
INTEGRATING MORPHOLOGY INTO AUTOMATIC SPEECH RECOGNITION:

MORPHOLEXICAL AND DISCRIMINATIVE LANGUAGE MODELS FOR

TURKISH

by

Haşim Sak

B.S., Computer Engineering, Bilkent University, 2000

M.S., Computer Engineering, Boğaziçi University, 2004

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in

Boğaziçi University

2012

ii

INTEGRATING MORPHOLOGY INTO AUTOMATIC SPEECH RECOGNITION:

MORPHOLEXICAL AND DISCRIMINATIVE LANGUAGE MODELS FOR

TURKISH

APPROVED BY:

Assoc. Prof. Tunga Güngör

(Thesis Supervisor)

Assoc. Prof. Murat Saraçlar

(Thesis Co-supervisor)

Assist. Prof. Deniz Yüret

Prof. Fikret Gürgen

Prof. Lale Akarun

DATE OF APPROVAL: 11.11.2011

iii

ACKNOWLEDGEMENTS

I am more than grateful to my excellent supervisors, Tunga Güngör and Murat

Saraçlar for their great contributions to this thesis, invaluable guidance in this path

and approaching me always with support, encouragement and understanding.

I would like to thank members of my thesis committee, Lale Akarun, Fikret

Gürgen and Deniz Yüret for their invaluable feedbacks and contributions to this work.

I would like to also thank Kemal Oflazer, Deniz Yüret, and Dilek Hakkani-Tür for

providing me with data and tools.

I would like to thank especially Ebru Arısoy for her scientific contributions to

this thesis by providing resources, tools and experimental set up facilitating this work

greatly. I would like to also thank Sıddıka Parlak, İpek Şen, Erinç Dikici, and Doğan

Can at BÜSİM lab for being my friends and for their help and contributions to this

thesis.

My special thanks go to my friends at CMPE. Ahmet Yıldırım, Akın Günay,

Alp Kındıroğlu, Arda Çelebi, Barış Gökçe, Barış Kurt, Barış Evrim, Başak Aydemir,

Can Kavaklıoğlu, Çetin Meriçli, Dağhan Dinç, Ergin Özkucur, Furkan Kıraç, Gaye

Genç, Itır Karaç, İlker Yıldırım, İsmail Arı, Nadin Kökçiyan, Nuri Taşdemir, Onur

Güngör, Özgür Kafalı, Roza Ghamari, Seniha Köksal, Serhan Danış, Suzan Bayhan,

Tekin Meriçli, Yunus Emre Kara and many others have made Boğaziçi such a fun and

friendly place. I would like to also thank the faculty members of CMPE, especially

Suzan Üsküdarlı, Lale Akarun, Cem Ersoy and Tuna Tuğcu for being the source of

exceptional positive energy at CMPE.

I would like to express my gratitude to my parents and brothers, especially my

twin brother Halis for his support, understanding and help throughout my life.

iv

I would like to thank my dear friends Nagehan Aktunç, Ersin Tuşgul and Ahmet

Bulut, and I feel very lucky for having them in my life.

My last, and most heartfelt acknowledgment must go to Derya Çavdar for her

love and support. I feel blessed with her presence in my life.

This thesis was supported in part by the Scientific and Technical Research Council

of Turkey (TÜBİTAK) under BİDEB 2211, and grant numbers 107E261,105E102 and

109E142, in part by Boğaziçi University Research Fund (BAP) under grant numbers

06A102, 08M103, and in part by Turkish State Planning Organization (DPT) under

the TAM project number 2007K120610.

v

ABSTRACT

INTEGRATING MORPHOLOGY INTO AUTOMATIC

SPEECH RECOGNITION: MORPHOLEXICAL AND

DISCRIMINATIVE LANGUAGE MODELS FOR TURKISH

Languages with agglutinative or inflectional morphology prove to be challeng-

ing for speech and language processing due to relatively large vocabulary size leading

to a high number of out-of-vocabulary (OOV) words. In this thesis, we tackle with

these challenges in automatic speech recognition (ASR) frame for Turkish having an

extremely productive inflectional and derivational morphology. First, we build the nec-

essary tools and resources for Turkish, namely a finite-state morphological parser, a

perceptron-based morphological disambiguator, and a text corpus collected from web.

Second, we introduce two complementary language modeling approaches to alleviate

OOV word problem and to exploit morphology as a knowledge source. The first model,

morpholexical language model, is a generative n-gram model, where modeling units are

lexical-grammatical morphemes instead of commonly used words or statistical sub-

words. We also propose a novel approach for integrating the morphology into an ASR

system in the finite-state transducer framework as a knowledge source. The second

model is a linear reranking model trained discriminatively with a variant of the per-

ceptron algorithm, word error rate (WER) sensitive perceptron, using morpholexical

and morphosyntactic features to rerank n-best candidates obtained with the generative

model. We apply the proposed models in Turkish broadcast news transcription task

and give experimental results. The morpholexical model is highly effective in alleviat-

ing OOV problem and improves the WER over word and statistical sub-word models

by 1.8% and 0.8% absolute respectively. The discriminatively trained model further

improves the WER of the system by 0.8% absolute. Finally, we present an algorithm

for on-the-fly lattice rescoring with low-latency.

vi

ÖZET

BİÇİMBİLİMİN OTOMATİK KONUŞMA TANIMAYA

BÜTÜNLEŞTİRİLMESİ: TÜRKÇE İÇİN

BİÇİMSÖZLÜKSEL VE AYIRICI DİL MODELLERİ

Göreceli olarak geniş bir dağarcığa sahip sondan eklemeli ya da çekimsel biçim-

bilime sahip diller konuşma ve dil işlemede yüksek sayıda dağarcık dışı (DD) kelimenin

görülmesine neden olduğundan bazı zorluklar sunar. Bu tezde, bu zorluklar ile otomatik

konuşma tanıma (OKT) kapsamında çok üretken çekimli ve türevsel biçimbilime sahip

olan Türkçe için ilgileniyoruz. İlk olarak, Türkçe için gereken kaynakları ve araçları

oluşturduk. Bunlar sonlu-durum biçimbilimsel çözümleyici, perceptron-tabanlı biçim-

bilimsel tekleştirici, ve metin derlemidir. İkinci olarak, DD kelime sorununu gidermek

ve biçimbilimsel bilgiden kaynak olarak yararlanmak için birbirini tamamlayan iki dil

modeli yaklaşımı geliştirdik. İlk model, sıklıkla kullanılan kelime ve kelime-altı bi-

rimler yerine sözlüksel-dilbilgisel biçimbirimleri kullanan üretici n-birimli bir model

olan biçim-sözlüksel dil modelidir. Ayrıca, sonlu durum dönüştürücü çerçevesinde

biçimbilimi bilgi kaynağı olarak OKT sistemine entegre etmek için yeni bir yöntem

sunduk. İkinci model, üretici model ile elde edilen en iyi adayları tekrar sıralamak için

biçim-sözlüksel ve biçim-dizimsel öznitelikleri kullanan kelime hata oranı (KHO) du-

yarlı algılayıcı bir algoritma ile ayırıcı olarak eğitilmiş doğrusal bir modeldir. Önerilen

yöntemleri haber kayıtlarının yazılandırılması görevine uyguladık ve deneysel sonuçlar

elde ettik. Biçim-sözlüksel model dağarcık dışı kelime sorununu nispeten gidermiş ve

konuşma tanımada kelime hata oranını kelime ve istatistiki kelime-altı modellere göre

sırasıyla %1.8 ve %0.8 oranında iyileştirmiştir. Ayırıcı olarak eğitilmiş model sistem

başarımını %0.8 oranında daha da iyileştirmiştir. Son olarak, konuşma tanıma çıktısı

olan kelime örgülerini tanıma yapılırken tekrar değerleyen bir algoritma geliştirdik.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . x

LIST OF TABLES . xiii

LIST OF SYMBOLS . xv

LIST OF ACRONYMS/ABBREVIATIONS . xvii

1. INTRODUCTION . 1

1.1. Motivation . 2

1.2. Approach and Contributions . 4

1.3. Organization of the Thesis . 7

2. BACKGROUND AND SYSTEM DESCRIPTION 8

2.1. Weighted Finite-State Transducers . 8

2.2. Discriminative Reranking: Perceptron Algorithm 12

2.3. Automatic Speech Recognition . 15

2.3.1. ASR Architecture . 16

2.3.2. Acoustic Models: HMMs . 18

2.3.3. Speech Decoding: Viterbi Algorithm 20

2.3.4. Generative n-gram Language Models 23

2.3.5. Discriminative Language Models 27

2.4. Turkish Broadcast News Transcription 28

2.4.1. Turkish Language: Characteristics 28

2.4.2. Turkish Language: Challenges for Speech Recognition 30

2.4.3. System Description . 32

2.5. Related Work . 35

3. TURKISH LANGUAGE RESOURCES . 39

3.1. Finite-State Morphological Parser . 41

3.2. Morphological Disambiguation . 45

3.2.1. Methodology . 46

viii

3.2.2. Perceptron Algorithm . 48

3.2.3. Experiments and Results . 51

3.3. Web Corpus . 54

3.3.1. Web Crawling . 55

3.3.2. Text Cleaning . 55

3.3.3. Tokenization and Segmentation 56

3.3.4. XML Encoding . 57

3.3.5. Contents of the Corpus . 57

3.3.6. Corpus Statistics . 59

3.4. Stochastic Morphological Parser . 62

3.4.1. Turkish Spell Checker . 64

3.4.2. Morphology-based Unigram Language Model 66

3.5. Discussion . 68

4. MORPHOLEXICAL AND DISCRIMINATIVE LANGUAGE MODELING . 69

4.1. Generative Language Models . 72

4.1.1. Word and Statistical Sub-word Language Models 72

4.1.2. Morpholexical Language Models 72

4.2. Morpholexical Search Network for ASR 74

4.3. Discriminative Reranking with Perceptron 76

4.3.1. The WER-sensitive Perceptron Algorithm 76

4.4. Experiments . 80

4.4.1. Broadcast News Transcription System 80

4.4.2. Generative Language Models 81

4.4.3. Effectiveness of Morphotactics and Morphological Disambiguation 82

4.4.4. Effect of Pronounciation Modeling 83

4.4.5. Discriminative Reranking of ASR Hypotheses 85

4.5. Discussion . 87

5. ON-THE-FLY LATTICE RESCORING FOR REAL-TIME ASR 89

5.1. WFST-based Speech Decoding . 90

5.1.1. One-Best Decoding . 90

5.1.2. Lattice Generation . 92

5.2. Lattice Rescoring . 93

ix

5.2.1. Lattice Rescoring with Composition 93

5.2.2. On-the-fly Lattice Rescoring . 93

5.2.3. Implementation Details . 95

5.3. Experiments . 97

6. CONCLUSIONS . 99

6.1. Language Resources . 99

6.2. Morpholexical Language Model . 100

6.3. Morphology-Integrated Search Network 101

6.4. Discriminative Reranking . 101

6.5. Lattice Rescoring . 102

APPENDIX A: TURKISH MORPHOPHONEMICS 103

APPENDIX B: TURKISH MORPHOTACTICS 108

APPENDIX C: MORPHOLOGICAL FEATURES 110

APPENDIX D: PROOF OF THE CONVERGENCE OF THE WER-SENSITIVE

PERCEPTRON . 113

REFERENCES . 115

x

LIST OF FIGURES

Figure 2.1. Bigram language model representation with weighted transducers

or automata. 10

Figure 2.2. A left-to-right three-state HMM structure for a phone or triphone. 10

Figure 2.3. (a) a simple grammar G, (b) a pronunciation lexicon L̃, (c) compo-

sition of lexicon and grammar transducer L̃◦G, (d) determinization

of the resulting transducer det(L̃ ◦G), (e) minimization of the de-

terminized transducer mintropical(det(L̃ ◦G)). 11

Figure 2.4. The averaged perceptron algorithm. 13

Figure 2.5. The noisy channel metaphor for ASR. The speech recognizer tries

to decode the original message W which is assumed to have gone

through a noisy channel to produce an acoustic waveform A. . . . 16

Figure 2.6. A 3-state left-to-right phone HMM with state transition probabilities. 19

Figure 2.7. The Viterbi algorithm for speech decoding. 21

Figure 2.8. The rescoring or reranking of ASR hypotheses represented as n-best

lists or word lattices. 22

Figure 2.9. A word lattice example representing word hypotheses with word

probabilities. 22

Figure 2.10. Coverage statistics for most frequent types. 30

xi

Figure 2.11. The histogram for the frequency of a specific number of morphemes

in a word. 33

Figure 3.1. (a) Turkish vowel harmony rule example: “@” symbol represents

any absent feasible lexical or surface symbol. (b) Turkish nominal

inflection example (c) Lexical transducer showing ambiguous parses

for the word kedileri. 43

Figure 3.2. The averaged perceptron algorithm by Collins [1]. 49

Figure 3.3. Type statistics for subcorpora and combined corpus. 60

Figure 3.4. Coverage statistics for most frequent types. 61

Figure 3.5. Stem and lexical ending statistics for combined corpus. 62

Figure 3.6. Percentages for types not recognized by the parser versus cutoff

frequency. 63

Figure 3.7. Finite-state transducer for the word kedileri. 64

Figure 3.8. Word error rate versus real-time factor for various language models. 67

Figure 4.1. The WER-sensitive perceptron algorithm. 77

Figure 4.2. Word error rate for the first-pass versus real-time factor obtained

by changing the pruning beam width. 82

Figure 4.3. Effects of morphotactics and morphological disambiguation for the

lexical stem+ending model. 84

Figure 5.1. Lattice generation algorithm of Ljolje et al. [2] 92

xii

Figure 5.2. On-the-fly Lattice Rescoring algorithm. 94

Figure 5.3. Hypotheses and associated lattice rescoring information during de-

coding. 95

Figure 5.4. Word error rate versus real-time factor obtained by changing the

pruning beam width. 98

Figure B.1. Verbal Morphotactics. 108

Figure B.2. Nominal Morphotactics. 109

xiii

LIST OF TABLES

Table 2.1. Statistics for the NewsCor corpus. 32

Table 2.2. Partitioning of data for various acoustic conditions from [3]: f0 is

clean speech, f1 is spontaneous speech, f2 is telephone speech, f3

is background music, f4 is degraded acoustic conditions, and fx is

other. 34

Table 2.3. Baseline broadcast news transcription results from Arısoy’s work [3]. 35

Table 3.1. Operator types and their explanations. 42

Table 3.2. Feature templates used for morphological disambiguation. 48

Table 3.3. Morphological Disambiguation Results. 52

Table 3.4. Comparative Results on Manually Tagged Test Set (958 tokens). . 52

Table 3.5. An example of a morphologically disambiguated sentence. The first

morphological parse for each word is the analysis the disambiguator

chooses. 53

Table 3.6. Web Corpus Size and Results of Morphological Parser. 58

Table 4.1. Statistical and grammatical word splitting approaches. 71

Table 4.2. Results for rescoring with unpruned language models. 83

Table 4.3. Discriminative reranking results with the perceptron using unigram

features. 87

xiv

Table C.1. Morphological Features. 110

Table C.2. Morphological Features. (cont.) . 111

Table C.3. Morphological Features. (cont.) . 112

xv

LIST OF SYMBOLS

a Acoustic feature vector

A Acoustic observations - acoustic feature vector sequences

count(·) Number of occurrences for an n-gram

det(·) Determinization operation

GEN(x) A function generating hypotheses for an input x

E A set of transitions

F The set of final states

I The set of initial states

K A semiring

min(·) Minimization operation

L(·) Log-likelihood function

P (·) Probability function

P (·|·) Conditional probability function

Q A set of states

R The set of real numbers

T A weighted finite-state transducer

V Vocabulary

w A word

W A sequence of words

X Input space

Y Output space

Z(·) Normalization function for a parameter

~α Parameter vector

∆ Delta coefficients

∆ Output alphabet

∆∆ Delta-delta coefficients

~γ Averaged parameter vector

λ The initial weight function

xvi

πε(·) Auxiliary symbol removal operation

ρ The final weight function

Σ Input alphabet

θ Model parameters

⊗ Product operation to compute the weight of a path

⊕ Sum operation to compute the weight of a sequence

· ◦ · Finite-State Transducer Composition operator

xvii

LIST OF ACRONYMS/ABBREVIATIONS

ASR Automatic Speech Recognition

BN Broadcast News

DLM Discriminative Language Model

FLM Factored Language Model

FSA Finite-State Automaton

FSM Finite-State Machine

FST Finite-State Transducer

GCLM Global Conditional Log-Linear Model

GMM Gaussian Mixture Model

HMM Hidden Markov Model

HTK Hidden Markov Toolkit

IG Inflectional Group

LM Language Model

LVCSR Large-Vocabulary Continuous Speech Recognition

Max-Ent Maximum Entropy

MDL Minimum Description Length

ME Maximum Entropy

MFCC Mel Frequency Cepstral Coefficients

MLE Maximum Likelihood Estimation

NLP Natural Language Processing

OOV Out-of-Vocabulary

PoS Part-of-Speech

RTF Real-Time Factor

SRILM SRI Language Modeling

WER Word Error Rate

WFST Weighted Finite-State Transducer

1

1. INTRODUCTION

The capabilities and applications of speech and language processing (SLP) have

increased substantially in recent years. Automatic speech recognition, speech to speech

and machine translation, spoken human-computer interaction, speech indexing and in-

formation extraction are a few widely known examples from its wide range of appli-

cations. SLP systems have been indispensable in our daily lives through technologies

such as personal computers, internet search engines and mobile phones. The research in

this area of science and technology has been continuously pushing the state-of-the-art

to achieve better accuracy in SLP systems. Spoken human languages possess differ-

ent characteristics that prove to be challenging for speech and language processing

in some languages. One such characteristic is agglutinative or inflective morphology.

The complex morphology or word structure has been an important factor reducing

the accuracy of SLP systems in morphologically rich languages such as Arabic, Czech,

Finnish, Korean and Turkish.

Turkish is an agglutinative language with a productive inflectional and deriva-

tional morphology. In agglutinative languages, new words can be formed by stringing

morphemes - stems and suffixes - together. Therefore, in such languages, words have

some internal structure, representing syntactic and semantic morphological or gram-

matical features.

In this thesis, our aim is to solve the morphology related problems in speech

and language processing of Turkish and further exploit the morphological information

to increase the accuracy of SLP systems. We develop a set of tools, resources and

methodologies for efficient and effective processing of morphologically rich languages

to increase the performance of SLP systems. We primarily focus on Turkish, however

the techniques are applicable to other languages with agglutinative or inflective mor-

phology. Although, the application of the proposed methods concentrates on spelling

correction and language modeling for speech recognition, they are applicable to other

areas such as machine translation, language learning, and language generation.

2

1.1. Motivation

Statistical language models are one of the commonly used components in speech

and language processing systems, which are concerned with morphology most. They

are used for instance in speech recognition, machine translation and spelling correction.

The word n-gram language models are the most common statistical language models

and they are used to assign probabilities to word sequences. In morphologically simpler

languages like English, word n-gram language models have been very successful. On

the other hand, language modeling for morphologically rich languages such as Arabic,

Czech, Finnish, and Turkish proves to be challenging. The out-of-vocabulary (OOV)

rate for a fixed vocabulary size is significantly higher in these languages, since there

are a large number of words in language vocabulary due to productive morphology.

The OOV rate is important for natural language processing applications since, for

instance, the higher OOV rate leads to higher word error rate (WER) in ASR systems,

and OOV words cannot be translated in machine translation (MT) systems. Having a

large number of words also contributes to high perplexity numbers for standard n-gram

language models due to data sparseness. These problems are especially pronounced for

Turkish as being an agglutinative language with a highly productive inflectional and

derivational morphology.

We can reduce the OOV rate by increasing the vocabulary size if it is not limited

for instance by the size of the text corpus or parallel corpus available for ASR and MT

systems. However, this also increases the computational and memory requirements of

the system. Besides, it may not lead to significant performance improvement due to

data sparseness problem of insufficient data for robust estimation of language model

parameters. Therefore, to overcome the high growth rate of vocabulary and the OOV

problem, using grammatical or statistical sub-lexical units for language modeling has

been a common approach. The grammatical sub-lexical units can be morphological

units such as morphemes or some grouping of them such as stem and ending (grouping

of suffixes). The statistical sub-lexical units can be obtained by splitting words using

statistical methods.

3

Morphological processing of languages with complex morphology may prove to be

useful to extract and exploit the information hidden in the word structure for SLP ap-

plications. This is motivated by the fact that in such languages, grammatical features

and functions associated with the syntactic structure of a sentence in morphologically

poor languages are often represented in the morphological structure of a word in addi-

tion to the syntactic structure. Therefore, morphological parsing of a word may reveal

valuable information in its constituent morphemes annotated with morphosyntactic

and morphosemantic features to exploit for language modeling.

The motivation for this thesis can be summarized as follows:

• Languages with productive morphology tend to have a large number of words in

their vocabularies. Hence, the out-of-vocabulary (OOV) rate for a fixed vocabu-

lary size is significantly higher in these languages. Higher OOV rates cause lower

accuracy in SLP systems.

• Turkish has in theory unlimited vocabulary due to iteration of some suffixes like

causative suffix.

• Having a large number of words also increases data sparsity problem, which pre-

vents reliable estimation of model parameters with sparse data.

• Word-based n-gram language models are not satisfactory for morphologically rich

languages due to OOV and data sparsity problem mentioned above.

• Statistical sub-lexical units can solve OOV problem but the loss of linguistic

information with statistical units can harm the language model and it makes it

harder to integrate morphological features in the first-pass or second-pass model.

• Using a morphological parser to obtain grammatical morphemes is a better ap-

proach. However, surface form morphemes may not be a good choice for some

languages having inter-morpheme coarticulation problem, such as Korean. Hence,

the optimal method should enable using a pronunciation lexicon with sub-lexical

units.

• The lexical morphemes as the linguistic construction units for words are natural

and optimal units in language modeling. For instance, a finite-state transducer

model for Turkish morphology operates on lexical morphemes.

4

• Standard n-gram language models over the lexical morphemes can be estimated

and these models can be efficiently represented with weighted finite-state trans-

ducers.

• Using lexical morphemes enables us to combine computational pronunciation lex-

icons with n-gram language models over these lexical morphemes.

• If the small size of lexical morphemes hurts the language model robustness, they

can be combined to form longer units, such as lexical stem+ending. This effec-

tively solves the n-gram history coverage problem of short sub-lexical units.

• The lexical morphemes can also carry syntactic and semantic morphological fea-

tures. This information can be exploited with feature-based methods, such dis-

criminative reranking and maximum entropy models.

• The lexical morphemes greatly alleviate the OOV problem since any word that

can be morphologically analyzed is now effectively in the vocabulary of the sys-

tem. This, for instance, provides an unlimited vocabulary for Turkish speech

recognition.

• The lexical morphemes require some tools and resources for morphological pro-

cessing of a language. We need a morphological parser to analyze the words,

a morphological disambiguator to choose the correct analysis among ambiguous

parses, and a text corpus to estimate the parameters of the language model.

• The language models based on lexical morphemes can be constrained with the

lexical transducer of the morphological parser to generate only valid morpheme

sequences and hence valid word forms as output from the system. Therefore, the

lexical morphemes can prevent the over-generation problem of sub-lexical units

efficiently and effectively.

1.2. Approach and Contributions

This thesis presents a morphology oriented linguistic approach for language mod-

eling in morphologically rich languages as an alternative to word and sub-word based

models. In this thesis, we first built a set of resources and tools for morphological

processing of Turkish. The tools and language resources as given below are available

5

for research purposes1 :

• A stochastic finite-state morphological parser: It is a weighted lexical transducer

that can be used for morphological analysis and generation of words. The trans-

ducer has been stochastized using the morphological disambiguator and the web

corpus. This parser is used to obtain the linguistic segmentations of words in this

thesis.

• An averaged perceptron-based morphological disambiguator: The proposed sys-

tem has the highest disambiguation accuracy reported in the literature for Turk-

ish. It also provides great flexibility in features that can be incorporated into

the disambiguation model, parameter estimation is quite simple, and it runs very

efficiently. The disambiguator is used for resolving the ambiguities in morpholog-

ical analysis of words to obtain a disambiguated corpus for training the statistical

models in the thesis.

• A web corpus (a corpus collected from the web): We aimed at collecting a rep-

resentative sample of the Turkish language as it is used on the web. This corpus

is the largest web corpus for Turkish. A part of this corpus is used for building

the language models for broadcast news transcription task in this thesis.

Standard n-gram language models are difficult to beat if you have enough data.

They also lead to efficient dynamic programming algorithms for decoding due to local

statistics, and they can be efficiently represented as deterministic weighted finite-state

automata [4]. In this thesis, we propose a novel approach for language modeling of

morphologically rich languages. The proposed model as we call it morpholexical lan-

guage model can be considered as a linguistic sub-lexical n-gram model in contrast to

statistical sub-word models. The morpholexical n-gram language model is superior to

word n-gram models in the following aspects.

• The vocabulary is unlimited since the modeling units are sub-lexical units.

• The OOV rate is effectively reduced to about 1.3 per cent on the test set. For

comparison, the 200K word model has about 2 per cent OOV rate.

1All resources are available at http://www.cmpe.boun.edu.tr/˜hasim

6

• The perplexity on the test set is lower than word models since it alleviates data

sparsity problem.

Besides, it is superior to statistical sub-word n-gram models in some other aspects.

• The modeling units as being lexical and grammatical morphemes provide a lin-

guistic approach.

• The linguistic approach enables integration with other finite-state models like

pronunciation lexicon.

• It generates only valid word forms when composed with a computational lexicon.

• The lexical and morphosyntactic features can be further exploited in a rescoring

or reranking model.

In this thesis, we propose a novel approach to build a morphology-integrated

search network for ASR with unlimited vocabulary in the weighted finite-state trans-

ducer framework (WFST). The proposed morpholexical search network is basically

obtained by the composition of the lexical transducer of the morphological parser and

the transducer of morpholexical language model. This model has the advantage of the

dynamic vocabulary in contrast to word models and it only generates valid word forms

in contrast to sub-word models. The proposed model improves ASR word error rate

by 1.8 per cent absolute over word models and 0.8 per cent absolute over statistical

sub-word models at ∼ 1.5 real-time factor.

We further improve ASR performance by using morpholexical and morphosyntac-

tic features in a discriminative n-best hypotheses ranking framework with a variant of

the perceptron algorithm. The perceptron algorithm is tailored for reranking recogni-

tion hypotheses by introducing error rate dependent loss function. The improvements

of the first-pass in WER are mostly preserved in the rescoring as 2.2 per cent absolute

over word models and 0.7 per cent absolute over statistical sub-word models.

We also present an on-the-fly lattice rescoring algorithm for low-latency real-time

speech recognition. The algorithm enables us to rescore the recognition lattices with a

7

better language model on-the-fly while generating the lattice in the decoder.

1.3. Organization of the Thesis

The presentation of this thesis is organized as follows: In Chapter 2, we give

an overview of speech and language processing techniques that we use in this thesis.

This Chapter also describes the Turkish broadcast news transcription system on which

we carry out our experiments. Besides, the related work on language modeling and

speech recognition is given here. In Chapter 3, we introduce the methods, tools and

resources that we have built for morphological processing and language modeling of

Turkish. In Chapter 4, we present the morpholexical and discriminative language

modeling approaches that we propose for language modeling of Turkish. In Chapter 5,

we propose an algorithm for rescoring recognition lattices on-the-fly for low-latency

real-time speech recognition. Finally, in Chapter 6, we conclude the presentation with

a summary and discussion of contributions and findings.

8

2. BACKGROUND AND SYSTEM DESCRIPTION

In this chapter, we introduce the underlying techniques, methods, systems and

algorithms on which the proposed methods in this dissertation rests. We also give an

overview of the related work and describe the system on which the experiments are

carried out.

