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ABSTRACT

AUTOMATED QUERY-BIASED AND STRUCTURE-PRESERVING
DOCUMENT SUMMARIZATION FOR WEB SEARCH TASKS

With the drastic increase of available information sources on the Internet, people
with different backgrounds in the world share the same problem: locating useful
information for their actual needs. Search engines provide a means for users to locate
documents on the Web via queries. However, users still have to perform the sifting process
by themselves; i.e., to decide the relevance of each document with respect to their actual
information needs. At this point, automatic summarization techniques can complement the

task of search engines.

Currently available search engines, such as Google and AltaVista, only show a
limited capability in summarizing the Web documents; e.g. displaying only two or three
lines of text fragments which consist of the query words and their surrounding text as the
summary. In the literature, most of the research in automatic summarization has focused on
creating general-purpose summaries without considering user needs. Also, summarization
approaches have mostly seen a document as a flat sequence of sentences and ignored the
structure within the documents. In the summarization literature, the effect of query-biased
techniques and document structure have been considered only in a few studies and
separately investigated. This research is distinguished from previous work by combining
these two aspects in a coherent framework. In this thesis, we propose a novel
summarization approach for Web search, i.e., query-biased and structure-preserving

document summarization.

The proposed system consists of two main stages. The first stage is the structural
processing of Web documents in order to extract their section and subsection hierarchy
together with the corresponding headings and subheadings. A document in the system is

represented as an ordered tree of headings, subheadings and other text units. First, we



formed a rule-based approach based on heuristics and HTML Document Object Model tree
processing. Then, we developed a machine learning approach based on the tree
representation using support vector machine (SVM) and perceptron algorithms. The
methods were evaluated based on the accuracy of heading extraction and hierarchy

extraction.

The second stage of the research is to develop automatic summarization methods by
utilizing the document structures obtained in the first stage. In the proposed method, the
summary sentences are extracted in a query-biased way based on two levels of scoring:
sentence scoring and section scoring. Document structure is utilized both in the
summarization process and in the output summaries. The performance of the proposed
system has been determined using several task-based evaluations. These include
information retrieval tasks where the summaries will actually be used. The results of the
experiments on Turkish and English documents show that the proposed system summaries
are superior to Google extracts and unstructured query-biased summaries of the same size
in terms of accuracy with reasonable judgment times. User ratings verify that query-biased

and structure-preserving summaries are also found to be more useful by the users.
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OZET

ARAMA MOTORLARI iCiN BiLGi ISTEGINE VE METIN
YAPISINA DAYALI OLARAK OTOMATIK DOKUMAN
OZETLENMESI

Internet’teki bilgi kaynaklarindaki biiyiik artisla birlikte, diinyada degisik arka
planlara sahip insanlar ayni problemi paylasmaktadir: Gergek ihtiyaglarina uygun bilgileri
bulmak. Arama motorlari, kullamcilarin, bilgi istekleri vasitasiyla Internet’teki
dokiimanlar1 bulmalar1 i¢in bir ara¢ saglamaktadir. Ancak, kullanicilarin eleme islemini,
yani her bir dokiimanin gergek bilgi ihtiyaglariyla ilgisine karar verme islemini, halen
kendilerinin yapmasi gerekmektedir. Bu noktada, otomatik 6zetleme yontemleri, arama

motorlarinin gérevini tamamlayabilir.

Giiniimiizde mevcut arama motorlar, &rnegin Google ve AltaVista, Internet
dokiimanlarini o6zetlemede, sadece bilgi istegindeki kelimeler ve c¢evrelerindeki metni
iceren iki ya da lUg¢ satirlik ozetler sunmak gibi, sinirli bir yetkinlik gostermektedir.
Literatiirde, otomatik 6zetleme konusundaki arastirmalarin ¢ogu, kullanici ihtiyaglarini
dikkate almayarak genel amagl 6zetler olusturma {izerine odaklanmistir. Ayrica, 6zetleme
yaklagimlart bir dokiimani c¢ogunlukla diiz bir ciimle dizisi olarak gormekte ve
dokiimanlardaki yapiy1 goz ardi1 etmektedir. Ozetleme literatiiriinde, bilgi istegine dayali
yontemler ve dokiiman yapisi1 sadece az sayida calismada ve ayri ayr ele alinmistir. Bu
calisma, Onceki caligmalardan bu iki yonii tutarhi bir cercevede bir araya getirmesiyle
ayrilmaktadir. Bu tezde, Internet aramasi icin 6zgiin bir dzetleme yaklasimi dneriyoruz:

Bilgi istegi ve dokiiman yapisina dayali 6zetleme.

Onerilen sistem, iki temel asamadan meydana gelmektedir. Ilk asama, Internet
dokiimanlarmin boliim ve alt boliim hiyerarsilerinin ilgili baglik ve alt basliklarla birlikte
ortaya ¢ikarilmasi i¢in yapisal olarak islenmesidir. Sistemdeki her bir dokiiman, bagliklar,

alt basliklar ve diger metin birimlerinden olusan sirali bir aga¢ yapist ile temsil



vil

edilmektedir. ilk olarak, bulussal yéntemler ve HTML Belge Nesne Modeli’ndeki agag
yapisinin iglenmesine dayali kural tabanli bir yaklagim olusturduk. Daha sonra, destek
vektor makineleri ile algilayici algoritmalarini kullanan ve aga¢ gosterimine dayali bir
makine Ogrenmesi yaklasimi gelistirdik. Yontemler, baslik ve hiyerarsi ¢ikarma

islemlerinin basarimina gore degerlendirildi.

Calisgmanin ikinci agsamasi, ilk asamada elde edilen dokiiman yapilarindan
faydalanilarak otomatik dzetleme yontemlerinin gelistirilmesidir. Onerilen yontemde, 6zet
ctimleleri, bilgi istegine dayali olarak iki seviyede degerlendirmeyle secilmektedir: Climle
bazinda puanlama ve bolim bazinda puanlama. Dokiiman yapisi, hem 6zetleme islemi
sirasinda hem de tiretilen 6zetlerde kullanilmaktadir. Sistemin basarimi, goreve yonelik
degerlendirmelerle belirlenmistir. Degerlendirmeler, 6zetlerin gercekte kullanilacagi gibi
bilgiye erisim gorevleri icermektedir. Tiirkce ve Ingilizce dokiimanlar {izerinde yapilan
deneylerin sonuglari, onerilen sistemin Ozetlerinin, Google 6zetleri ve ayni boyutlardaki
dokiiman yapis1 bilgisini kullanmayan bilgi istegine yonelik 6zetlere gore, makul karar
streleriyle, dogruluk agisindan {stlinlik sagladigint  gostermektedir.  Kullanict
derecelendirmeleri de, bilgi istegi ve dokiiman yapisina dayali 6zetlerin kullanicilar

tarafindan daha faydali bulundugunu dogrulamaktadir.
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1. INTRODUCTION

The drastic increase of available documents on the World Wide Web resulted in the
wide-spread problem of “information overload” [1]. That is, Internet users now have
access to vast amounts of information especially with the advent of search engines;
however, it is becoming more and more difficult and time-consuming to locate useful
information with respect to their actual information needs. The available information needs
to be efficiently used and there is no time to read everything individually. Search engines
usually return large numbers of results in response to user queries. A research on European
users showed that about 50% of documents viewed by users are irrelevant to their actual
needs [2]. Users need to explore several links in the search engine results in order to find
useful information. This is especially the case for specific and complex queries (e.g. best
countries for retirement) and for tasks such as background search (e.g. literature survey on
Mexican air pollution) rather than the ones with commonplace answers (e.g. the capital

city of Sweden).

