
MIXTURE OF EXPERTS LEARNING IN AUTOMATED THEOREM PROVING

by

Cemal Acar Erkek

B.S., Mathematics, Middle East Technical University, 2006

B.S., Computer Engineering, Middle East Technical University, 2006

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2010

ii

MIXTURE OF EXPERTS LEARNING IN AUTOMATED THEOREM PROVING

APPROVED BY:

Assoc.Prof.Dr. Tunga Güngör

(Thesis Supervisor)

Assist.Prof.Dr. Taylan Cemgil

Assoc.Prof.Dr. Borahan Tümer (Marmara University)

DATE OF APPROVAL:

iii

ABSTRACT

MIXTURE OF EXPERTS LEARNING IN AUTOMATED THEOREM

PROVING

The main challenge of automated theorem proving is to find a way to shorten the

search process. Therefore using a good heuristic method is essential. Although there are

several heuristics that improve the search techniques, studies show that a single heuristic

cannot cope with all type of problems. The nature of theorem proving problems makes

it impossible to find the best universal heuristic, since each problem requires a different

search approach. Choosing the right heuristic for a given problem is a difficult task even

for an human expert. Machine learning techniques were applied successfully to construct

a heuristic in several studies. Instead of constructing a heuristic from scratch, we propose

to use the mixture of experts technique to combine the existing heuristics and construct a

heuristic. Since each problem requires a different approach, our method uses the output data

of a similar problem while learning the heuristic for each new problem. The results show

that the combined heuristic is better than each individual heuristic used in combination.

iv

ÖZET

OTOMATİK TEOREM İSPATLAMA SİSTEMLERİNDE

UZMANLARIN KARIŞIMI YÖNTEMİNİN UYGULANMASI

Otomatik Teorem İspatlama sistemlerinde başlıca zorluk, arama süreçlerini kısaltacak

bir yöntem bulmaktır. Arama süreçlerini kısaltmak için, buluşsal yöntemleri kullanmak

önemli bir rol oynar. Bu konuda yapılan çalışmaların sonucunda, çesitli buluşsal yöntemlerle

başarılı sonuçlar alınmışsa da, tek bir buluşsal yöntemin tüm problem tiplerinin üstesinden

gelemediği gösterilmiştir. Her problem tipinin değişik yaklaşım gerektirmesi, evrensel olarak

en iyi buluşsal yöntemin bulunmasını imkansızlaştırır. Bir problem için doğru buluşsal

yöntemin belirlenmesi, insan uzmanlar için bile çok zordur. Yeni bir buluşsal yöntem geliştir-

mek için makina öğrenmesi yöntemlerini kullanabiliriz. Bu tezde önerdiğimiz yaklaşım,

sıfırdan yeni bir buluşsal yöntem geliştirmek yerine, uzmanların karışımı yöntemini kulla-

narak, var olan buluşsal yöntemlerin birleşiminden yeni bir buluşsal yöntem geliştirmektir.

Her problem yeni bir yaklaşım gerektirdiği için, önerdiğimiz metot benzer problemlerin

çözümlerini öğrenme verisi olarak kullanmaktadır. Çalışmamızın sonuçları, birleşik buluşsal

yöntemin, karışımda kullanılan tekil buluşsal yöntemlerin her birinden daha iyi olduğunu

göstermiştir.

v

TABLE OF CONTENTS

ABSTRACT . iii

ÖZET . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vi

LIST OF TABLES . vii

LIST OF SYMBOLS/ABBREVIATIONS . viii

1. INTRODUCTION . 1

1.1. Motivation . 2

1.2. Outline . 5

2. PREVIOUS WORK . 6

2.1. Learning in ATP systems . 6

2.2. Clause features . 8

2.3. Non-learning heuristics . 10

3. MACHINE LEARNING . 12

3.1. Machine learning and ANN . 12

3.2. Mixture of experts . 14

4. APPLICATION TO ATP . 16

4.1. General architecture . 16

4.2. Numerical features . 17

4.3. Expert heuristics . 18

4.4. The whole system . 20

5. EXPERIMENTS AND RESULTS . 23

5.1. Experimental setting . 23

5.2. Results . 23

5.3. Analysis of used knowledge . 26

6. CONCLUSIONS AND FUTURE WORK . 29

REFERENCES . 30

vi

LIST OF FIGURES

1.1 Generic ATP algorithm . 2

1.2 Given-clause algorithm . 4

3.1 Definition of discriminant functions 13

3.2 A typical representation of an ANN 13

3.3 A typical representation of a MOE 14

4.1 The system as a whole . 17

4.2 Clause features . 18

4.3 Problem features . 18

4.4 Hypothetical example for heuristic scales 19

4.5 Heuristic function . 21

4.6 Example for areas of expertise . 22

5.1 Results in pie charts . 25

5.2 Number of clauses used in learning (FLD) 27

5.3 Number of clauses used in learning (GRP) 27

5.4 Number of clauses used in learning (LCL) 28

vii

LIST OF TABLES

1.1 Theorem proving as a search problem 3

2.1 Example static and dynamic features 9

5.1 Experiment heuristics . 24

5.2 Results for all domains . 24

5.3 Average time for proofs in seconds 26

viii

LIST OF SYMBOLS/ABBREVIATIONS

A→ B A implies B

AT transpose of A

ANN Artificial neural network

ATP Automated theorem proving/prover

RBF Radial basis function network

MOE Mixture of experts network

SOS Set of support

SVM Support vector machine(s)

TPTP Thousands of Problems for Theorem Provers

1

1. INTRODUCTION

The birth of automated theorem proving (ATP) is based on the need of mathematicians

for finding a general decision procedure to verify the validity or inconsistency of a math-

ematical formula [1]. Several mathematicians worked on the subject since 1600s. Today,

we know general decision procedures to verify the validity of a mathematical formula which

is defined in first order logic, if the formula is valid, otherwise we should not expect the

procedure to terminate.