2.1. Weighted Finite-State Transducers

Weighted finite-state transducers (WFSTs) are widely used in speech and lan-

guage processing applications [5–8]. WFSTs are finite-state machines in which each

transition is augmented with an output label and some weight, in addition to the

familiar (input) label in finite-state automata [9–13]. The weights may represent prob-

abilities, log-likelihoods, or they may be some other costs used to rank alternatives.

The weights are, more generally, elements of a semiring (K,⊕,⊗, 0, 1), that is a

ring that may lack negation [13]. The ⊗-operation is used to compute the weight of a

path by ⊗-multiplying the weights of the transitions along that path. The ⊕-operation

computes the weight of a pair of input and output strings (x, y) by ⊕-summing the

weights of the paths labeled with (x, y). Some familiar semirings are the tropical semir-

ing (R+ ∪ {∞},min,+,∞, 0) related to classical shortest-paths algorithms, and the

probability semiring (R,+,×, 0, 1). The following gives a formal definition of weighted

transducers as given in [14].

Definition 2.1. A weighted finite-state transducer T over a semiring (K,⊕,⊗, 0, 1)

is an 8-tuple T = (Σ,∆, Q, I, F, E, λ, ρ) where: Σ is the finite input alphabet of the

transducer; ∆ is the finite output alphabet; Q is a finite set of states; I ⊆ Q the set of

initial states; F ⊆ Q the set of final states; E ⊆ Q × (Σ ∪ {ε}) × (∆ ∪ {ε}) × K × Q
a finite set of transitions; λ : I → K the initial weight function; and ρ : F → K; the

final weight function mapping F to K. Weighted finite-state automata can be defined

in a similar way by simply omitting the output labels or making the input and output

labels the same. Similarly, finite-state transducers (FSTs) can be defined by omitting

9

the weights.

The weighted finite-state transducers provide a common and natural representa-

tion and algorithmic framework for speech recognition [5, 6, 8, 15]. The major com-

ponents of speech recognition systems, including hidden Markov models (HMMs),

context-dependency models, pronunciation lexicons, statistical grammars or language

models, and the speech recognition output of word or phone lattices can all be repre-

sented as weighted finite-state transducers or automata. This framework also provides

general algorithms and operations for building, combining and optimizing these trans-

ducer models, including composition for model combination, weighted determinization

and minimization for time and space optimization of models, and a weight pushing

algorithm for redistributing transition weights optimally for speech recognition.

A stochastic grammar or n-gram language model commonly used in speech recog-

nition G can be represented compactly by a finite-state transducer [4]. For example,

Figure 2.1 illustrates a finite-state representation strategy for a back-off bigram lan-

guage model. This model has a state wi for each unigram word history. A transition

from a state wi to wj corresponds to a bigram wiwj seen in the training corpus, and

it has the label wj : wj and the weight P (wj|wi) for the estimated bigram probability.

The bigrams not seen in the training data are represented by backing-off to a state b

having no word history. This models back-off strategy to a lower order language model,

in this case, a unigram model, which is used for smoothing. The transition from a state

wi to a back-off state b has the transition probability β(wi) which is estimated to en-

sure the stochasticity of the model. This representation is an approximation since the

probabilities for the bigrams seen in the corpus can also be estimated using a back-off

path to a unigram. However, since the seen bigram typically has higher probability

than its backed-off unigram and the decoding in speech recognition generally uses the

Viterbi approximation, it has no significant effect on the system performance.

The pronunciation lexicon L is constructed by taking the Kleene closure of the

union of pronunciations for each word. The transducer L is generally not determiniz-

able. This can be clearly seen in the presence of homophones (two or more words having

10

w1 w2

b w3

w2 : w2/P (w2|w1)

ε : ε/β(w
1)

w 2
: w

2
/P

(w
2
)

w3 : w3/P (w3)

Figure 2.1. Bigram language model representation with weighted transducers or

automata.

0 1 2 3

h1

h1

h2

h2

h3

h3

Figure 2.2. A left-to-right three-state HMM structure for a phone or triphone.

the same pronunciation). Even without the homophones, L may be non-determinizable

due to unbounded ambiguity in segmenting phone strings to words. Hence, to deter-

minize L, an auxiliary phone symbol #0 is used to mark the end of phonetic transcrip-

tion of each word. Similarly, other auxiliary symbols #0 . . .#n are used to distinguish

homophones. The lexicon transducer augmented with these auxiliary symbols is de-

noted by L̃.

A context-dependency transducer C can also be constructed to map from context-

independent phones to context-dependent units like triphones [7]. In speech recogni-

tion, context dependent models are typically HMM models. A typical left-to-right

HMM structure can also be represented with a finite-state transducer H mapping

HMM states to HMM models as shown in Figure 2.2.

The composition algorithm matches the output label of the transitions of one

transducer with the input label of the transitions of another transducer. The result is

a new weighted transducer representing the relational composition of the two trans-

ducers. This operation allows us to integrate all finite-state knowledge sources into a

speech recognition transducer (search network). The determinization and minimiza-

11

0 1
bugün/0.35
yarın/1.2

2

cuma/0.91

cumartesi/1.2

pazartesi/1.2

(a) G

0

1b:bugün

6

y:yarın

11c:cuma

15c:cumartesi

24

p:pazartesi

33

y:yarın

2
u:ε

7
a:ε

12u:ε

16
u:ε

25
a:ε

34
aa:ε

3
g:ε

4
ü:ε 5n:ε

#0:ε

8r:ε 9ı:ε

10
n:ε

#0:ε

13
m:ε

14
aa:ε

#0:ε

17
m:ε 18a:ε

19
r:ε

20

t:ε

21
e:ε

22
s:ε

23

i:ε

#0:ε

26
z:ε

27
a:ε

28
r:ε

29
t:ε

30
e:ε 31

s:ε

32i:ε

#0:ε

35
r:ε

36
ı:ε

37n:ε

#0:ε

(b) L̃

0

1b:bugün/0.35

2
y:yarın/1.2

3

y:yarın/1.2

4
u:ε

5
a:ε

6
aa:ε

7g:ε

8
r:ε

9
r:ε

10ü:ε

11
ı:ε

12
ı:ε

13n:ε

14
n:ε

15
n:ε

16

#0:ε

#0:ε

#0:ε

17c:cuma/0.91

18
c:cumartesi/1.2

19

p:pazartesi/1.2

20
u:ε

21
u:ε

22
a:ε

23m:ε

24
m:ε

25
z:ε

26
aa:ε

27a:ε

28
a:ε

29

#0:ε

30r:ε

31
r:ε

32
t:ε

33
t:ε

34
e:ε

35
e:ε

36
s:ε

37
s:ε

38
i:ε

39
i:ε

#0:ε

#0:ε

(c) L̃ ◦G

0

1b:bugün/0.35

2
y:yarın/1.2

3u:ε

4
a:ε

5

aa:ε

6
g:ε

7
r:ε

8
r:ε

9ü:ε

10
ı:ε

11
ı:ε

12n:ε

13
n:ε

14
n:ε

15

#0:ε

#0:ε
#0:ε

16c:ε/0.91

17

p:pazartesi/1.2

18u:ε

19
a:ε

20
m:ε

21
z:ε

22a:cumartesi/0.29004

23
aa:cuma

24
a:ε

25
r:ε

26
#0:ε

27
r:ε

28t:ε

29
t:ε

30e:ε

31
e:ε

32
s:ε

33s:ε

34
i:ε

35
i:ε

#0:ε

#0:ε

(d) det(L̃ ◦G)

0

1b:bugün/1.2598

2
y:yarın/2.1104

3
u:ε

4

a:ε

aa:ε

5
g:ε

6
r:ε

7

ü:ε

ı:ε 8
n:ε

9
#0:ε

10c:ε

11

p:pazartesi/0.29004

12
u:ε

13
a:ε

14
m:ε

15
z:ε 16

a:cumartesi/0.29004 17

aa:cuma

a:ε 18
r:ε

19
#0:ε

20
t:ε 21e:ε 22s:ε

i:ε

(e) mintropical(det(L̃ ◦G))

Figure 2.3. (a) a simple grammar G, (b) a pronunciation lexicon L̃, (c) composition of

lexicon and grammar transducer L̃ ◦G, (d) determinization of the resulting transducer

det(L̃ ◦G), (e) minimization of the determinized transducer mintropical(det(L̃ ◦G)).

12

tion algorithms can be used to optimize the search network to reduce decoding time

and space requirements of the system. The complete set of operations for building a

speech recognition transducer N can be summarized by the following formula:

N = πε(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G))))) (2.1)

where the symbol ˜ marks the models augmented with auxiliary symbols for deter-

minization, det is used for determinization operation, and min is used for minimization

operation, and πε denotes the operation for replacing auxiliary symbols with ε. The

construction of a speech recognition transducer is shown in Figure 2.3 on an example

toy grammar and down to the context-independent phone level, that is min(det(L̃◦G)).

Figure 2.3a shows a simple grammar G and Figure 2.3b shows the pronunciation lex-

icon L̃ augmented with auxiliary symbols. Figure 2.3c shows the composition L̃ ◦ G.

Figure 2.3d shows them after determinization, det(L̃ ◦ G), which removes the non-

determinism on the input side. Finally, Figure 2.3e shows the minimization of the

recognition transducer over the tropical semiring, mintropical(det(L̃ ◦G)).

2.2. Discriminative Reranking: Perceptron Algorithm

In natural language processing, we can frame many tasks as a ranking or rerank-

ing problem. Discriminative ranking and reranking approaches have been proposed as

an alternative to generative history-based probabilistic models [1,16–18]. In reranking

tasks, a baseline generative model generates a set of candidates, and then these candi-

dates are reranked by using local and global features, generally including the likelihood

scores from the baseline model. For instance, in parsing, a baseline parser produces

a set of candidate parses for each input sentence, with their associated probabilities

which define an initial ranking over these parses. Then, a reranking model can be used

to rerank these parses with the anticipation of improving the initial rankings using

additional features derived from the parse tree. As an advantage over generative mod-

els, the discriminative reranking models allow the use of arbitrary features as evidence

without concerning about the interaction of features or the construction of a generative

model using these features.

13

input set of training examples {(xi, yi) : 1 ≤ i ≤ N}
input number of iterations T

~α = 0, ~γ = 0

for t = 1 . . . T , i = 1 . . . N do

zi = arg maxz∈GEN(xi)
Φ(xi, z) · ~α

if zi 6= yi then

~α = ~α + Φ(xi, yi)−Φ(xi, zi)

end if

~γ = ~γ + ~α

end for

return ~γ = ~γ/(nT)

Figure 2.4. The averaged perceptron algorithm.

As a discriminative reranking approach, the variants of the perceptron algorithm

proved to be very successful. The perceptron is a simple artificial neural network which

can be used as a binary linear classifier [19]. A variant of the perceptron algorithm, the

voted perceptron has been applied to classification tasks in natural language process-

ing [20]. Another variant of the algorithm, the averaged perceptron has been shown to

outperform Maximum Entropy (Max-Ent or ME) Models [21] in part-of-speech tagging

and parsing tasks [1]. A variant for pairwise classification with uneven margins has

been applied to the task of parse reranking and machine translation reranking [18].

Figure 2.4 shows a variant of the perceptron algorithm - the averaged percep-

tron [1, 20] formulated as a multiclass classifier. The algorithm estimates a parameter

vector ~α ∈ <d using a set of training examples (xi, yi) for i = 1 . . . N . The components

of this algorithm is described next as outlined in the framework of [1]. The function

GEN enumerates a finite set of candidates GEN(x) ⊂ Y for each possible input x.

The representation Φ maps each (x, y) ∈ X × Y to a feature vector Φ(x, y) ∈ <d. The

components GEN, Φ and ~α define a mapping from an input x to an output F (x, ~α):

F (x, ~α) = arg max
y∈GEN(x)

Φ(x, y) · ~α (2.2)

14

where Φ(x, y) · ~α is the inner product
∑

i Φi(x, y) · αi. The learned parameter vector

~α can be used for mapping unseen inputs x ∈ X to outputs y ∈ Y by searching for

the best scoring output using this equation. The scores Φ(x, z) · ~α can also be used to

rank the possible outputs for an input x.

The algorithm makes multiple passes (denoted by T) over the training examples.

For each example, it finds the highest scoring candidate among all candidates using

the current parameter values. If the highest scoring candidate is not the correct one, it

updates the parameter vector α by the difference of the feature vector representation of

the correct candidate and the highest scoring candidate. This way of parameter update

increases the parameter values for features in the correct candidate and downweights

the parameter values for features in the competitor. For the application of the model

to the test examples, the algorithm calculates the “averaged parameters” since they are

more robust to noisy or inseparable data [1]. The averaged parameters γ are calculated

by summing the parameter values for each feature after each training example and

dividing this sum by the total number of updates.

The perceptron algorithm tries to learn a weight vector that minimizes the num-

ber of misclassifications. The loss function of this algorithm can be written as follows.

L(~α) =
N∑
i=1

J~α ·Φ(xi, zi)− ~α ·Φ(xi, yi)K (2.3)

where JxK = 0 if x < 0 and 1 otherwise. The variants of the perceptron algorithm

have been proposed based on the notion of maximizing the margin [18,22]. In reranking

tasks, the margin is defined as the distance between the best candidate and the rest

and the reranking problem is commonly reduced to a pairwise classification problem.

15

2.3. Automatic Speech Recognition

Automatic speech recognition (ASR) is conversion of spoken words or utterances to

text using computational methods. Although the ultimate goal of transcribing speech

by any speaker in any environment as good as humans do has not been attained,

the research in ASR has succeeded in producing many practical applications recently,

especially for mobile platforms. One application area is in human-computer interaction,

where ASR presents a natural eyes and hands free interface for command and control

applications. Another application area is in telephony, where speech recognition is used

in interactive voice response systems, such as banking and voice dialing applications.

Final application area is dictation, which is transcription of speech uttered by a specific

speaker. Medical dictation and mobile sms-email dictation are widely used example

applications.

The speech recognition task can vary greatly in terms of difficulty depending on

several parameters. One parameter is the vocabulary size of the task, which specifies

the number of distinct words ASR system needs to recognize. The recognition problem

becomes harder with the increasing vocabulary size. Large vocabularies (generally more

than 20000 words) are required for many tasks, for instance, transcribing conversations

or broadcast news. The required vocabulary size also depends on the type of language,

for instance, morphologically complex languages tend to have a very rich vocabulary.

A word in a utterance that is not in the vocabulary of the ASR system is said to be

out-of-vocabulary (OOV) word and the recognizer makes recognition errors by choosing

acoustically similar words in place of OOV words. The other parameter is related to

how much fluent or natural speech input is allowed in the system. For isolated word

recognition, it is expected that the words are uttered with short pauses between them.

This is clearly easier than recognizing continuous speech such as natural conversational

speech or read speech of broadcast news. The third parameter is the effect of channel

and noise. The quality of the channel the speech is recorded and any kind of noise in

the recordings greatly effect the speech recognition performance. The last parameter

is the speaker characteristics and speaker dependence. It is easier to recognize speech

that matches the training data in terms of dialect and accent. If the system is trained

16

“Hello ...”
Noisy

Channel

Speech

Recognizer
“Hello ...”

W speech A Ŵ

Figure 2.5. The noisy channel metaphor for ASR. The speech recognizer tries to

decode the original message W which is assumed to have gone through a noisy

channel to produce an acoustic waveform A.

on a specific speaker’s data, the system is said to be speaker-dependent. Speaker-

independent systems are harder to build and in general perform worse than speaker-

dependent systems.

2.3.1. ASR Architecture

The speech recognition task we focus on in this thesis is referred as large-vocabulary

continuous speech recognition (LVCSR). The state-of-the-art LVCSR systems com-

monly use the hidden Markov model (HMM) paradigm. HMM-based systems model

the speech recognition problem of mapping an acoustic waveform to a word sequence

using the noisy channel metaphor shown in Figure 2.5 [23, 24]. In this metaphor, the

acoustic waveform A is considered as a noisy version of a sentence (a word sequence)

W that has gone through a noisy channel and the speech recognizer tries to recover

the original sentence by building a model of the channel. The intuition is that we

can run all the possible sentences in the language through the model of noisy channel

and select the sentence whose output matches best with the acoustic waveform of the

original sentence.

The probabilistic implementation of the noisy channel model is a special case of

Bayesian inference, where the problem can be stated as finding the most likely word

sequence out of all possible word sequences in the language L given the acoustic in-

put A. ASR systems process the acoustic signal to produce a sequence of symbols or

observations which makes it possible to estimate a probabilistic model for matching

the acoustic signals. The front end acoustic processor component of a speech recog-

nizer is responsible for this conversion. Mel Frequency Cepstral Coefficients (MFCC)

are frequency-based acoustic features commonly used to represent acoustic observation

17

sequences. In this representation, each observation ai of a time interval i which cor-

responds to ith time slice of for instance 10 milliseconds, is an n-dimensional feature

vector containing MFCC parameters together with their ∆ and ∆∆ coefficients which

are first and second order time derivatives of MFCC parameters. Hence, the acoustic

observation sequence can be written as consecutive observation symbols:

A = a1, a2, . . . , at (2.4)

Similarly, it is convenient to represent a sentence as a sequence of words:

W = w1, w2, . . . , wn (2.5)

While this simplifying assumption works well with languages such as English, it may

be more suitable to use finer divisions or subtle representations depending on language

characteristics. For example, a central theme of this thesis is using morphological

units of words for representing Turkish sentences, where a morpheme constitutes a

meaningful morphological unit of the language that cannot be further divided.

Using these assumptions, the speech recognition problem can then be expressed

in the probabilistic framework as follows:

Ŵ = arg max
W∈L

P (W |A) (2.6)

The noisy channel metaphor instructs us to rewrite this equation in a different form

using Bayes’ rule:

Ŵ = arg max
W∈L

P (A|W)P (W)

P (A)
(2.7)

In this equation, the probability of the acoustic observation sequence, P (A) is hard to

estimate. But we don’t need to estimate this probability since we are searching for a

sentence maximizing P (W |A) and P (A) is the same for each possible sentence. Thus,

18

we can ignore P (A) and simplify the equation as follows:

Ŵ = arg max
W∈L

P (A|W)P (W)

P (A)
= arg max

W∈L

likelihood︷ ︸︸ ︷
P (A|W)

prior︷ ︸︸ ︷
P (W) (2.8)

In this equation, we have two probabilities that we need to estimate. The likelihood

P (A|W) is called the acoustic likelihood and can be estimated using the acoustic model

(AM). HMMs are commonly used for acoustic modeling. The prior probability P (W)

is the probability of the word sequence and it is computed by the language model

(LM). n-grams have been dominant approach for language modeling. The operation

arg max implies search for the most probable sentence maximizing the product of the

AM and LM probability and this process is called decoding. The speech recognition

systems commonly use a dynamic programming algorithm called Viterbi decoding. The

following sections further describe these models and the decoding algorithm.

2.3.2. Acoustic Models: HMMs

A hidden Markov model is a statistical Markov model with latent states [25].

HMMs have been successfully applied to speech recognition and other sequence labeling

tasks such as part-of-speech tagging. An HMM model is a finite-state machine defined

by a set of parameters θ:

• A set of states Q = q1, q2, . . . , qN where N is the number of states in the model.

• A set of transition probabilities A = {aij : 1 ≤ i, j ≤ N} where aij is a transition

probability from state i to state j. The transition probabilities out of a state must

sum to 1.

• A set of observation likelihoods B = {bi(ot) : 1 ≤ i ≤ N, 1 ≤ t ≤ T} where T is

the number of observations and bi(ot) is the probability of observing the symbol

ot at a state i.

Using these model parameters, an HMM can be used to estimate the probability

of an observation sequence O = o1, o2, . . . , oT by summing the path probabilities over

19

start q1 q2 q3 end
a01

a11

a12

a22

a23

a33

a34

Figure 2.6. A 3-state left-to-right phone HMM with state transition probabilities.

all possible state sequences q1, . . . , qT generating the observation sequence as follows:

P (O|θ) = P (o1, o2, . . . , oT |θ) =
∑

q1,...,qT

T∏
i=1

aqi−1,qibqi(ot) (2.9)

Calculating this summation over all state sequences is not feasible since the num-

ber of state sequences increases exponentially with the number of observations. But,

there is a simple dynamic programming algorithm called the forward algorithm that

efficiently calculates the probability of observation sequences. Similar to the forward

algorithm, there exists an algorithm which can find the best hidden state sequence

for a given acoustic observation sequence. This algorithm is explained in the next

section. The parameters of an HMM, namely transition probabilities and observation

likelihoods, can be automatically learned using the forward-backward or Baum-Welch

algorithm [26] which is a special case of the Expectation-Maximization (EM) [27] algo-

rithm. This algorithm finds the local maximum likelihood estimate of the parameters

of the HMM given the set of observation sequences where the probability of the obser-

vation sequence given the model P (O|θ) is locally maximized. There is also an efficient

approximation to the Baum-Welch algorithm called Viterbi training.

In LVCSR systems, the phones are the basic acoustic modeling units which are

commonly modeled by HMMs. But instead of having a model for each phone, triphones

are widely used for better modeling of acoustic variations of phones due to coarticu-

lation. A triphone also considers the left and right context of phone. For instance,

a triphone HMM model for the phone @ in the pronunciation of word run /r@n/ can

be shown as r-@+n. This representation also specifies the phones in the immediate

left and right context of the phone separated by “-” and “+” symbols, respectively.

HMMs for triphones are generally 3-state left-to-right models (see Figure 2.6 for an

20

example). Since phones are basic acoustic modeling units, we need a pronunciation

lexicon listing the pronunciations of each word in the language vocabulary. HMMs for

words are constructed simply by concatenating triphone HMMs using the pronuncia-

tion lexicon. Training HMM-based acoustic models for LVCSR systems requires large

amount of acoustic data with their sentence-level transcription. Mostly, the amount

of acoustic data required for training accurate and robust models is not enough due

to the large number of parameters in the model. Parameter tying which means using

the same parameters several times in the model is a frequently used approach in train-

ing. For estimating the observation likelihoods at each HMM state, Gaussian Mixture

Models are often used where each state is modeled as a weighted mixture of a number

of gaussians. Parameter tying can be both at the HMM state level and at the level of

gaussians.

2.3.3. Speech Decoding: Viterbi Algorithm

In speech recognition, the problem of finding the most probable word sequence

given an acoustic observation sequence is a search problem called speech decoding. In

HMM-based systems, a dynamic programming algorithm called Viterbi algorithm [28]

is commonly used. The Viterbi algorithm operates on a finite-state machine such as

an HMM.

The algorithm as applied to decoding the best state sequence (path) of an HMM

state machine whose parameters are defined in the previous section for a given ob-

servation sequence is given in Figure 2.7. In this algorithm, vt(s) is the Viterbi path

probability which expresses the probability of the most likely state sequence that is in

state s after seeing the first t observations. The algorithm chooses the path probability

maximizing the product of the best Viterbi path probability from the previous time

step vt−1(s
′) of each state s′ and the transition probability as′s between the states s′

and s. It also stores the state number of the previous path that leads to the best path

probability for the current time step for each state in back-pointer[s][t]. This is used

for backtracing the most likely state sequence starting from the last state of the best

path, s = arg max1≤s′≤N vs′(T).

21

input observation sequence O = o1, o2, . . . , oT

input graph with states Q = q1, q2, . . . , qN

input state transition probabilities A = {aij : 1 ≤ i, j ≤ N}
input observation likelihoods B = {bi(ot) : 1 ≤ i ≤ N, 1 ≤ t ≤ T}
v0(0) = 1.0

for t = 1 . . . T do

for s = 1 . . . N do

vt(s) = max1≤s′≤N [vt−1(s
′) ∗ as′s] ∗ bs(ot)

back-pointer[s][t] = arg max1≤s′≤N [vs′(t− 1) ∗ as′s]
end for

end for

return the optimal state sequence obtained by backtracing starting

from state s = arg max1≤s′≤N vs′(T)

Figure 2.7. The Viterbi algorithm for speech decoding.

While the Viterbi algorithm is much more efficient than enumerating all the pos-

sible state sequences and calculating the probabilities for them, it is still slow (O(N2T))

for speech decoding since there can be a large number of states in the speech decoding

network that needs to be considered for each time step. Therefore, an approximation

of the Viterbi algorithm called the beam search is commonly used. In beam search, an

active list of states with the Viterbi path probabilities are kept for each time step. In

the next time step, we extend only the transitions out of the states having the path

probability within a fixed threshold of the best path probability of the current active

states. The other states are pruned away since they represent the low-probability un-

promising paths. But if it turns out that one of the pruned paths would be in fact

the prefix of the final best path, we make a search error by using the beam search

approximation. Hence, there is a trade-off between speed-up (aggressive pruning) and

recognition performance. Besides, the Viterbi algorithm in speech decoding does not

actually compute the word sequence which is most probable given the acoustic input.

Instead, it is decoding the best state or phone sequence. This is called Viterbi approxi-

mation, since it is approximating the best word sequence probability by calculating the

best state sequence probability rather than summing over all possible state sequences

22

Speech

Recognizer

Rescorer

or

Reranker

Simple

knowledge

source

Richer

knowledge

source

speech A n-best list

lattice

1-best hypoth-

esis: Ŵ

Figure 2.8. The rescoring or reranking of ASR hypotheses represented as n-best lists

or word lattices.

0start 1 2

3

4

he/0.4

she/0.6

ran/1 away/0.9

a/0.1 way/1

Figure 2.9. A word lattice example representing word hypotheses with word

probabilities.

that can generate a word sequence. It turns out that this is mostly a reasonable approx-

imation. However, it may be disadvantageous for decoding of words having multiple

pronunciations or having multiple analyses due to morphological ambiguity.

The speech recognition system are evaluated using the word error rate (WER)

metric. The calculation of WER uses the computation of minimum edit distance in

words between the hypothesized word string and the correct or reference transcrip-

tion. The WER is then defined as the minimum number of word substitutions, word

insertions, and word deletions necessary to map between the correct and hypothesized

strings divided by the total number of words in the reference transcription and it is

given as a percentage as follows:

WER = 100× substitutions + insertions + deletions

total words in correct transcript
(2.10)

23

A cause for recognition errors is the use of approximate or inaccurate models in

the decoding. In speech decoding, it is often the case that the search space is very

large and using more accurate and sophisticated models is not efficient and feasible.

Therefore, the decoding process is generally carried out in two stages called multiple-

pass decoding. In the first pass, we use time and space efficient knowledge sources or

algorithms to generate a list of hypotheses rather than generating 1-best hypothesis

(i.e. the best path in Viterbi decoding). In the second pass, we can use richer and more

sophisticated models or algorithms for decoding in a reduced search space defined by

the hypotheses generated in the first pass. Hence the second pass can be considered as

rescoring or reranking the candidate hypotheses as shown in Figure 2.8. The interme-

diate hypotheses can be represented as an n-best list or word lattice. An n-best list is a

list of hypotheses with the best scores from the first pass decoding. A word lattice is a

directed graph that compactly represents the hypotheses of word sequences with possi-

bly more information such as word probabilities and timing information. An example

word lattice is shown in Figure 2.9. There are a number of algorithms augmenting the

Viterbi algorithm to generate n-best hypotheses or word lattices [2, 29]. The recogni-

tion error rate from the second pass has a lower bound determined by the n-best or

lattice error rate which is the word error rate we get by choosing the hypothesis with

the lowest number of errors for each n-best list or lattice. It is also called oracle error

rate since it requires perfect knowledge of correct choice in each case.

2.3.4. Generative n-gram Language Models

A statistical language model (LM) assigns a probability to a sentence by estimat-

ing a probability distribution over word sequences. Language modeling is an essential

tool for many speech and language processing tasks. For instance, the speech recog-

nition problem as formulated by the noisy channel model requires an estimation of a

prior probability P (W) over word sequences, which can be used to predict the next

word in a noisy input. In machine translation, they are used for assigning a probability

for each possible sentence in the target language to decode a well-formed and probable

translation. In spelling correction, they can be used to accomplish context sensitive

spelling corrections.