In currently available search engines, such as Google and AltaVista, each link in the
results is associated with a short ‘summary’ (e.g. two-line extracts) of its content [3, 4].
The users need to scroll down the result pages, have a look at the links together with their
extracts one by one and click only the ones that seem relevant to their information need.
Such extracts may be very useful in directing the users to relevant documents. However, in
practice, they are too short and although they show some of the document fragments
containing the query words, they fail to reveal their context within the whole document in a
higher level. In other words, especially in the case of long and complex documents, such
extracts do not give sufficient information about the document contents. As a result of
these inadequacies, the users can either miss relevant results or spend time with irrelevant

ones.

In Figure 1.1, the first six results of Google in response to the TREC-2004 query (i.e.
topic) antibiotics bacteria disease are given [5]. In that task, the aim of the user is to find
documents that discuss how and why antibiotics become ineffective to some bacteria types.

Examining the documents corresponding to the results in Figure 1.1, it can be seen that



only half of the given extracts may effectively direct users. As an example, the second
result seems relevant considering its extract; however, when it is opened in the browser, it
turns out to be irrelevant. For the fourth result, the opposite is the case: considering the
search engine extract, the document seems irrelevant; however, in fact, it is relevant.
Finally, the extract for the fifth result does not provide sufficient information to make a
decision for its relevancy. Besides the deficiencies of such extracts, the alternative strategy
of opening each link in the results without taking the search engine extracts into account is
also not feasible. The reason is that page loading takes time and determining relevancy
may be difficult and time-consuming in the case of long and complex documents. Also,
there are usually a large number of returned results. Better approaches of summarization
may be used to overcome these problems and to improve the search experience of Internet

users.
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Figure 1.1. An example output of Google



At this point, automatic summarization research gains importance. Automatic
summarization is a rather old field of research dating back to late 1950s [6]. However,
there has been an increasing attention to this field from governments, academia and
industry in recent years with the rapid growth of accessible information sources, mostly the
World Wide Web. Automatic summarization research has traditionally aimed at creating
human-like and generic summaries. However, as stated by Sparck-Jones [7], creating
automatic summaries as successful as human summaries may be a long-term research
direction, but meanwhile summaries which are not perfect can be utilized for improving
the effectiveness of other tasks. Automatic summaries may be especially helpful in the
information retrieval task; i.e., the task of finding relevant documents in a large collection

in order to satisfy user queries for particular items of information.

Most of the automatic summarization studies focus on creating general-purpose
summaries of documents. However, in an information retrieval paradigm, it has become
important to bias summaries towards user queries in order to be effective. Also, traditional
approaches have usually considered a document as a flat sequence of sentences and
ignored the inherent structure of documents during the summarization process and in the
output summaries. This aspect becomes especially important in the context of Web
documents which typically show complex organization of content, having sections and

subsections with different topics and formatting.

In this thesis, we propose a novel summarization approach for Web search which
combines these two aspects, namely, document structure and query-biased techniques, both
in the summarization process and in the output summaries. In the summarization literature,
these aspects have been investigated separately and only in a small number of studies. To
the best of our knowledge, the effects of explicit document structure and query-biased
techniques on Web search have not been investigated together in previous studies. The
intuition behind the proposed method is that providing the context of searched terms in a
way that is preserving the structure of the document (i.e. sectional hierarchy and heading
structure) may help the users to determine the relevancy of the results better. First, the
document structure is used to determine important sections and subsections of a document
depending on the user query. Second, the structure is also provided as a part of the

summary (i.e. headings and subheadings under which the important sentences are located).



We developed a two-stage approach: Structural processing and summary extraction.
In the first stage, the structure of a given Web document is automatically analyzed and its
sectional hierarchy is extracted together with the headings and subheadings in the
hierarchy. This is based on the idea that a document can be represented as a tree with order
and containment relations between physical and logical components of the document [§].
We first developed a rule-based approach for document structure analysis using heuristics.
Then, we formed a machine learning approach which can be more flexible than the rule-
based approach. Here, we adapted a tree-based learning method using support vector
machines and perceptron. The second stage of the proposed system is summary extraction
and depends on the output of the first stage; i.e., document structure. We developed a
query-biased summarization approach which uses the structural information during the
summarization process and in the output summaries. For this purpose, basic statistical

approaches to summarization are adapted.

The proposed system has been evaluated on two levels. First, the proposed document
structure analysis methods are evaluated based on the accuracy of heading extraction and
document sectional hierarchy extraction. Then, the outputs of the proposed summarization
approach are tested using a task-based evaluation method, where the task is information
retrieval. The results are compared with both Google extracts and unstructured summaries.

The evaluation sets include Turkish and English document collections and queries.

The main contributions of this thesis are outlined in the following. Some of the thesis
results have been published:

- A novel summarization approach based on document structure and query-biased

techniques [9].

- Automatic analysis of domain-independent Web documents to obtain a hierarchy of

sections and subsections together with the headings using a rule-based approach [10]

and machine learning approaches [11].

- The first automatic summarization study for Turkish targeting Web search [12].

- Evaluation of the structure-preserving and query-biased summaries in Web search

tasks [13, 14].



1.1. Research Goals

We state the main research goal as creating more effective summaries than the ones
provided by traditional search engines in order to help the users judge the relevancy of
search results better. The targeted documents are general Web documents with no domain
restriction. Web documents are typically heterogeneous documents containing images,
texts in different formats, interactive forms, menus, etc. Their content may also be
diversified with sections on different topics, advertisements, etc. The screenshot of top and
bottom parts of a rather long Web document is given in Figure 1.2. The circles in the figure
mark different parts of the document and will be used for reference in the following

discussion.

We concentrate on several issues related to the main research goal. One issue is the
structural and semantic analysis of Web documents, which is a challenging task because
documents on the Web are generally prepared for visual access and for browsing by
Internet users. Automatic analysis of them is rarely considered when they are authored.
However, in order to improve summarization, both document content and document
structure need to be automatically analyzed and semantically exploited. Traditionally, Web
documents are prepared in HTML (Hypertext Markup Language) format whose primary
purpose is presentation of data which brings limitations when a semantic interpretation of
document content is desired. To eliminate this problem, semantic markup languages such
as XML (Extensible Markup Language) have been developed. However, HTML
documents still dominate the Web; our analysis on Google results with respect to
document types showed that there exist nearly 6.1 billion HTML pages but only 52 million
XML pages. Therefore, better methods for processing HTML documents are needed. In
this thesis, we address the particular problem of finding the sectional hierarchy of an
HTML document, where a document can be considered as consisting of sections and

subsections with corresponding headings and subheadings.

The document in Figure 1.2 corresponds to the fifth extract (snippet) in Figure 1.1.
By looking at the Google snippet, which is a linear concatenation of some document
fragments containing the query terms, it is hard to determine whether it is a relevant

document with respect to the query. However, if the context of the searched terms is made



explicit using structural clues and heading hierarchy, we expect that the users can more
easily make a decision on its relevancy. In the example, the relevant part resides near the
end of the document under the heading Antibiotic sensitivity. Extracting sentences from
that part and showing them under that subheading in the summary, as well as displaying
other parts and headings, may help the user to decide that this is actually a relevant

document.
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Figure 1.2. Some parts of an example Web document



In Figure 1.2, the boundaries of tables (<table> tag in HTML) that visually divide
the document into parts are shown as dotted lines. Such structural clues from HTML tags
can be utilized to identify sections and subsections. However, it should be noted that such
tags do not always correspond to meaningful division of content. Additionally, it is
necessary to distinguish the main content from secondary parts such as menus (e.g. (2) in
Figure 1.2), advertisements, etc. Also, headings and subheadings like (1), (a), (d) should be
distinguished from other text (e.g. (b) in Figure 1.2). These are nontrivial tasks due to the

underlying HTML format.