After the introduction of resolution principle, and the evolution of computers, comput-

ers became the main tool for ATP systems. Computers are very suitable for ATP since the

resolution principle reduces proof procedures into a series of simpler, unintelligent opera-

tions, which computers are very fast at performing.

Nowadays, ATP applications are used in several areas. For example, some mathe-

matical theorems which were not proved yet by human effort, are proved by ATP systems.

Also, there are several industrial uses of ATP systems such as hardware verification, software

verification or ontologies.

Machine learning is also an important area of computer science, where computers are

used to solve problems by the analysis of example data or past experience [2]. Machine

learning applications are used widely in several applications: natural language processing,

medical diagnosis, credit approval in banking, stock market analysis, biometric authenti-

cation, game playing, etc. Therefore, we can conclude that most of the machine learning

algorithms are mature, widely used and proven to be successful.

A special type of machine learning algorithms, artificial neural networks are also

widely used in several machine learning algorithms, including ATP systems. There is a

variant of ANN algorithms, which is called mixture of experts (MOE). The effort of this

thesis is to integrate MOE algorithm into ATP. Our work proposes a method for using MOE

method in the clause selection mechanism of an ATP system. The results are promising, but

2

further improvements can be achieved by slight modifications.

1.1. Motivation

If some formula G logically follows from other formulae (F1, F2, ..., Fn), then the for-

mula (F1∧ ...∧Fn → G) is called a theorem [1]. Then we call F1, F2, ..., Fn as axioms of the

theorem, and G as the conclusion of the theorem. The goal of ATP is to decide whether G

logically follows F1, F2, ..., Fn, and find the logical steps (not always human interpretable)

that comes to G assuming F1, F2, ..., Fn are given. To achieve this goal, ATP systems (which

use resolution method) follow roughly the simplified generic algorithm in Figure 1.1.

1. The theorem is represented in first order logic.

2. The axioms of the theorem are transformed into a set of clauses.

3. The conclusion of the theorem is negated and added to the set of clauses.

4. Two clauses are chosen from the set of clauses.

5. The resolution method is applied to the chosen clauses, which adds new

clauses to the set of clauses.

6. Step 4 and 5 are repeated until the false clause (or the empty clause) is pro-

duced by the resolution method.

Figure 1.1. Generic ATP algorithm

The detailed descriptions of symbolic logic, ATP and resolution method can be found

in [1] and [3], therefore we do not explain here the exact details of the principles.

The important point about the above algorithm is that the resolution method is an

undirected process, which produces every possible clause from any two clauses. Because,

when we produce clauses, we do not exactly know which clauses will help us to reach the

empty clause. Therefore, resolution method may produce a lot of clauses, in other words

more clauses than it processes. In the loop, after some steps, the set of clauses will be

very large, resulting in no solutions (no proof of the given theorem) at a reasonable time.

After the introduction of resolution method, several improvements have been applied to make

ATP systems faster. Several variants of resolution method are used to limit the number

of possible resolutions, therefore producing less number of new clauses. The algorithm

3

which decides the order of resolutions is improved. Methods for discarding unnecessary and

logically equivalent clauses are used.

The order of resolutions (deciding to which clauses the resolution method is to be

applied) introduces a search problem whose parameters are defined in Table 1.1.

State During the search, the current state is the set of clauses to be

processed.

Initial state The initial set of clauses which includes axioms and the negation

of the conclusion of the theorem.

Possible actions At a specific state, the action is to choose two clauses to apply

resolution method. The new state is the previous set of clauses

and the new clauses that are produced at this resolution step.

Goal test If any new clause is the false clause (or empty clause), then

search is over and the theorem is proved. Alternatively, if all

possible resolutions are made without finding the empty clause,

then the search is over and the theorem could not be proved.

Path cost The time spent for each resolution is the estimated cost of each

resolution step.

Table 1.1. Theorem proving as a search problem

Actually, all descriptions in this chapter are simplifications of the working principles

of ATP systems. An actual ATP system should have a mechanism to keep track of previous

resolutions (so it does not repeat the same resolutions), should periodically eliminate unnec-

essary clauses to shrink the set of clauses, should have an efficient data structure to speed up

the search process, etc. One of the methods that ATP systems implement is the set of support

strategy [1]. Several ATP systems use that strategy to narrow the possibilities for resolutions.

A popular and efficient algorithm used in ATP systems is the given-clause algorithm. This

algorithm is defined in [4] and is given in Figure 1.2. This is the algorithm used in the Otter

ATP system.

Defining the problem as a search problem allows us to use search algorithms. The

given-clause algorithm uses the best-first search method. In the Otter ATP system, the heuris-

4

There are two main lists of clauses:

usable : This list contains clauses that are available to make

inferences.

set of support (sos) : This list contains clauses that are waiting to participate

in inferences.

The main loop of the search process to find the empty clause is as follows:

1. Let given clause be the best clause in sos.

2. Move given clause from sos to usable.

3. Apply all possible inference rules (resolution or other rules), such that

each new clause will have the given clause as one of its parents and mem-

bers of usable as its other parents.

4. If empty clause is found, end the search process.

5. If sos is not empty, repeat from step 1.

Figure 1.2. Given-clause algorithm

tic function used to define goodness is the weight (number of symbols) of the clause [4]. It is

a simple heuristic and easy to implement. Also, it is a useful heuristic since shorter clauses

tend to produce the empty clause faster than longer clauses. But it is limited because if the

clauses that will help in the proof are long, we have to process every short clause before long

clauses, which possibly increases the number of clauses in the usable list.