24

In speech and language processing, a statistical language modeling technique

called n-gram language modeling has been tremendously successful. The probabilistic

language models, n-grams, formalize the idea of predicting the next word in a word

sequence by using the previous n− 1 words. Below, for the formulation of n-grams, we

write the probability of a word sequence as conditional probabilities using the chain

rule.

P (W) = P (w1, w2, ..., wN) =
N∏
i=1

P (wi|w1, w2, . . . , wi−1) (2.11)

The conditional probabilities in this equation are word probabilities conditioned on

preceding words or also called history of words. It is very hard to estimate these prob-

abilities reliably, since the word histories can be very long and the number of parameters

exponentially increases with the length of history which leads to data sparsity problem

for statistical estimation of the parameters. Hence, n-grams makes an approximation

as follows:

P (W) = P (w1, w2, ..., wN) ≈
N∏
i=1

P (wi|wi−n+1, . . . , wi−1) (2.12)

Here, it is assumed that the probability for the ith word wi given the preceding i − 1

words can be approximated by the probability of it given the preceding n − 1 words,

i.e. we are limiting the history to n− 1 words.

The parameters of n-grams can be estimated from a text corpus using the Maxi-

mum Likelihood Estimation (MLE). This method gives an estimation for the conditional

probabilities using the relative frequency counts of n-grams (i.e. a particular word and

its history) and their histories as follows:

P (wi|wi−n+1, . . . , wi−1) =
count(wi−n+1, . . . , wi−1, wi)

count(wi−n+1, . . . , wi−1)
(2.13)

where count(w) gives the number of occurrences of the word string w in the training

text data.

25

An n-gram language model is called a unigram, bigram or trigram language model

as a Markov model of nth order 1, 2, or 3 respectively. The number of parameters in the

n-gram model increases exponentially with the order of the model given a vocabulary

size |V|, i.e. |V|n. Given a limited amount of text data even if it is a large amount,

increasing n-gram order may quickly result in nonrobust parameter estimations due

to data sparsity problem. On the other hand, using higher order n-grams generally

increases the prediction power of the model given enough amount of training data.

Hence, there is a trade-off between n-gram order and robust parameter estimation.

There is also time and space efficiency factor for language models limiting the use of

higher order n-grams. As a consequence, in speech and language processing, 3-grams

have proved to be a good trade-off. But, it has been a common approach to use higher

order language models such as 4-grams in the second pass of a multipass system. For

instance, in speech recognition, rescoring or reranking hypotheses in a second pass

with higher order n-grams than ones used in the first pass is often applied. The size of

n-gram language models can also be reduced for space and time efficiency. An entropy-

based pruning technique based on a criterion of relative entropy between the original

and the pruned model is generally used for reducing the model size without degrading

the model quality much [30].

The estimation of model parameters using the relative frequencies has one major

problem due to data sparsity. Some of the n-grams may be missing in the training data,

therefore the language model assigns zero probability to sentences having n-grams not

seen in the training data. Another problem is that MLE underestimates the probability

estimates for n-grams that occur very infrequently in the training corpus. Therefore, in

n-gram language modeling, smoothing techniques are commonly applied to overcome

these problems. Smoothing techniques reserve some probability mass from frequent

n-grams and distribute this mass over zero count or infrequent n-grams. There are

also two other common ways for smoothing, back-off and interpolation. In back-off,

we back off to a lower order n-gram model for probability estimation if we have zero

evidence for a higher order n-gram. By contrast, in interpolation, we always do a

weighted interpolation of lower and higher order n-grams by mixing the probability

estimates from all the n-gram estimators. The Interpolated Kneser-Ney algorithm is

26

the most commonly used n-gram smoothing technique [31]. A comparison of several

smoothing techniques can be found in [32]. A review of statistical language modeling

techniques including n-grams and Maximum Entropy Language Modeling can be found

in [33].

Finally, we describe how to evaluate the language models. The correct way to

evaluate the performance of a language model is to use the language model in a task and

measure the system performance. For instance, in speech recognition, using different

language models for speech decoding and comparing the corresponding word error rates

is a standard approach. But, the repetitive application of a language model in a task

can be expensive. Therefore, an evaluation metric called perplexity is commonly used

for n-gram language models. Even if perplexity improvement does not guarantee a

performance improvement in the final system integration, there is often a correlation.

Nevertheless they can provide a quick check for a language modeling method before

the language model is applied in a real task. The perplexity of an n-gram language

model on a test set W = w1, w2, ..., wN is defined as the normalized probability of the

test set by the number of words:

perplexity(W) = P (W)−
1
N = P (w1, w2, ..., wN)−

1
N (2.14)

Using the conditional probabilities by the chain rule:

perplexity(W) = P (w1, w2, ..., wN)−
1
N =

[
N∏
i=1

P (wi|wi−n+1, . . . , wi−1)

]− 1
N

(2.15)

According to this equation, maximizing the test set probability minimizes the perplex-

ity. The perplexity can also be considered as a weighted average branching factor of

a language which is defined as the average number of possible next words that can

follow any word. The perplexities of two language models can only be compared if the

language models have the same vocabulary.

27

2.3.5. Discriminative Language Models

A complementary approach to generative n-gram language models are discrimi-

native language models (DLMs). DLMs are discriminatively trained models proposed

for large vocabulary speech recognition and do not attempt to estimate a generative

model P (W) over word strings. Instead, they are trained on acoustic sequences with

their transcriptions, in an attempt to directly optimize word error rate [34]. There are

two parameter estimation methods commonly used for training DLMs. One of them

is the perceptron algorithm which can be used to build a discriminative global linear

model. And the other one is a global conditional log-linear model (GCLM) which is

based on maximizing the regularized conditional log-likelihood. These models can be

trained over n-best lists and word lattices.

Discriminative language modeling is formulated in the framework outlined in [1].

In this framework, the task is to learn a mapping from inputs x ∈ X to outputs y ∈ Y .

The training examples are (xi, yi) for i = 1 . . . N . A function GEN enumerates a set of

candidates GEN(x) for an input x. Φ is a representation mapping each (x, y) ∈ X ×Y
to a feature vector Φ(x, y) ∈ <d. The task is to learn a parameter vector ~α ∈ <d. The

components GEN, Φ and ~α define a mapping from an input x to an output F (x, ~α):

F (x, ~α) = arg max
y∈GEN(x)

Φ(x, y) · ~α (2.16)

where Φ(x, y)·~α is the inner product
∑

i Φi(x, y)·αi. The perceptron and the GCLM are

the parameter estimation methods that can be used to learn the parameter vector ~α.

The decoding in this framework is searching for the output y that maximizes Φ(x, y)·~α.

GCLMs use the parameters ~α to define a conditional distribution over the mem-

bers of GEN(x) for a given input x:

P~α(y|x) =
exp(Φ(x, y) · ~α)

Z(x, ~α)
=
exp(

∑
i Φi(x, y) · αi)
Z(x, ~α)

(2.17)

where Z(x, ~α) =
∑

y∈GEN(x) exp(Φ(x, y) · ~α) is a normalization constant that depends

28

on x and ~α. The regularized log-likelihood of the training data is used as the objective

function to optimize to learn the parameters ~α. Even though GEN(x) can be exponen-

tial in size, the GCLMs can use efficient dynamic programming algorithms for training

and decoding by relying on the local nature of the feature vector representation Φ(x, y).

In this framework, discriminative language modeling for speech recognition can

be applied as follows. We define X as the set of all possible acoustic inputs. Y is

taken as the set of all possible word strings, Σ∗ for a vocabulary Σ. Then, each xi

is an acoustic feature vector for an utterance, and GEN(xi) is the set of candidate

hypotheses (n-best list or lattice) output from a first pass decoding for the acoustic

input xi. The yi is taken as the hypothesis in GEN(xi) with the lowest word error

rate with respect to the reference or correct transcription of xi. With this setting, we

can learn a parameter vector ~α using one of the parameter estimation methods and

use that to choose the hypothesis with the best score of Φ(x, y) · ~α.

2.4. Turkish Broadcast News Transcription

In this section, we discuss the characteristics of the Turkish language and its

challenges in automatic speech recognition. Besides, we describe the broadcast news

transcription system on which we carry out our experiments.

2.4.1. Turkish Language: Characteristics

Turkish is an agglutinative language with a highly productive inflectional and

derivational morphology. The rich morphology leads to a large (possibly infinite) num-

ber of words in Turkish. The most common order for the syntactic constituents is

Subject-Object-Verb. But Turkish has a rather flexible word order, since having a

rich set of morphological markings helps to disambiguate the grammatical roles of the

syntactic constituents without relying on the word order. For instance, all the six per-

mutations of the following words “yaşa (live), hayatını (your life), aşkla (with love)”

constitute a grammatically and semantically correct sentence and the choice depends

on the discourse context or the speaker’s will to emphasize a word.

29

Turkish has almost one-to-one mapping between graphemes and phonemes. The

number of exceptional root words having a different pronunciation than which is di-

rectly implied by its graphemics is about 3700 according to our compilation of a pronun-

ciation lexicon for Turkish. These exceptional root words are mostly loan words from

other languages such as Arabic, Persian, and English and most of them are relatively

infrequent in current usage. Hence, the 29 graphemes (8 vowels and 21 consonants) of

Turkish are often taken as the phone alphabet for the acoustic modeling. Using a larger

phone set has not improved the speech recognition performance in our experiments.

Turkish morphology has both derivational and inflectional suffixation. The in-

flectional suffixes change the form of a word to express a grammatical function or

attribute such as tense, mood, person, number, case and gender without changing the

grammatical category (Part-of-Speech or PoS) of the word. For instance, the inflec-

tional suffix /m/ for the first person possessive case can be seen in the following word:

kedi(cat)m(my) (my cat). On the other hand, the derivational suffixes form a new word

while possibly changing the syntactic category of the word. An example derivational

suffix is /çi/ as in çiçek(flower)çi (florist).

In the suffixation process, the stem or the suffixes may undergo some orthographic

changes due to phonological phenomena like vowel and consonant harmony. Hence,

there is made a distinction between the lexical representation of the stems and suffixes,

and the surface form realizations of the words with suffixation. For an example, consider

the words kalemler(pencils) and kitaplar(books) having kalem(pencil) and kitap(book)

stem, respectively. The /ler/ and /lar/ suffixes are two possible surface realizations

of the lexical plural suffix /lAr/, whose graphemic realization depends on the last

vowel of the stem according to the vowel harmony rule. These type of phonological or

orthographical alternations are governed by a set of rules called morphophonemics or

morphographemics.

30

2.4.2. Turkish Language: Challenges for Speech Recognition

The productive inflectional and derivational morphology of Turkish leads to a

large number of distinct words in the vocabulary of the language. The suffixation

process enables to form a large number of new words from a stem. In theory, the

vocabulary of Turkish is unlimited since iteration of some suffixes such as causative

suffix is possible. This vocabulary growth problem presents a challenge in speech

recognition where generally a fixed-size vocabulary is used for language modeling. The

flexible order of the constituents in Turkish combined with its unlimited vocabulary

make the problem more pronounced by leading to data sparseness problem in parameter

estimation of language models.

50

55

60

65

70

75

80

85

90

95

100

1K 5K 10K 20K 50K 100K 200K 400K 1M 3M 4M
Vocabulary Size

Coverage Percentage (BOUN Corpus)

Figure 2.10. Coverage statistics for most frequent types.

The vocabulary growth problem makes it harder to obtain a fixed sized vocabulary

with a good coverage. In speech recognition, the words that are not in the recognition

vocabulary are called out-of-vocabulary (OOV) words. The speech recognition system

can not recognize OOV words since they are not in its vocabulary. Hence, having higher

OOV rates leads to lower speech recognition accuracy. It has been estimated that each

OOV word in the test data results in at least 1.5 recognition errors on average [35].

Figure 2.10 shows the coverage rate for different vocabulary sizes (the topmost frequent

word types) on a Turkish web corpus (BOUN Corpus). For a comparison between

31

a morphologically productive language Turkish and a morphologically unproductive

language English, an optimized 60K vocabulary for English has less than 1.0% OOV

rate on North American Business news [36], while the same vocabulary size for Turkish

results in about 10% OOV rate on a web corpus collected from online news portals.

For solving the OOV and data sparsity problem for Turkish speech recognition,

we propose using grammatical sub-lexical units in this thesis. Using the grammatical

units of lexical morphemes for vocabulary in language modeling requires solutions

for two problems. The first problem is obtaining the lexical morphemes from the

words. The extraction of morphological information hidden in the structure of words

calls for morphological parsing, which is the decomposition of words into constituent

morphemes and associated morphosyntactic and morphosemantic features. An example

morphological analysis for the word ölümsüzleştirilebileceğini is shown below:

ölüm[Noun]+[A3sg]+[Pnon]+[Nom]-sHz [Adj+Without]
-lAş[Verb+Become]-DHr [Verb+Caus]-Hl [Verb+Pass]
-YAbil [Verb+Able]+[Pos]-YAcAk [Noun+FutPart]+[A3sg]
+SH [P3sg]+NH [Acc]

This word can be translated as “... that s/he can be immortalized”. The morphological

feature representation is similar to the one used in [37]. Each output of the morpho-

tactics begins with the root word and its part-of-speech tag in brackets. These are

followed by a set of lexical morphemes associated with morphological features (nomi-

nal features such as case, person, and number agreement; verbal features such as tense,

aspect, modality, and voice information). The inflectional morphemes start with a

+ sign. The derivational morphemes start with a - sign and the first feature of a

derivational morpheme is the part-of-speech of the derived word form.

The second problem is that the morphological parser may return more than one

possible analysis for a word due to ambiguity. This parsing ambiguity needs to be

resolved for further language processing such as for language modeling using a mor-

phological disambiguator (morphosyntactic tagger). For example, the parser outputs

four different analyses for the word kedileri as shown below. The English glosses are

32

Table 2.1. Statistics for the NewsCor corpus.

of word tokens 182622247

OOV rate (word token) 1.3

of word types 1819157

OOV rate (word type) 38.8

average # of parses per word type 2.4

average # of morphemes per word type 3.7

root with max # of parses (3545) çık[Verb]

word with max # of morphemes (9) ruhsatlandırılamamasındaki

given in parentheses.

kedi [Noun]+lAr [A3pl]+SH [P3sg]+[Nom] (his/her cats)
kedi [Noun]+lAr [A3pl]+[Pnon]+YH [Acc] (the cats)
kedi [Noun]+lAr [A3pl]+SH [P3pl]+[Nom] (their cats)
kedi [Noun]+[A3sg]+lArH [P3pl]+[Nom] (their cat)

The statistics for the number of tokens (words and lexical units such as punctua-

tion marks), types (distinct tokens), and morphological parsing are shown in Table 2.1.

There are 3.7 morphemes per word type on the average. The distribution for the num-

ber of morphemes on the NewsCor corpus can be seen in Figure 2.11.

2.4.3. System Description

We apply the proposed methods of this thesis on a broadcast news transcription

system for Turkish. This system has been constructed by Arısoy et al. [3, 38]. The

acoustic models of the system have been trained using the acoustic corpus of Broad-

cast News (BN) database [3, 38]. It contains the broadcast news recordings from a

radio channel (VOA) and four TV channels (CNN Türk, NTV, TRT1, TRT2), and

their corresponding transcriptions. To obtain the transcripts, the speech recordings

have been manually transcribed. The continuous speech recordings have been first au-

tomatically segmented into smaller pieces using acoustic features and then have been

manually checked for incorrect segmentations. This segmentation corresponds to an

33

0

100000

200000

300000

400000

1 2 3 4 5 6 7 8 9

Fr
eq

ue
nc

y

Morpheme Count

Figure 2.11. The histogram for the frequency of a specific number of morphemes in a

word.

initial acoustic segmentation. The resulting acoustic segments are then further seg-

mented into linguistic segments using the punctuations in the reference transcripts.

This linguistic segmentation has been obtained automatically by force-aligning a refer-

ence transcript with its acoustic segment as explained in [3]. For the speech recognition

experiments, we used about 194 hours of speech data from the BN database. Table 2.2

shows the breakdown of this data according to its partitioning and its acoustic con-

ditions. The training data partition constitutes 188 hours of speech data and it has

been used for training the acoustic models of the first-pass [3, 38] used in this thesis

and for training the discriminative models in this thesis. The remaining speech data

is partitioned to a held-out set of 3.1 hours and a test set of 3.3 hours of speech data.

The transcriptions of the training set contain about 1.3 million words while the held-

out set contains 23199 words and the test-set contains 23410 words. The automatic

transcription system uses hidden Markov models (HMMs) for acoustic modeling. The

HMMs are decision-tree state clustered cross-word triphone models with 10843 HMM

states and each state is a Gaussian mixture model (GMM) having 11 mixture Gaussian

densities with the exception of silence model having 23 mixtures.

The language models of this work were trained using two text corpora. The

34

Table 2.2. Partitioning of data for various acoustic conditions from [3]: f0 is clean

speech, f1 is spontaneous speech, f2 is telephone speech, f3 is background music, f4 is

degraded acoustic conditions, and fx is other.

Partition f0 f1 f2 f3 f4 fx Total (hours) Words

Train 67.2 15.7 8.3 19.8 73.6 3.3 188 1.3M

Held-out 1.1 0.1 0.1 0.5 1.3 0.0 3.1 23199

Test 0.9 0.1 0.1 0.7 1.4 0.1 3.3 23410

smaller one is referred as the BN text corpus (1.3 million words) which contains the

reference transcriptions of BN training dataset and acts as in-domain data. The larger

corpus is the NewsCor corpus (184 million words) described in Section 3.3 and acts as

a generic corpus collected from news portals. The generative language models in this

thesis are built by linearly interpolating the language models trained on these corpora.

The interpolation constant is chosen to optimize the perplexity of held-out set. The

n-gram language models are estimated with interpolated Kneser-Ney smoothing and

entropy-based pruning [30] using the SRILM toolkit [39]. The discriminative models

are trained using only the BN corpus. We use WFSTs for model representation and

model construction. The speech recognition experiments are performed by using the

AT&T DCD library 2 . This library is also used for the composition and optimization

of the finite-state models, which results in a search network for decoding.

The first-pass recognition experiments in this thesis are carried out on the lin-

guistic segmentations of the acoustic data. But, for the rescoring experiments where

the candidate hypotheses from the first-pass are rescored with an unpruned language

model or reranked with a discriminative language model, we concatenate the hypothe-

ses for the consecutive segments belonging to the same sentence as explained in [3].

Since we are using the same system with Arısoy [3], we repeat Arısoy’s experimental

results for the baseline system in Figure 2.3. These results are for the BN transcription

system using a 200K vocabulary size word language model, which has about 2% OOV

rate on the test set. First three results show the effect of linear interpolation for the

language models using the in-domain BN corpus and general NewsCor corpus. The

2http://www.research.att.com/˜fsmtools/dcd/

35

Table 2.3. Baseline broadcast news transcription results from Arısoy’s work [3].

Language Model WER (%)

generic (NewsCor) + in-domain (BN) LMs 23.4

generic (NewsCor) LM 25.2

in-domain (BN) LM 31.2

generic (NewsCor) + in-domain (BN) LMs without OOV words 22.3

generic (NewsCor) + in-domain (BN) + test data (cheating) LMs 14.9

last two results are part of a cheating experiment designed to demonstrate the lower

bounds for the WER of the system. In the first experiment, all the words in the test

set is included in the recognition vocabulary of the system to ensure there is no OOV

word. The second experiment simulates the condition in which every sentence of the

test set has already been seen, which is accomplished by using the transcripts of the

test set in the language model estimation.

2.5. Related Work

In this thesis, we focus on solving the problems associated with the rich morphol-

ogy of Turkish and other similar languages in a setting for a large vocabulary speech

recognition task. This section reviews the previous work proposed for solving similar

problems in morphologically complex languages in various speech and language pro-

cessing tasks. This will help to evaluate the contributions of this thesis and to compare

and contrast the proposed methods with the previous approaches.

The issues and challenges stated in the previous section are not problems specific

to Turkish. The OOV and data sparsity problems are common for morphologically

productive languages such as Arabic, Czech, Finnish and Korean in addition to Turkish.

Hence, there have been a large number of studies to solve these problems in various

speech and language processing tasks, such as speech recognition, machine translation,

part-of-speech tagging and spelling correction.

Sub-lexical approaches aim to solve the mentioned problems by using grammatical

36

or statistical sub-lexical units as the basic unit of the language instead of commonly

used words. The sub-lexical units are effective in reducing OOV rate while at the same

time decreasing the vocabulary size and alleviating data sparsity problem by using

less number of parameters and training with higher number of statistics from data.

The grammatical sub-lexical units can be morphological units such as morphemes or

some grouping of them such as stem and ending (grouping of suffixes). The statistical

sub-lexical units can be obtained by splitting words using statistical methods.

A morpheme-based n-gram language model has been shown to improve the per-

plexity values over conventional word n-gram models for German [40] which has many

word inflections and compound words. But, the improvement in the speech recognition

performance has been insignificant due to more confusable acoustic modeling units of

morphemes. Similarly, a morpheme-based language model has been compared with

a word-based model in an LVCSR system for highly inflectional Czech language [41].

However, the morpheme-based system did not have performance improvement over the

word-based system in the first-pass recognition. The recognition units of merged mor-

phemes have been proposed for a broadcast news transcription task in Korean which

is an agglutinative language [42]. The merging of frequent and short morpheme pairs

aimed to solve the inter-morpheme coarticulation problem when morphemes are used

as recognition units. The proposed method reduced the word error rate of the baseline

system (the system without morpheme merging) by 3.4% absolute. Morpheme-based

language modeling has also been used for Arabic LVCSR [43]. The morpheme language

model yielded an absolute improvement of 2.4% with a medium vocabulary size (64K)

and only 0.2% with a large vocabulary size (800K). In this study, a morpheme lattice

constrainer was used for constraining the morpheme lattices with a finite-state acceptor

to solve the problem of decoding illegal morpheme sequences which results in outputs

that are non-words. The stems and endings have also been used as sub-lexical units

in language modeling of an inflected language Slovenian [44]. A new search algorithm

has also been proposed in this work to restrict the decoding to the correct order of

sub-word units, and hence the search space is constrained for efficiency.

Sub-lexical units can also be obtained by statistical methods in contrast to using

37

a rule-based morphological parser to get grammatical sub-lexical units. The statistical

methods aim to obtain a segmentation of words by learning morphology of a language

in an unsupervised manner. A method for unsupervised acquisition of morphology in

European languages using the minimum description length (MDL) analysis has been

proposed in [45]. For unsupervised discovery of morphemes, an algorithm that is better

suited for highly inflectional and agglutinative languages has been proposed [46]. The

so-called Morfessor algorithm also uses the MDL principle for unsupervised segmenta-

tion of words into morpheme like units called morphs. Statistical sub-lexical units or

morphs obtained with the Morfessor algorithm have been used for language modeling

in many languages including Finnish [47,48] and Turkish [3, 38].

Sub-lexical language modeling has also been extensively studied for Turkish.

Morpheme-based language models were proposed for Turkish LVCSR in [49]. However,

due to morphological ambiguity problem, syllables were utilized instead of grammatical

morphemes as language modeling units. A statistical language model based on mor-

phological decomposition of words into roots and inflectional groups has been proposed

in [50]. The inflectional groups contain the inflectional features for each derived form.

The roots and inflectional groups are the language modeling units. The proposed mod-

els have been used for morphological disambiguation, spelling correction, and n-best list

rescoring for speech recognition. A comparative study of morpheme, stem+ending and

syllable language models has been presented in [51], however, the speech recognition ex-

periments were carried out on a small vocabulary isolated word recognition task. This

work has been extended to continuous speech recognition with a new model combining

words, stem+endings, and morphemes in [52]. Statistical sub-lexical units obtained

with the Morfessor algorithm were shown to outperform words and grammatical units

for Turkish first in [53]. The language models of this study were trained on a text cor-

pus of 2 million words. A more recent study investigated using words, stem+endings

and syllables as language modeling units on an LVCSR task using 34 hours of acoustic

data and 81 million-word text corpus [54]. The best performance was obtained using

stem+ending model. The further improvements in recognition accuracy were attained

by incorporating language constraints addressing the vowel harmony. The language

constraints are represented with a rule-based weighted finite-state machine and they

38

are applied by composing with the lattice output from the first-pass in a second-pass

lattice rescoring. The most comprehensive study on grammatical and statistical sub-

lexical units for language modeling of Turkish has been done recently in [3, 38]. The

sub-lexical units have been shown to outperform word-based models on a broadcast

news transcription system. Arısoy [3, 55] has also addressed the over-generation prob-

lem of sub-lexical units by dynamic vocabulary adaptation, which further improves the

accuracy of sub-lexical units. Moreover, discriminative language models with linguis-

tically and statistically motivated features have been extensively studied in [3] with

further performance improvements over generative models.

Sub-lexical language models alleviate the OOV problem, however the speech de-

coder can generate ungrammatical sub-word sequences and post-processing of the sub-

word lattices may be required to correct the errors and increase the accuracy [43,54,55].

Morphology-based language modeling approaches specifically Factored Language

Models (FLMs) have been shown to reduce language model perplexity and lead to

WER reductions in Arabic speech recognition systems [56]. FLMs decompose words

into a set of features (or factors) and estimate a language model over these factors,

smoothed with generalized parallel backoff mechanism which improves the robustness

of probability estimates for rarely observed n-grams.

Morphological information can also be employed later in the system as in [57,58],

where a maximum entropy model has been trained with morphological and lexical

features to rescore n-best hypotheses for Arabic speech recognition and machine trans-

lation.

39

3. TURKISH LANGUAGE RESOURCES

Turkish is an agglutinative language with a highly productive inflectional and

derivational morphology which is quite regular [59]. Language applications for morpho-

logically rich languages often require to exploit the syntactic and semantic information

stored in the word structure. Therefore, we need some language resources and tools to

extract and utilize this information.

There are some previous computational studies on Turkish morphology. Oflazer [60]

gives a two-level morphological description implemented using the PC-KIMMO envi-

ronment [61]. However, its lexicon coverage is quite limited and it requires the PC-

KIMMO system to run the parser which prevents the integration of the parser into

other applications. Later, Oflazer has reimplemented this specification using Xerox

finite-state tools,3 twolc (a two-level rule compiler) [62] and lexc (a lexicon compiler).

This implementation requires the Xerox software for execution and the parser is not

publicly available. Öztaner [63] also uses Xerox tools to build a morphological parser.

Güngör [64] describes Turkish morphophonemics and morphotactics using Augmented

Transition Network formalism. Despite these studies, there is no publicly available

state-of-the-art morphological parser for Turkish. Considering the success of finite-

state machines in language and speech processing [5], it is essential for a Turkish

morphological parser to be available as a finite-state transducer in order to incorporate

the morphology of the language as a knowledge source into other finite-state models.

A morphological parser may return more than one possible analysis for a word.

This parsing ambiguity needs to be resolved for further language processing using a

morphological disambiguator (morphosyntactic tagger). There are several studies for

morphosyntactic tagging in morphologically complex languages such as Czech [65],

which is an inflective language, and Basque [66] and Hungarian [67], which are agglu-

tinative languages. For morphological disambiguation in Turkish, several constraint-

based methods have been applied [68,69], where constraint voting is the primary mech-

3Personal communication.

40

anism for parse selection. A statistical model has also been used [70], where statistics

over inflectional groups (chunks formed by splitting the morphological analysis of a

word at derivation boundaries) that include features for intermediate derived forms are

estimated by a trigram model. A recent work has employed a decision list induction

algorithm called Greedy Prepend Algorithm (GPA) to learn morphological disambigua-

tion rules for Turkish [71]. In this work, a separate decision list-based model is trained

for each of the 126 morphological features and they are used to vote on the potential

parses of a word. The voted or averaged perceptron algorithms that have been previ-

ously applied to classification problems [20] have also been adapted very successfully to

common natural language processing (NLP) tasks such as syntactic parsing of English

text [16] and part-of-speech tagging and noun phrase chunking [1]. This methodology

was also proved to be quite successful for morphological disambiguation of Turkish

text [72].