Another issue we consider is the use of the structural and semantic information (i.e.
document sectional hierarchy and content) during the summarization process as well as in
the output summaries. This involves the identification of the importance of sections and
subsections in a document given the user query. Important sections (i.e. sections with high
scores) and corresponding headings should be more heavily represented in the output
summary. This is contrary to the traditional summarization approaches where a document
is considered as a flat sequence of sentences. This task also involves query-biased

summarization techniques.

1.2. Outline of the Thesis

The rest of this dissertation is organized as follows. In Chapter 2, we give a general
literature survey on search engines, query types, automatic analysis of documents and
automatic summarization. This is followed by an overview of the proposed system in
Chapter 3, including the main approach, system architecture, implementation and data
collection. Then, the proposed rule-based and machine learning approaches for structural
processing of documents are detailed in Chapter 4 and Chapter 5, respectively, together
with the performance evaluations. In Chapter 6, the proposed summarization method is
presented which is based on the output of the structural processing stage; i.e., query-biased
and structure-preserving summarization. The chapter also includes the task-based
evaluations of the system comparing it with Google and unstructured summaries. Finally,

the thesis overview and conclusions are given in Chapter 7.



2. LITERATURE SURVEY

In this chapter, we first give a brief overview of search engines and query types. This
is followed by a survey on automatic document analysis. Then, we present background

information and related work on automatic summarization.

2.1. Search Engines and Query Types

Information retrieval discipline deals with the storage, retrieval and maintenance of
information. The general objective of an information retrieval system is to minimize the
time spent by a user in locating the needed information [15, 16]. Information retrieval on
the Web, although it is a variant of classical information retrieval, shows significant
differences when compared with traditional text retrieval systems. These differences
mainly stem from a number of typical characteristics of the Web such as its distributed
architecture, the heterogeneity of the available information, its size and growth rate, and so

on[17, 18].

One of the major components of a Web information retrieval system is the searching
component (the search engine). A search engine allows the user to enter search terms
(queries) that are run against a database and retrieves from its database Web pages that
match the search terms. We can identify several types of query form supported by modern
search engines [16, 17, 19, 20]. The basic and most-widely used mechanism is Boolean
search, where one or more keywords separated by (implicit or explicit) Boolean operators
are entered. Phrase search is a variant of Boolean search, in which the user requires a set of
contiguous words to be found in the given order. A generalized form of this idea is
proximity search in which a sequence of words or phrases is given together with a
maximum allowed distance between them. Another mechanism is limiting the search with
some restrictions on the search items or on the Web page properties. The most common
types are range searching (specifying a range for a word) and field searching (restricting

the content of a field such as the title, language or file type to a particular value).



Some of the search engines support a number of more advanced query types [16, 20].
Natural language search is a generalization of Boolean search, where any reference to
Boolean operators is eliminated and the user formulates the query as a question or a
statement. The search algorithms underlying this model of searching need to be quite
different from those of simple searching models. In thesaurus search, the search terms
supplied by the user are expanded to also include similar words or concepts. Finally, fuzzy
search refers to the capability of the system of handling the misspellings and variations

(e.g. stemmed form) of the same words.

The information needs of users can be classified based on three dimensions: the
intentionality or goal of the searcher, the kind of knowledge currently known by the
searcher, and the quality of what is known [21]. In the case of well-defined knowledge of
the user, specific information sources are searched, whereas in ill-defined (muddled) cases,
the search process is rather exploratory. In a related work, a summarization system is
evaluated based on four types of information need in Web search: search for a fact, search

for a number of items, decision search, and background search [22].

It is worth mentioning some statistical figures about search engines in order to better
evaluate their capabilities. Researchers estimate that the content of the Web is doubling
each year. Search engines can index only a fraction of the Web. A research dated 2003
reported that the largest search engine at that time (Google [3]) indexes about 3.8 billion
Web pages, which corresponds to only 16% of the Web [17]. Due to the huge size of the
Web, response time is a critical factor for search engines. When a query is given by a user,
a search engine normally scans all the pages indexed. However, in order not to have an
adverse effect on the response time, usually a few of the first result screens are generated
more quickly (e.g. by using some templates), exploiting the fact that most of the users do

not pass beyond a few screens [23].

2.2. Automatic Analysis of Documents

Information retrieval generally focuses on documents in electronic form which are

prepared for access and browsing by humans. Automatic analysis of documents can be
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useful to enhance this process. In this section, we consider the general problem of

document analysis and review the state of the art in Web document analysis.

2.2.1. General Document Analysis

In recent years, there has been a dramatically increasing usage of documents in
electronic form which have several advantages over traditional paper documents, such as
easy maintenance, efficient retrieval and transmission. Electronic documents can also be
processed and utilized structurally. They can be partitioned into physical components, such
as paragraphs, words, figures, etc., and logical components such as titles, authors, sections,
etc. This structural information can be used in indexing and retrieving useful information
contained in the documents. As a result, there have been several studies for the conversion

of paper documents into electronic form and the automatic analysis of document structure

[8].

In general, document structure analysis can be considered as a syntactic analysis
problem [8]. The order and containment relations between physical and logical
components of a document can be represented as an ordered tree. A tree grammar can be
used to describe a document as consisting of regions or blocks. This is analogous to a
sentence in syntactic parsing which can be described as a tree with grammatical
relationships among its words. Therefore, some syntactic analysis approaches in natural
language processing can be adapted to the document analysis problem. In [24],
transformation-based learning method which was previously applied to the syntactic
parsing problem is adapted for the conversion of HTML (Hypertext Markup Language)
documents into XML (Extensible Markup Language) format.

In a related work, the logical structure of a document is represented with a
generalized n-gram model based on a statistical approach [25]. The document structure is
constructed in a hierarchical way where local tree node patterns are defined similar to n-
grams in natural language processing. The tree patterns for n = 3 are given in Figure 3.1.
As seen in the figure, the context of a node is represented by its local neighbors such as its
siblings, ancestors or descendants. The document logical tree is incrementally built using

best-first search.
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Figure 2.1. The notation used to represent tree patterns [25]

Another approach is to model the hierarchical segmentation of a document by means
of a grammar [26]. Then, the document analysis problem is converted to the problem of
finding the optimal parse of the document given the grammar. In Figure 3.2, an example
grammar that can be used to describe printed pages is given where a page consists of
paragraphs, a paragraph consists of lines and so on. However, such pure probabilistic
context free grammars (PCFGs) have some limitations such as inclusion of feature
information. To overcome this limitation, the grammar can be replaced by an attributed
grammar; e.g. replacing the paragraph non-terminal by paragraph(IMargin, rMargin,
linespace, justification). Nevertheless, continuous attributes are problematic and the
grammar is generative. As an alternative, non-generative (i.e. discriminative) grammars
allow much more powerful models of terminal dependencies without an increase in
grammar complexity. Then, in learning, a set of parameters can be estimated which assign

high scores to correct grammatical groupings and low scores to incorrect groupings [26].

A recent approach in syntactic analysis is incremental parsing using beam search
[27]. In that approach, the parse tree is incrementally constructed and simple corrective
updates are performed to the parameters during training. The heuristic approach of beam
search is incorporated to reduce the size of the exponential search space of possible parses.
A similar approach has been applied to the problem of automatically generating the table-

of-contents for a long document (e.g. a book) [28]. In that study, a hierarchical
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discriminative approach which consists of a local and a global model is developed. It is
assumed that the hierarchical segmentation of the document is provided in the input. In the
local model, a list of candidate titles for each document segment is generated together with
their individual likelihoods. Then, in the global model, the table-of-contents is
incrementally created using beam search together with the information obtained in the

local model.

(Page — ParList)

(ParList —» Par ParlList)
(ParList — Par)

(Par —» LineList)

(LineList — Line LinelList)
(LinelList — Line)

(Line —» WordList)
(WordList — Word WordList)
(WordList — Word)

(Word — terminal)

Figure 2.2. An example grammar to describe printed pages [26]
2.2.2. Web Document Analysis

Structural and semantic analysis of Web documents is a relatively young field of
research. Web documents are usually encoded in HTML [29] and can contain rich
structural information. However, since HTML is mostly concerned with the presentation of
content, it does not always correspond to the semantics of the data. As a result, Web

documents are usually considered as “semi-structured”” documents [30].