We should note an important fact here. At any time in the search process, the given

clause is used in inferences with whole usable list. So, if the usable list is larger, there are

more possibilities for inference. Therefore, we can conclude that processing a given clause

at the beginning of the search takes less time than a given clause in the later stages of the

search. A good heuristic function is essential.

Human effort can be and was used for inventing good heuristics. Learning from experi-

ence is another useful way for inventing good heuristics ([3, 5]). Machine learning concepts

are used in several applications to improve ATP systems [5]. The details will be discussed in

5

the following chapters.

MOE method is a variant of artificial neural networks. It can be used to improve the

current heuristic functions or to find a new heuristic function for the given-clause algorithm

(or similar other algorithms whose success depends on choosing a useful clause). [2] tells us

that we can use the MOE method to combine multiple learners, so that we could have a better

learner than the individual learners which are used in the combination. Our main motivation

is that the MOE method can be used in learning, so we can combine the characteristics of

learned heuristics or existing conventional heuristics.

1.2. Outline

In the next chapter, we will discuss ATP systems which apply machine learning meth-

ods, and other works which the thesis is based on. In the third chapter, the details of our

approach will be given. In the fourth chapter, the details of our implementation of the proto-

type system will be discussed. Then, we will present the experimental work and the results.

Finally, we will discuss the results and possible future work.

6

2. PREVIOUS WORK

The effort to make use of machine learning in ATP systems is not a new idea, but

several improvements were needed in artificial intelligence and ATP systems, before we

observed convincing results [5]. In recent years, several different learning methods have been

applied to ATP systems. We should analyze these methods before explaining the contribution

in this thesis.

A general framework for learning ATP system is defined by the following questions

[5]. Although some of the answers of these questions overlap, usually all learning ATP

systems should deal with these questions.

• Learning phase:

– Whom and what to learn from?

– What to learn?

– How to represent and store the learned knowledge?

– What learning method to use?

• Application phase:

– How to detect applicable knowledge?

– How to apply knowledge?

– How to detect and deal with misleading knowledge?

– How to combine knowledge from different sources?

• Central question:

– Which concepts of similarity are helpful?

2.1. Learning in ATP systems

An important work about the integration of ATP systems and neural networks is [6].

The approach is to learn search-guiding heuristics with a neural network. The learned heuris-

tic (the neural network) is used to evaluate the possible branches of the search tree for de-

ciding the order of the search. Each branch of the search tree represents a clause in the

proof. Since neural networks are usually (not always, we will see other cases in this chapter)

7

suitable for using with numerical input, the clauses should be converted to numerical repre-

sentations by the help of clause features (e.g. the number of literals in a clause). The training

data of the neural network are example proofs, which are proved by the non-heuristic ver-

sion of the prover. The steps which contribute to the proof are taken as positive training data.

Branches that do not contribute, but are close to positive training data (siblings of positive

training data) are taken as negative training data. Other data are ignored because the purpose

of the method is to learn the nature of the clauses where positive and negative clauses are

discriminated. The learned heuristic is better than the non-heuristic version of the prover.

The same method was also used in other works [7], and its success was confirmed.

Case-based reasoning methods can be used for adapting search-guiding heuristics [8].

Each previously solved problem and its associated solution is a case for the current (target)

problem. Then, the most suitable case is selected according to a similarity concept between

problem definitions (axioms and conclusion of the proof problem). Later, a heuristic is

configured according to the selected problem (the source problem). The case base is updated

according to the success of the source, also the similarity measure can be updated to optimize

the selection of cases. Genetic algorithms can also be used to adapt the parameters [9].

Instead of using numerical features, learning with symbolic patterns can be used for

improving search-guiding heuristics [10, 11, 12]. Clauses are transformed into symbolic

patterns and these patterns are used to construct term space maps. Each pattern is associated

with the number of its positive/negative occurrences in previously solved examples. The

clauses that contribute to the proof are taken as positive examples and the clauses which

are close to the proof steps are taken as negative examples, and other steps are ignored (as

in [6]). During the evaluation of a clause in the current proof, the pattern of the clause is

calculated and then a bonus/penalty is added to a standard evaluation function according to

the associated value in the term space map. The standard evaluation function is used (without

bonus/penalty) for patterns which are absent in the term space map. The results are better

than the standard heuristic without learning. Other methods are proposed to decide which

previous examples will be used to construct the term space map of the current problem,

including the features of the problem descriptions (axioms and conclusion of problems) [13].

The bonus/penalty concept is used with numerical features of clauses in [14].

8

If we have good heuristics at hand, we may wish to choose the most suitable heuristic

for the current problem. We can use machine learning methods to decide this suitability [15].

Assuming that we have all of the necessary information about the successes of heuristics for

previous examples (i.e. how much time we need for a problem and heuristic pair), then we

can suggest a sequence of heuristics according to their expected success. This sequence is

calculated according to the similarities between the current problem and the previous exam-

ple problems. Again, the numerical features of the problem descriptions (axioms and the

conclusion) are used to define the similarity. Later, the nearest neighbor algorithm is used

to construct the sequence (i.e. if a heuristic is successful with a similar problem, then its

expected success is higher). The idea that the method finds a sequence, instead of a single

heuristic, is if a heuristic is not successful in the proof, we could try the next one in the

sequence.

Instead of choosing a heuristic from a set of heuristics, we may combine our heuristics

in order to improve the success rate [16]. In this work, two different heuristics are learned,

these heuristics are combined and it was found that the success of the combination is better

than each one of the heuristics (in some of the tests).

There are several other works that combine ATP with machine learning. ATP may

use proof methods, a sequence of inference rules, instead of atomic inferences. Also, proof

methods can be learned from similar problems [17]. The inference steps in the positive

examples are analyzed to extract proof methods. These proof methods are then applied in

the current problem, if preconditions of the methods hold. Data mining methods are used

to generate proof tactics, which are similar structures [18]. Finally, reinforcement learning

methods can be combined with ATP [19].