Due to the productive morphology and parsing ambiguity in agglutinative lan-

guages, we need a large corpus of sentences for robust parameter estimation in statis-

tical NLP models. There have been very few efforts to build a Turkish text corpus.

METU Turkish Corpus is a hand-compiled annotated collection of two million words of

written Turkish samples [73]. While this corpus is useful for computational and corpus

linguistics studies, it is very limited in size and coverage to be successfully used in

many statistical natural language applications. Another effort is the collection of web

pages of Turkish newspapers containing about 2.5 million words for Turkish speech

recognition research [74]. This corpus is also limited in size and the corpus collection

and development process has not been described. Although there exist some other text

corpora used in Turkish language research (such as those from SABANCI University

and METU), to the best of our knowledge, the compilation processes have not been

documented.

In this chapter, we describe the language resources that we built for processing

the Turkish morphology and give some applications that utilize these resources. We

make the following language resources available for research purposes4 :

4All resources are available at http://www.cmpe.boun.edu.tr/˜hasim

41

• A stochastic finite-state morphological parser: It is a weighted lexical transducer

that can be used for morphological analysis and generation of words. The trans-

ducer has been stochastized using the morphological disambiguator and the web

corpus. The parser can be used with the OpenFST weighted finite-state trans-

ducer library [75].

• An averaged perceptron-based morphological disambiguator: The proposed sys-

tem has the highest disambiguation accuracy reported in the literature for Turk-

ish. It also provides great flexibility in features that can be incorporated into

the disambiguation model, parameter estimation is quite simple, and it runs very

efficiently. It can also be implemented as a weighted finite-state machine [34].

• A web corpus (a corpus collected from the web): We aimed at collecting a repre-

sentative sample of the Turkish language as it is used on the web. This corpus is

the largest web corpus for Turkish. The compilation process and corpus statistics

are described in detail.

In order to observe the effectiveness of these resources in language processing,

we implemented two language applications. The first one is a spell checker which

uses the stochastic morphological parser (stochastized using the disambiguator and

the corpus) as a computational lexicon. Since the parser also outputs the probability

of a word during morphological analysis, we can order the spelling suggestions for the

misspelled words. As another application, we used the morphological parser to build

a morphology-based language model for broadcast news transcription.

3.1. Finite-State Morphological Parser

In morphologically rich languages, grammatical features and functions, which

are associated with the syntactic structure of a sentence in other types of language,

are often represented within the morphological structure of a word in addition to the

syntactic structure. Therefore, in these languages, we need a morphological parser

to break a word into its constituent morphemes annotated with morphosyntactic and

morphosemantic features.

42

Table 3.1. Operator types and their explanations.

Operator type Explanation

a:b ⇐ c d a is always realized as b in the context c d

a:b ⇒ c d a may be realized as b only in the context c d

a:b ⇔ c d a must be realized as b in the context c d and nowhere else

a:b /⇐ c d a is never realized as b in the context c d

In Turkish, theoretically one can produce an infinite number of words by inserting

some derivational suffixes like the causative suffix in a word multiple times. Even if we

ignore such iterations which are rarely used in practice, we can generate a word like

the following using each suffix only once:

ölümsüzleştiriveremeyebileceklerimizdenmişsinizcesine
“(behaving) as if you are among those whom we could not cause hastily to become
immortal”

We can break this word into morphemes as shown below:

ölümsüz+leş+tir+iver+eme+yebil+ecek+ler+imiz+den+miş+siniz+cesine

In order to build a morphological parser, we need three components: a lexicon

listing the stem words annotated with some information such as the part-of-speech tags

to determine which morphological rules apply to them, a morphotactics component

(morphosyntax) that describes the word formation rules by specifying the ordering

of morphemes, and a morphophonemics component that describes the phonological

alternations occurring in the morphemes during word formation. All these components

can be implemented using finite-state transducers (FSTs).

To implement the phonological rules, we used the two-level morphology formalism

of Koskenniemi [76], which is a framework for describing morphological alternations. In

this formalism, the phonological rules denote regular relations that can be represented

by finite-state transducers. Two-level rules are applied in parallel or when implemented

as finite-state transducers they can be combined into a single morphophonemics trans-

43

0

@:@
1@:FV

2
A:e

@:CONS
@:!
@:FV
A:e

(a) Morphographemics

Start

k:!
g:!

e:!

e:!

d:! Nouni:kedi[Noun]

+:+lAr[A3pl]

NounSg!:+[A3sg]

l:!

End

A:! NounPlr:!

Verb
l:gel[Verb]

(b) Lexicon and Morphotactics

0 1k:! 2e:! 3d:! 4i:kedi[Noun]
6l:+lAr[A3pl]

5
!:+[A3sg]

8e:!

7l:+lArH[P3pl]
9

e:!

10r:!

11
r:!

14i:+SH[P3pl]

13i:+SH[P3sg]

12
!:+[Pnon] 15

i:+[Nom]

!:+[Nom]

!:+[Nom]

i:+YH[Acc]

(c) Lexical transducer

Figure 3.1. (a) Turkish vowel harmony rule example: “@” symbol represents any

absent feasible lexical or surface symbol. (b) Turkish nominal inflection example (c)

Lexical transducer showing ambiguous parses for the word kedileri.

ducer. In two-level phonology, the phonological rules use the four operators shown in

Table 3.1. The rules are declarative constraints for the lexical to surface mapping of

symbols. The lexical form of morphemes represents a common underlying structure.

The surface form represents the orthographic realization of the lexical forms of mor-

phemes. In this formalism, there is one-to-one correspondence between the lexical and

surface form symbols. The underscore symbol in the table indicates the position of

symbol pair (a:b) between the left (c) and right (d) contexts.

The following rule is an example for vowel harmony phenomena in Turkish which

forces change of vowels in surface form of suffixes to agree in backness with the preceding

44

vowel.

A:e ⇒ @:FV [:CONS | :0]* _

This rule states that symbol “A” in lexical level may be converted to /e/ vowel

only if it is preceded with a surface front vowel followed possibly by a number of

symbols having consonant or epsilon realizations in the surface level. Finite-state

transducer implementation of this rule in a compact form can be seen in Figure 3.1a.

The compilation and intersection of all the rule transducers as finite-state automata is

a morphographemics transducer.

The morphotactics which encodes the morphosyntax - the ordering of morphemes

- can also be represented as a finite-state machine. Figure 3.1b shows a small part of

the lexicon and morphotactics for Turkish represented as a finite-state transducer.

We refer to this transducer as morphotactics transducer. The finite-state transducer

of the morphological parser is obtained as the composition of the morphographemics

transducer and morphotactics transducer. Figure 3.1c shows the part of this lexical

transducer corresponding to all the parses of the ambiguous word kedileri. The two-

level phonological rules and the morphotactics were adapted from the PC-KIMMO

implementation of Oflazer [60]. The phonological rules and the morphotactics have

been expanded and modified to cover the phenomena and the exceptions not handled

in the PC-KIMMO implementation. The rules were compiled using the twolc rule

compiler [62]. We used the morphosyntactic tag set of Oflazer [77]. A new root lexicon

of 54,267 words based on the Turkish Language Institution dictionary5 was compiled.

The two-level rules [76] that describe the phonological alternations in Turkish

are given in Appendix A. These phonological rules are compiled into a finite-state

transducer [78]. For this purpose, we used the Xerox two-level rule compiler [62, 79].

Appendix B shows the verbal and nominal morphotactics for Turkish. We composed

the lexicon/morphotactics transducer with the morphophonemics transducer which is

the intersection of the phonological rule transducers to build the lexical transducer

5http://www.tdk.gov.tr

45

of the parser [80]. We used AT&T FSM tools [5] for finite-state operations. The

resulting finite-state transducer can also be used with the OpenFST weighted finite-

state transducer library [75].

We show below the morphological analysis of the word mentioned previously in

this section as an example:

ölümsüz [Adj]-lAş[Verb+Become]-DHr [Verb+Caus]+[Pos]
-YHver [Verb+Hastily]+YAmA[Able+Neg]-YAbil [Verb+Able]
-YAcAk [Noun+FutPart]+lAr [A3pl]+HmHz [P1pl]+NDAn[Abl]
-YmHş[Verb+Narr]+sHnHz [A2pl]-CAsHnA[Adv+AsIf]

The morphological representation is similar to the one used in [37]. Each output of

the parser begins with the root word and its part-of-speech tag in brackets. These

are followed by a set of lexical morphemes associated with morphological features

(nominal features such as case, person, and number agreement; verbal features such

as tense, aspect, modality, and voice information). The inflectional morphemes start

with a + sign. The derivational morphemes start with a - sign and the first feature of a

derivational morpheme is the part-of-speech of the derived word form. A morphological

feature may be appended without any morpheme, indicating that the feature is also

applicable to the current word form.

The word coverage rate of the morphological parser is about 96.7% on the text

corpus collected from online newspapers (see Table 3.6). The parser can also recognize

the punctuation marks and the numerical tokens. It is highly efficient and can analyze

about 8,700 words per second on a 2.33 GHz Intel Xeon processor. As explained in

Section 3.4, the morphological parser was also converted into a stochastic parser, which

makes it the first stochastic morphological parser for Turkish.

3.2. Morphological Disambiguation

The morphological parser may return more than one possible analysis for a word

due to ambiguity. For example, the parser outputs four different analyses for the word

46

kedileri as shown below. The English glosses are given in parentheses.

kedi [Noun]+lAr [A3pl]+SH [P3sg]+[Nom] (his/her cats)
kedi [Noun]+lAr [A3pl]+[Pnon]+YH [Acc] (the cats)
kedi [Noun]+lAr [A3pl]+SH [P3pl]+[Nom] (their cats)
kedi [Noun]+[A3sg]+lArH [P3pl]+[Nom] (their cat)

This morphological ambiguity needs to be resolved for further language process-

ing. Morphological disambiguation can be considered as morphosyntactic tagging in

agglutinative languages in analogy to part-of-speech tagging in Indo-European lan-

guages. In this respect, we employ a discriminative training algorithm for learning a

disambiguation model.

3.2.1. Methodology

The problem of finding the most likely morphological analyses of the words in a

sentence can be solved by estimating some statistics over the parts of the morphological

analyses on a training set and then choosing the most likely parse output using the

estimated parameters. For parameter estimation, we use the averaged perceptron algo-

rithm. We decided on using the perceptron method since it is very flexible in features

that can be incorporated in the model and the parameter estimation method is quite

easy which just requires additive updates to a weight vector.

We presented an application of the averaged perceptron algorithm to morpholog-

ical disambiguation of Turkish text in a previous study [72]. In that study, a baseline

trigram-based model [70] is used to enumerate n-best candidates of alternative mor-

phological parses of a sentence. Then the averaged perceptron algorithm is applied

to rerank the n-best candidate list using a set of features. In the present study, we

do not use a baseline model to generate n-best candidates. Instead, we do a Viterbi

decoding [28] of the best path in the network of ambiguous morphological parses of

the words in a sentence using the averaged perceptron algorithm to train the model

parameters, as explained in the next subsection.

47

We split the morphological analysis of a word into morphemic units to be used as

features by the perceptron algorithm. For this purpose we make use of the morpheme

boundaries (both inflectional and derivational ones) in the analysis. This representation

is different than the one used by [70] and [72], where only derivational boundaries are

used to split the morphological analysis of a word into chunks called inflectional groups.

A morphosyntactic tag ti, which is a morphological analysis of a word wi, is split

into a root tag ri and a morpheme tag mi. The morpheme tag mi is the concatenation

of the morphosyntactic tags of morphemes mi,j for j = 1 . . . ni, where ni is the number

of morphemes in ti:

ti = rimi = rimi,1mi,2 . . .mi,ni

For example, the morphological analysis of the word wi =ulaşmadığı

ti =ulaş[Verb]+mA[Neg]-DHk [Noun+PastPart]+[A3sg]+SH [P3sg]+[Nom]

is represented as its root tag and morpheme tags as follows:

ri =ulaş[Verb]
mi,1 =+mA[Neg]
mi,2 =-DHk [Noun+PastPart]+[A3sg]
mi,3 =+SH [P3sg]+[Nom]

The set of features that we incorporate in the model is a subset of the features

used by [72]. The feature set takes into account the current morphosyntactic tag ti,

the previous tag ti−1, and the two previous tag ti−2. The feature templates are given in

Table 3.2. We basically add unigram, bigram and trigram features over the root and

the morpheme tags. The discriminative training algorithm of the perceptron learns the

feature weights for each instance of these features.

48

Table 3.2. Feature templates used for morphological disambiguation.

Gloss Feature

Morphological parse trigram (1) ti−2ti−1ti

Morphological parse bigram (2) ti−2ti & (3) ti−1ti

Morphological parse unigram (4) ti

Morpheme tag with previous tag (5) ti−1mi

Morpheme tag with two previous tag (6) ti−2mi

Root trigram (7) ri−2ri−1ri

Root bigram (8) ri−2ri & (9) ri−1ri

Root unigram (10) ri

Morpheme tag trigram (11) mi−2mi−1mi

Morpheme tag bigram (12) mi−2mi & (13) mi−1mi

Morpheme tag unigram (14) mi

Individual morpheme tags (15) mi,j for j = 1 . . . ni

Individual morpheme tags with position (16) jmi,j for j = 1 . . . ni

Number of morpheme tags (17) ni

3.2.2. Perceptron Algorithm

A variant of the perceptron algorithm that can be applied to problems like tagging

and parsing is repeated in Figure 3.2 from Collins [1]. The algorithm estimates a

parameter vector ~α using a set of training examples (xi, yi), which will be used for

mapping from inputs x ∈ X to outputs y ∈ Y . In our setting, X is a set of sentences

and Y is a set of possible morphological parse sequences. The algorithm makes multiple

passes (denoted by T) over the training examples. For each example, it finds the

highest scoring candidate among all candidates using the current parameter values. If

the highest scoring candidate is not the correct parse, it updates the parameter vector

~α by the difference of the feature vector representation of the correct candidate and

the highest scoring candidate. This way of parameter update increases the parameter

values for features in the correct candidate and downweights the parameter values for

features in the competitor. For the application of the model to the test examples, the

algorithm calculates the “averaged parameters” since they are more robust to noisy

49

input set of training examples {(xi, yi) : 1 ≤ i ≤ N}
input number of iterations T

~α = 0, ~γ = 0

for t = 1 . . . T , i = 1 . . . N do

zi = arg maxz∈GEN(xi)
Φ(xi, z) · ~α

if zi 6= yi then

~α = ~α + Φ(xi, yi)−Φ(xi, zi)

end if

~γ = ~γ + ~α

end for

return ~γ = ~γ/(nT)

Figure 3.2. The averaged perceptron algorithm by Collins [1].

or inseparable data [1]. The averaged parameters ~γ are calculated by summing the

parameter values for each feature after each training example and dividing this sum

by the total number of examples used to update the parameters.

The perceptron algorithm is adapted to the morphological disambiguation prob-

lem as follows:

• The training examples are the pairs (xi, yi) for i = 1 . . . n, where n is the number

of training sentences. For the ith sentence, xi is the word sequence wi[1:ni]
and yi is

the correct morphosyntactic tag sequence ti[1:ni]
, where ni is the number of words

in the sentence.

• The function GEN(xi) maps the input sentence xi to the candidate parse se-

quences. We consider all possible combinations of the alternative morphological

analyses of the words in the sentence. In the actual implementation, we do not

enumerate all possible morphological parse sequences. Since the features depend

on the current and previous two tags, we generate a network of parse outputs

on-the-fly and do a Viterbi decoding of the best path without enumerating all

the paths.

• The representation Φ(x, y) ∈ <d is a d-dimensional feature vector. Each compo-

50

nent Φj(w[1:n], t[1:n]) for j = 1 . . . d is the count of a local feature (n is the number

of words in the word sequence x) and is defined as
∑n

i=1 φj(ti−2, ti−1, ti), where

φj(ti−2, ti−1, ti) is an indicator function for the jth feature. The features depend

on the current morphosyntactic tag (morphological parse) and the history of the

previous two tags. An example indicator function for a feature (corresponding to

feature template (9) in Table 3.2) might be:

φ100(ti−2, ti−1, ti) =



1 if the root tag of ti

is gör[Verb] and

the root tag of ti−1

is uygun[Adj]

0 otherwise

For this example, Φ100(w[1:n], t[1:n]) is the number of times the root tag uygun[Adj]

is followed by the root tag gör [Verb] in the tag sequence t[1:n]. Then, the algo-

rithm will update the 100th component of the parameter vector ~α by adding

Φ100(x, y) − Φ100(x, z), where y is the correct tag sequence and z is the highest

scoring candidate.

• The expression Φ(x, y) · ~α denotes the inner product
∑d

j=1 Φj(x, y)αj, where αj

is the jth component of the parameter vector ~α.

• The function arg maxz∈GEN(xi)
Φ(xi, z) · ~α can be efficiently calculated using dy-

namic programming since the features that we use depend on only the current

tag and the previous two tags.

With this setting, the perceptron algorithm learns an averaged parameter vector

~γ that is used to choose the most likely morphological parse sequence of a test sentence

x using the following function:

F (x) = arg max
y∈GEN(x)

Φ(x, y) · ~γ

= arg max
y∈GEN(x)

d∑
j=1

Φj(x, y)γj

51

Convergence theorems for the perceptron algorithm applied to tagging and pars-

ing problems are given by Collins [1].

3.2.3. Experiments and Results

In order to measure the performance of the morphological disambiguator, we used

a semi-automatically disambiguated Turkish corpus of about 950000 tokens (including

markers such as begin and end of sentence markers) that has been tagged with Oflazer’s

parser. In addition to the correct morphological analysis of a word, alternative am-

biguous analyses are also available in the corpus given as output by the morphological

analyzer.

The output format of the morphological parser developed in this work is somewhat

different from that used in the corpus due to the improvements on the phonological

rules and the morphotactics. Therefore, we converted the corpus to the parser format

used in this work in order to be able to train a disambiguation model over the outputs of

our morphological parser. In this conversion, the morphological analysis of 95.5% of the

tokens were mapped automatically to an analysis in the form used by the morphological

parser. The 2.6% of the tokens (mostly misspelled words and proper nouns) could not

be parsed and they were marked as unknown words. The remaining 1.9% of the tokens

were mapped to an analysis which has the minimum edit distance with the original

parse.

This data set was divided into training, development and test sets with respec-

tive sizes of about 850000 (45000), 47000 (2500) and 48000 (2,500) tokens (sentences).

The training set was used for parameter estimation and the development set was used

for feature selection. The trained model was tested on this semi-automatically dis-

ambiguated test set. In addition to this test set, the same trained model was also

evaluated on a manually disambiguated test set (converted into out parser format) of

958 tokens.

The results of the disambiguation experiment are given in Table 3.3. 95% con-

52

Table 3.3. Morphological Disambiguation Results.

Test Set Accuracy (%)

Semi-automatically tagged (48K tokens) 97.05

Manually tagged (958 tokens) 96.45

Table 3.4. Comparative Results on Manually Tagged Test Set (958 tokens).

Method Accuracy (%)

Trigram-based model [70] 95.92

GPA [71] 95.82

Perceptron (this study) 96.45

fidence interval for the 97.05% accuracy on the semi-automatically tagged test set is

[0.9689, 0.9720]. On the manually tagged test set, the confidence interval for the 96.45%

accuracy is [0.9526, 0.9763].

We also evaluated the performance of the perceptron algorithm on the original

corpus. The reason for this is to compare the performance of the algorithm to previous

studies on this corpus. The results are given in Table 3.4. The trigram-based model

of [70] is our implementation. The confidence interval for the 96.45% accuracy of the

perceptron method is [0.9526, 0.9763]. The performance improvement of the perceptron

model is not statistically significant on this small data set. It seems that we need a

larger manually disambiguated corpus to verify the performance improvements.

The morphological disambiguator is also a part-of-speech (POS) tagger when

we consider the POS tag of a word as the POS tag of the last derived word form

as given in the morphological parse of the word. The POS tagging performance of

the disambiguator is about 98.6% for both test sets. An example sentence from the

disambiguated test corpus is given in Table 3.5.

The perceptron algorithm trains a disambiguation model by making four passes

over the training examples of about one million tokens in one hour on a 2.33 GHz

Intel Xeon processor. The generated model contains about 580000 features - this is

53

Table 3.5. An example of a morphologically disambiguated sentence. The first

morphological parse for each word is the analysis the disambiguator chooses.

Word Parses

<S> <S>+BSTag

Ancak ancak[Conj] ancak[Adv]

Merkez merkez[Noun]+[A3sg]+[Pnon]+[Nom]

Bankası banka[Noun]+[A3sg]+SH[P3sg]+[Nom]

TL TL[Noun]+[Acro]+[A3sg]+[Pnon]+[Nom]

yönünden yön[Noun]+[A3sg]+SH[P3sg]+NDAn[Abl]

yön[Noun]+[A3sg]+Hn[P2sg]+NDAn[Abl]

Yön[Noun]+[Prop]+[A3sg]+SH[P3sg]+NDAn[Abl]

Yön[Noun]+[Prop]+[A3sg]+Hn[P2sg]+NDAn[Abl]

rahatlarken rahatla[Verb]+[Pos]+Hr[Aor]+[A3sg]-Yken[Adv+While]

rahat[Adj]-[Noun]+lAr[A3pl]+[Pnon]+[Nom]-[Verb]-Yken[Adv+While]

rahat[Noun]+lAr[A3pl]+[Pnon]+[Nom]-[Verb]-Yken[Adv+While]

, ,[Punc]

döviz döviz[Noun]+[A3sg]+[Pnon]+[Nom]

rezervlerinde rezerv[Noun]+lAr[A3pl]+SH[P3sg]+NDA[Loc]

rezerv[Noun]+[A3sg]+lArH[P3pl]+NDA[Loc]

rezerv[Noun]+lAr[A3pl]+SH[P3pl]+NDA[Loc]

rezerv[Noun]+lAr[A3pl]+Hn[P2sg]+NDA[Loc]

erime erim[Noun]+[A3sg]+[Pnon]+YA[Dat]

eri[Verb]+[Pos]-mA[Noun+Inf2]+[A3sg]+[Pnon]+[Nom]

Er[Noun]+[Prop]+[A3sg]+Hm[P1sg]+NA[Dat]

eri[Verb]+mA[Neg]+[Imp]+[A2sg]

er[Adj]-[Noun]+[A3sg]+Hm[P1sg]+NA[Dat]

er[Noun]+[A3sg]+Hm[P1sg]+NA[Dat]

gözlendi gözle[Verb]-Hn[Verb+Pass]+[Pos]+DH[Past]+[A3sg]

göz[Noun]+[A3sg]+[Pnon]+[Nom]-lAn[Verb+Acquire]+[Pos]

+DH[Past]+[A3sg]

</S> </S>+ESTag

54

the dimension of the feature vector. It can disambiguate 1000 words per second on the

same processor.

3.3. Web Corpus

In the domain of language processing, we need large corpora for the application

and evaluation of statistical methods. Such corpora are also important for empirical

methods that the linguists and lexicographers use to infer information about language.

For example, in statistical NLP applications, a large amount of data is necessary to

reliably estimate the language model parameters. The situation is more severe in the

case of morphologically complex languages, for which acceptable performance rates for

the proposed models can only be attained using quite large corpora.

It has been reported that probabilistic models of language based on a very large

corpus, even if the corpus is noisy, are better than those based on estimates from

smaller, cleaner data sets [81]. The web is being increasingly used by researchers to

build web corpora [82]. Some of the reasons of this tendency are that the other language

resources are not large enough or not suitable in terms of language coverage and the

web is instantly and freely available.

In this research, we built a large corpus for Turkish and cleaned it using the

morphological parser and some heuristics. The corpus is composed of four subcorpora.

Three of these corpora (referred as NewsCor) are from three major news portals in

Turkish. The other corpus (referred as GenCor) is a general sampling of Turkish web

pages. The combined corpus of these subcorpora will be referred as BOUN Corpus.

The web corpus is intended to be used by computational linguists, lexicographers, and

researchers working on statistical methods in language processing. As the texts on the

web contain a large number of proper nouns, we also plan to use the web corpus to

increase the lexicon size of the morphological parser. In the rest of this section, we

first explain the compilation process and then we give statistics about the contents of

the corpus.

55

3.3.1. Web Crawling

For data collection from the web, we implemented a web crawler - an automated

script to browse the web as used by the search engines. The web crawler starts with

a set of seed URLs. As these URLs are visited, the new hyperlinks in the downloaded

pages are extracted and added to the list of URLs to visit. For NewsCor, seed URLs

were generated automatically according to the news portal’s page naming policy. We

also ensured that the web spider stays in the same domain by filtering the newly

discovered URLs. For GenCor, we started with the seed URLs in the Google directory

index for Turkish. There exist about 2,900 URLs in this directory. For this corpus,

we limited the number of URLs from a domain to 10000 in order to gather a general

sample of the web and we downloaded about 8000000 web pages.

The general algorithm for the web crawler is as follows. We store the URLs to

be visited in a database table. We fetch a random URL from this table and download

the corresponding web page. The visited URLs are stored in another table in order to

prevent downloading the same page again. To collect only Turkish pages, we require

that either the page encoding is Turkish or if it is unicode encoded the domain name has

Turkey country code. Since this does not ensure that the contents will be in Turkish,

later in the text cleaning stage, we use the morphological parser to detect non-Turkish

pages and we delete these pages. The text in the web pages is converted to UTF-

8 encoding if it is in a different format. The HTML tags related to font rendering

are removed from the text and the contents between the remaining HTML tags are

extracted as separate lines of text. We also extract the hyperlinks in the page and add

those that have not been visited or planned to be visited yet to the URL table. The

output of the web crawler is the HTML tag-free text encoded in UTF-8.

3.3.2. Text Cleaning

Since the web corpus is very noisy, we need to do some automatic normalization

and filtering to clean the corpus. The web pages contain a large amount of text

not directly related to the main content, such as the text in navigation menus and

56

advertisements. It is quite difficult for an automated agent to correctly decide the

quality of the content in web pages or to decide which part of the document should

be included in the corpus. We followed a multi step process to clean the corpus as

described below:

(i) Decode HTML entities. For instance, the less-than sign < is replaced by <.

(ii) Trim white spaces at the start and end of the lines.

(iii) Estimate statistics over letter sequences from a Turkish text and use these statis-

tics to filter non-Turkish documents. This step removes documents that have a

distribution of letter combinations which is significantly different from the distri-

bution in Turkish.

(iv) Remove duplicate lines to get rid of repetitions in web pages, such as text in

navigation menus.

(v) Remove documents with less than 1000 characters. These documents mostly

contain hypertext links without any useful content.

(vi) Remove documents for which more than 25% (an empirically determined thresh-

old) of the words cannot be parsed using the morphological parser.

The last step above is necessary since, although only pages with Turkish encoding

are taken into account by the web crawler, it is not uncommon to find pages containing

a significant amount of material in other languages. For instance, an advertisement in

both Turkish and English is a typical case. Such pages should clearly be eliminated

since they include a large amount of noise. The normalization and filtering steps

removed about 60% of the text collected for NewsCor and 90% of the text collected for

GenCor. This difference is expected since the web corpus data are much more noisy

when compared to the news portal data.

3.3.3. Tokenization and Segmentation

The tokenization and segmentation of a corpus is often necessary in language

applications. Since the corpus compiled in this work is very large for manual operation,

we employed automatic methods to tokenize and segment the corpus into sentences.

57

We used the morphological parser developed in this study as a computational lexicon

to look up the words in the corpus. If the parser can return an analysis for a text

entity, we accept that entity as a token. Otherwise, we try to segment the text entity

into its constituent words and symbols. For example, a word at the end of a sentence

joined with a period is split into the word and period tokens. The parser can recognize

abbreviations, acronyms, and numbers as tokens. We also treat some entities like

URLs, e-mail addresses, dates, punctuation symbols, and quotation marks as tokens.

The tokens are then segmented into sentences using a simple sentence segmentation

algorithm.