One of the motivations in Web document analysis is to filter important content from
Web pages by eliminating advertisements and other cluttered parts which are very common
to Web pages [31]. Another motivation is to convert HTML documents into semantically-
rich XML documents to be utilized later [32]. This analysis may also be used for obtaining
a hierarchical structure for the document including its sections and subsections [33, 34, 35,
36]. Some of this work is motivated by the need of displaying content in small-screen
devices such as PDAs (Personal Digital Assistants) [34, 35], while others leave the usage

open, including more intelligent retrieval of information, summarization, etc.
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Most of the related work concentrates on exploiting HTML tags for the analysis;
some of them do the analysis by building the explicit DOM (Document Object Model) [37]
tree. The approaches used are mostly either rule-based or machine learning-based.
Moreover, some of them target a certain domain such as resume documents [32], whereas
others are domain-independent. In the following subsections, we give a brief overview of
Hypertext Markup Language and Document Object Model, and present the rule-based and

machine learning-based approaches in the literature.

2.2.2.1. Hypertext Markup Language and Document Object Model. Hypertext Markup
Language (HTML) is the universal publishing format on the World Wide Web [29]. It

allows web authors to publish online documents with headings, text, tables, lists, photos,
etc., and allows retrieval of documents via hyperlinks. It also enables the use of forms for
conducting transactions with remote services such as searching for information or ordering

products.

HTML documents are composed using markup tags (e.g. <font>), attributes,
attribute values (e.g. the size attribute in <font size = 3>), and text. Start and end tags (e.g.
<p> and </p>) are used to annotate content. In HTML syntax, there are two main types of
tag: container tags (<table>, <td>, <tr>, etc.) which include other HTML tags or text, and
format tags (<b>, <font>, <hl>, <h2>, etc.) which are usually concerned with formatting
of the text. In most of the Web documents, the organization of content is achieved by the
use of container tags; mostly <table> and related tags such as <tr> (corresponding to table
rows) and <td> (corresponding to table cells). Also, multiple levels of such tags may be
used in a nested way to obtain a complex organization. Other tags to group related content
include <div> to define a section in a document, <span> to group text level elements, and

<[i> to define a list.

The Document Object Model is a platform and language independent interface and
allows programs to dynamically access and update the content, structure and style of
documents [37]. The DOM presents documents as a hierarchy of nodes, which is referred
as the DOM tree. In Web document analysis, DOM tree of a Web document has started to
be increasingly utilized because it provides a more global view for the document structure

[30].
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2.2.2.2. Rule-Based Approaches. The DOM tree can be used to extract useful content from

Web documents by eliminating cluttered parts. One approach is to navigate the DOM tree
with different filtering techniques to remove and adjust specific nodes and thus to leave
only the useful content [31]. In [32], HTML pages in a specific domain are converted into
semantically-rich XML documents to be utilized in later processing. For this purpose, the
document trees are transformed by making use of concepts related to the domain and
document restructuring rules. The accuracy of the system was evaluated based on the
number of wrong parent-child and sibling relationships in the obtained document

hierarchies.

HTML documents can be decomposed into coherent segments in a flat or
hierarchical way. In hierarchical structure analysis, the document is processed to obtain a
hierarchy of segments and subsegments. One approach to obtain the hierarchical structure
is to group visually similar objects, such as document parts with similar formatting [33].
Alternatively, the document can be partitioned iteratively into smaller blocks by detecting
separators such as table borders and blank space between contents [34]. This analysis can
also be performed by partitioning the document into semantic textual units and arranging
the hierarchy based on emphasis differences between the units (e.g. the use of smaller or
larger fonts) [35]. Other approaches to hierarchical structure analysis include application of
a string matching algorithm on the DOM tree paths [36] and using presentation regularities
[38]. Our research differs from all these studies in the sense that we concentrate on section
and subsection headings and make use of these in building the hierarchy, whereas other

studies do not particularly concentrate on heading-based hierarchy.

2.2.2.3. Machine Learning Approaches. In the literature, there is some related work on the

extraction of the main title from documents in electronic form using machine learning
techniques. In [39], classification techniques such as support vector machines (SVMs) and
conditional random fields (CRFs) are used to extract the main title (i.e., a single title) from
the content of Web documents. The features are obtained from a DOM tree based method
(such as tag and formatting information) and from a vision-based method used to segment
the rendered Web document. After the title extraction, its use in document retrieval was

evaluated. In this thesis, we investigate a more general problem than the extraction of the
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main title; i.e., the problem of finding all the headings in a Web document together with

the underlying hierarchy.

In another machine learning-based work, the aim is to segment a given Web
document into blocks [40]. Binary classification (e.g. SVM) with DOM tree and formatting
features is used to determine whether two consecutive text nodes in the document
constitute an information block boundary or not. For each pair of text nodes, a set of
features is defined to represent the distance and the difference of them, such as the
difference between their formatting. The Web document is segmented in a flat way without
considering the hierarchical structure. Then, the blocks are classified into semantic

categories, such as page title, form and menu.

A document is modeled as a sequence of consecutive text units in [39] and [40].
Each unit usually corresponds to a line in the document with its particular formatting and
feature set as in Figure 2.3; a unit may also have no textual content [39]. The model for the
extraction of the main title is given in Figure 2.4. The learning tool takes documents as
input, each as a sequence of units x;;, x;2, ..., X;, aligned with a sequence of labels y;, yi, ...,
vin denoting whether a unit is the main title or not. Then, in extraction, a previously unseen
document, given as a sequence of units, is assigned with a sequence of labels. Based on

this output, the main title of the document is determined.

Unit 1

Ut 2: [text="T1icrosoft Corporation”, alighment=center boldface=false itahc="false,
1sH1=false largest-font=false,second_font_size=false.. ]

Ut 3:

Urat & [text="Windows Cperating System”,

aligroment=center boldface=false italic=false, 1sH1=true largest font size=false,..]
Urat 5 [text="Crerview " abanrnent=left boldface=talse 1talic=true 1sH1=false,
largest_font sre=false second font size=true..]

Figure 2.3. A sequence of units in an example HTML document [39]
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Figure 2.4. A title extraction model [39]

In [41], the problem of identifying important blocks within a Web document is
considered. First, a vision-based page segmentation algorithm is used to partition the
document into blocks with a hierarchical structure. Then, SVM and neural network
methods are used with spatial and content features of the blocks to assign importance

values to the blocks.

2.3. Automatic Summarization

2.3.1. Background Information

Automatic summarization can be defined as the process of distilling the most
important information from a source (or sources) to produce a shortened version for
particular users and tasks [1, 42]. There are several uses of automatic summarization in
today’s information world. Firstly, it can be used as an aid for browsing large documents
one by one or sets of documents. Next, it can be utilized in sifting process as an aid to
locate useful documents in a large collection. Also, automatic summarization can aid report

writers by providing abstracts.

Automatic summarization is related to and influenced by the research in information

retrieval and information extraction, where the former is concerned with finding
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documents whereas the latter with finding useful information inside documents. In fact,
summarization can be considered as a special kind of "information extraction" where the
summary is the extracted information [15]. Another field related to summarization is text
mining which differs from information retrieval and extraction by creating new
information from existing information. In this context, summarization constitutes a
borderline case. It cannot be considered as a text mining process when it simply extracts
information from a document. However, if it provides critical review or links to documents
not referenced in the original text or if it synthesizes information (as in cross-document

summarization), it can be considered under the field of text mining.