2.2. Clause features

If we want to use mixture of experts learning, we need to convert our clauses into com-

pact representations somehow. A common usage is the numerical representation of clauses.

Although converting a clause into numerical representation causes some loss of information,

numerical representations are powerful because of the following [5]:

9

• Numerical representations are suitable to express uncertain and inexact knowledge.

• We have a lot of knowledge for the concepts of similarity and distance for numerical

representations.

• We have powerful and mature learning methods for numerical representations.

We can use certain numerical features of clauses to convert into numerical representa-

tions. This section gives the details of the previous work which uses the features of clauses.

The concepts of static features (which are independent from the state of the proof, can

be calculated any time) and dynamic features (which are dependent to the state of the proof,

must be calculated during run-time) are given in [6]. Examples are given in Table 2.1. The

results of the work shows that static features are more reliable than dynamic features. Also,

static features have less overhead since we calculate the feature vector only once when the

clause is introduced. Some static features used in that work are number of literals in a clause,

number of negative literals in a clause, number of distinct predicates in a clause, number of

all variable occurrences in a clause, number of occurrences of constants in a clause, number

of functions in a clause, and number of variables connecting two literals.

Static features number of literals in a clause

number of variables in a clause

maximum nesting of a clause

Dynamic features current depth in the proof

total number of uses of a clause in the proof so far

Table 2.1. Example static and dynamic features

The Otter ATP system (the system on which we build our prototype implementation)

uses number of symbols as the default mechanism for choosing clauses [4].

Also there are features used in similarity detection between proof problems. These

features can also be used as clause features. Examples are:

• The number of functions with different arities (unary, binary, ternary) [15]

• Term depth of clauses (nesting) [13]

10

2.3. Non-learning heuristics

There are several non-learning heuristics currently used in ATP systems. Most of them

are successful for several problems. One of the most common non-learning heuristic is the

weighted sum of symbols. The definition of this heuristic can be given as:

weight(x) = wv if x is a variable

weight(f(t1, ..., tn)) = wf +
n∑

i=1

weight(ti) otherwise
(2.1)

where x is term, f(t1, ..., tn) is a function of terms ti, wv is the weight chosen for variables,

wf is the weight chosen for functions, and weight(clause) is the heuristic value of clause.

Different values for wv and wf can be used. Examples with (wf = 1, wv = 1),

(wf = 2, wv = 1) and (wf = 1, wv = 2) are analyzed in [11]. When we use (wf = 1,

wv = 1), it is actually counting symbols. It is also Otter’s heuristic mechanism [4]. The

reasons why this simple approach is successful are given in [11] as:

• Short clauses are more general than long clauses.

• Processing shorter clauses is faster and fewer new clauses are generated, reducing the

explosion in the search space.

• Shorter clauses are more likely to generate the empty clause.

We can assign a linear polynomial with coefficients cf1 , ..., c
f
nf

for each function symbol

f with order nf . It is called the linpol heuristic [9]. The linpol heuristic introduces a new

problem for determining the coefficients:

Linpol(x) = wv if x is a variable

Linpol(f(t1, ..., tnf
)) = wf +

∑nf

i=1 c
f
i × Linpol(ti) otherwise

(2.2)

The occness heuristic [20] evaluates according to the similarity to the goal (the fact

that we are trying to prove). It is used in several studies for comparisons [9, 10, 13, 21, 22].

It is designed to be used in equational theorem proving. The max heuristic is also another

11

heuristic used in equational theorem proving [9]. It takes the maximum weight of two sides

of the equation, as the evaluation value of the whole equation.

12

3. MACHINE LEARNING

In this chapter, we will give definitions of the machine learning methods that we use in

the thesis. In the first section, the definition of machine learning and important details will

be discussed. In the second section, MOE will be introduced with its formal definitions.

Our machine learning approach and algorithms are based on [2]. All definitions and

formulae are taken from there unless cited otherwise.

3.1. Machine learning and ANN

In [2], machine learning is defined as:

Machine learning is programming computers to optimize a performance criterion
using example data or past experience. We have a model defined up to some parameters,
and learning is the execution of a computer program to optimize the parameters of the
model using training data or past experience.

Machine learning techniques can be used in classification applications. In classifica-

tion, we have some example training data, where each example is a tuple (xi, yi) such that

xi is the input vector that represents the individual example i and yi is the label (or class)

assigned to that individual example. Our purpose is to predict the actual label yj when a

new example input xj is given. For example, in a medical diagnosis application, the input

vector may consist of patient’s properties (age, gender, medical history), symptoms (body

temperature, blood levels, presence of cough, presence of pain), etc. The labels in such an

application may be the health status of the patient: healthy, flu, anemia, tuberculosis or other

diseases. We can use such an application to assist doctors.

In classification, we try to (implicitly or explicitly) implement discriminant functions

for each class. These discriminant functions divide the input space into decision regions.

The formal definition of the discriminant functions are given in [2] as in Figure 3.1

13

Ci, i = 1, ..., K are classes,

gi(x) are discriminant functions,

Ri = {x|gi(x) = maxk gk(x)} are decision regions,

then we assign the class Ci to example x if gi(x) = maxk gk(x),

or equivalently if x ∈ Ri

Figure 3.1. Definition of discriminant functions

In likelihood-based classification, we make assumptions about the densities of classes,

and later calculate the posterior probabilities of classes. These posterior probabilities deter-

mine discriminant functions (and decision regions). In discriminant-based classification, we

do not make assumptions about class densities, but make assumptions about the discriminant

functions. In this approach, we do not calculate likelihoods or posterior probabilities, but we

estimate the discriminant functions.

