local

elections on April 13.

(4) Eastern Slavonia will revert to Croatian rule this summer.

(8) ”They had to be evacuated by Russian (peacekeepers) in armoured personnel carriers to the U.N. bases and

then they were escorted out of the region (to Croatian government territory),” said Coffman.

(13) Shortly after the incident, Ivica Vrkic, government official in charge of Eastern Slavonia urged the U.N. and

international police to step up security measures in the enclave.

Figure 6.4. Sample System Generated Summary.
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6.5. Alternative Models

To be able to compare the results of our model to similar models, we changed

some configurations of our system, and ran our experiments with different settings.

Like the original runs, 80 of the 100 documents were used as the training corpus and

other 20 were used as the testing corpus. For cross-validation, the tests were run 5 times

with different sets of training and testing documents. The results show the average of

these five runs.

One of the alternative models was using a smaller set of features. Instead of using

a single feature, or combining all of the 12 features, we took the first three features

that scored best on their own, together with lexical chains feature, and investigated

the performance of the system using only these four text features.

Table 6.3. The system performance evaluation using 4 features

Text Feature Feature Weight (over 15)

P(f1) - Sentence Location 14

P(f6) - Sentence Centrality 14

P(f8) - Sentence Inclusion of Name Entities 3

P(f12) - Lexical Chain Score 10

Average Precision 0.45

Table 6.3 shows the weights for four of the text features calculated by the training

module, and the average precision of documents summarized with these feature weights

in the testing mode. We can see that the result is almost the same as the performance

of the system when all of the features are considered. This shows that the other eight

features did not contribute much to the system performance. Instead, they had a minor

effect.

Another alternative model was decreasing the threshold for determining strong
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lexical chains. The original criterion for selecting a strong lexical chain was as follows:

score(chain) > average(chainScores) + 2 ∗ standardDeviation(chainScores)

Selecting more chains as strong chains would increase the lexical chain scores for

sentences, since their probability of containing a strong chain word would increase.

Assuming that an increase in the lexical chain scores might affect the performance of

the system, we ran our tests with the following strong chain criterion:

score(chain) > average(chainScores) + standardDeviation(chainScores)

Again, only the four text features that were used in the previous alternative model

were considered, since it was seen that they had the most influence on the summary

performance. Table 6.4 shows the results of the second alternative model.

Table 6.4. The system performance evaluation using different strong chain criterion

Text Feature Feature Weight (over 15)

P(f1) - Sentence Location 15

P(f6) - Sentence Centrality 9

P(f8) - Sentence Inclusion of Name Entities 3

P(f12) - Lexical Chain Score 9

Average Precision 0.46

The result did not change when compared to the first alternative. It is even same

as the original model. Moreover, we can see that the weight of the lexical chain score

did not increase, so we can conclude that this alternative model did not change the

system performance much.
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7. CONCLUSION

In this study, we have combined two approaches used in automatic text summa-

rization: using Lexical Chains to detect the lexical cohesion that exists throughout

the text, and using Genetic Algorithms to efficiently learn the weights to be used in

sentence scoring.

We have computed lexical chains in a text depending on the lexical relations

among words in the text. These relations were determined using WordNet. All these

computed chains were scored in order to select the strongest chains in a given text.

Then we have computed different text features for each sentence in a text. These

features tried to analyze the sentence to different levels. We used lexical chains as the

basis for one of these feature functions. We gave higher lexical chain feature scores

to sentences that contained more strong lexical chain words. After all the feature

scores were computed, we used genetic algorithms to determine the appropriate feature

weights. These feature weights were then used to score the sentences in the testing

mode. The highest scored sentences were selected to be included in the summary.

The results showed that, some features like sentence location, sentence centrality

and sentence inclusion of name entities showed better performance in terms of average

summary precision than other features. Moreover, some features like sentence inclu-

sion of numerical data, average TF and average TF-IDF had very little effect on the

summary performances. However the combination of the features gave better results

than any of the features.

The contribution of this study is that it puts the benefits of lexical chain approach

and genetic algorithms approach together. It combines information coming from differ-

ent levels of analysis on text. Different from other work in this area, location features

like sentence location, thematic features like sentence centrality and cohesion features

like sentence inclusion of strong lexical chain words are all considered together in this
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study. It also makes use of machine learning approach to determine the coefficients of

this combination.

As a future work, the model can be tested on different text genres. The corpus

we used in this study consisted of newswire documents. However, the tests can be run

on scientific documents, or some other genre in order to see the change in the text

feature performances and in the overall system performance.

Furthermore, the model may be adapted for summarization in Turkish. For this

purpose, Turkish WordNet, a Turkish PoS tagger, and a Turkish NE recognizer must

be used. Also, the text features must be adapted to Turkish grammar and Turkish

prefixes and suffixes must be considered. Finally, some new features that represent

Turkish language and summarization habits in a more specific way might be added.
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APPENDIX A: STOP WORDS
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a able about across after all

almost also am among an and

any are aren’t as at be

because been but by can cannot

can’t could couldn’t dear did didn’t

do don’t does doesn’t either else

ever every for from get got

had hadn’t has hasn’t have haven’t

he her hers him his how

however i if in into is

isn’t it its just least let

like likely may me might most

must mustn’t my neither no nor

not of off often on only

or other our own rather said

say says she should shouldn’t since

so some than that the their

them then there these they this

tis to too twas us wants

was wasn’t we were weren’t what

when where which while who whom

why will with won’t would wouldn’t

yet you your
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APPENDIX B: EMPHASIZE WORDS

very really extremely

amazingly exceptionally incredibly

remarkably particularly absolutely

especially specifically quite

certainly seriously highly

crucially importantly indeed

truly surely
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