3.3.4. XML Encoding

For the encoding of the web corpus, we used the XML Corpus Encoding Standard,

XCES (http://xces.org) as used by [73]. The corpus was encoded in paragraph and

sentence levels. We also plan to annotate the corpus linguistically in morphosyntactic

level. An example paragraph from the XCES-encoded corpus is given below.

<p><s><q>Cthulhunun Çağrısı</q> ve ardından

<q>Deliliğin Dağlarında</q> adlı eserleri Türkçeye

çevrilen Howard Phillips Lovecraft korku ve fantezi

ustası bir yazar .</s></p>

Howard Phillips Lovecraft whose works “The Call of Cthulhu” and “At the Moun-
tains of Madness” were translated into Turkish is an author skilled in horror and
fantasy.

The quotation symbols in the text are used for tagging quotations. The sentences

are tagged according to the output of the sentence segmentation algorithm. The para-

graph tags are used for text fragments separated by the end of line character.

3.3.5. Contents of the Corpus

As stated before, Turkish web corpus is formed of four subcorpora. Three of

these (Milliyet, Ntvmsnbc, Radikal) are from three major news portals in Turkish

58

Table 3.6. Web Corpus Size and Results of Morphological Parser.

Corpus Words Tokens Types Tokens Parsed(%) Types Parsed(%)

Milliyet 59M 68M 1.1M 96.7 63.5

Ntvmsnbc 75M 86M 1.2M 96.4 55.8

Radikal 50M 58M 1.0M 97.0 65.7

NewsCor 184M 212M 2.2M 96.7 52.2

GenCor 239M 279M 3.0M 94.6 39.5

BOUN Corpus 423M 491M 4.1M 95.5 38.4

(collectively referred as NewsCor) and the other one (GenCor) is a general sampling of

Turkish web pages. The statistics about the numbers of words (all words in the corpus),

tokens (words and lexical units such as punctuation marks), and types (distinct tokens)

are shown in Table 3.6. The percentages of the tokens and types in the corpus that can

be successfully parsed by the morphological parser are also indicated. We can interpret

the figures on the table from different points of view. First, we observe that, due to

the agglutinative nature of the language, the number of types (4.1M) is quite large.

Also, the number of types parsed (1.57M) in the corpus being about 30 times larger

than the size of the root lexicon of the parser indicates that derived words are used

commonly in Turkish.

Second, a significant difference exists between the percentages of the tokens and

the types successfully parsed. This is an expected result, since most of the tokens in the

corpus are grammatical words and there is a relatively small amount of other kinds of

tokens (punctuation symbols, proper nouns, etc.) that cannot be parsed. On the other

hand, each distinct token is treated equally in the last column of the table, without

taking frequencies into consideration. We see that the parser can return an analysis

only for 38.4% of the types; the rest cannot be parsed. However, this percentage of

types in fact constitutes 95.5% of the corpus. The main reasons for the unparsed types

are the proper nouns that do not exist in the lexicon and the spelling errors in the

corpus.

Another observation is about the cleanness of the corpus. When we compare

59

GenCor with NewsCor, we notice a decrease in the percentage of words that can be

parsed. The difference is about 2% in the case of tokens while it is much higher

(12.7%) in the case of types. These figures indicate that NewsCor is much cleaner

than GenCor, as might be expected. In addition, the analysis of the number of words,

tokens, and types in the two subcorpora shows that GenCor includes more types that

are not actually words and there are also some unparsed tokens with high frequencies

on this subcorpus. These observations signal that the words used by general web users

are more diverse than those used in news portals and some of these words seem to be

accepted (due to their high frequencies) by the web community.

Finally, the performance ratios for the morphological parser are quite satisfactory.

The success is 96.7% on NewsCor and it is slightly lower for GenCor due to the special

characteristics of the written text on the web.

3.3.6. Corpus Statistics

In this section, we present statistical results about the corpus in order to get an

idea about the coverage of a corpus of this size for an agglutinative language and also

to observe the morphological characteristics of the Turkish language. Figure 3.3 shows

statistics about the types relative to the corpus size (number of tokens) excluding the

numerical tokens. As can be seen, the number of types is increasing continuously for

both corpora and for the combined corpus. It seems that if the corpus size is increased

beyond the current size of 491M tokens, new types will still continue to emerge. This

is supported by the evidence that when the corpus size was increased from 490M to

491M, 5539 new types (of which 1009 can be parsed successfully) have been added to

the corpus. This is partly due to the productive morphological structure of Turkish

and partly to the rich web environment. These facts indicate that the size of the

current corpus does not cover all language usage. It should be extended until at least

the number of types that can be parsed becomes stable, corresponding to the situation

that nearly all possible derived forms are represented in the corpus. Adding more data

beyond this limit will just cause an increase in the number of special tokens (e.g. proper

nouns) and misspelled words.

60

0

1

2

3

4

1 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

Ty
pe

 C
ou

nt
 (M

ill
io

n)

Corpus Size (Million)

Types (NewsCor)
Types Parsed (NewsCor)
Types (GenCor)
Types Parsed (GenCor)

Types (BOUN Corpus)
Types Parsed (BOUN Corpus)

Figure 3.3. Type statistics for subcorpora and combined corpus.

Figure 3.4 shows coverage statistics with respect to the vocabulary size (number

of types). The figure was obtained by first sorting the types in decreasing order of their

frequencies and then summing up the frequencies beginning from the topmost entry

for the indicated vocabulary sizes. 50% of the corpus is formed of only about 1000

distinct words. We observe that about 300K types are necessary in order to attain an

acceptable coverage ratio (97-98%). The agglutinative nature of the language and the

diversity of the web contents are the basic reasons of this result. A similar statistic

related to the percentages of infrequent types shows that almost half of the types (about

2.0M) occur only once in the corpus. The number of types occurring less than 10 times

is 3.4M and they represent 7.5M tokens in the corpus. Thus, we see that the majority

of the types in the corpus are very infrequent.

To understand the source of the large number of types in the corpus, we give

statistics for the stems and lexical endings (tokens stripped of their stems in lexical

form such as +lAr+Hn) of the tokens that can be parsed in Figure 3.5. As the number

of tokens considered reaches to the size of the corpus, the number of unique stems

approaches to the size of our lexicon (55,278 root words). On the other hand, the

number of unique endings increases steadily as new data are added. Note that the

61

50

55

60

65

70

75

80

85

90

95

100

1K 5K 10K 20K 50K 100K 200K 400K 1M 3M 4M
Vocabulary Size

Coverage Percentage (BOUN Corpus)

Figure 3.4. Coverage statistics for most frequent types.

figure considers only the tokens that can be successfully parsed. Hence, this increase

in the number of endings means that people freely derive new word forms by making

use of suffix combinations not used before. This is an interesting result. Although we

know that theoretically there is no limit on the number of derivations in Turkish, we

might expect that in practice a (large) subset of all possible derived forms will cover the

daily use of the language. However, this expectation does not hold even for a corpus of

nearly 500M tokens, and about 40 stems and 60 lexical endings emerge per 10M tokens

at this size.

Figure 3.6 gives statistics about the frequency of the types that cannot be parsed.

We see that 62% of the types cannot be parsed. However, the majority of the types

that cannot be parsed are very infrequent. For instance, when we ignore the types

that occur only once in the corpus, this ratio decreases to 26%. When we remove the

types occurring less than 10 times, we can parse 95% of the types in the corpus. The

types labeled as ungrammatical by the morphological parser indeed mostly result from

the spelling errors in the corpus. There also exist many proper nouns that are very

infrequent in the corpus.

62

0

10000

20000

30000

40000

50000

60000

1 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

Ty
pe

 C
ou

nt

Corpus Size (Million)

Stems Parsed (BOUN Corpus)
Endings Parsed (BOUN Corpus)

Figure 3.5. Stem and lexical ending statistics for combined corpus.

3.4. Stochastic Morphological Parser

Turkish morphology is inherently ambiguous. The average number of morpholog-

ical analyses for a token in BOUN Corpus is 2.5 and about 65% of the tokens possess

more than one analysis. In language processing applications, we often need to estimate

a probability distribution over all possible analyses of words. For instance, in spell

checking we can use the probability estimates of unigrams to rank misspelling sugges-

tions for a word. In this study, we converted the morphological parser that we built

into a probabilistic one in order to make it usable in such language applications.

The finite-state transducer of the morphological parser is obtained as the compo-

sition of the morphophonemics transducer mp and the morphotactics transducer mt:

mp ◦ mt. If we can estimate a statistical morphotactics model, we can convert the

morphological parser to a probabilistic one. Eisner [83] gives a general EM algorithm

for parameter estimation in probabilistic finite-state transducers. However, having a

morphological disambiguator makes the parameter estimation easier. Since we can

disambiguate the possible morphosyntactic tag sequences of a word, there is a single

path in the morphotactics transducer that matches the chosen morphosyntactic tag

sequence. Then the maximum-likelihood estimates of the weights of the arcs in the

63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

62

26

16

12
10

8
7 7

6 5 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2

Cutoff Frequency

Types Percentage Unparsed (BOUN Corpus)

Figure 3.6. Percentages for types not recognized by the parser versus cutoff frequency.

morphotactics transducer are found by setting the weights proportional to the number

of traversals of each arc and as a result making the finite-state transducer Markovian.

We use a specialized semiring to cleanly and efficiently count the number of traversals

of each arc.

Weights in finite-state transducers are elements of a semiring, which defines two

binary operations ⊗ and ⊕, where ⊗ is used to combine the weights of arcs on a path

into a path weight and ⊕ is used to combine the weights of alternative paths [11]. We

define a counting semiring to keep track of the number of traversals of each arc. The

weights in the mt transducer are converted to the counting semiring. In this semiring,

the weights are vectors of integers and the dimension of a vector is the total number of

arcs in the mt transducer. We number the arcs in the mt transducer and set the weight

of the nth arc as the nth basis vector. The binary plus ⊕ and the times ⊗ operations

of the counting semiring are defined as the sum of the weight vectors. Thus, the nth

value of the vector in the counting semiring just counts the appearances of the nth arc

of mt in a path.

To estimate the weights of the stochastic model of the mt transducer, we use the

64

0 1
k:ε/2.34

5 6
ε:+[A3sg]

7

l:+lAr[A3pl]/1.19

4ε:ε

8
l:+lArH[P3pl]/5.73

9

e:ε
11

r:ε

10
e:ε

15

i:+SH[P3pl]/2.89

14i:+SH[P3sg]/0.62

13
ε:+[Pnon]

12
r:ε

2
e:ε/1.76

3
d:ε/5.68 i:kedi[Noun]

16/3.83

i:+[Nom]/1.06

ε:+[Nom]

ε:+[Nom]

i:+YH[Acc]/1.66

Figure 3.7. Finite-state transducer for the word kedileri.

text corpus collected from the web. First we parse the words in the corpus to get all

the possible analyses of the words. Then we disambiguate the morphological analyses

of the words to select one of the morphosyntactic tag sequences xi for each word. We

build a finite-state transducer ε × xi that maps the ε symbol to xi in the counting

semiring. The weights of this transducer are zero vectors having the same dimension

as the mt transducer. Then the finite-state transducer (ε × xi) ◦ (mt × ε) having

all ε : ε arcs is minimized to get a one-state FST which has the weight vector that

keeps the number of traversals of each arc in mt. The weight vector is accumulated

for all the xi morphosyntactic tag sequences in the corpus. The final accumulated

weight vector is used to assign probabilities to each arc proportional to the traversal

count of the arc. We use add-one smoothing to prevent the arcs from having zero

probability. The resulting stochastic morphotactics transducer m̃t is composed with

the morphophonemics transducer mp to get a stochastic morphological parser.

The stochastic parser now returns probabilities with the possible analyses of a

word. Figure 3.7 shows the weighted paths for the four possible analyses of the word

kedileri as represented in the stochastic parser. The weights are negative log probabil-

ities.

3.4.1. Turkish Spell Checker

There have been some previous studies for spelling checking [84] and spelling cor-

rection [85] for Turkish text. However there has been no study to address the problem of

65

ranking spelling suggestions. One can obviously use a stochastic morphological parser

as a computational lexicon to do spelling correction and rank spelling suggestions by

their probability estimates. We assume that a word is misspelled if the parser fails to

return an analysis of the word. Our method for spelling correction is to enumerate all

the valid and invalid candidates that resemble the incorrect input word and filter out

the invalid ones with the morphological parser.

To enumerate the alternative spellings for a misspelled word, we generate all the

words in one-character edit distance with the input word, where we consider inser-

tion, deletion or substitution of one symbol, or transposition of two adjacent symbols.

Although we limited the edit distance to 1, it is straightforward to allow longer edit

distances. The Turkish alphabet includes six special letters (ç, ğ, ı, ö, ş, ü) that do

not exist in English. These characters may not be supported in some keyboards and

message transfer protocols; thus people frequently use their nearest ASCII equivalents

(c, g, i, o, s, u, respectively) instead of the correct forms, such as the spelling of

nasılsın as nasilsin. Therefore, in addition to enumerating words in one edit distance,

we enumerate all the words from which the misspelled word can be obtained by sub-

stituting these special Turkish characters for their ASCII counterparts. For instance,

for the word nasilsin, the alternative spellings nasılsin, nasilsın, and nasılsın will also

be generated.

We build a finite-state transducer to enumerate and represent efficiently all the

valid and invalid word forms that can be obtained by these edit operations on a word.

For example, the deletion of a character can be represented by the regular expression

Σ∗(Σ! :!ε)Σ∗ which can be compiled as a finite-state transducer, where Σ is the alphabet.

The union of the transducers encoding one-edit distance operations and the restoration

of the special Turkish characters is precompiled and optimized with determinization

and minimization algorithms for efficiency. A misspelled input word transducer is

composed with the resulting transducer and in turn with the morphological parser to

filter out the invalid word forms. The words with their estimated probabilities are

read from the output transducer and constitute the list of spelling suggestions for the

word. The probabilities are used to rank the list to display to the user. We also handle

66

the spelling errors where omission of a space character causes joining of two correct

words by splitting the word into all combinations of two substrings and checking if the

substrings are valid word forms.

An example list of suggestions with the assigned negative log probabilities and

their English glosses for the misspelled word nasilsin is given below.

nasılsın (How are you): 14.2

nakilsin (You are a transfer): 15.3

nesilsin (You are a generation): 21.0

nasipsin (You are a share): 21.2

basilsin (You are a bacillus): 23.9

On a manually chosen test set containing 225 correct words which have relatively

more complex morphology and 43 incorrect words which are common misspellings, the

precision and recall scores for the detection of spelling errors were measured as 0.81

and 0.93, respectively.

3.4.2. Morphology-based Unigram Language Model

The closure of the transducer for the stochastic parser can be considered as a

morphology-based unigram language model. Different from standard unigram word

language models, this morphology-based model can also assign probabilities to words

not seen in the training corpus. It can also achieve lower out-of-vocabulary (OOV) rates

than models that use a static vocabulary by employing a relatively smaller number of

root words in the lexicon.

We compared the performances of the morphology-based unigram language model

and the unigram word language model on a broadcast news transcription task. Note

that using unigram language models in automatic speech recognition systems is not

optimal. We set up this experiment to measure the effectiveness of the probability

estimates of the stochastic parser in a real application. The acoustic model uses Hidden

Markov Models (HMMs) trained on 183.8 hours of broadcast news speech data. The

67

0.5 1.0 1.5 2.0 2.5

43
44

45
46

47
48

Real−time factor (cpu time/audio time)

W
E

R
 (

%
)

Morphology−based
Word−50K
Word+Morphology
Word−100K

Figure 3.8. Word error rate versus real-time factor for various language models.

test set contains 3.1 hours of speech data (2410 utterances). A text corpus of 1.2 million

words from the transcriptions of the news recordings was used to train the stochastic

parser as explained in Section 3.4 and unigram word language models using the SRILM

toolkit [39]. The automatic speech recognition system that we used for this experiment

is described extensively in [38].

We experimented with four different language models. Figure 3.8 shows the word

error rate versus the real-time factor for these models. In this figure, Word-50K and

Word-100K are unigram word models with the specified vocabulary sizes and have the

OOV rates 7% and 4.7% on the test set, respectively. The morphology-based model is

based on the stochastic parser and has the OOV rate 2.8%. The ‘word+morphology’

model is the morphology-based model with the unigram word model probability esti-

mates for the words seen in the training corpus and the probability estimates from the

stochastic morphological parser for the unseen words. Note that the morphology-based

models output the morphosyntactic tags as the recognition output which can be easily

converted to words using the parser as a word generator.

68

Even though the morphology-based model has a better OOV rate than the word

models, the word error rate (WER) is higher. One of the reasons is that the trans-

ducer for the morphological parser is ambiguous and cannot be optimized for recog-

nition in contrast to the word models. Another reason is that the probability esti-

mates of this model are not as good as the word models since probability mass is

distributed among ambiguous parses of a word and over the paths in the transducer.

The ‘word+morphology’ model seems to alleviate most of the shortcomings of the mor-

phology model. It performs better than the 50K word model and is very close to the

100K word model. The main advantage of morphology-based models is that we have

at hand the morphological analyses of the words during recognition.

3.5. Discussion

In this chapter, we presented some essential tools and resources for exploiting the

Turkish morphology in natural language processing applications. Morphology is a very

important knowledge source for morphologically complex languages like Turkish. Using

these resources and tools, one can parse a text corpus and obtain the morphological

analyses of the words as well as their probabilities, disambiguate the parse outputs,

train statistical models using the web corpus, and build applications that fully exploit

the information hidden in the morphological structure of words. As a motivation for

such language applications and in order to test the effectiveness of these resources, we

built a Turkish spell checker and also gave some preliminary results for morphology-

based language modeling in speech recognition.

69

4. MORPHOLEXICAL AND DISCRIMINATIVE

LANGUAGE MODELING

Language modeling for morphologically rich languages such as Arabic, Czech,

Finnish, and Turkish has proven to be challenging. The out-of-vocabulary (OOV) rate

for a fixed vocabulary size is significantly higher in these languages due to large number

of words in language vocabulary. Having a large number of words contributes also to

high perplexity numbers for standard n-gram language models due to data sparseness.

These problems are especially pronounced for Turkish, being an agglutinative language

with a highly productive inflectional and derivational morphology.

We can reduce the OOV rate by increasing the vocabulary size if it is not limited

by the size of the text corpus available for ASR systems. However, this also increases

the computational and memory requirements of the system. Besides, it may not lead

to significant performance improvement due to data sparseness problem of insufficient

data for robust estimation of language model parameters. Therefore, to overcome the

high growth rate of vocabulary and the OOV problem, using grammatical or statistical

sub-lexical units for language modeling has been a common approach. The grammati-

cal sub-lexical units can be morphological units such as morphemes or some grouping

of them such as stem and ending (grouping of suffixes). The statistical sub-lexical

units can be obtained by splitting words using statistical methods. Morpheme-based

language models have been proposed for German [40], Czech [41], Korean [42]. A sta-

tistical language model based on morphological decomposition of words into roots and

inflectional groups which contain the inflectional features for each derived form has

been proposed for morphological disambiguation of Turkish text [50]. Morphology-

based language modeling approaches specifically Factored Language Models (FLMs)

have been shown to reduce language model perplexity and lead to WER reductions in

Arabic speech recognition systems [56]. FLMs decompose words into a set of features

(or factors) and estimate a language model over these factors, smoothed with general-

ized parallel backoff mechanism which improves the robustness of probability estimates

70

for rarely observed n-grams. We previously experimented with FLMs for Turkish [86]

and observed that FLMs are effective in reducing perplexity of language models but

only when the training data is limited. The computational cost and the inability to be

represented efficiently and compactly as finite-state models also limit their usefulness.

Stems and endings have been used for language modeling for Turkish [38, 54, 87] and

Slovenian [44]. Statistical sub-lexical units so-called morphs have been used for lan-

guage modeling of Finnish [48] and Turkish [38]. Sub-lexical language models alleviate

the OOV problem, however the speech decoder can generate ungrammatical sub-word

sequences and post-processing of the sub-word lattices may be required to correct the

errors and increase the accuracy [54], [55]. Morphological information can also be em-

ployed later in the system as in [58], where a maximum entropy model has been trained

with morphological and lexical features to rescore n-best hypotheses for Arabic speech

recognition and machine translation.

We present a morphology oriented linguistic approach for language modeling in

morphologically rich languages as an alternative to word and sub-word based mod-

els. This is motivated by the fact that in such languages, grammatical features and

functions associated with the syntactic structure of a sentence in morphologically poor

languages are often represented in the morphological structure of a word in addition to

the syntactic structure. Therefore, morphological parsing of a word may reveal valu-

able information in its constituent morphemes annotated with morphosyntactic and

morphosemantic features to exploit for language modeling.

Standard n-gram language models are difficult to beat if there is enough data.

They also lead to efficient dynamic programming algorithms for decoding due to local

statistics, and they can be efficiently represented as deterministic weighted finite-state

automata [4]. First, we propose a novel approach for language modeling of morpholog-

ically rich languages. The proposed model, called the morpholexical language model,

can be considered as a linguistic sub-lexical n-gram model in contrast to statistical

sub-word models.

71

Table 4.1. Statistical and grammatical word splitting approaches.

Gloss hello you are getting the news from the agency

word merhaba haberleri ajanstan alıyorsunuz

morph merhaba haber +ler +i ajans +tan al +ıyor +sun +uz

morpheme merhaba[Noun]+[A3sg]+[Pnon]+[Nom] haber[Noun]

+lAr[A3pl] +SH[P3sg]+[Nom] ajans[Noun]+[A3sg]+[Pnon]

+DAn[Abl] al[Verb]+[Pos] +Hyor[Prog1] +sHnHz[A2pl]

lexical stem+ending merhaba[Noun]+[A3sg]+[Pnon]+[Nom] haber[Noun]

+lAr[A3pl]+SH[P3sg]+[Nom] ajans[Noun]+[A3sg]+[Pnon]

+DAn[Abl] al[Verb]+[Pos] +Hyor[Prog1]+sHnHz[A2pl]

surface stem+ending merhaba haber +leri ajans +tan al +ıyorsunuz

Second, we propose a novel approach to build a morphology-integrated search

network for ASR with unlimited vocabulary in the weighted finite-state transducer

framework (WFST). The proposed morpholexical search network is obtained by the

composition of the lexical transducer of the morphological parser and the transducer

of morpholexical language model. This model has the advantage of having a dynamic

vocabulary in contrast to word models and it only generates valid word forms in contrast

to sub-word models. The proposed model improves ASR word error rate by 1.8%

absolute over word models and 0.8% absolute over statistical sub-word models at ∼ 1.5

real-time factor.

And finally, we further improve ASR performance by using unigram morpholexical

features in a discriminative n-best hypotheses reranking framework with a variant of the

perceptron algorithm. The perceptron algorithm is tailored for reranking recognition

hypotheses by introducing error rate dependent loss function. The improvements of the

first-pass in WER are preserved in the reranking as 2.2% absolute over word models

and 0.7% absolute over statistical sub-word models.

72

4.1. Generative Language Models

In the following sections, we describe the word, sub-word and morpholexical lan-

guage models. The corresponding statistical and grammatical splitting approaches are

shown for an example sentence in Table 4.1.

4.1.1. Word and Statistical Sub-word Language Models

The conventional approach for language modeling is estimating a statistical n-

gram language model over a fixed vocabulary of words. As a baseline word language

model, we built 200K vocabulary 3 -gram language model which is also used as a

baseline in [38].

For unlimited vocabulary speech recognition, splitting words into morpheme-like

sub-words, morphs, using an unsupervised algorithm based on Minimum Description

Length principle has been very effective by alleviating OOV problem and reducing

language model perplexity [48]. The baseline algorithm introduced in [46] is used to

segment word types in the text corpus. We used the best performing segmentations of

the study in [38]. Statistical morphs have the advantage that no linguistic knowledge

is required about the language. On the other hand, since morphs do not generally

correspond to grammatical morphemes, we can not easily employ linguistic information

in later stages of processing such as rescoring sub-word lattices. Moreover, speech

decoder can generate ungrammatical sub-word sequences and post-processing of the

sub-word lattices are required to correct the errors and increase the accuracy [54], [55].

4.1.2. Morpholexical Language Models

In this section, we introduce a linguistic approach to exploit morphology and al-

leviate OOV problem in language modeling. This can be considered as a grammatical

sub-lexical language modeling approach. The modeling units are lexical and gram-

matical morphemes annotated with morphosyntactic and morphosemantic features.

This is motivated by the fact that lexical and grammatical morphemes (morpholexical

73

units) constitute natural sub-lexical units of a morphologically complex language. For

instance, the constituent morphemes are generally the output symbols of a morpholog-

ical parser when represented as finite-state models.

The morpholexical language modeling can be considered as replacing a static

lexicon of words or sub-words with a dynamic computational lexicon. The dynamic

lexicon over grammatical and lexical morphemes greatly solves the OOV problem by

providing a root lexicon with a good coverage and makes it unnecessary to list all

word forms that can be generated from a root word, which may not be even possible

for languages like Turkish. For instance, the OOV rate of the morphological parser is

1.3% on the test set. This model also provides better probability estimates for rarely

seen or unseen word n-grams by morphological decomposition of words.

We can train the morpholexical language models as standard n-gram language

models over morpholexical units. For this, we need to parse a text corpus to get the

morpholexical units using a morphological parser. Since the morphological parser can

give multiple analyses due to morphological ambiguity, we need to use a morphological

disambiguator to choose the correct parse of the words using the contextual informa-

tion. We can then split the morphological analyses of words at morpheme boundaries

and use standard n-gram estimation methods to train a language model over mor-

pholexical units.

We also experimented with combining grammatical morphemes to build a lexical

stem+ending model to alleviate the problem of large number of morphemes preventing

n-grams to have a proper coverage of context. Using lexical units rather than surface

forms as in statistical morphs is also beneficial in terms of decreasing data sparsity

since a lexical morpheme may be realized in multiple surface forms due to phonological

alternations [87]. Such an example for Turkish is the lexical plural morpheme +lAr

which can have the surface form of ler or lar depending on the previous vowel this

morpheme is suffixed. In this study, we use the lexical stem+ending decompositions to

obtain the surface form stem+ending decompositions of words which can be considered

as grammatical sub-words in contrast to statistical sub-words. The different modeling

74

units for morpholexical language models can be seen in Table 4.1.

The morpholexical language models have the advantage that when combined with

the lexical transducer of the morphological parser, they give probability estimates for

only valid word sequences. This is not possible with statistical sub-word model or

surface form stem+ending model. But, this is possible with morpholexical language

models since the morphotactics effectively constrains the language model over valid

morpheme sequences. We show the effect of morphotactics in language modeling by

giving experimental results where we relax the morphotactics to allow any morpheme

sequences in the lexical transducer. We also study the effect of morphological disam-

biguation in language modeling by comparing the proper morphological disambiguation

of training corpus and choosing the morphological parse with the least number of mor-

phemes.

4.2. Morpholexical Search Network for ASR

In this section, we explain how a morpholexical language model can be integrated

into speech recognition in the finite-state transducer framework.

The weighted finite-state transducers (WFSTs) provide a unified framework for

representing different knowledge sources in ASR systems [6]. In this framework, the

speech recognition problem is treated as a transduction from input speech signal to

a word sequence. A typical set of knowledge sources consists of a hidden Markov

model H mapping HMM state ID sequences to context-dependent phones, a context-

dependency network C transducing context-dependent phones to context-independent

phones, a lexicon L mapping context-independent phone sequences to words, and a

language model G assigning probabilities to word sequences. The composition of these

models H ◦C ◦ L ◦G results in an all-in-one search network that directly maps HMM

state ID sequences to weighted word sequences.

The morphology as another knowledge source can be represented as a WFST

and can be integrated into the WFST framework of an ASR system. The lexical trans-

75

ducer of the morphological parser maps the letter sequences to lexical and grammatical

morphemes annotated with morphological features. The lexical transducer can be con-

sidered as a computational dynamic lexicon in ASR in contrast to a static lexicon.