Artificial neural networks (ANN) are computational models which take their inspi-

ration from the brain [2]. ANNs are composed of interconnected artificial neurons (small

processing units). We can use different types of artificial neural networks in classification

tasks. A typical ANN structure can be seen in Figure 3.2.

Figure 3.2. A typical representation of an ANN

In an ANN structure, if many hidden units are activated (have non-zero output) for

inputs, then it is called a distributed representation. Multilayer perceptrons are examples of

14

distributed representation. In this kind of networks, input is encoded by the simultaneous

activation of many hidden units.

We may choose to have a local representation instead. In this kind of networks, one or

a few hidden units are active (have non-zero output) at the same time. Examples of this kind

of network are radial basis function networks (RBF) and MOE.

3.2. Mixture of experts

The general structure of the MOE network can be seen in Figure 3.3.

Figure 3.3. A typical representation of a MOE

There are two different perspectives for MOE. In the first case, MOE can be seen as

an extension of RBF, where hidden layer outputs are not constants but linear models. In

the second perspective, MOE can be seen as a general architecture for combining multiple

experts, where the experts may not be linear or learning and the gating may not be linear. In

this thesis, we will use the second perspective. We will give the details of this perspective in

this section. All other details can be found in [2].

The idea behind MOE is to combine multiple experts to achieve success better than

15

each individual expert. This task is done by taking a weighted average of the expert outputs:

yt =
H∑

h=1

gh(xt) · wh(xt) (3.1)

where yt is the output of MOE for input xt, wh(xt) is the output of expert h, gh(xt) is

the weight of expert h, xt is the current input for the system. As we can see from the

above formula, both the weights and expert outputs depend on the input. These weights are

determined by the gating network. We can use softmax gating for the gating network:

gh(xt) =
exp[mT

h · xt]
H∑

l=1

exp[mT
l · xt]

(3.2)

where the vector mh defines a hyperplane for expert h , and H is the number of experts. This

function fulfills a classification task for input vector xt. For each given xt, gh determines

if xt is in the expertise region of expert h defined by mh. The denominator of the formula

ensures that
∑
gh = 1, and for some j, gj > 0.

MOEs are trained with backpropagation algorithm. The update rule for mh after each

individual instance xt is:

∆mh = η[rt − yt] · [wh(xt)− yt] · gh(xt) · xt (3.3)

where rt is the desired output for the training example xt, and η is the learning factor.

It is worth pointing here that we describe the cooperative MOE method, where all

experts cooperate for the output of the system. There is also a variation which is the compet-

itive MOE method where units are forced to be separated. [2] remarks that the cooperative

method is more accurate while the competitive method makes learning faster. We prefer the

cooperative MOE in this thesis.

16

4. APPLICATION TO ATP

In this chapter, we describe our application of MOE method to ATP systems. We

discuss the general design of the method and their realizations in our prototype system.

4.1. General architecture

In applying machine learning, our training data will be the output of the system, which

indicates that we will use the proof steps of previous problems to solve new problems. Ini-

tially, since there is no training, we must use the outputs of problems solved with conven-

tional heuristics.

A successful proof has two types of clauses: clauses that contribute to the solution

(positive examples) and clauses that do not contribute to the solution (negative examples).

Usually, a proof has much more negative examples than positive examples. If we include all

positive and negative examples, negative examples will dominate the learning process. So

we have to reduce the number of negative examples. [5] suggests to take negative examples

which are close to positive examples. In a similar manner, we consider negative examples

which are two steps away from positive examples in the proof tree.

If a proof has very few steps, then we will not have enough data for a successful

training. So, we do not use solutions with very small number of proof steps in training.

The positive and negative examples are converted into their numerical representations as

described in Section 4.2. These numerical data are used to train the MOE. We train the

network until the coefficients are stable. After this process, the problem definition of the

proof and the coefficients are kept in a knowledge base. In our examples, all training sessions

are very fast (takes less than 1 s.), so compared to the proof sessions, the total time of the

training sessions is negligible.

When a new proof problem arrives, the problem definition of the new problem is com-

pared with the previously solved problems and the knowledge of the most similar problem

17

is applied to the new problem. This concept, which is called instance-based learning, is suc-

cessfully used in [15]. To determine the similarity, each problem is converted into numerical

representations (problem features). Then, similarity is calculated as the Euclidean distance

between these feature vectors. The feature set used in the application is given in Section 4.2.

The MOE is initialized with the coefficients taken from the most similar problem. The

output of this MOE is used as the heuristic function in the given-clause algorithm. The

system is visualized in Figure 4.1.

Figure 4.1. The system as a whole

4.2. Numerical features

In our application, we convert clauses into numerical representations since ANNs are

commonly used with numerical input. We do not use dynamic features since static features

are more simple and more reliable (see Section 2.2). Each clause is converted into a vector

of features given in Figure 4.2. Then these vectors are used in the training of the MOE

(specifically in the gating network).

18

1. Number of literals

2. Number of negative literals

3. Number of distinct predicate symbols

4. Number of constants

5. Number of functions

6. Number of variables

7. Number of variables connecting literals

8. Total number of symbols

9. Number of unary functions

10. Number of binary functions

11. Number of ternary functions

12. Maximum nesting

13. Maximum weight of literals

Figure 4.2. Clause features

We also use numerical features of problem definitions to determine the similarity be-

tween problems. The features used in the similarity concept are given in Figure 4.3.

1. Number of axioms

2. Average term depth of the axioms

3. Standard deviation of the term depth of axioms

4. A vector describing the distance of function arities in the signature

of the problem

5. Number of distinct predicates

Figure 4.3. Problem features

4.3. Expert heuristics

We use clause heuristics as the experts of the system. The flexibility of MOE method

allows us to use different types of heuristics together (conventional non-learning heuristics

and learning heuristics). As an extreme case, we can also combine human experts but it

would not be practical since both the learning phase and the application phase would be

19

difficult and slower because of human interaction.