There are several types of summaries. One distinction is made between extracts and
abstracts. An extract is formed simply by extracting words or sentences from the source
text, whereas forming an abstract involves reformulation of information in a text using
deeper techniques such as natural language generation. Summaries can also be categorized
as generic or query-relevant. Generic summaries are general-purpose summaries which do
not focus on a particular topic, whereas query-relevant summaries are formed considering
the requirements of a particular user query. Query-relevant summaries can be useful for
large documents (e.g. manual or textbook) and documents containing diverse subject
matter (e.g. court opinions). Furthermore, summaries can be single-document or multi-
document. In the multi-document case, a single summary is obtained by considering the
contents of a set of documents. Another classification is related to the function of the
summary. A summary can be indicative, that is it can only briefly indicate the topics
addressed in the text, or it can be informative, covering the concepts of the text in a more

detailed manner.

Automatic text summarization can be described in three phases as in Figure 2.5 [43].
In the first phase, the input text is analyzed. In the second phase, it is transformed into a
summary representation. Finally, in the third phase, an output summary is generated, i.e.
synthesized, using the summary representation. During these phases, three different types
of condensation operations can be applied to obtain a condensed form of the text. These
are selection of important and non-redundant information, aggregation of information and

generalization of specific information [42, 43].
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Figure 2.5. Summarization stages [43]

There may be several ways of categorizing automatic summarization approaches.
One useful way is to categorize them according to the level of processing as surface-level,
entity-level and discourse-level approaches. There may also be hybrid versions of these

three approaches [1].

Surface-level approaches usually use shallow features to identify salient (i.e.
important) information in the text. These include thematic features (e.g. based on term
frequency statistics), location (e.g. position in text or paragraph, section depth, particular
sections), background (e.g. presence of terms from title, headings, initial part of text or

user query), cue words and phrases (e.g. a sentence beginning with the phrase “in

summary”) [1, 6, 44].

Entity-level approaches build an internal representation of the text by modeling text
entities and their relationships. They usually use the connectivity of entities, e.g. using
graph topology, to determine what is salient in the text. Different types of relationships
between entities include similarity (e.g. vocabulary overlap), proximity (distance between
text units), co-occurrence (words occurring in common contexts), thesaural relationships

(e.g. WordNet [45]), coreference, logical relations (e.g. agreement, contradiction),
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syntactic relations (e.g. based on parse trees) and meaning representation-based relations

(e.g. predicate-argument relations).

Discourse-level approaches model the global structure of the text and its relation to
communicative goals. These include the format of the document (e.g. hypertext markup or
document outlines), threads of topics as seen in the text and rhetorical structure of the text

(e.g. argumentation or narrative structure).

Evaluation of automatic summarization methods is another important area of
research. Methods of evaluation are usually categorized into two: intrinsic and extrinsic
evaluation. In intrinsic evaluation, the summary itself is evaluated. This can be done either
by direct user judgments of the quality or by calculating the similarity to an “ideal”
summary. Intuitively, the informativeness, i.e. the extent important information is
preserved in the summary, and coherence, including the readability of the summary, are
two different measures on the quality of a summary [46]. The measures used in most of the
practical systems are precision and recall which are used to determine the similarity of the
produced summary with the “ideal” summary. Other measures include Kappa, relative
utility, cosine similarity and longest common subsequence. In extrinsic evaluation (i.e.
task-based evaluation), the quality of a summary is determined based on how it affects the
completion of another task as in [47]. In ad hoc task, the aim is to correctly identify the
relevance of a document with respect to a given topic by using the summary. In
categorization task, the aim is to correctly categorize a document with respect to a given
set of topics by using the summary. Measures like time spent and accuracy obtained during

these tasks can be used to assess the quality of the summary.

2.3.2. Related Work

Early research in automatic summarization began in the late 1950s mainly with a
surface-level approach [6]. The first entity-level approaches started in the early 1960s. The
interest in the field renewed in the early 1970s, extensions are made to the surface-level
approach, and first commercial applications were developed. In the late 1970s, more
extensive entity-level approaches were developed and first discourse-based approaches

appeared. The 1980s saw a variety of different work including entity-level approaches
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based on artificial intelligence concepts. The late 1990s were described as the renaissance
of the field. During this period, all the three types of approaches were considered with
government and commercial interest. The focus was on extracts rather than abstracts with
renewed interest in surface-level approaches. Also, new areas of research including multi-
document summarization, multilingual summarization and multimedia summarization
began to be developed. Automatic summarization research has also been influenced by the
studies of abstracting behavior, including the psychological study of human summarization
in the laboratory and the study of professional abstractors [1]. The last decade showed a
valuable progress in the field due to the rapid growth of publicly accessible text on the
Web and evaluation programmes such as DUC (Document Understanding Conferences)
[43]. The recent studies include mostly extractive approaches using statistical and/or

shallow symbolic methods.

In the following subsections, the main approaches in automatic summarization are
considered with representative systems from the literature. These include classical, corpus-
based and discourse-based approaches. Then, more recent work is presented in the last

subsection.

2.3.2.1. Classical Approaches. Luhn’s paper is one of the oldest work in automatic

summarization [6]. It describes an algorithm which scores sentences based on term
frequencies and extracts highest scored sentences. The algorithm filters terms using a stop
list containing closed-class words such as pronouns and articles. Also, some kind of
normalization is applied on terms, e.g. the words “similar” and “similarity” are aggregated
together, and low-frequency terms are removed. Luhn’s basic statistical approach has had
significant influence to the subsequent research in automatic summarization. Edmundson
extended earlier work by using three other features in addition to word frequencies [44].

These are cue phrases (e.g. “significant”, “impossible”, etc.), title and heading words, and

sentence location.

2.3.2.2. Corpus-based Approaches. In one of the representative works in the literature,

extraction task is approached as a statistical classification problem [48]. The system uses a
training set of documents and corresponding human abstracts. Each sentence in the training

set is labeled based on whether it is included in the corresponding summary or not. Then, a



21

classification function is defined in order to estimate the probability that a given sentence
will be included in the summary. For this purpose, each sentence is described by a set of
features such as sentence length, sentence position in the paragraph, presence of high-
frequency content words, etc. Each sentence in an input text is ranked according to the
calculated probability and a user-specified number of top scoring sentences are selected to
be incorporated into the summary. This study has been followed by several other corpus-

based studies in this field [1].

2.3.2.3. Discourse-based Approaches. Discourse-based approaches can be classified into

two categories based on the distinction between cohesion and coherence [1]. Cohesion
involves relations between words or referring expressions and is related to how tightly the
document is connected. Such relations may include anaphora, ellipsis, conjunction and
lexical relations such as synonymy and hypernymy. The work by Barzilay and Elhadad is
based on lexical cohesion [49]. Coherence corresponds to macro-level relations between
sentences or clauses; e.g. clauses linked by “although” have a contrast relation. Marcu’s
work uses a coherence model based on rhetorical structure theory [50]. Based on several
earlier psycholinguistic studies, Marcu states that the structure of a text is essential in

summarizing the text [51].

2.3.24. Recent Work. Sparck Jones overviews the current state of automatic

summarization, and suggests methodologies and research strategies for this developing
field in her position papers [7, 43]. Sparck Jones underlines the importance of context
factors in summarization research. The proposed methodology is to determine the
operational factors for individual cases summarization is used. There are three types of
context factors: input factors, purpose factors and output factors [7]. Input factors include
the form (e.g. structure, genre, language), the subject type (ordinary, specialized or
restricted) and the unit (single or multiple sources) of the input. Purpose factors are the
situation (i.e. the context within which the summary is used), the audience and the use of
the summary. Qutput factors include the material (that is, whether the summary covers all
the main points or is partial), the format and the style (e.g. informative, indicative, critical,
etc.) of the output summary. Within these three factors, the most important ones to

consider as a part of research methodology are stated as the purpose factors.
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Most of the related work on automatic summarization aim at creating generic
summaries rather than query-biased ones and employ extraction methods based on
sentence weighting [52, 53, 54]. In a related work, the effects of several sentence
weighting schemes were investigated, including sentence length, query term order, and
query term frequency [55]. It was found that using a combination of weighting components

improves the performance compared to any single component.