The computational lexicon has some advantages over a fixed-size word lexicon. It can

generate many more words using a relatively smaller number of root words in its lexi-

con. So it achieves lower OOV rates. Different than the static lexicon, even if we have

never seen a specific word in the training corpus, the speech decoder has the chance to

recognize that word. Another benefit of the computational lexicon is that it outputs

the morphological analysis of the word generated. We can exploit this morphological

information in a language model.

Since most of the words in Turkish have almost one-to-one mapping between

graphemics and pronunciation, we use the Turkish letters as our phone set in Turkish

ASR 6 . In the WFST framework, the lexical transducer of the morphological parser

can be considered as a computational lexicon M replacing the static lexicon L. The

transducer M outputs some symbols representing morphological features not corre-

sponding to any lexical form in addition to lexical and grammatical morphemes. The

morpholexical language model is estimated over some combination of these features

and morphemes. Therefore, we need an intermediate transducer T to do the sym-

bol mapping between these models. Then the search network with the morpholexical

language Gmlex model can be built as H ◦ C ◦M ◦ T ◦Gmlex.

The WFST offers finite-state operations such as composition, determinization

and minimization to combine all the knowledge sources used in speech recognition

and optimize into a single compact search network [7]. This approach works well for

certain types of transducers, but presents some problems related to the applicabil-

ity of determinization and weight-pushing with more general transducers [8]. In this

respect, Turkish morphology presents a problem, since the number of ambiguities is

infinite and the cycle-ambiguous finite-state transducer of the morphological parser

is not determinizable. Still, we can apply the local determinization algorithm for lo-

6We built a finite-state transducer based pronunciation lexicon similar to [37] and extended the
phone set, however it did not lead to performance improvement possibly due to a small number of
Turkish words with exceptional pronunciation.

76

cally optimizing the search network using the grmlocaldeterminize utility from AT&T

Grammar Library [88]. The experimental results show that this approach works well.

4.3. Discriminative Reranking with Perceptron

The introduction of arbitrary and global features into the generative models re-

sults in difficulty due to the finite-state nature of these models. Therefore, the common

approach in NLP research has been to use a baseline generative model to generate

ranked n-best candidates, which are then reranked by a rich set of local and global

features [18,34].

The perceptron algorithm has been successfully applied to various NLP tasks for

ranking or reranking hypotheses [1,16,18,20,34]. The perceptron has shown significant

improvements for discriminative language modeling for Turkish using linguistic and

statistically derived features [89]. It also gives the best performance for morphological

disambiguation of Turkish text using morpholexical features [72]. The characteristics

like simplicity, fast convergence, and easy incorporation of arbitrary local and global

features make the perceptron algorithm very attractive for discriminative training of

linear models. In this section, we introduce a variant of the perceptron, WER-sensitive

perceptron, which is better suited to rerank n-best speech recognition hypotheses.

4.3.1. The WER-sensitive Perceptron Algorithm

The perceptron is a linear classifier [19]. The perceptron algorithm tries to learn a

weight vector that minimizes the number of misclassifications. Figure 4.1 shows a vari-

ant of the perceptron algorithm, WER-sensitive perceptron, formulated as a multiclass

classifier which is very similar to the the averaged perceptron [1,20]. The algorithm es-

timates a parameter vector ᾱ ∈ <d using a set of training examples (xi, yi) : 1 ≤ i ≤ n.

The function GEN enumerates a finite set of candidates GEN(x) ⊆ Y for each pos-

sible input x. The representation Φ maps each (x, y) ∈ X × Y to a feature vec-

tor Φ(x, y) ∈ <d. The learned parameter vector ᾱ can be used for mapping un-

seen inputs x ∈ X to outputs y ∈ Y by searching for the best scoring output, i.e.

77

input set of training examples {(xi, yi) : 1 ≤ i ≤ n}
input number of iterations T

ᾱ = 0, ᾱsum = 0

for t = 1 . . . T , i = 1 . . . n do

zi = arg maxz∈GEN(xi)
Φ(xi, z) · ᾱ

ᾱ = ᾱ + ∆(yi, zi)(Φ(xi, yi)−Φ(xi, zi))

ᾱsum = ᾱsum + ᾱ

end for

return ᾱavg = ᾱsum/(nT)

Figure 4.1. The WER-sensitive perceptron algorithm.

arg maxz∈GEN(x) Φ(x, z) · ᾱ. The given algorithm can also be used to rank the possible

outputs for an input x by their scores, Φ(x, z) · ᾱ.

The algorithm makes multiple passes (denoted by T) over the training examples.

For each example, it finds the highest scoring candidate among all candidates using

the current parameter values. If the highest scoring candidate is not the correct one, it

updates the parameter vector ᾱ by the difference of the feature vector representation

of the correct candidate and the highest scoring candidate. This way of parameter

update increases the parameter values for features in the correct candidate and down-

weights the parameter values for features in the competitor. For the application of the

model to the test examples, the algorithm calculates the “averaged parameters” since

they are more robust to noisy or inseparable data [1]. The averaged parameters ᾱavg

are calculated by summing the parameter values for each feature after each training

example and dividing this sum by the total number of updates. We define X, Y , xi,

yi, GEN, and Φ of the perceptron algorithm in a reranking setting of ASR hypotheses

as follows:

• X is the set of all possible acoustic inputs.

• Y is the set of all possible strings,
∑∗, for a vocabulary

∑
which can be a set of

words, sub-words, or morpholexical units of the generative language model.

• Each xi is an utterance - a sequence of acoustic feature vectors. The training set

78

contains n such utterances.

• GEN(xi) is the set of alternate transcriptions of xi as output from the speech

decoder. Although the speech decoders can generate lattices which encode alter-

nate recognition results compactly, we prefer to work on n-best lists for efficiency

reasons and very small performance gains with the lattices.

• yi is the member of the GEN(xi) with the lowest word error rate with respect to

the reference transcription of xi. Since there can be multiple transcriptions with

the lowest error rate, we take yi to be the one with the best score among them.

• Each component Φj(x, y) of the feature vector representation Φ(x, y) ∈ <d holds

the number of occurrences of a feature or indicates the existence of a feature. For

instance one of the features can be defined on part of speech tags of the words as

follows:

Φ1(x, y) = number of times an adjective is followed by a noun in y.

• The expression Φ(x, y) · ᾱ denotes the inner product
∑d

j=1 Φj(x, y)αj, where αj

is the jth component of the parameter vector ᾱ.

• The zeroth component Φ0(x, y) can represent the log-probability of y (weighted

sum of the baseline language and acoustic model scores) in the lattice output

from the baseline recognizer for utterance x. We experimented with the percep-

tron algorithm where this baseline score can be included or omitted in training.

During testing, the baseline score as the zeroth feature is always included. The

corresponding weight α0 for Φ0(x, y) is fixed and optimized on a held-out set.

With this setting, the perceptron algorithm learns an averaged parameter vector

ᾱavg that can be used to choose the transcription y having hopefully the least number

of errors for an utterance x using the following function:

F (x) = arg max
y∈GEN(x)

Φ(x, y) · ᾱavg

The WER-sensitive perceptron algorithm is obtained by defining a better loss function

tailored for reranking ASR hypotheses. The loss function of the averaged perceptron [1]

79

algorithm can be written as follows:

L(ᾱ) =
n∑
i=1

Jᾱ ·Φ(xi, zi)− ᾱ ·Φ(xi, yi)K

where JxK = 0 if x < 0 and 1 otherwise. We can define a better loss function which is

based on the total number of extra errors we do by selecting the candidates with higher

WER rather than the best candidates. Then minimizing the loss function corresponds

to minimizing the WER of the reranker. We define the word error rate sensitive loss

function as follows:

L(ᾱ) =
n∑
i=1

∆(yi, zi)Jᾱ ·Φ(xi, zi)− ᾱ ·Φ(xi, yi)K

where the loss function ∆(yi, zi) for each example xi is defined as the difference of edit

distances of zi and yi with the reference transcription of xi.

The gradient of the loss function can be found by the stochastic gradient descent

as λ∆(yi, zi)(Φ(xi, yi) −Φ(xi, zi)), where λ is the learning rate. For the experiments,

we set the λ to 1, for which we found the algorithm to converge well. We also provide a

proof of convergence for the WER-sensitive perceptron algorithm for linearly separable

training sequences in the appendix.

Note that a loss-sensitive perceptron algorithm has been proposed for reranking

speech recognition output in [22]. Although this work is similar in using edit distance

as a loss function, they use it for scaling the margin to ensure that hypotheses with

a large number of errors are more strongly separated from the members of the set of

lowest error (optimal) hypotheses. They also update the weight vector using features

from optimal and non-optimal set of hypotheses that violate the scaled margin.

80

4.4. Experiments

This section gives experimental results for the application of proposed generative

and discriminative language models to a Turkish broadcast news transcription task.

4.4.1. Broadcast News Transcription System

The automatic transcription system uses hidden Markov models (HMMs) for

acoustic modeling and WFSTs for model representation and decoding. The HMMs are

decision-tree state clustered cross-word triphone models with 10843 HMM states and

each state is a Gaussian mixture model (GMM) having 11 mixture Gaussian densities

with the exception of silence model having 23 mixtures. The model has been trained

on 188 hours of acoustic data from the Boğaziçi broadcast news (BN) database [3,38].

Separate from the training data, disjoint held-out (3.1 hours) and test (3.3 hours) data

sets are used for parameter optimization and final performance evaluation, respectively.

The language models are trained using two text corpora. The larger corpus is

the NewsCor corpus (184 million words) described in Section 3.3 and acts as a generic

corpus collected from news portals. The other one is the BN corpus (1.3 million words)

and it contains the reference transcriptions of BN database and acts as in-domain

data. The generative language models are built by linearly interpolating the language

models trained on these corpora. The interpolation constant is chosen to optimize

the perplexity of held-out transcriptions. The baseline n-gram language models are

estimated with interpolated Kneser-Ney smoothing and entropy-based pruning using

the SRILM toolkit [39]. The discriminative models are trained using only the BN

corpus. The speech recognition experiments are performed by using the AT&T DCD

library 7 . This library is also used for the composition and optimization of the finite-

state models to build the search network for decoding.

7http://www.research.att.com/˜fsmtools/dcd/

81

4.4.2. Generative Language Models

We evaluated the performance of the proposed morpholexical language model

against the word and morph models on the broadcast news transcription task. We

experimented with two different morpholexical language models with modeling units

of lexical-grammatical morpheme and lexical stem+ending.

For the experimental set-up of the word and morph based models, we used the

settings in the previous studies of [3, 38]. The vocabulary size of 200K and n-gram

order of 3 were chosen for the word based model to balance the trade-off between

recognition performance and computational cost increasing with the model complex-

ity. The OOV rate of the test set with the 200K word vocabulary is 2%. For the

morph based model, we employed the best performing method of marking non-initial

morphs with “-”, which is used to locate the word boundaries for the purpose of con-

version from morph sequences of recognition results to word sequences. This method

increased the vocabulary size from 50K to 76K. The OOV rate of the test set with the

76K morph vocabulary is 0%, since the letters are also included in the morphs lexi-

con. The morph based experiments were conducted with 4-gram language models. To

build the morpholexical language models, the text corpora were morphologically parsed

and disambiguated to get the lexical-grammatical morpheme and lexical stem+ending

representations of corpora. The lexicon of the morphological parser contains about

88K symbols. The OOV rate of the morphological parser on the test set is about

1.3%. The lexical-grammatical morpheme representation resulted in about 175K sym-

bols. The lexical stem+ending representation resulted in about 200K symbols. For

both morpholexical units, the n-gram order of 4 was chosen. The morpholexical search

networks were built using the lexical transducer of the morphological parser and the

weighted finite-state automata representation of the morpholexical language models as

explained in Section 4.2. The search network was optimized using local determinization

from GRM library [88].

Figure 4.2 shows the word error rate versus real-time factor for the word, morph,

morpheme, lexical stem+ending, and surface form stem+ending models for the first-

82

0.5 1.0 1.5 2.0 2.5 3.0 3.5

24
25

26
27

Real−time factor (cpu time/audio time)

W
E

R
 (

%
)

●

●

●

●

● word
morpheme (lexical)
stem+ending (surface form)
morph (statistical sub−word)
stem+ending (lexical)

Figure 4.2. Word error rate for the first-pass versus real-time factor obtained by

changing the pruning beam width.

pass. Note that since the morpholexical models output recognition results in mor-

phological representation, we use the inverse of lexical transducer of morphological

parser as a word generator to convert them to words to calculate the WERs. Since the

language models are pruned for computational reasons when building the optimized

search networks of first-pass recognition, we rescore the output lattices with unpruned

language models as a second-pass. Table 4.2 shows the recognition results for the

rescoring of n-best hypotheses for all the models at ∼1.5 real-time factor. As can be

seen from the first-pass and second-pass results, the sub-word and sub-lexical models

perform significantly better than the word-based model. As a morpholexical language

model, the lexical stem+ending model has the best performance.

4.4.3. Effectiveness of Morphotactics and Morphological Disambiguation

In this section, we give experimental results showing the effect of morphotactics

and morphological disambiguation on speech recognition performance using the lexi-

cal stem+ending model. Figure 4.3 shows the word error rate of the first-pass speech

83

Table 4.2. Results for rescoring with unpruned language models.

Model WER (%) Rescore WER (%)

word 25.6 23.4

morpheme 24.6 22.2

stem+ending (surface) 24.6 22.0

morph 24.5 22.4

stem+ending (lexical) 23.9 21.6

recognition at various real-time factors using four different language models. The

baseline model is the lexical stem+ending model with the correct morphotactics and

morphological disambiguation. First, we experimented with the morphotactics. The

stem+ending:no-mt model represents the experiment where the morphotactics com-

ponent of the lexical transducer allows any ordering of the morphemes. Second, we

tested the effectiveness of doing morphological disambiguation on the language model

text corpus. The stem+ending:no-disamb model represents the case where the mor-

phological disambiguation is replaced with choosing the morphological parse with the

least number of morphemes. The final model stem+ending:no-mt-no-disamb shows the

cumulative effect for the absence of morphotactics and morphological disambiguation.

It is clear that morphotactics is effective in reducing the error rate. This result shows

that morphotactics is successful in constraining the search space to valid morpheme

sequences. Besides, this figure shows that morphological disambiguation also improves

speech recognition performance. We can conclude that morphological disambigua-

tion improves the prediction power of morpholexical language model. The absence of

morphotactics and disambiguation together has a larger impact on recognition perfor-

mance.

4.4.4. Effect of Pronounciation Modeling

Most of the words in Turkish have one-to-one mapping between graphemics and

pronunciation. However, there are quite a number of exceptional subtle phenomena

in loan words, and in morphophonology, such as vowel length alternations, which are

distinguished in phonetic transcription rather than orthography. For instance, there

84

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

23
.5

24
.0

24
.5

25
.0

25
.5

26
.0

26
.5

27
.0

Real−time factor (cpu time/audio time)

W
E

R
 (

%
)

●

●

●

●

● stem+ending
stem+ending:no−mt
stem+ending:no−disamb
stem+ending:no−mt−no−disamb

Figure 4.3. Effects of morphotactics and morphological disambiguation for the lexical

stem+ending model.

are some homographs which can be morphologically parsed in multiple ways having

different pronunciations, such as karın. Oflazer describes a finite-state transducer im-

plementation for a Turkish pronunciation lexicon [37]. However, to the best of our

knowledge, there has been no study to evaluate the effect of pronunciation modeling

for Turkish ASR, where the orthographical symbols in the alphabet have been generally

used for acoustic and pronunciation modeling.

To study the effect of pronunciation, we built a finite-state pronunciation lexicon

for Turkish. The architecture of the system is quite different than [37]. We built

a pronunciation lexicon for exceptional root words (about 3700) which are mostly

loan words and do not have a direct mapping to orthography. We also compiled a

modified two-level rule transducer that operates on phonemes rather than graphemes.

The resulting morphophonemics transducer also handles exceptional morphophonology

such as lengthening of vowels. As the phoneme set, we used a proprietary phoneme

set which is based on SAMPA standard8 , but the phonetic changes are reflected on

8http://www.phon.ucl.ac.uk/home/sampa/turkish.htm

85

the vowels. This makes morphophonological alternations easier to handle in two-level

morphology. We build the lexical transducer of the pronunciation lexicon by composing

the morphophonemics transducer and lexicon/morphotactics transducer updated with

the exceptional root pronunciations: MP ◦MT . Then the pronunciation lexicon can

be constructed by composing the inverse of this transducer with the lexical transducer

of the morphological parser: MG ◦MT ◦MT−1new ◦MP−1.

We used this pronunciation lexicon to build a new acoustic model and experi-

mented in broadcast news transcription. As an early investigation, we can confirm

that using phonemes instead of graphemes did not improve the ASR performance.

This can be expected since exceptional words are mostly loan words and their fre-

quency is quite low. It is also quite possible that acoustic model distinguishes between

most of them since it employs context dependent phones.

4.4.5. Discriminative Reranking of ASR Hypotheses

The speech decoder generates word, sub-word or morpheme lattices depending

on the units of the language model used in the first pass. Then, we extract an n-best

list of hypotheses from these lattices which are ranked by the combined score obtained

from the language and acoustic model. The resulting n-best hypotheses are reranked

with a discriminative linear model trained with the perceptron algorithm using the

features extracted from the hypotheses.

In the reranking experiments, we used the experimental setup of Arısoy [3]. The

n-best hypotheses for all systems are generated by decoding the acoustic training data

with the corresponding generative model. The acoustic model trained on all the utter-

ances in the training data is used to decode all the utterances. However, in language

modeling, 12-fold cross validation is employed to prevent over-training of the discrim-

inative model. This is done by decoding utterances in each fold with a fold-specific

language model which is built by interpolating the generic language model trained on

NewsCor corpus with the in-domain language model trained with the reference tran-

scriptions of the utterances in the other 11 folds. The same interpolation constant -

86

0.5 - is used for building fold-specific language models of all systems. 200K word, 76K

morph and 200K lexical stem+ending units of vocabulary were employed while building

3-gram word, 4-gram morphs, and 4-gram lexical stem+ending models, respectively.

Since the n-gram language models are pruned for computational reasons, the lattices

generated in the first-pass at ∼1.5 real-time factor are rescored with unpruned language

models.

The reranking models are trained both with the WER-sensitive perceptron algo-

rithm of Figure 4.1 and the original averaged perceptron algorithm. We also carried

out experiments to see the effect of using baseline score in discriminative training. The

50-best hypotheses extracted for each utterance from the rescored lattices are used for

the training and reranking. The number of iterations of the algorithm and the weight

α0 used for scaling the hypothesis score from the first-pass are optimized on a held-out

set.

The final reranking results are given on a test set in Table 4.3. The WER-

sensitive perceptron algorithm shows consistent improvements for all the models on

the test set. Dismissing the first-pass score in the training of the standard perceptron

degrades reranking performance on the test set. In contrast, it seems generally better

to dismiss the first-pass score for the WER-sensitive perceptron. This is important

since we might not have these scores if we want to train the discriminative model in

an unsupervised manner where we don’t have the transcribed acoustic data.

To evaluate the effectiveness of the WER-sensitive perceptron algorithm, we car-

ried out significance tests using the NIST MAPSSWE test for the morph model where

the algorithm seems to make significant difference. The WER-sensitive perceptron

without the baseline score in training gives the best word error rate of 21.5% for the

morph model as can be seen in Table 4.3. The performance improvement of this model

over three other configurations is significant at the levels of p = 0.048, p = 0.004, and

p < 0.001 with respect to the increasing word error rates of the configurations. The

stem+ending model performs significantly better than the word and morph model for

all the configurations (p < 0.001).

87

Table 4.3. Discriminative reranking results with the perceptron using unigram

features.

WER sensitive – – X X

Baseline score in training – X X –

Model oracle 1-best reranking

word 15.0 23.4 23.2 23.0 22.9 23.0

morph 13.9 22.4 21.9 21.8 21.7 21.5

stem+ending 13.7 21.6 21.1 20.9 20.9 20.8

Although we used the unigram features for all the models in the reranking ex-

periments, Arısoy [89] has shown that using richer linguistic and statistically derived

features further improves the reranking performance.

4.5. Discussion

We first introduced the morpholexical language model which is a morpholog-

ical sub-lexical n-gram language model. Second, we showed that we can build a

morphology-integrated search network for ASR using a morpholexical language model

and the lexical transducer of the morphological parser in the finite-state transducer

framework. This proposed approach is superior to word n-gram models in the follow-

ing aspects:

• The vocabulary is unlimited since the modeling units are sub-lexical units.

• It alleviates the OOV and vocabulary growth problem. The OOV rate is effec-

tively reduced to about 1.3% on the test set. For comparison, the 200K word

model has about 2% OOV rate.

• Using lexical units alleviates data sparsity problem.

• Lexical stem+ending model gives the best results, and it improves the WER over

word model by 1.8% absolute.

Besides, it is superior to statistical sub-word (morph) models in some other aspects:

88

• The modeling units as being lexical and grammatical morphemes provide a lin-

guistic approach.

• The linguistic approach enables integration with other finite-state models like

pronunciation lexicon.

• The morphology-integrated search network only allows valid word sequences thanks

to the morphotactics.

• The morphological features can be further exploited in a rescoring or reranking

model.

• Lexical stem+ending model improves the WER over morph model by 0.8% ab-

solute.

The experimental results show that lexical stem+ending model as a morpholex-

ical language model outperforms all the other models significantly. We also show

that morphotactics and morphological disambiguation are effective for better language

modeling.

Third, we presented a variant of the perceptron algorithm, WER-sensitive per-

ceptron, for discriminative training of reranking models. The experimental results

show that this algorithm is better for reranking speech recognition hypotheses. The

reranking WER for the lexical stem+ending model is lower by 2.2% and 0.7% absolute

than word and morph models respectively.

Although, the language models and techniques in this work have been developed

and applied for Turkish speech recognition, they can be applied for other morpholog-

ically rich languages such as Arabic, Finnish, and Czech and in other language pro-

cessing applications. We believe that using grammatical sub-lexical units in language

modeling can be even more beneficial for other applications especially for machine

translation.

89

5. ON-THE-FLY LATTICE RESCORING FOR

REAL-TIME ASR

A speech recognition lattice is a weighted directed acyclic graph where each path

from the start state to a final state represents an alternative transcription hypothesis,

weighted by its recognition score for a given utterance [2]. For large vocabulary speech

recognition, the n-gram language models are often pruned or the order of the language

model is lowered for computational reasons when building the optimized search net-

works of the first-pass recognition. Then the output word lattices from the first-pass

are rescored offline with unpruned language models or higher order n-grams. How-

ever, the real-time speech recognition systems such as the automatic closed captioning

system by Saraçlar et al. [90] that require low-latency cannot benefit from the lattice

rescoring as the latency increases with the size of the output lattice [91].

In this chapter, we propose an algorithmic framework for rescoring lattices on-

the-fly. The lattice generation method we employ is based on the lattice generation

algorithm of Ljolje et al. [2]. Although the algorithm we use for rescoring recognition

hypotheses is similar to the on-the-fly hypothesis rescoring algorithm of Hori et al. [92],

there are major differences. First of all, two methods concentrate on different problems.

While we employ a hypotheses rescoring method for producing rescored lattices on-the-

fly, Hori et al. [92] uses a similar method in an on-the-fly composition algorithm setting

to achieve fast and memory-efficient decoding in extremely large vocabulary continuous

speech recognition. They decompose the search network into two transducer groups

and a Viterbi search is performed based on the first transducer, whereas the second

transducer is used to rescore the hypotheses and the updated scores are used in the

Viterbi search. Second, we propose a more general lattice rescoring framework in terms

of enabling more general rescoring models rather than setting it up as a composition

of two finite-state models as in [92].

90

5.1. WFST-based Speech Decoding

The weighted finite-state transducers (WFSTs) are weighted directed graphs in

which each arc a has a source state S(a), a destination state D(a), an input label I(a),

an output label O(a), and a weight P (a). The WFSTs provide a unified framework for

representing different knowledge sources in ASR systems, e.g., hidden Markov models

(HMMs), context-dependent dependency networks, pronunciation lexicons, and n-gram

language models [6].

In the WFST framework, the speech recognition problem is treated as a trans-

duction from input speech signal to a word sequence. The various knowledge sources

are represented as WFSTs. A typical set of knowledge sources consists of a context-

dependency network C transducing context-dependent phones to context-independent

phones, a lexicon L mapping context-independent phone sequences to words, and an

n-gram language model G assigning probabilities to word sequences. The composition

of these models C ◦ L ◦ G results in an all-in-one search network that directly maps

context-dependent phone (corresponding to an HMM) sequences to weighted word

sequences, where weights can be combinations of pronunciation and language model

probabilities. The WFST also offers finite-state operations such as composition, deter-

minization and minimization to combine all these knowledge sources into an optimized

all-in-one search network.

The decoding for the best path in the resulting network is a single-pass Viterbi

search. In this work, we implemented a WFST-based Viterbi speech decoder to exper-

iment with the on-the-fly lattice rescoring using the OpenFst library [75].

5.1.1. One-Best Decoding

The decoding for the best path of arcs a = a1...an from the initial state to a final

state in a search network T given acoustic feature vectors ~x for a utterance can be

91

formulated as in [2]:

max
a

P (~x[0, τ], a) = max
a,t1,...,tn−1

n∏
i=1

P(x̃[ti−1, ti] | I(ai))P(ai)

The probability P (~x[ti−1, ti] | I(ai)) represents the likelihood assigned by the

acoustic model for the context-dependent phone I(ai) when applied to the feature

vectors ~x for the time interval ti−1, ti. The probability P (ai) is the language model

probability for the arc ai in T .

We can formulate this equation in terms of the best scoring path to each state of

T at a given time instant for the Viterbi algorithm. Let B(s) be the set of all paths

a1...ak in T from the initial state to state s and define that best scoring path as:

α(s, t) = max
a∈B(s),t1,...,tk−1

k∏
i=1

P (~x[ti−1, ti] | I(ai))P (ai)

Then:

max
a

P (~x[0, t], a) = max
s
α(s, t) =

max
D(a)=s

P (a)

[
max
t′<t

P (~x[t′, t] | I(a))α(S(a), t′)

]
(5.1)

In Equation 5.1, the Viterbi decoding of the best scoring path at a time instant is

expressed as two nested (max) loops: the outer loop considers each possible active arc

a ending in state s, and the inner loop finds the optimal start time t′ for a by combining

the acoustic likelihood of a between t′ and t with the best path score from the start to

state S(a) at time t′.

92

Each state of lattice L: (t, s) → a time frame t and a state s in T

for t = t0 to τ do

for each active arc a do

t′ ← arg max
t′<t

P (~x[t′, t] | I(a))P (a)α(S(a), t′)

NewArc from: (t′, S(a)) to: (t,D(a)) input: I(a) output: O(a)

weight: P (~x[t′, t] | I(a))P (a)

end for

end for

Figure 5.1. Lattice generation algorithm of Ljolje et al. [2]

5.1.2. Lattice Generation

The lattice generation method for on-the-fly lattice rescoring algorithm that we

propose is based on the the lattice generation algorithm of Ljolje et al. [2], which is

shown in Figure 5.1. Their lattice generation algorithm involves no extra computation

over the normal Viterbi algorithm other than the negligible time needed to add states

and arcs into the transducer lattice as it is being constructed. Each state of a phone-to-

word transducer lattice L corresponds to a pair (t, s) of a time frame in the recognition

and a state from the recognition transducer T . The initial state is the pair of utterance

start time 0 and the start state of T . The final states are the pairs consisting the

utterance end time τ and a final state from T . If, during the Viterbi recursion of

Equation 5.1, we have identified the optimal start time t′ for arc a ending in state

D(a) at time t, then a corresponding arc is added to L from state (t′, S(a)) to state

(t,D(a)). If necessary, state (t,D(a)) was first created ; state (t′, S(a)) must already

have been in L by induction. The new arc has input label I(a), output label O(a), and

weight P (~x[ti−1, ti] | a)P (a). All this information is readily available from the Viterbi

recursion. We store the index for the pair (t,D(a)) in the decoder active state data

structure for D(a) at the current time, and we store the index for the pair (t′, S(a)) in

the decoder active arc data structure for a. The generated phone-to-word transducer

lattice can also be converted to a word lattice and pruned relative to the best scoring

path through the entire lattice as explained in [2].