In the preliminary work of this thesis, we encountered a problem when combining

heuristics with different scales. The most common heuristics are symbol weighting heuristics

in ATP systems (see Section 2.3). These heuristics count the symbols in clauses (by giving

weights for symbols) and choose the clause with minimum weight. Different heuristics may

assign different weights, resulting different output intervals for different heuristics. But this

is not the only case, we may have an adaptive heuristic (for example multilayer perceptron),

which may give its output in [0, 1] interval, while choosing the clause with maximum output.

In some cases, this problem will cause some of the combined heuristics to drop because

of very small outputs or very small weights (gating outputs). We can see this fact in the

hypothetical example in Figure 4.4. In preliminary experiments, this problem reduces our

system to one of the heuristics, so we cannot improve the system by learning.

Assume we have these heuristics combined:

• h1(clause) ∈ [0, 1]

• h2(clause) ∈ [0, 100]

At the earlier stages of learning, when weights are close, outputs of h2 will be

dominant in the output. Therefore y will be close to w2, so (w2 − y) will be close

to 0. Also, (w1 − y) will be significantly greater than 0. So, changes in m1 will be

faster, changes in m2 will be slower since Equation 3.3 has the term (wh − y) (see

also Equation 3.2).

Assume that earlier stages of our learning session goes well despite the above fact.

At the later stages, the weights of h1 (in other words g1) should be higher, and g2

should be lower in order to balance the contribution of heuristics (if g1 is small,

then the contribution of h1 will not be observable in the output). So, changes in m1

will be faster, changes in m2 will be slower since Equation 3.3 has the term gh.

Figure 4.4. Hypothetical example for heuristic scales

We need a way to normalize heuristics. Maybe the most simple method would be 0-

20

1 normalization (where all data will be mapped into [0, 1] interval). But for some type of

heuristics, there may be no lower bound or upper bound. For example for the simple symbol

counting heuristic, the lower bound is 1, but there is no upper bound for the number of

symbols in a clause. So, we come up with a simple but useful method: we filter the outputs

of heuristics with perceptrons.

Perceptron is a basic structure which can be used as a linear classifier. It is the building

block of an ANN. It seperates the input space with a hyperplane. It is defined with these

equations:

o = wT · x (4.1)

y = sigmoid(o) (4.2)

sigmoid(t) =
1

1 + e−t
(4.3)

where y is the output of the perceptron, x is the input of the perceptron, w defines the hyper-

plane of the perceptron. See [2] for further details.

These perceptrons are trained as classifiers for seperating useful clauses and useless

clauses from the outputs of heuristics. In other words, we calculate the posterior probabilty

of being a useful clause from the heuristic output of that clause. After training, we treat

the combinations of the heuristics and the perceptrons as the experts of MOE. This method

ensures that our expert outputs are in [0, 1] interval.

4.4. The whole system

In this section, we will give a summary of our implementation, so the system can be

understood as a whole.

Our design is built on clause heuristics, which are called experts in our perspective.

Since we allow any kind of heuristic, simply we assume that a heuristic gives its output in

the interval (−∞,∞). The perceptrons in our first level of MOE transform our heuristic

21

outputs to probability models also ensure that the outputs are in [0, 1]. At this stage, we

interpret the output as a probabilistic prediction. These steps can be visualized as Figure 4.5

(heuristic input is visualized as one dimensional for simplicity; it could be any number of

dimensions).

Figure 4.5. Heuristic function

Our heuristic functions are successful (give accurate output) for some of the clauses.

One heuristic may distinguish the useful clauses, where another one may fail. Our assump-

tion is that we can learn the subsets (subregions) of the clause domain where any heuristic

is more successful than others. The gating network is responsible for this task. The outputs

of the gating network (weights of experts for that input) determine the effect of experts for

the combined output. So, for any clause (mathematically, a vector in the clause domain), one

heuristic is dominant for the combined output. See Figure 4.6 for an example; the clause

domain is given in two dimensional for simplicity in this example. It is 13 dimensional in

the actual application.

In our gating structure, we use the soft-max gating method, so that our gating structure

gives soft weights to the experts, instead of giving one for the dominant expert, and zeros for

the others. The system output is a weighted sum of the experts, where the sum of the weights

is one.

The expertise regions, mentioned above, are learned from previous examples. The

22

Figure 4.6. Example for areas of expertise

clauses are extracted from the output of a previous proof, with labels “useful” and “not

useful”. Then, most of the unsuccessful clauses are filtered out as mentioned in Section 4.1.

The rest of the clauses are used to train the MOE according to the rules in Section 3.2. The

results of training are recorded in the knowledge base to be used for future problems.

Another assumption is that the outputs of a similar problem will be useful for the target

problem (see Section 2.1). We used this approach to determine the knowledge to be used.

For the new problem, its problem features are calculated and the most similar problem is

chosen from the knowledge base, to assign the parameters of the MOE. In our application,

Otter’s inner mechanisms are manipulated to use such a network for the clause selection

mechanism.

23

5. EXPERIMENTS AND RESULTS

5.1. Experimental setting

In our experiments, we implemented the proposed method on top of the Otter ATP

system [4]. Otter is a popular ATP system and it was used widely for comparison of ATP

systems. We modified the clause selection mechanism of Otter to use the MOE. The other

mechanisms of Otter were kept the same so that we can isolate the effect of the clause

selection mechanism in the results.