Currently available major Web search engines, such as Google [3] and AltaVista [4],
use short extracts of document contents (i.e., two or three lines of text) in displaying their
results. Google creates document extracts using query-biased techniques. Query words
appearing within the document are output together with some of their context; i.e., with

leading and trailing non-query terms.

Tombros and Sanderson investigate the advantages of query-biased summaries in
information retrieval [56]. In that study, surface-level sentence extraction techniques, such
as title, location and query features, are used for summarization. It is shown that the use of
query-biased summaries significantly improves both the accuracy and the speed of users in
identifying relevant documents. Another related work is WebDocSum which is a retrieval
interface providing summaries much longer than those of the traditional search engines to
improve the search experience of Web users [22]. Instead of displaying the long summaries
under the search results, which may result in a cluttered view, only the link titles are listed
and the corresponding summaries are presented in a separate window when the mouse is
moved on a particular link. The summarization system was shown to be more effective
than the summaries of Google and AltaVista on a task-based evaluation. WebDocSum uses
a query-biased and surface-level technique for summarization. In [57], a structure-based
and query-specific summarization technique was proposed. This method tries to add
structure to a document by dividing it into text fragments (e.g. paragraphs) and connecting
related fragments as a document graph rather than making use of the explicit document
structure such as the sectional hierarchy. In that study, the summary is formed by a graph

search algorithm.

There is few work on summarization based on explicit document structure such as the

document sectional hierarchy. In one of the studies, the system builds a “table of content”-



23

like hierarchy of sections and subsections for each document using heuristics on HMTL
tags present in the documents and incorporates this structural information in the output
summaries [58]. In fractal summarization method [59], summaries are created based on the
hierarchical structure of a long document, including chapters, sections and subsections.
These studies focus on general-purpose summaries, not tailored for particular user queries
or Web search tasks. To the best of our knowledge, there is no related work on
summarization combining explicit structure of Web documents and query-biased

techniques.

There exist some studies on summarization of XML documents which are inherently
structured. In one of the studies, query-biased summarization was used as an aid for
searching XML documents [60]. In another study, a machine learning approach was

proposed for summarization of XML documents based on structure and content [61].
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3. QUERY-BIASED AND STRUCTURE-PRESERVING
SUMMARIZATION

In this chapter, first, the general approach and the architecture of the proposed
system are presented. Then, the implementation of the system and the data collection are
overviewed. A detailed description of the most important system modules will be given in

the following chapters.

3.1. The Approach

In this thesis, we develop a novel summarization approach in order to improve the
effectiveness of Web search. The proposed approach is intended to be used together with a
search engine, such as Google and AltaVista. The aim is to enhance the user experience of
such search engines which usually show only a limited capability in summarizing Web
documents; e.g. by displaying only two or three lines of document fragments which consist
of the query words and their surrounding text as the summary. Our main aim is to improve
the effectiveness with respect to the information retrieval task; i.e., the task of locating

documents which are relevant to a particular search query.

The proposed summarization approach is based mainly on two aspects: document
structure and query-biased techniques. First, we consider the fact that Web documents are
not flat texts, but they usually contain a structure. Structured documents may have sections
and subsections with different topics and formatting, and corresponding headings and
subheadings (see Figure 3.1 for an example structured document). Traditional approaches
in summarization usually ignore the document structure and treat a document as a linear
sequence of sentences. That is, they select the sentences or document fragments to be
included in the summaries from this linear space of text, and their summary output is also
usually unstructured. However, the use of document structure becomes important on the
Web where documents usually have diverse content and formatting. Another aspect we
consider is the user query, i.e., the information need of the user as entered in the Web

search interface, which is also usually ignored in traditional approaches. However, there is
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evidence in the literature that a query-biased approach is more suitable to Web search than

a generic approach.

Automated Querv-hiased and Structure-preserving
Text Summarization on Web Documents

RE DIim Sl07 SdEr Rasra

ar boiiee candctd carritrr sham

1. Related work

Figure 3.1. An example structured document

The structural information used in the proposed system is the document sectional
hierarchy. It is incorporated into the summarization process in two different ways. First, it
is used to determine important document sections and subsections based on the user query.
Second, some structural information (i.e., headings and subheadings) is also displayed as a
part of the output summary in order to provide the context of the text fragments selected as
a part of the summary. In this way, the user is expected to judge the relevance of search
results better. In Figure 3.2, an example structured summary is given. In the figure, the

b

summary sentences are displayed in a structured way, and ‘...” is used to indicate the

content not selected as a part of the summary.
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In the proposed system, indicative summaries are created to direct users to relevant
documents rather than informative summaries that can be used as a replacement of the
original documents. We use the method of sentence extraction rather than sentence
abstraction which involves rewriting. In this way, the structure of the original document
and the context of the selected sentences can be preserved and thus the user can judge the

relevancy of documents more precisely.

Automated Query-biased and Structure-preserving
Text Summarization on Web Documents

1. Abstract

Different from the previous work, both the structural
information and the content to be displayed in the summary
are selected in a query-biased way.

2. Related Work

3. Proposed System

3.1. Structural Processing

The structure of a document may be considered as a
hierarchy, where each document has sections; each section

has subsections, and so on.

3.2 Linguistic Processing

Figure 3.2. An example structured summary

The summary length is also increased in the proposed system compared to the ones
provided by search engines. However, if these longer summaries were again displayed
under the corresponding titles in the search results, then the user would need to scroll too
much to see the consecutive results. To prevent this problem, similar to a previous work in
the literature [22], only the titles of the results are listed, and when the user moves the
mouse on a particular link, the summary for that document is displayed in a separate frame.
Although the summaries in this approach are much longer than the traditional approaches,
they are still limited; e.g., to the size of the area of the screen that can be seen without

scrolling.



27

3.2. System Architecture

The system architecture is given in Figure 3.3. There are two types of roles: the
system and the user. In the system part, the HTML documents collected from the Internet
are processed in order to obtain their structure; i.e. the document sectional hierarchy
(structural processing). For each document, a hierarchical representation is obtained. Both
the documents and user queries are processed linguistically; e.g. stemming and recognition
of phrases. The user query and the hierarchical representations of the documents are used

by the summarization engine to obtain the output summaries.

SYSTEM USER

l

Structural
Processing

Linguistic
Processing
Hierarchical
Representation
) Summarization
Linguistic Eni
Processing ngmne
J

Output
Summaries

Figure 3.3. The system architecture
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3.2.1. Structural Processing

The aim of structural processing is to identify heading-based sectional hierarchy for
Web documents. In general, the structure of a document may be considered as a hierarchy
where each document may have sections, each section may have subsections and so on,
together with the corresponding headings and subheadings. The targeted document format
is HTML because it is still the most frequently used format on the Web. The input to the
proposed system is a Web document in HTML format. The output is a tree representing the
sectional hierarchy of the document where headings and subheadings are at the
intermediate nodes and other text units are at the leaves (see Figure 3.4). The root contains
a dummy unit covering the whole document. As can be seen, headings in different levels
can be identified as a hierarchy together with the sentences under the headings. In Figure
3.5, a part of the sectional hierarchy for an example document is given. The rule-based and
machine-learning approaches we developed for structural processing are detailed in

Chapters 4 and 5, respectively.

] — Document root —
9 [ Heading (level 1)
7 [C] Heading (({level 2)
|__°“| Sentence...
B Sentence...
9 [ Heading (level 3)
|j| Sentence...
D Sentence...
7 [C] Heading (level 2)
B Sentence...
|__°“| Sentence...
B Sentence...