93

5.2. Lattice Rescoring

In this section, we describe the lattice rescoring method with composition as the

baseline and the proposed on-the-fly rescoring algorithm.

5.2.1. Lattice Rescoring with Composition

The word lattices output from a speech recognizer generally contain both the

acoustic model and the language model scores for the hypotheses as explained in the

previous section. For rescoring the lattices offline, the scores from the language model

of the first-pass for a transcription hypothesis is subtracted from that hypothesis’

lattice score and the resulting weighted finite-state automaton is intersected with the

rescoring language model automata. However, with a simple modification to the lattice

generation algorithm of [2] given in Section 5.1.2 - by assigning only the acoustic model

score P (~x[ti−1, ti] | a) to a new lattice arc and omitting the language model score P (a)

- we can get rid of the score subtraction step. Then we can just intersect the output

lattice with the better language model for rescoring. For short utterances, this method

of rescoring is very effective and has a very small latency. However, for real-time speech

recognition systems that require decoding long utterances as in Saraçlar et al. [90],

this method is not feasible since the memory for generating and storing the lattice

increases rapidly and the composition with large lattices leads to significant latency.

This method also requires that the rescoring model could be represented as weighted

finite-state automata, which may not be the case, for instance, for the discriminative

language models with complex feature sets.

In the ASR experiments, we implemented this method as a baseline to compare

with the on-the-fly rescoring method.

5.2.2. On-the-fly Lattice Rescoring

For on-the-fly lattice rescoring, we need an algorithm for lattice generation and

rescoring recognition hypotheses. The lattice generation algorithm is based on the

94

Each state of lattice R: (t, s, h) → a time frame t, a state s in T and an n-gram

history h for a path arriving to state s at time instant t

for t = t0 to τ do

for each active arc a do

t′ ← arg max
t′<t

P (~x[t′, t] | I(a))P (a)α(S(a), t′)

for each n-gram history h′t′(a) in arc a do

NewArc from: (t′, S(a), h′t′(a)) to: (t,D(a), ht(a)) input: I(a) output:

O(a) weight: P (~x[t′, t] | I(a))P (O(a)|h′t′(a))

end for

end for

end for

Figure 5.2. On-the-fly Lattice Rescoring algorithm.

algorithm given in Section 5.1.2. The recognition hypothesis rescoring methodology is

conceptually similar to the on-the-fly hypothesis rescoring algorithm of Hori et al. [92],

however the motivation and implementation of hypothesis rescoring is different.

The on-the-fly lattice rescoring algorithm is shown in Figure 5.2. Each state of a

phone-to-word rescored transducer lattice R corresponds to a tuple (t, s, h) of a time

frame in the recognition, a state from the recognition transducer T , and an n-gram

history for a path arriving to state s at time instant t. Since there may be multiple

paths arriving at a state at the same time during decoding with possibly different

n-gram histories, we need to keep track of n-gram word histories for active arcs and

states. The initial state is the tuple of utterance start time 0, the start state of T , and

the sentence start symbol <s>. The final states are the tuples consisting the utterance

end time τ , a final state from T , and the sentence end symbol </s>. If, during the

Viterbi recursion of Equation 5.1, we have identified the optimal start time t′ for arc

a ending in state D(a) with an n-gram history h at time t, then a corresponding arc

is added to R from state (t′, S(a), h) to state (t,D(a), h′) with updated history h′. If

the output label O(a) of that arc a is ε, h′ is the same with h. If not, then the new

history h′ is formed by dropping the oldest word and appending the output label O(a)

to the history. If necessary, state (t,D(a), h′) was first created ; state (t′, S(a), h) must

95

d0 d1

d2 d3

d4

h1:ε

h2:cat

h3:ε

h4:ε

s5:ate

time
ti−2 ti−1 ti

the cat 3 •
the dog 6 •

and the 2 •
that one 4 •

the cat 5 •
the dog 8 •

the cat 6 •
one cat 7 •

the cat 7 •
one cat 8 •

decoding network

l0

l1

l2

l3

l4

l5

l6

l7

ε/2

cat/4

cat/3

ε/2

ε/1

ε/1

the cat

and the

that one

lattice transducer

1

Figure 5.3. Hypotheses and associated lattice rescoring information during decoding.

already have been in L by induction. The new arc has input label I(a), output label

O(a), and weight P (~x[ti−1, ti] | a)P (O(a)|h). P (O(a)|h) is the language model score

assigned by the rescoring language model to the current n-gram. If the output symbol

is ε, it is taken as 1 to use the acoustic model score. All this information is readily

available from the Viterbi recursion. We store the index for the tuple (t,D(a), h′) in

the decoder active state data structure for D(a) at the current time, and we store the

index for the pair (t′, S(a), h) in the decoder active arc data structure for a.

5.2.3. Implementation Details

Figure 5.3 shows a partial decoding process of the Viterbi search progressing in

time. The upper part of the figure shows the states activated at a time instant ti. Each

active state stores a pointer to a list of rescoring tokens as shown above each state.

In the rescoring token list, we store the forward acoustic score of an active state at

the creation time of the list. This score is used to update the rescoring token scores

with the accumulated acoustic score. During the Viterbi decoding, we store a list of

maximum N rescoring tokens in each active state, where each token represents a word

trace (path) from the rescoring language model. A rescoring token contains the current

n-gram history, the score for the current rescoring state, and a pointer to a lattice state

96

that is being generated on-the-fly. When two hypotheses meet at the same active state,

the rescoring token lists are merged and the maximum N tokens with the N -best scores

are kept.

During decoding, each active arc has an associated HMM with a number of active

HMM states. In Figure 5.3, the active HMM states are not shown for clarity, but the

decoding process is very similar in the internal HMM states. When two hypotheses

meet at the same HMM state in an active arc, only the rescoring token list having

the token with the best score is retained. The pointers to the rescoring token lists are

shared pointers with reference counting. Therefore in the internal Viterbi decoding of

HMM states within an active arc, we can just propagate the pointers without copying

the lists.

Each rescoring token in a rescoring token list stores a unique n-gram history to

keep track of the state information in the rescoring language model. In Figure 5.3,

we use a 3-gram rescoring language model, therefore we only need to store bigram

word histories. This way of implementation provides a more general framework for

rescoring, since we can also use rescoring models that cannot be represented as finite-

state transducers. In the experiments, we used a 3-gram language model and used the

SRILM toolkit [39] to train language models and assign probabilities to n-grams on-the-

fly. However, it is also possible to use other language models such as a discriminative

language model to assign scores. Note that we can also use discriminative models with

acoustic, duration and language model based features such as [93] in the first pass by

simple modifications to the proposed lattice rescoring algorithm.

As indicated above, we generate the word lattices as in Ljolje et al. [2], however

one can also use the method by Saon et al. [29]. The lower part of Figure 5.3 shows

the rescored lattice being generated on-the-fly. Each rescoring token has a pointer to

a lattice state as shown by dashed arcs from decoding network to the lattice network.

When an active arc in the decoding network is expanded to a new state, that state is

activated and the rescoring token list propagated from the active arc is updated with

the new lattice pointers while adding new lattice arcs and states.

97

5.3. Experiments

We evaluated the performance of the rescoring algorithms on a Turkish broadcast

news transcription task. The acoustic model uses hidden Markov models (HMMs)

trained on 188 hours of broadcast news speech data [38]. In the acoustic model, there

are 10843 triphone HMM states and 11 Gaussians per state with the exception of the

23 Gaussians for the silence HMM. The test set contains 3.1 hours of speech data that

has been pre-segmented into short utterances (2410 utterances and 23038 words). We

used the geometric duration modeling in the decoder.

The speech decoder is our implementation of a WFST-based decoder using the

OpenFst library for finite-state operations and model representations [75]. We imple-

mented the lattice generation algorithm of Ljolje et al. [2] to produce the lattices. The

proposed algorithm for on-the-fly lattice rescoring has also been implemented in the

decoder.

The text corpora that we used for building n-gram language models are com-

posed of about 200 million-words BOUN NewsCor corpus collected from news portals

in Turkish and 1.3 million-words text corpus (BN Corpus) obtained from the tran-

scriptions of the Turkish Broadcast News speech database [38]. The language model

of the decoding network is a 3-gram language model with a vocabulary size of 200K

words. This model is estimated by linearly interpolating two language models trained

over the BOUN NewsCor corpus and the BN corpus to reduce the effect of out-of-

domain data. The language model trained on the BOUN NewsCor corpus is pruned

due to high memory requirements while building the optimized search network using

the SRILM toolkit [39]. The language model used for lattice rescoring experiments use

the unpruned language models with the same n-gram order of 3.

We give speech recognition results for three systems. All the systems are single-

pass systems. In the first system, the decoder generates a lattice using the pruned

search network without any rescoring. The second system uses the pruned search

network to generate a lattice containing only acoustic model scores and the resulting

98

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

25
26

27
28

Real−time factor (cpu time/audio time)

W
E

R
 (

%
)

●

●

●

●

● no rescoring
on−the−fly rescoring
rescoring with composition

Figure 5.4. Word error rate versus real-time factor obtained by changing the pruning

beam width.

lattice is composed with the unpruned language model to rescore it as soon as the

recognition for each utterance ends. The third system uses our proposed on-the-fly

lattice rescoring method.

Figure 5.4 shows the word error rate versus run-time factor obtained by varying

prune beam widths from 9 to 12 for three systems. As expected rescoring with un-

pruned language models improves the accuracy. Since the utterances in our test set are

short, the baseline rescoring method has not a significant effect on run-time for small

beam-widths. The on-the-fly rescoring method achieves about the same accuracy with

the baseline rescoring method. The proposed lattice rescoring method can generate

rescored lattices with less than 20% increased computation over standard lattice gen-

eration. However, the accuracy improvement for a real-time system (i.e. the real-time

factor 1 in the graph) is very significant for the on-the-fly rescoring method without

increasing the latency of the baseline system with no rescoring.

99

6. CONCLUSIONS

In this thesis, we presented our approaches for solving the problems in speech

and language processing of Turkish associated with its productive morphology. We

focused on improving statistical language modeling of Turkish. However, the proposed

methodologies can be applied to other languages having agglutinative or inflectional

morphology, such as Arabic, Czech, Finnish, and Korean. The developed language

modeling approaches have been applied in an automatic speech recognition task, where

the language models are essential components highly affecting the accuracy of the

system. But, it is clear that these approaches are also valuable for other application

areas, such as machine translation, and language generation.

In the following sections, we summarize the main contributions of this thesis.

6.1. Language Resources

We developed a set of tools and resources for efficient and effective processing of

Turkish to increase the performance of SLP systems. These tools and resources are

available for further studies in morphological processing of Turkish:

• We developed a stochastic finite-state morphological parser. It is the first proba-

bilistic morphological analyzer, which outputs the parse probabilities along with

the morphological analyses. It is highly efficient and can analyze about 8,700

words per second on a 2.33 GHz Intel Xeon processor.

• We developed an averaged perceptron-based morphological disambiguator, which

achieves the highest disambiguation accuracy reported in the literature for Turk-

ish. Since it is a feature-based linear model, it provides great flexibility in features

that can be incorporated into the disambiguation model. The disambiguation has

been implemented with a dynamic programming approach and it is fast and effi-

cient.

• We compiled a web corpus. The compilation process and corpus statistics were

100

described in detail. This text corpus has been used for statistical parameter

estimation throughout the thesis. This is the largest web corpus that has been

used for language processing of Turkish.

6.2. Morpholexical Language Model

We proposed a novel approach for statistical language modeling of morphologi-

cally rich languages. The proposed model is called morpholexical language model. This

model is a grammatical sub-lexical n-gram model in contrast to word or statistical

sub-word models. The morpholexical n-gram language model has many advantages:

• It provides a fully linguistic approach, since the modeling units are lexical and

grammatical morphemes annotated with morphosyntactic and morphosemantic

features.

• The vocabulary of the model is the lexical transducer of the morphological parser,

which can be considered as a computational dynamic vocabulary. Hence, the

vocabulary is unlimited for Turkish.

• The out-of-vocabulary word problem is greatly alleviated with the computational

lexicon. For instance, OOV rate is 1.3% on the test set, while the 200K word

model has about 2% OOV rate.

• The data sparsity problem is also less pronounced since sub-lexical units are used.

• The lexicon and the morpholexical language model can be represented efficiently

with finite-state transducers.

• This approach enables the use of computational pronunciation lexicons for lan-

guages where inter-morpheme coarticulation problem exists, such as Korean.

• The model generates only valid word forms when composed with a computational

lexicon, hence it solves the over-generation problem of sub-lexical units.

• The lexical and morphosyntactic features can be further exploited in a rescoring

or reranking model.

101

6.3. Morphology-Integrated Search Network

We proposed a novel approach to build a morphology-integrated search network

for ASR with unlimited vocabulary in the weighted finite-state transducer framework

(WFST). The proposed morpholexical search network is basically obtained by the com-

position of the lexical transducer of the morphological parser and the transducer of

morpholexical language model. The morpholexical search network for ASR has the

following advantages:

• The vocabulary of the ASR system is a dynamic vocabulary in contrast to a

static fixed vocabulary with word-based models, where the vocabulary is generally

dependent on the training corpus. This improves the OOV rate of the system

and the recognizer can recognize the words not seen in the training corpus.

• The recognizer outputs only valid word sequences since the morpholexical lan-

guage model is constrained with the morphotactics of Turkish.

• The proposed model improves ASR word error rate by 1.8% absolute over word

models and 0.8% absolute over statistical sub-word models at ∼ 1.5 real-time

factor.

6.4. Discriminative Reranking

We further improved the recognition accuracy of the morpholexical model by

rescoring the n-best hypotheses with a discriminatively trained model. This model

is a linear reranking model trained discriminatively with the proposed variant of the

perceptron algorithm. This algorithm called WER-sensitive perceptron performs better

for reranking speech recognition hypotheses by introducing error rate dependent loss

function. The discriminatively trained morpholexical model improved the WER of

the system by 0.8% absolute. We also showed that reranking WER for the lexical

stem+ending model is lower by 2.2% and 0.7% absolute than word and morph models

respectively.

102

6.5. Lattice Rescoring

We presented a general algorithmic framework for on-the-fly lattice rescoring.

Applications such as real-time closed captioning of news broadcasts require low-latency.

In such applications, offline lattice rescoring may not be used due to added latency of

the rescoring, which increases with the size of the output lattice. The proposed on-the-

fly lattice rescoring brings accuracy improvement of lattice rescoring without increasing

the latency of the system.

As a general framework, the language model for rescoring can be any model that

can assign scores to n-grams. For instance, it is possible to use the discriminative lan-

guage models of this thesis to rescore the lattices in this framework. This is important

since the discriminative models with complex feature sets cannot be represented as

finite-state automata. The lattices can even be rescored with multiple models.

103

APPENDIX A: TURKISH MORPHOPHONEMICS

First we list the set symbols used in the rules to represent sets of characters from

the alphabet and some special symbols:

V = {a, e, ı, i, o, ö, u, ü, â, û, ı̂, {, }, [, %, A, E}
BV = {a, ı, o, u, â, û}
FV = {e, i, ö, ü, {, }, [, %, E, ı̂}
CONS = {b, c, ç, d, f, g, ğ, h, j, k, l, m, n, p, q, r, s, ş, t, v, w, x, y, z}
NSY = {N, S, Y}
FSTKCSHP = {f, s, t, k, ç, ş, h, p}

The rules use the following lexical symbols to describe morphological alternations:

• The surface letters are in lower case: a, e, ı, i, o, ö, u, ü, â, û, ı̂, b, c, ç, d, f, g, ğ,

h, j, k, l, m, n, p, q, r, s, ş, t, v, w, y, z.

• + is the morpheme boundary symbol.

• ’ is the apostrophe symbol used for separating some suffixes from the proper

nouns.

• A is the lexical symbol realized as /a/ or /e/ in surface form.

• E is the lexical symbol realized as /e/ or /i/ in surface form. It is used to mark

the exceptional alternations of the stems “de” (to say) and “ye” (to eat) as “dE”

and “yE”.

• H is the lexical symbol realized as /ı/, /i/, /u/, or /ü/ in surface form.

• D is the lexical symbol realized as /d/ or /t/ in surface form.

• N is the lexical symbol that can be realized as /n/ or drop in some suffixes in

surface form.

• S is the lexical symbol that can be realized as /s/ or drop in some suffixes in

surface form.

• Y is the lexical symbol that can be realized as /y/ or drop in some suffixes in

surface form.

• ” is the lexical symbol that is used to mark the stems in which degemination

occurs in the final consonant.

104

• { is the lexical symbol realized as /a/ in surface form and behaves similar to /e/.

It is used in some stems, such as “dikk{t” (attention).

• } is the lexical symbol realized as /u/ in surface form and behaves similar to /ü/.

It is used in some stems, such as “us}l” (method).

• % is the lexical symbol realized as /o/ in surface form and behaves similar to /ö/.

It is used in some stems, such as alk%l (alcohol).

• [is the lexical symbol that is always realized as /â/ in surface form and behaves

similar to /e/.

• C is the lexical symbol realized as /ç/ or /c/ in surface form.

• G is the lexical symbol realized as /g/ in surface form.

• K is the lexical symbol realized as /k/ in surface form.

• Ç is the lexical symbol realized as /ç/ in surface form.

These last three symbols are used to differentiate some of the exceptional stems

that do not undergo default phonological alternations during suffixation. For

instance, the final /k/ consonant of a stem is mostly realized as /ğ/ when a suffix

starting in a vowel is affixed to and we replace it with K symbol for exceptional

stems.

• ? is the lexical symbol that can be realized as /?/ when it is the single token

question mark or ε when it marks the preceding vowel to drop such as “ağı?z”

(mouth) in certain suffixations.

• ˜ is the lexical symbol that is always realized as ε. It is used to mark the alter-

nation of the preceding /p/ and /t/ to /b/ and /d/, respectively, in some root

words such as “kitap˜” (book).

• ˆ is the lexical symbol realized as y or ε. It is used to mark the exceptional

alternations of the stems ending in “su” (water).

The two-level rules that describe Turkish phonological alternations are given below.

These rules can be compiled with Xerox twolc two-level rule compiler.

1. A:a ⇒ [A:a | H:u | H:ı | BV:] [’:’ | :CONS | :0]* _ ;

2. A:e ⇒ [A:e | H:ü | H:i | FV:] [’:’ | :CONS | :0]* _ ;

3. H:ı ⇒ [:ı | a:a | A:a | â:â | ı:0 ?:0 | *: [ı: 0 | a:0]

105

CONS: *:] (?:0) [H:0 | V:0 | CONS: | :CONS |

": | NSY: | ’:’ | ~:0 | +:0]* _ ;

4. H:i ⇒ [:i | :e | i:0 ?:0 | {:a | [:â | E:0 | *:

[i:0 | e:0 | {:0] CONS: *:] (?:0) [H:0 | V:0 |

CONS: | :CONS | ": | NSY: | ’:’ | ~:0 | +:0]* _ ;

5. H:u ⇒ [u:u | H:u | û:û | u:0 ?:0 | :o | *: [u:0 | o:0]

CONS: *:] (?:0) [H:0 | V:0 | CONS: | :CONS |

": | NSY: | ’:’ | ~:0 | +:0]* _ ;

6. H:ü ⇒ [:ü | ü:0 ?:0 | :ö | }:u | %:o | *: [ü:0 | ö:0]

CONS: *:] (?:0) [H:0 | V:0 | CONS: | :CONS |

": | NSY: | ’:’ | ~:0 | +:0]* _ ;

The first six rules implement the vowel harmony phenomenon in Turkish. The

first two state that an A symbol is realized as /a/ or /e/ depending on the agreement in

backness with the preceding vowel. The other four rules indicate that the realization of

the H symbol is decided by the agreement in backness and roundness with the preceding

vowel.

7. V:0 ⇔ *:0 _ (CONS:) *:0 ;

_ +:0 H: y o r ;

_ ?:0 :CONS (~:0) +:0 (N:0 | S:0) [A: | H:] ;

_ ?:0 :CONS (~:0) +:0 Y:0 A: ;

_ ?:0 :CONS (~:0) +:0 Y:0 H: .#. ;

_ ?:0 :CONS (~:0) +:0 Y:0 H: [m:m | z:z] ;

This rule describes the vowel ellipsis. When a word ends in a vowel and it is

attached the progressive tense suffix +Hyor, that vowel is omitted. Also, in some

stems such as ağız (mouth), the last vowel is omitted when it is added a suffix starting

with a vowel on the surface form. These stems are marked with the ? symbol after

the vowel that can be omitted, such as ağı?z. The vowel omission does not occur for

suffixes +YHm and +YHz.

8. H:0 ⇔ :V (’:’) +:0 _ ;

This rule is for the deletion of the H symbol when it is appended to a stem ending

106

in surface vowel.

9. NSY:0 ⇔ [CONS: | :CONS] (*:0 | ^: | ~:0 (":0) | ":0 |

’:’)* +:0 _ (:CONS) :V ;

This rule states that the N, S, and Y symbols are deleted when they are affixed

to a stem ending in consonant.

10. D:t ⇔ [FSTKCSHP: | :FSTKCSHP] (*:0 | ~:0 | ":0 | ’:’)*

+:0 (:0) _ ;

The above rule says that the D symbol is realized as /t/ when it is preceded by

a set of specific consonants, otherwise the D is realized as /d/ by default.

11. [p:b | t:d] ⇔ _ ~:0 (":) +:0 (NSY:0) [A: | H:] ;

This rule describes the final consonant devoicing when a suffix starting in a vowel

is attached to a stem. The voiceless plosives, /p/ and /t/ symbols, are converted into

their voiced counterparts /b/ and /d/, respectively, when they are at the end of a stem

marked with ˜ symbol.

12. C:ç ⇔ :FSTKCSHP (~:0) +:0 _ [A: | H:] ;

This rule encodes that the C symbol in some suffixes is realized as /ç/ when they

are affixed to a stem word ending in certain consonants. The default realization of this

symbol is /c/.

13. ç:c ⇔ _ +:0 (NSY:0) :V ;

This rule describes the final consonant devoicing for the symbol /ç/.

14. k:ğ ⇔ :V _ +:0 (NSY:0) :V ;

This rule says that the /k/ symbol at the end of some stems is realized as /ğ/

when they are affixed a suffix starting in a vowel.

15. k:g ⇔ n _ +:0 (NSY:0) :V ;

The final /k/ consonant of a stem with a preceding /n/ consonant is converted

107

to /g/ when a suffix starting in a vowel is affixed to.

16. g:ğ ⇔ \[n | r] _ +:0 (NSY:0) :V ;

The final /g/ of a stem is converted to /ğ/ when the affixed morpheme starts

with a vowel, provided that the preceding consonant is not /n/ or /r/.

17. ^:y ⇔ _ +:0 [H: | NSY:0] ;

This rule is for the exceptional case of the stem ending in “su” (water) and marked

with ˆ. The ˆ symbol is replaced with the /y/ consonant when a suffix starting with

a vowel is attached to.

18. E:i ⇔ _ +:0 Y: ;

This rule is for the stems dE (to say) and yE (to eat). The E symbol is realized

as /i/ when these stems are appended a suffix starting with Y. The default realization

for the E symbol is /e/.

19. ":Cx ⇔ :Cx (~:0) _ +:0 (NSY:0) [A: | H:] ; where Cx in CONS ;

This rule is for the degemination in a small number of Arabic loan words. Ac-

cording to this rule, the final consonant in some stems is doubled if a suffix starting in

a vowel is appended.

20. Cx:0: ⇔ *:0 V:0 _ *:0 ; where Cx in CONS ;

The acronyms and abbreviations in the lexicon are appended with some ortho-

graphic symbols to make their pronunciations explicit, since the morphological alter-

nations in the affixed morphemes are dependent on their pronunciations. The added

consonant symbols are deleted with this rule. The vowels are handled in the vowel

omission rule.

21. [":" | -:- | ?:? | +:+ | %:%] ⇔ .#. _ ;

This rule is for the preservation of the punctuation symbols used also in this spec-

ification for describing some alternations. The .#. symbol indicates a word boundary.

108

APPENDIX B: TURKISH MORPHOTACTICS

End

VXY_Ar

VERB_VOICE_Ar

ε

VXY_Hr

VERB_VOICE_Hr

ε

VNX_Yr

VERB_PASSIVE_Hn

+Hn

VLX_Yr

+Hl

VXD_Yr

CAUSATIVE_DHR

+DHr

VXT_Yr

CAUSATIVE_T

+t

VREF

ε

+DHr

VREC

+Hl
ε

+DHr

VERB

εε ε εεε εε

NEGATIVE_MA

+mA

NEGATIVE_YAMA

+YAmA

SECOND_VERB

ε

POSITIVE_Ar

ε

+mA

POSITIVE_Hr

ε

+YAmA

ε

+Hl
ε

+Hl
ε

+t

+Hl
ε

+DHr

AORIST

+z NEGATIVE

+YAbil
+YAgel
+YAgör
+YHver
+YAdur
ε

AORIST_A1

ε

+sHn
ε

+sHnHz
+lAr

OTHER_TENSE

ε

OPTATIVE

+YHm
+sHn
ε

+lHm
+sHnHz
+lAr

VERB_TENSE_2

+YmHş

VERB_TENSE_1

+YDH

+Hr
VERBAL_STEM

ε +Hr

VERB_TENSE_PERSON_X

ε

VERB_TENSE_PERSON

+YHm
+sHn
+YHz
+sHnHz
+lAr

ADJ

ε+YHncA+YA
+YArAk+DAn

+YA

INFINITIVE

+mAk

+YAcAk
+mHş
+Hyor
+mAdA
+mAktA
+mAlH

VERBAL_ADV

+YHncA
+YArAk
+DHkçA
+YAlH
+YHp

VERBAL_NOUN

+YAsH
+DHk
+YAcAk
+mHşlHk
+YHş

+mAzlHk

+YAn

N

+YHcH
+mA PAST_COND

+sA
+DH

IMPERATIVE

ε

VERBAL_ADJ

+DHk
+YAcAk

CASE

+DAn
+YA
+YlA
+DA
ε

+DA

QUES

ε
+YmHş

+YsA
+YDH

ε

+m
+n
+k
+nHz
+lAr

ε
+YmHş

+YsA
+YDH

+mA

+Hr

+YAmA

POSITIVE

ε

+Hr

+z

+YAbil
+YHver
ε

ε

ε

VERB_TENSE_PERSON_COP

+DHr

+YsA
+YmHş
+YDH
+DHr
ε

+CAsHnA
+Yken

+lAr
ε

+mAdAn
+YAmAdAn
+mAksHzHn

ε

+YAbil
+YAgel
+YAgör
+YHver
+YAdur
+YAkal

+YAyaz
+YAkoy

+YDH
+DHr
ε

POST_VERBAL_ADV

+YsA
+YmHş

+DHr
ε

+mA

+Ar

+YAmAε

+Ar

+Hm
+YHz

+lHkNPL

+lAr +lHk
+CH

NSG

ε +YmHş
ε

+YsA
+YDH

ε
+sHn
+YHn
+YHnHz
+sHnlAr

ε
+Hm
+Hn
+SH
+HmHz
+HnHz
+lArH

Figure B.1. Verbal Morphotactics: Morphological features are not shown for clarity.