Our learning engine is partly programmed in PHP (for the extraction of clauses from

proof outputs) and in C (for the training of the MOE from the extracted clauses). The in-

ference engine of Otter was manipulated to use the knowledge from previous examples (as

trained MOE). Otter is programmed in C, so as our extension.

The experiments were done on an Intel Pentium 4 1.7 Ghz Ubuntu Linux computer. In

all of the tests, a moderate time limit was given to the prover to prevent running indefinitely

if it does not find a solution. Also, in later stages of proving, the efficiency of the prover

reduces since both the set of support and the set of usable clauses expand quickly. If the

prover does not find a solution until the time limit, the prover is stopped. This time limit is

three minutes in our experiments. We used the TPTP (Thousands of Problems for Theorem

Provers) library in the tests [23]. We used problems without equality, which are defined in

clause normal form.

In the experiments, we combined three simple heuristics. Also, for comparison, we

used two hypothetical heuristics. These heuristics are defined in Table 5.1.

5.2. Results

We tested the proposed system in the following domains from the TPTP library: FLD,

GRP, and LCL. The results are given in Table 5.2 (percentages are rounded to integral val-

24

H1 wv = 1, wf = 1 in Equation 1, the default heuristic of Otter

H2 Maximum nesting level of the clause

H3 wv = 1, wf = 2 in Equation 1

Hbest Hypothetical heuristic, which chooses the best from Hi where i = 1, 2, 3

for a specific problem

Hworst Hypothetical heuristic, which chooses the worst from Hi where i = 1, 2, 3

for a specific problem

Hmoe MOE heuristic (the proposed heuristic in this paper)

Table 5.1. Experiment heuristics

ues), also in Figure 5.1 as pie charts.

FLD GRP LCL

Both Hmoe and Hbest succeeded 51% 61% 97%

Both Hmoe and Hbest failed 45% 27% 0

Hmoe succeeded but Hbest failed 3% 2% 0

Hmoe failed but Hbest succeeded 1% 10% 3%

Hmoe is faster than Hbest 14% 5% 16%

Hmoe is as fast as Hbest 22% 53% 57%

Hmoe is faster than Hworst but slower than Hbest 6% 2% 19%

Hmoe is slower than Hworst 9% 1% 5%

Total number of problems (100%) 161 127 300

Table 5.2. Results for all domains

The proposed system finds a solution for seven problems (one per cent of all problems)

where all other heuristics fail. In 76 problems (13 per cent of all problems), it finds a solution

faster than all of the combined heuristics. In 274 problems (47 per cent), the success ofHmoe

is as fast as Hbest, in other words, Hmoe has a score equal to the best of the heuristics for a

specific problem. In total, for about 61 per cent of all problems, our system gives at least

equal or more successful results with Hbest. So, we can conclude that the system has gained

abilities beyond the combined heuristics for these problems.

25

Figure 5.1. Results in pie charts

But, four per cent of the problems cannot be solved by our system, although they

are solved with the combined heuristics. In addition, in 11 per cent of the problems, our

proposed system finds a solution, but it is slower than Hbest; in five per cent of the problems,

it is even worse than Hworst. There are two possibilities for these negative results: the loss

of information due to numerical representations and the similarity approach we used.

The average time spent for problems (including the problems with no solution) is given

in Table 5.3. The average time of Hmoe is greater than Hbest as expected. But for GRP and

LCL domains, we realize that one of the heuristics has an average time less than Hmoe. In

detailed analysis, we realize that, for some problems, although one of the heuristics gives

a solution quickly, our system cannot learn that, and gives a solution close to the results of

26

other heuristics (these problems are given as Hmoe is faster than Hworst but slower than

Hbest in domain result tables). These individual problems should be carefully analyzed to

find out the problems in the whole system.

Domain Heuristic H1 H2 H3 Hmoe Hbest

FLD 106 106 106 94 91

GRP 60 93 60 71 59

LCL 93 60 71 60 59

Table 5.3. Average time for proofs in seconds

In general, the results show that the proposed system is promising. Although, for some

problems, the performance of the system is behind the performance of Hbest, constructing

such perfect Hbest heuristics is impossible and will be subject to the same problems as the

problems of similarity and numerical representations. To further improve the proposed sys-

tem, we should extract the individual negative results and analyze them for the similarity

concept. Improvements in the similarity approach will directly affect the performance.

5.3. Analysis of used knowledge

In our learning scenario, we choose a source problem (with our similarity concept) for

each target problem. But, solutions of source problems contain different number of positive

and negative clauses. It is certain that if we do not have enough positive and negative clauses,

learning is not possible. In the system proposed in this thesis, the lowest limit is 35 clauses

(solutions with less clauses are discarded). To verify this limit we have analyzed the effect

of the number of clauses on the success rate of our learned heuristic. This analysis is given

in Figure 5.2 - 5.4

The figures show that our limit is sufficient for training. Above that limit, the number

of clauses does not have an impact on the success rate of the learned heuristic.

27

Figure 5.2. Number of clauses used in learning (FLD)

Figure 5.3. Number of clauses used in learning (GRP)

28

Figure 5.4. Number of clauses used in learning (LCL)

29

6. CONCLUSIONS AND FUTURE WORK

Although the proposed work is very promising, it has several drawbacks that have to be

addressed. There are three main points that need improvement: similarity approach, experts,

structure of the network.

First of all, the similarity approach needs revising. Although this concept is used in

several works, it does not deal with semantic similarities between problems, but only with

syntactic similarities. A more advanced similarity approach will be a valuable addition in

the system. Also, our implementation simply chooses the most similar problem from the

database, but does not check if the chosen problem is “similar enough”. The system should

have a mechanism for dealing with these problems that do not have applicable knowledge in

their neighborhood in the similarity domain. For these types of problems, the system should

drop to a default safe heuristic.