Figure 3.4. Output of structural processing
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] — Document root —
9 [ Antibiotics and bacterial diseases
9 [ bacteria - what are they?
9 [ Like little chemical factories
|_j Bacteria are minute organisms invisible to the...
9 [LJ How do bacteria cause disease?
E| Although they are incredible small most pathogenic...
9 [ How do antibictics work?
D Antibiotics are chemical substances produced by...

Figure 3.5. Part of the sectional hierarchy for an example document

3.2.2. Summarization

The summarization algorithm is run after the structural processing phase is
completed. The algorithm works on the document tree obtained in structural processing
and it is based on an extractive approach. The structural properties of documents are
utilized during the summarization process and in the output summaries. The proposed

summarization approach is detailed in Chapter 6.

3.3. Implementation

The proposed system was implemented in Java programming language. We utilized
two different frameworks: GATE Text Engineering Framework and the Cobra Toolkit. In
the following subsections, we overview the basic properties of these frameworks and our

implementations.

3.3.1. GATE Framework

GATE (General Architecture for Text Engineering) is a framework and development
environment for human language technology modules and applications [62, 63]. It is an

open source project using component-based technology in Java and is used by several
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academic and commercial projects. Using such a framework has several advantages
because it includes commonly used natural language functionalities such as sentence
splitting, part-of-speech tagging and noun phrase identification. Also, it is a modular

environment into which new components can be easily added.

GATE distinguishes between data, algorithms and the methods of their visualization.
That is, each component in the GATE system is one of the three types: Language
resources, processing resources and visual resources. Language resources represent entities
such as documents and corpora. Processing resources correspond to algorithmic entities
such as parsers and generators. Finally, visual resources are related to the visualization and
editing of the components in the graphical user interface. The processing resources work
on the language resources, and several processing resources can be run sequentially as a
pipeline. The data flow between different processing resources is achieved by the

annotation of documents.

GATE supports parsing of HTML documents and it can identify HTML tags in the
documents as annotations marked on the documents; however, it does not build the explicit
DOM tree. We modified its algorithm in order to extract the DOM tree. In the proposed
system, after an HTML document is loaded to the system, the following processing
resources (modules) are applied to it in the indicated order and the final summary is
generated:

o Tokeniser - splits the text into tokens, such as words, numbers and
punctuation marks.

o Sentence Splitter - splits the text into sentences.

o Stemmer - applies stemming to individual words.

e Part-of-Speech Tagger - produces a part-of-speech tag on each token

e Noun Phrase Chunker - identifies noun phrases

e HTML Document Structure Analyzer - applies the proposed structural
processing algorithm on the document.

e Summarization Engine - runs the proposed summarization method on the

document.
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The tokeniser and sentence splitter were taken from ANNIE, a GATE
implementation of an information extraction system. The stemmer used is a GATE plugin
and it is based on the commonly-used Porter stemming algorithm [64]. We used English
and Turkish versions of the stemmer. We implemented two new processing resources as

plugins to GATE: HTML Document Structure Analyzer and Summarization Engine.

3.3.2. Cobra Toolkit

In the standalone implementation of the system, we also utilized Cobra Java HTML
Renderer and Parser Toolkit for parsing the HTML documents and building the DOM trees
[65]. Cobra is an open source project in Java and supports HTML 4, Javascript and CSS
(Cascading Style Sheets). Cobra provides an API for the navigation of the DOM tree. One
advantage of Cobra is the support of Cascading Style Sheets which have been started to be
widely used in HTML documents to separate the presentation and content. Cobra can also
be used to obtain the visual positions (such as the x and y coordinates) of individual text

units in the rendered Web page.

3.4. Data Collection

In order to evaluate the proposed structural processing and summarization
approaches, a sufficiently large and representative corpus of Web documents is needed.
There may be several ways to create such a corpus, such as using a list of popular search
queries from a search engine, defining queries that reflect current search interests of users,
or using standard queries and collections such as TREC (Text Retrieval Conference) [39,

66, 67].

Analyses in the literature about user behavior in forming queries have shown that
users do not put much effort into formulating a query and they mostly use very simple
Boolean types of query [21, 68]. It was reported that 80% of the queries are formed as a
sequence of words without any Boolean operator in between and the average query length
is 2.35 words [18]. Another study gives the same average length and estimates the average
number of operators as 0.41 operators per query [19]. In addition, it was found that 25% of

the users use a single keyword. Chowdhury states that only about 8% of the queries contain



32

Boolean operators and only 9% use some advanced features [17]. All these results indicate
the poor nature of end-user searches. We follow the same approach in simulating user
behavior in this work by using Boolean queries having a length of 2-3 words. We selected

queries by considering current search interests of users in various domains.

We created three different document collections for the experiments. The first one
(English Collection) includes English Web documents collected from the results of Google
in response to 10 different queries from TREC-2004 Robust Test Set (see queries 1-10 in
Table 3.1). For each query, a set of 10 documents were randomly collected from the top 50
results returned by Google, corresponding to a total of 100 out of 500 documents. The
second collection (Turkish Collection) includes Turkish Web documents collected from the
results of Google using TREC-like queries defined for Turkish [69] (Table 3.2). The
collection includes 50 documents randomly selected out of 250 documents. For the
machine learning algorithms, a larger document collection was needed. For this purpose,
we created the third collection (Extended English Collection) which is an extension of the
original English collection and includes all the 20 queries in Table 3.1. The documents for
the collection were collected from the top results of Google in response to each query; i.e.,
top 25 HTML documents for each query, corresponding to a total of 500 documents. The
average document length is about 1566 words in the English collection, 900 words in the
Turkish collection and 1340 words in the extended English collection. These document
collections were used in the evaluation of both structural processing and summarization

methods.



Table 3.1. Queries used for building the English collections

Query ID Query Keywords

1 Hubble telescope achievements
2 best retirement country

3 literary/journalistic plagiarism
4 Mexican air pollution

5 antibiotics bacteria disease

6 abuses of e-mail

7 declining birth rates

8 human genetic code

9 mental illness drugs

10 literacy rates Africa

11 robotic technology

12 creativity

13 tourism, increase

14 newspapers electronic media
15 wildlife extinction

16 R&D drug prices

17 Amazon rain forest

18 Osteoporosis

19 alternative medicine

20 health and computer terminals

Table 3.2. Queries used for building the Turkish collection

Query ID | Query Keywords

1 tsunami
(tsunami)

2 ekonomik kriz
(economic crisis)

3 Tiirkiye'de meydana gelen depremler
(earthquakes in Turkey)

4 sanat odiilleri
(art awards)

5 bilisim egitimi ve projeleri
(IT education and projects)
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4. RULE-BASED APPROACH FOR STRUCTURAL PROCESSING

In this chapter, we present the rule-based approach we developed for Web document
structure analysis. It is a heuristic approach based on DOM tree processing. This is

followed by the experiments to measure the effectiveness of the proposed method.

4.1. The Method

Structural analysis of Web documents is a nontrivial task because the underlying
HTML format is not intended for a semantic representation of data. Also, most of the
documents on the Web show a cluttered and complex organization with diverse formatting
and topics. In this section, we overview the proposed structural processing method to
identify the sectional hierarchy for a given Web document; i.e. sections and subsections
together with the corresponding headings and subheadings. The method involves three
steps which are detailed in the following subsections:

e DOM tree processing: The DOM tree of the document is analyzed to find out

the structural properties of the document and internal relationships between
text fragments.

e Heading identification: The headings in the document are determined based

on heuristics.

e Hierarchy restructuring: The heading information is used to restructure the

tree obtained in the first step and to identify the actual hierarchical

relationships between sections and headings.