109

End

NOMINAL

VERB

+lAş
+lAn

N

ε

ADJ

ε

CN

ε

PROP

ε

+lHk
+CH
+CHk

+lHk

NPL

+lAr

NSG

ε

+CHk
+lHk

+lAr ε

CASE

ε

+lAr ε

POSSESSIVE

+SH
+lArH

ε
+DHr

+CH
+CHk

+sHz
+lH
+lHk

+lAr ε

POSSESSIVE_NON

'

'

+DHr

+sHz

ε
'

+Hm
+Hn
+SH
+HmHz
+HnHz
+SH

ε
+Hm
+Hn
+SH
+HmHz
+HnHz
+SH

+DHr

+sHz
+lH

ε
'

+Hm
+Hn
+SH
+SH'
+HmHz
+HnHz
+lArH
+lArH'

ε
+Hm
+Hn
+SH
+HmHz
+HnHz
+lArH

+CA

+DAn
+YA
+YlA

CASE_ACC

+YH

CASE_REL_PRON

+NHn

CASE_REL_ADJ

+DA

+CA

+NDAn
+NA
+YlA

+NH

+NHn

+NDA

ε
+Yken

VERB_TENSE_1

+YsA
+YDH

VERB_TENSE_PERSON

+YHm
+sHn
ε

+YHz
+sHnHz
+lAr

VERB_TENSE_PERSON_X

ε

VERB_TENSE_2

+YmHş

ε
+YsA

ε

RELATIVE

+ki

ε

ε
+lAr

ε

+ki

Figure B.2. Nominal Morphotactics: Morphological features are not shown for clarity.

110

APPENDIX C: MORPHOLOGICAL FEATURES

A list of inflectional and derivational morphological features is given here (adapted

from Oflazer [94]).

Table C.1. Morphological Features.

Major Part of Speech Gloss

+Adj Adjective PoS

+Adv Adverb PoS

+Conj Conjunctive PoS

+Det Determiner PoS

+Dup Duplicative PoS

+Interj Interjection PoS

+Ques Question PoS

+Verb Verb PoS

+PostP Post Participle PoS

+Num Number PoS

+Pron Pronoun PoS

+Punc Punctuation PoS

+Apos Apostrophe

Minor Part of Speech Gloss

+Card Number Cardinal

+Ord Number Ordinal

+Percent Number Percentage

+Range Number Range

+Real Number Real

+Ratio Number Ratio

+Distrib Number Distribution

+Time Number Time

+Inf Noun Infinitival

+PastPart Noun Past Participle

+FutPart Noun Future Participle

+Prop Noun Proper

+PastPart Adjective Past Participle

+FutPart Adjective Future Participle

+PresPart Adjective Present Participle

+DemonsP Pronoun Demonstrative

+QuesP Pronoun Question

+ReflexP Pronoun Reflexive

+PersP Pronoun Person

+QuantP Pronoun Quantitative

111

Table C.2. Morphological Features. (cont.)

Number/Person Agreement Gloss

+A1sg First Person Singular

+A2sg Second Person Singular

+A3sg Third Person Singular

+A1pl First Person Plural

+A2pl Second Person Plural

+A3pl Third Person Plural

Possessive Agreement Gloss

+Pnon No possessive marker

+P1sg First Person Singular

+P2sg Second Person Singular

+P3sg Third Person Singular

+P1pl First Person Plural

+P2pl Second Person Plural

+P3pl Third Person Plural

Nominal Case Gloss

+Abl Ablative

+Acc Accusative

+Dat Dative

+Equ Equative

+Gen Genitive

+Ins Instrumental

+Loc Locative

+Nom Nominative

112

Table C.3. Morphological Features. (cont.)

Verb Derivational Markers Gloss

+Pass Passive

+Caus Causative

+Reflex Reflexive

+Recip Reciprocal

+Able able to Verb

+Repeat Verb repeatedly

+Hastily Verb hastily

+EverSince have been verb-ing ever since

+Almost almost verb-ed

+Stay stayed frozen while verb-ing

+Start start verb-ing immediately

Verb Inflectional Markers Gloss

+Pos Positive Polarity

+Neg Negative Polarity

+Past Past Tense

+Narr Narrative Past Tense

+Fut Future Tense

+Aor Aorist

+Pres Present Tense

+Desr Desire/Wish

+Cond Conditional

+Neces Necessitative

+Opt Optative

+Imp Imperative

+Cop Copula

+Prog1 Present Continuous Process

+Prog2 Present Continuous State

Semantic Markers

+AfterDoingSo +SinceDoingSo +As +When +ByDoingSo +While +AsIf

+WithoutHavingDoneSo +Since +With +Without +SuitableFor

+InBetween +Relative +Ness +Agt +Dim +Become +Acquire

113

APPENDIX D: PROOF OF THE CONVERGENCE OF

THE WER-SENSITIVE PERCEPTRON

We give a proof of the convergence of the WER-sensitive perceptron algorithm for

a separable training sequence following a similar proof given for the averaged perceptron

in [1].

Definition D.1. Let the set of incorrect candidates for an example xi be GEN(xi) =

GEN(xi) − Yi where Yi is the set of all candidates with the lowest error rate. The

training sequence (xi, yi ∈ Yi) for i = 1 . . . n is separable with margin δ > 0 if there

exists some vector U with ||U|| = 1 such that

∀i,∀zi ∈ GEN(xi),U ·Φ(xi, yi)−U ·Φ(xi, zi) ≥ δ (D.1)

Theorem D.1. For any training sequence (xi, yi) which is separable with margin δ,

for the perceptron algorithm in Figure 4.1:

Number of mistakes ≤ R2r2

δ2
(D.2)

where R is a constant such that ∀i,∀zi ∈ GEN(xi), ||Φ(xi, yi)−Φ(xi, zi)|| ≤ R and r

is an upper bound on loss for any candidate, that is ∀i, ∀zi ∈ GEN(xi), ∆i(zi, yi) ≤ r

where ∆i(zi, yi) is the difference in the edit distances of zi and yi with the reference

transcription of xi, and yi ∈ Yi is a candidate with the lowest error rate.

Proof. Suppose that kth mistake is made at the ith example and let ᾱk be the weights

before that mistake is made and hence ᾱ1 = 0. Take zi as the output proposed at this

example, zi = arg maxz∈GEN(xi)
Φ(xi, z) · ᾱk. It follows from the algorithm updates

that ᾱk+1 = ᾱk + (Φ(xi, yi) − Φ(xi, zi))∆i(zi, yi). First we derive a lower bound for

114

||ᾱk+1||:

U · ᾱk+1 = U · ᾱk + U · (Φ(xi, yi)−Φ(xi, zi))∆i(zi, yi)

≥ U · ᾱk + δ∆i(zi, yi)

where the inequality follows from the definition of U. Since U · ᾱ1 = 0, it follows by

induction on k that for all k, U · ᾱk+1 ≥ δ
∑

k ∆i(zi, yi) where
∑

k ∆i(zi, yi) is the sum

of losses made at each mistake up to kth mistake. Because U · ᾱk+1 ≤ ||U||||ᾱk+1|| and

||U|| = 1, it follows that ||ᾱk+1|| ≥ δ
∑

k ∆i(zi, yi). Because the loss is at least one for

each mistake by definition, it follows that ||ᾱk+1|| ≥ δk

Now we derive an upper bound for ||ᾱk+1||2:

||ᾱk+1||2 = ||ᾱk||2 + ||Φ(xi, yi)−Φ(xi, zi)||2∆i(zi, yi)
2 +

2ᾱk · (Φ(xi, yi)−Φ(xi, zi))∆i(zi, yi)

≤ ||ᾱk||2 +R2∆i(zi, yi)
2

where the inequality follows because ||Φ(xi, yi) − Φ(xi, zi)||2 ≤ R2 by assumption,

and ᾱk · (Φ(xi, yi) − Φ(xi, zi)) ≤ 0 because zi is the highest scoring candidate for xi

under the parameters ᾱk. It follows by induction that ||ᾱk+1||2 ≤ R2
∑

k ∆i(zi, yi)
2.

Because the loss for any candidate has an upper bound r by assumption, it follows that

||ᾱk+1||2 ≤ R2kr2.

Combining the bounds ||ᾱk+1|| ≥ δk and ||ᾱk+1||2 ≤ R2kr2 gives the result for all

k that

δ2k2 ≤ ||ᾱk+1||2 ≤ R2kr2 ⇒ k ≤ R2r2

δ2
.

Because the upper bound on the number of mistakes the algorithm makes is constant,

the algorithm must converge within a finite number of iterations.

115

REFERENCES

1. Collins, M., “Discriminative Training Methods for Hidden Markov Models: Theory

and Experiments with Perceptron Algorithms”, Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP), pp. 1–8, 2002.

2. Ljolje, A., F. Pereira and M. Riley, “Efficient General Lattice Generation and

Rescoring”, Proceedings of the European Conference on Speech Communication

and Technology (Eurospeech), pp. 1251–1254, 1999.

3. Arısoy, E., Statistical and Discriminative Language Modeling for Turkish Large Vo-

cabulary Continuous Speech Recognition, Ph.D. Thesis, Boğaziçi University, 2009.

4. Allauzen, C., M. Mohri and B. Roark, “Generalized Algorithms for Constructing

Statistical Language Models”, Proceedings of the Association for Computational

Linguistics (ACL) Conference, pp. 40–47, 2003.

5. Mohri, M., “Finite-State Transducers in Language and Speech Processing”, Com-

putational Linguistics , Vol. 23, No. 2, pp. 269–311, 1997.

6. Mohri, M., F. Pereira and M. Riley, “Weighted Finite-State Transducers in Speech

Recognition”, Computer Speech and Language, Vol. 16, No. 1, pp. 69–88, 2002.

7. Mohri, M. and M. Riley, “Integrated Context-Dependent Networks in Very Large

Vocabulary Speech Recognition”, Proceedings of the European Conference on

Speech Communication and Technology (Eurospeech), pp. 811–814, 1999.

8. Allauzen, C., M. Mohri, M. Riley and B. Roark, “A Generalized Construction

of Integrated Speech Recognition Transducers”, Proceedings of the International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 761–764,

2004.

116

9. Salomaa, A. and M. Soittola, Automata-Theoretic Aspects of Formal Power Series ,

Springer-Verlag, New York, 1978.

10. Berstel, J. and L. Boasson, Transductions and Context-Free Languages , Teubner

Verlag, Leipzig, 1979.

11. Berstel, J. and C. Reutenauer, Rational Series and their Languages , Springer-

Verlag, New York, 1988.

12. Eilenberg, S., Automata, Languages, and Machines , Academic Press, New York,

1974.

13. Kuich, W. and A. Salomaa, Semirings, Automata, Languages , Springer-Verlag,

New York, 1986.

14. Mohri, M., Handbook of Weighted Automata. Monographs in Theoretical Computer

Science, chap. Weighted Automata Algorithms, pp. 213–254, Springer-Verlag,

Berlin, 2009.

15. Mohri, M., Handbook on Speech Processing and Speech Communication, Part E:

Speech recognition., chap. Speech Recognition with Weighted Finite-State Trans-

ducers, Springer-Verlag, Berlin, 2008.

16. Collins, M. and N. Duffy, “New Ranking Algorithms for Parsing and Tagging:

Kernels over Discrete Structures, and the Voted Perceptron”, Proceedings of the

Association for Computational Linguistics (ACL) Conference, pp. 263–270, 2002.

17. Collins, M. and T. Koo, “Discriminative Reranking for Natural Language Parsing”,

Computational Linguistics , Vol. 31, No. 1, pp. 25–70, 2005.

18. Shen, L. and A. K. Joshi, “Ranking and Reranking with Perceptron”, Machine

Learning , Vol. 60, No. 3, pp. 73–96, 2005.

19. Rosenblatt, F., “The Perceptron: A Probabilistic Model for Information Storage

117

and Organization in the Brain”, Psychological Review , Vol. 65, No. 6, pp. 386–408,

1958.

20. Freund, Y. and R. E. Schapire, “Large Margin Classification Using the Perceptron

Algorithm”, Machine Learning , Vol. 37, No. 3, pp. 277–296, 1999.

21. Rosenfeld, R., Adaptive Statistical Language Modeling: A Maximum Entropy Ap-

proach, Ph.D. Thesis, Carnegie Mellon University, 1994.

22. Singh-Miller, N. and M. Collins, “Trigger-Based Language Modeling Using a Loss-

Sensitive Perceptron Algorithm”, Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), Vol. 4, pp. 25–28, 2007.

23. Jelinek, F., Statistical Methods for Speech Recognition, The MIT Press, Cambridge,

Massachusetts, 1998.

24. Jurafsky, D. and J. H. Martin, Speech and Language Processing: An Introduction

to Natural Language Processing, Computational Linguistics and Speech Recognition

(Prentice Hall Series in Artificial Intelligence), Prentice Hall, New Jersey, 2000.

25. Rabiner, L. R., “A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition”, Proceedings of the IEEE , Vol. 77, No. 2, pp. 257–286,

1989.

26. Baum, L. E., T. Petrie, G. Soules and N. Weiss, “A Maximization Technique

Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains”,

The Annals of Mathematical Statistics , Vol. 41, No. 1, pp. 164–171, 1970.

27. Dempster, A. P., N. M. Laird and D. B. Rubin, “Maximum Likelihood from In-

complete Data via the EM Algorithm”, Journal of the Royal Statistical Society.

Series B (Methodological), Vol. 39, No. 1, pp. 1–38, 1977.

28. Viterbi, A., “Error Bounds for Convolutional Codes and an Asymptotically Opti-

mum Decoding Algorithm”, IEEE Transactions on Information Theory , Vol. 13,

118

No. 2, pp. 260–269, 1967.

29. Saon, G., D. Povey and G. Zweig, “Anatomy of an Extremely Fast LVCSR De-

coder”, Proceedings of the Annual Conference of the International Speech Commu-

nication Association (Interspeech), pp. 549–552, 2005.

30. Stolcke, A., “Entropy-based Pruning of Backoff Language Models”, In Proceedings

of the DARPA Broadcast News Transcription and Understanding Workshop, pp.

270–274, 1998.

31. Kneser, R. and H. Ney, “Improved Backing-off for M-gram Language Modeling”,

Proceedings of the International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP), Vol. 1, pp. 181–184, 1995.

32. Chen, S. F. and J. Goodman, “An Empirical Study of Smoothing Techniques for

Language Modeling”, Proceedings of the 34th annual meeting on Association for

Computational Linguistics , ACL ’96, pp. 310–318, Association for Computational

Linguistics, Stroudsburg, PA, USA, 1996.

33. Rosenfeld, R., “Two Decades of Statistical Language Modeling: Where Do We Go

from Here?”, Proceedings of the IEEE , Vol. 88, No. 8, pp. 1270–1278, 2000.

34. Roark, B., M. Saraçlar and M. Collins, “Discriminative N-gram Language Model-

ing”, Computer Speech and Language, Vol. 21, No. 2, pp. 373–392, 2007.

35. Hetherington, I. L., A Characterization of the Problem of New, Out-of-Vocabulary

Words in Continuous-Speech Recognition and Understanding , Ph.D. Thesis, Mas-

sachusetts Institute of Technology, 1995.

36. Rosenfeld, R., “Optimizing Lexical and N-gram Coverage Via Judicious Use of Lin-

guistic Data”, Proceedings of the European Conference on Speech Communication

and Technology (Eurospeech), pp. 1763–1766, 1995.

37. Oflazer, K. and S. Inkelas, “The Architecture and the Implementation of a Finite

119

state Pronunciation Lexicon for Turkish”, Computer Speech and Language, Vol. 20,

pp. 80–106, 2006.

38. Arısoy, E., D. Can, S. Parlak, H. Sak and M. Saraçlar, “Turkish Broadcast News

Transcription and Retrieval”, IEEE Transactions on Audio, Speech and Language

Processing , Vol. 17, No. 5, pp. 874–883, 2009.

39. Stolcke, A., “SRILM – an Extensible Language Modeling Toolkit”, Proceedings of

the International Conference on Spoken Language Processing (ICSLP), Vol. 2, pp.

901–904, 2002.

40. Geutner, P., “Using Morphology Towards Better Large-Vocabulary Speech Recog-

nition Systems”, Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), pp. 445–448, 1995.

41. Ircing, P., P. Krbec, J. Hajic, J. Psutka, S. Khudanpur, F. Jelinek and W. Byrne,

“On Large Vocabulary Continuous Speech Recognition of Highly Inflectional Lan-

guage - Czech”, Proceedings of the Annual Conference of the International Speech

Communication Association (Interspeech), pp. 487–490, 2001.

42. Kwon, O.-W. and J. Park, “Korean Large Vocabulary Continuous Speech Recog-

nition with Morpheme-Based Recognition Units”, Speech Communication, Vol. 39,

No. 3-4, pp. 287 – 300, 2003.

43. Choueiter, G., D. Povey, S. F. Chen and G. Zweig, “Morpheme-Based Language

Modeling for Arabic LVCSR”, Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, pp. 1053–1056, 2006.

44. Rotovnik, T., M. S. Maučec and Z. Kačič, “Large Vocabulary Continuous Speech

Recognition of an Inflected Language Using Stems and Endings”, Speech Commu-

nication, Vol. 49, pp. 437–452, 2007.

45. Goldsmith, J., “Unsupervised Learning of the Morphology of a Natural Language”,

120

Computational Linguistics , Vol. 27, No. 2, pp. 153–198, 2001.

46. Creutz, M. and K. Lagus, “Unsupervised Discovery of Morphemes”, Proceedings

of the Association for Computational Linguistics (ACL) Conference, pp. 21–30,

2002.

47. Siivola, V., T. Hirsimäki, M. Creutz and M. Kurimo, “Unlimited Vocabulary

Speech Recognition Based on Morphs Discovered in an Unsupervised Manner”,

Proceedings of the Annual Conference of the International Speech Communication

Association (Interspeech), pp. 2293–2296, 2003.

48. Hirsimäki, T., M. Creutz, V. Siivola, M. Kurimo, S. Virpioja and J. Pylkkönen,

“Unlimited Vocabulary Speech Recognition with Morph Language Models Applied

to Finnish”, Computer Speech and Language, Vol. 20, No. 4, pp. 515–541, 2006.

49. Çarkı, K., P. Geutner and T. Schultz, “Turkish LVCSR: Towards Better Speech

Recognition For Agglutinative Languages”, Proceedings of the International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 3, pp. 1563–

1566, 2000.

50. Hakkani-Tür, D. Z., Statistical Language Modeling for Agglutinative Languages ,

Ph.D. Thesis, Bilkent University, 2000.

51. Dutağacı, H., Statistical Language Models for Large Vocabulary Continuous Speech

Recognition of Turkish, M.S. Thesis, Boğaziçi University, 2002.

52. Arısoy, E., Turkish Dictation System for Radiology and Broadcast News Applica-

tions , M.S. Thesis, Boğaziçi University, 2004.

53. Hacıoğlu, K., B. L. Pellom, T. Çiloğlu, O. Öztürk, M. Kurimo and M. Creutz, “On

Lexicon Creation for Turkish LVCSR”, Proceedings of the European Conference on

Speech Communication and Technology (Eurospeech), pp. 1165–1168, 2003.

54. Erdoğan, H., O. Büyük and K. Oflazer, “Incorporating Language Constraints in

121

Sub-Word Based Speech Recognition”, Proceedings of the IEEE workshop on Au-

tomatic Speech Recognition and Understanding (ASRU), pp. 98–103, 2005.

55. Arısoy, E. and M. Saraçlar, “Lattice extension and vocabulary adaptation for

Turkish LVCSR”, IEEE Transactions on Audio, Speech and Language Processing ,

Vol. 17, No. 1, pp. 163–173, 2009.

56. Kirchhoff, K., D. Vergyri, J. Bilmes, K. Duh and A. Stolcke, “Morphology-Based

Language Modeling for Conversational Arabic Speech Recognition”, Computer

Speech and Language, Vol. 20, No. 4, pp. 589 – 608, 2006.

57. Afify, M., R. Sarikaya, H.-K. J. Kuo, L. Besacier and Y. Gao, “On the Use of

Morphological Analysis for Dialectal Arabic Speech Recognition”, Proceedings of

the Annual Conference of the International Speech Communication Association

(Interspeech), pp. 277–280, 2006.

58. Sarikaya, R., M. Afify, Y. Deng, H. Erdogan and Y. Gao, “Joint Morphological-

Lexical Language Modeling for Processing Morphologically Rich Languages With

Application to Dialectal Arabic”, IEEE Transactions on Audio, Speech and Lan-

guage Processing , Vol. 16, No. 7, pp. 1330–1339, 2008.

59. Lewis, G., Turkish Grammar , Oxford University Press, New York, 2001.

60. Oflazer, K., “Two-level Description of Turkish Morphology”, Literary and Linguis-

tic Computing , Vol. 9, No. 2, pp. 137–148, 1994.

61. Antworth, E. L., PC-KIMMO: A Two-Level Processor for Morphological Analysis ,

Lawrence Erlbaum Associates, New York, 1990.

62. Karttunen, L. and K. R. Beesley, Two-level Rule Compiler , Technical report, Xerox

Palo Alto Research Center, Palo Alto, CA, 1992.

63. Öztaner, S. M., A Word Grammar of Turkish with Morphophonemic Rules , M.S.

Thesis, Middle East Technical University, 1996.

122

64. Güngör, T., Computer Processing of Turkish: Morphological and Lexical Investi-

gation, Ph.D. Thesis, Boğaziçi University, 1995.

65. Hajic, J. and B. Hladká, “Tagging Inflective Languages: Prediction of Morpholog-

ical Categories for a Rich, Structured Tagset”, Proceedings of the Joint Conference

of the International Committee on Computational Linguistics and the Association

for Computational Linguistics (COLING-ACL), pp. 483–490, 1998.

66. Ezeiza, N., I. Alegria, J. M. Arriola, R. Urizar and I. Aduriz, “Combining Stochastic

and Rule-Based Methods for Disambiguation in Agglutinative Languages”, Pro-

ceedings of the Joint Conference of the International Committee on Computational

Linguistics and the Association for Computational Linguistics (COLING-ACL),

pp. 380–384, 1998.

67. Megyesi, B., “Improving Brill’s PoS Tagger for an Agglutinative Language”, Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), pp. 275–284, 1999.

68. Oflazer, K. and G. Tür, “Combining Hand-Crafted Rules and Unsupervised Learn-

ing in Constraint-Based Morphological Disambiguation”, Proceedings of the Con-

ference on Empirical Methods in Natural Language Processing (EMNLP), pp. 69–

81, Somerset, New Jersey, 1996.

69. Oflazer, K. and G. Tür, “Morphological Disambiguation by Voting Constraints”,

Proceedings of the Association for Computational Linguistics (ACL) Conference,

pp. 222–229, 1997.

70. Hakkani-Tür, D. Z., K. Oflazer and G. Tür, “Statistical Morphological Disam-

biguation for Agglutinative Languages”, Computers and the Humanities , Vol. 36,

No. 4, pp. 285–291, 2002.

71. Yüret, D. and F. Türe, “Learning Morphological Disambiguation Rules for Turk-

ish”, HLT-NAACL, pp. 328–334, 2006.

123

72. Sak, H., T. Güngör and M. Saraçlar, “Morphological Disambiguation of Turkish

Text with Perceptron Algorithm”, CICLing 2007 , Vol. LNCS 4394, pp. 107–118,

2007.

73. Say, B., D. Zeyrek, K. Oflazer and U. Özge, “Development of a Corpus and a Tree-

bank for Present-day Written Turkish”, Proceedings of the Eleventh International

Conference of Turkish Linguistics , pp. 183–192, 2002.

74. Salor, Ö., B. L. Pellom, T. Ciloglu, K. Hacioglu and M. Demirekler, “On Develop-

ing New Text and Audio Corpora and Speech Recognition Tools for the Turkish

Language”, Proceedings of the International Conference on Spoken Language Pro-

cessing (ICSLP), pp. 349–352, 2002.

75. Allauzen, C., M. Riley, J. Schalkwyk, W. Skut and M. Mohri, “OpenFst: A General

and Efficient Weighted Finite-State Transducer Library”, CIAA 2007 , Vol. 4783

of LNCS , pp. 11–23, Springer, 2007, http://www.openfst.org.

76. Koskenniemi, K., “A General Computational Model for Word-Form Recognition

and Production”, Proceedings of the Association for Computational Linguistics

(ACL) Conference, pp. 178–181, 1984.

77. Oflazer, K., B. Say, D. Z. Hakkani-Tür and G. Tür, Building and Exploiting

Syntactically-Annotated Corpora, chap. Building a Turkish Treebank, Kluwer Aca-

demic Publishers, 2003.

78. Kaplan, R. M. and M. Kay, “Regular models of phonological rule systems”, Com-

putational Linguistics , Vol. 20, pp. 331–378, 1994.

79. Karttunen, L., K. Koskenniemi and R. M. Kaplan, A Compiler for Two-level

Phonological Rules , Technical report, Center for the Study of Language and Infor-

mation, Stanford University, Palo Alto, CA, 1987.

80. Karttunen, L., R. M. Kaplan and A. Zaenen, “Two-Level Morphology with Compo-

124

sition”, Proceedings of the International Conference on Computational Linguistics

(COLING), pp. 141–148, 1992.

81. Kilgarriff, A. and G. Grefenstette, “Introduction to the Special Issue on the Web

as Corpus”, Computational Linguistics , Vol. 29, No. 3, pp. 333–348, 2003.

82. Liu, V. and J. R. Curran, “Web Text Corpus for Natural Language Processing”,

Proceedings of the 11th Conference of the European Chapter of the Association for

Computational Linguistics (EACL), pp. 233–240, Italy, 2006.

83. Eisner, J., “Parameter Estimation for Probabilistic Finite-State Transducers”, Pro-

ceedings of the Association for Computational Linguistics (ACL) Conference, pp.

1–8, 2002.

84. Solak, A. and K. Oflazer, “Design and Implementation of a Spelling Checker for

Turkish”, Literary and Linguistic Computing , Vol. 8, No. 3, pp. 113–130, 1993.

85. Oflazer, K., “Error-Tolerant Finite-State Recognition with Applications to Mor-

phological Analysis and Spelling Correction”, Computational Linguistics , Vol. 22,

No. 1, pp. 73–89, 1996.

86. Sak, H., M. Saraçlar and T. Güngör, “Morphology-Based and Sub-word Language

Modeling for Turkish Speech Recognition”, Proceedings of the International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 5402–5405,

2010.

87. Arısoy, E., H. Sak and M. Saraçlar, “Language Modeling for Automatic Turkish

Broadcast News Transcription”, Proceedings of the Annual Conference of the Inter-

national Speech Communication Association (Interspeech), pp. 2381–2384, 2007.

88. Allauzen, C., M. Mohri and B. Roark, “The Design Principles and Algorithms of a

Weighted Grammar Library”, International Journal of Foundations of Computer

Science, Vol. 16, No. 3, pp. 403–421, 2005.

125

89. Arısoy, E., M. Saraçlar, B. Roark and I. Shafran, “Discriminative Language Mod-

eling with Linguistic and Statistically Derived Features”, IEEE Transactions on

Audio, Speech and Language Processing , Vol. 20, No. 2, pp. 540–550, 2011.

90. Saraçlar, M., M. Riley, E. Bocchieri and V. Goffin, “Towards Automatic Closed

Captioning: Low Latency Real Time Broadcast News Transcription”, Proceed-

ings of the International Conference on Spoken Language Processing (ICSLP), pp.

1741–1744, 2002.

91. Kuo, H.-K., B. Kingsbury and G. Zweig, “Discriminative Training of Decoding

Graphs for Large Vocabulary Continuous Speech Recognition”, Proceedings of the

International Conference on Acoustics, Speech, and Signal Processing (ICASSP),

Vol. 4, pp. 45–48, 2007.

92. Hori, T., C. Hori, Y. Minami and A. Nakamura, “Efficient WFST-Based One-Pass

Decoding With On-The-Fly Hypothesis Rescoring in Extremely Large Vocabulary

Continuous Speech Recognition”, IEEE Transactions on Audio, Speech and Lan-

guage Processing , Vol. 15, No. 4, pp. 1352–1365, 2007.

93. Lehr, M. and I. Shafran, “Discriminatively Estimated Joint Acoustic, Duration

and Language Model for Speech Recognition”, Proceedings of the International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 5542–5545,

2010.

94. Kemal Oflazer, D. Z. H.-T. and G. Tür, “Design for a Turkish Treebank”, In

Proceedings of the Ninth Conference of the European Chapter of the Association

for Computational Linguistics (EACL’99), pp. 99–104, 1999.