The experts used in the system are very primitive but they are proven to be successful

for lots of problems. Other experts can be added to the system for improvement. We do

not need to worry about the individual success rate of additional experts, since the gating

structure will drop unsuccessful experts by evolving to a very small weight. Additional

experts can be learning experts as well. The system will easily be integrated with experts

which use back-propagation without any modification. Other learning methods will require

a modification in the learning scheme.

Another promising approach is using symbolic representations in ANNs. This ap-

proach also can be combined with the current work. The gating structure of MOE can be

modified to use symbolic representations [24, 25]. Although our network structure is the

default structure of MOE, other topologies can be used in the network structure as well.

Our learning scheme uses the results of plain Otter for learning in the experiments. It

does not have an incremental learning model. If we feed the system with its own outputs, we

may eliminate more useless clauses with the additional information gained.

30

REFERENCES

1. C.L. Chang and R.C.T. Lee. Symbolic Logic and Mechanical Theorem Proving. Aca-

demic Press, Orlando, 1997.

2. E. Alpaydin. Introduction To Machine Learning. MIT, 2004.

3. S.J. Russell, P. Norvig, J.F. Canny, J. Malik, and D.D. Edwards. Artificial Intelligence:

A Modern Approach. Prentice Hall, NJ, 1995.

4. W. McCune. OTTER 3.3 Reference Manual. Argonne National Laboratory, Technical

Memorandum No.263, 2003.

5. J. Denzinger, M. Fuchs, C. Goller, and S. Schulz. Learning from Previous Proof Expe-

rience: A Survey. Technical Report AR-99-4, Fakultät für Informatik der Technischen

Universität München, 1999.

6. C. Suttner and W. Ertel. Automatic Acquisition of Search Guiding Heuristics. Proc. of

International Conference on Automated Deduction, pages 470–484, 1990.

7. C. Goller. A Connectionist Control Component for the Theorem Prover SETHEO. In

Proc. ECAI?94 Workshop W14: Combining Symbolic and Connectionist Processing,

pages 88–93, 1994.

8. M. Fuchs and M. Fuchs. Applying Case-Based Reasoning to Automated Deduction.

Proc. of International Conference on Case-Based Reasoning, pages 23–32, 1997.

9. M. Fuchs. Learning Proof Heuristics by Adapting Parameters. Proc. of International

Conference on Machine Learning, pages 235–243, 1995.

10. S. Schulz. Term Space Mapping for DISCOUNT. In Proc. of CADE-15 Workshop on

Using AI methods in Deduction, 1998.

31

11. S. Schulz. Learning Search Control Knowledge for Equational Deduction. PhD Disser-

tation, Vol. 230, IOS Press, 2000.

12. S. Schulz. Learning Search Control Knowledge for Equational Theorem Proving. Proc.

of KI, 2001.

13. S. Schulz and F. Brandt. Using Term Space Maps to Capture Search Control Knowledge

in Equational Theorem Proving. Proc. of FLAIRS, pages 244–248, 1999.

14. M. Fuchs. Feature-Based Learning of Search-Guiding Heuristics for Theorem Proving.

AI Communications, 11(3):175–189, 1998.

15. M. Fuchs. Automatic Selection of Search-Guiding Heuristics. Proc. of FLAIRS, pages

1–5, 1997.

16. M. Fuchs. Experiments in the Heuristic Use of Past Proof Experience. Proc. of CADE-

13, New Brunswick, LNAI, 1104:523–537, 1996.

17. B. Silver, J. Richardson, A. Smaill, A. Stevens, and A. Bundy. Cooperating Reasoning

Processes: More than just the Sum of their Parts. Proc. of IJCAI, pages 2–11, 2007.

18. H. Duncan, A. Bundy, J. Levine, A. Storkey, and M. Pollet. The Use of Data-Mining for

the Automatic Formation of Tactics. Proc. of IJCAR, pages 61–71, 2004.

19. Q. Liu, Y. Gao, Z. Cui, W. Yao, and Z. Chen. An Tableau Automated Theorem Prov-

ing Method Using Logical Reinforcement Learning. Proc. of ISICA, LNCS, 4683:262,

2007.

20. J. Denzinger and M. Fuchs. Goal Oriented Equational Theorem Proving Using Team

Work. Proc. of KI, LNCS, 861:343–343, 1994.

21. J. Denzinger and S. Schulz. Automatic Acquisition of Search Control Knowledge from

Multiple Proof Attempts. Information and Computation, 162(1-2):59–79, 2000.

32

22. J. Denzinger and S. Schulz. Learning Domain Knowledge to Improve Theorem Proving.

Proc. of Cade-13, 1996.

23. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and

CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

24. C. Goller. A Connectionist Approach for Learning Search-Control Heuristics for Auto-

mated Deduction Systems. PhD Dissertation, Technical University of Munich, 1999.

25. A. Kfichler and C. Goller. Inductive Learning in Symbolic Domains Using Structure-

Driven Recurrent Neural Networks. Proc. of KI, LNCS, 1137:183–197, 1996.

	ABSTRACT
	ÖZET
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS/ABBREVIATIONS
	1. INTRODUCTION
	1.1. Motivation
	1.2. Outline

	2. PREVIOUS WORK
	2.1. Learning in ATP systems
	2.2. Clause features
	2.3. Non-learning heuristics

	3. MACHINE LEARNING
	3.1. Machine learning and ANN
	3.2. Mixture of experts

	4. APPLICATION TO ATP
	4.1. General architecture
	4.2. Numerical features
	4.3. Expert heuristics
	4.4. The whole system

	5. EXPERIMENTS AND RESULTS
	5.1. Experimental setting
	5.2. Results
	5.3. Analysis of used knowledge

	6. CONCLUSIONS AND FUTURE WORK
	REFERENCES