4.1.1. DOM Tree Processing

The DOM tree is a hierarchical representation of an HTML document. However, it
primarily concerns the presentation of the document contents and usually does not
correspond directly to a semantic hierarchy. Nevertheless, this hierarchical representation
may be partly utilized to obtain the semantic organization of a document. In Figure 4.1, a
part of the DOM tree corresponding to the example document in Figure 1.2 is shown. The

fragments identified with circles were marked for correspondence.
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Figure 4.1. Part of the DOM tree for an example Web document

As can be seen in the example tree, semantically related parts like (1), (2), (3), and
(4) are grouped under certain container tags such as <table>, <td>, and <tr>. In general,
the DOM tree usually has a complex organization with nested container and format tags.
The depth of the tree may be quite large; it is common to find DOM trees having 20-30
levels. Also, the DOM tree usually contains tags that do not correspond to textual content.
Therefore, the hierarchy that is closer to the sectional hierarchy (usually with much smaller

depths) should be distilled from this tree.

The intuition behind DOM tree processing step is that semantically related parts of
an HTML document usually occur in the same or neighboring container tags in the
hierarchy. The approach we take in the proposed system is to convert the DOM tree into a
simplified version of it with only containment relationships (i.e. container tags). In the

converted tree, sentence boundaries are also taken into account. The tree is restructured
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such that each leaf corresponds to exactly one sentence whereas in the original DOM tree,
each leaf may correspond to part of a sentence or more than one sentence. The processing
involves the following steps:
e Prune nodes that do not contain text in the leaves beneath them and nodes
which will not be used in summarization, such as forms or drop-down menus.
e Split/merge leaf nodes such that each leaf node corresponds to exactly one
sentence.

o Simplify the tree to obtain the containment hierarchy.

The algorithm to simplify the tree is given in Figure 4.2. It works in a breadth-first
fashion starting from the root node. Nodes that have only one child or nodes with format
tags (such as <bold>, <font>) are removed in order to simplify the tree. For this purpose,
their children are percolated up and the format tags are passed as features to them. The
output of this step for the example DOM tree in Figure 4.1 is given in Figure 4.3. In the
resulting tree, document parts are grouped under block elements. Also, the main title of the
document is identified using the <tit/le> tag and it is percolated to the root of the document
tree such that all the sections and subsections of the document are stored under the main

document title.

Algorithm SimplifvTree
Input

root: root node of the document tree
begin
Insert root into queue
while (queue not emptv)

(Get the next node » from queue

if [ (the node has onlv one child)

or (the node has a format tag, such as <bold=})

I R R

3: Eemove the node
&: Percolate its child(ren) up together with corresponding features
such as boldness
end if
8 Insert child(ren) to the queue
9: end while
end

Figure 4.2. Document tree simplification algorithm
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Figure 4.3. The document tree obtained after DOM tree processing

4.1.2. Heading Identification

The aim of this step is to identify all the headings and subheadings in a given HTML
document. This is a nontrivial task because of the cluttered structure found in most Web
documents. There are usually multiple columns and blocks of content with different
formatting styles. Actually, there are six different heading tags (<A/> through <h6>) in
HTML to format different levels of heading. However, these tags are rarely used by Web

authors for this purpose. Sometimes, they are even used for formatting non-heading text.

We examined several Web pages (English and Turkish) in order to find out the
characteristics that distinguish headings from non-heading text. In most of the documents,
the headings are formed by formatting them differently from their surrounding text (e.g.
font size, color, boldness, etc.). That is, headings usually have higher emphasis than the
text following them in terms of formatting. For instance, the headings (1), (a), and (d) in
Figure 1.2 are formed in this way. Also, headings usually do not end with punctuation
marks. However, menus or links (e.g. (2) in Figure 1.2) which also do not end with
punctuation marks should not be identified as headings. For this purpose, their content and

surrounding text should be examined.
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In the implementation, we took a heuristic-based approach for heading identification.
The heuristics employed are summarized in Figure 4.4 under different categories. These
are encoded as if-then rules in the system. The headings obtained after the application of

the heuristics on the example document are shown underlined in Figure 4.3.

1. Content

{(a) Menus (usuallv hvperlinks) at the beginning or end of a document are
eliminated.

(b) Text fragments containing certain phrases (e.g. “click here™, “skip
navigation™, etc.) are eliminated.

(c) Text fragments in drop-down menus (i.e. <select> tag)are eliminated.

2. Formatting

(a) A heading with a smaller fontis not followed bv a larger font heading
(according to heading hierarchv).

(b) A heading is not followed with textin the same format.

{(c) A heading is not followed bv more emphasized text. For example, a
heading which is not bold is not followed by bold text.

(d) Headings are not aligned to theright.

3. Position

(a) Headings start and end with new line. For this purpose, start and end
of each text block is identified based on certain tags, such as <&r>,

D, =ii=

(b) Heading-like text with no following content is eliminated.

{c) List items conform toheading hierarchv. For example, a list item is

not a heading of the following list items in the same level.

ol e

4. Other

{(a) Headings do not end with punctuation marks such as *.°, °I", °,", etc.
Headings donot start with (", etc.

(b) A heading is limited in length (i e the number of characters).

(c) Headings start with capital letters.

Figure 4.4. Heuristics used for heading identification

4.1.3. Hierarchy Restructuring

The aim of this step is to restructure the tree resulting from the previous steps to
obtain a hierarchy that is closer to the actual sectional hierarchy. Since we chose to
concentrate on headings in obtaining the hierarchy, the tree is rearranged making use of the

heading information already discovered. In the first step (Section 4.1.1), each sentence
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(including headings) was identified with formatting features as given in Table 4.1. The
features may have Boolean values such as whether or not a text fragment is annotated with
heading tags (<hl>, <h2>, etc.), integer values such as the font size, and string values

such as the font face or CSS (Cascading Style Sheets) class.

Table 4.1. Features used for identifying the format of the text

Feature Description Data Type
hl <hIl>, level-1 heading Boolean
h2 <h2>, level-2 heading Boolean
h3 <h3>, level-3 heading Boolean
h4 <h4>, level-4 heading Boolean
h5 <h5>, level-5 heading Boolean
h6 <h6>, level-6 heading Boolean
B <b>, bold Boolean
strong <strong>, strong emphasis Boolean
em <em>, emphasis Boolean
A <a>, hyperlink Boolean
U <u>, underlined Boolean
| <j>, italic Boolean
f size <font size=...>, font size Integer
f color <font color=...>, font color String

f face <font face=...>, font face String
allUpperCase | all the letters of the words are in uppercase | Boolean
cssld CSS id attribute if used String
cssClass CSS class attribute if used String
alignment align attribute String

li <[i>, different levels of list elements Integer

We use these features in differentiating between different levels of heading in the
hierarchy. The idea is that in a semantic block of text, headings in the same level usually
have the same features and the sectional hierarchy is achieved with distinct formatting for
different levels of heading. In Figure 4.5, headings that correspond to two different levels

in the hierarchy are given.

The feature set in Table 4.1 is used to rearrange the hierarchy based on headings in

different levels. The strategy we employ works bottom-up in the document tree and first
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smaller blocks of text (deeper in the hierarchy) are restructured based on the headings. The

algorithm to restructure a given block within the document tree is given in Figure 4.6.

Antibiotics and bacterial diseases
HTML code: .. <hl=Antihiotics and bactenal dizeazez="hl>. .
Features: (hl=tme}

FREQUENTLY ASKED QUESTIONS
HTML code: . _<h>=font size="1">FEEQUENTLY ASKED QUESTIONS< font>2h
Features: {B=true, f size=2 alllpperCasze=tme}

Figure 4.5. Headings corresponding to different levels in the document hierarchy

Algorithm EestructureTree(p)

Input
p: parent node of the nodes constituting the block to be restructured
begin
1: Remove all the children of ptoalist L
2 textAppendPoint = p
3: headingAppendPoit = p
4: foreachnodenin L
3: if (7 is not a heading)
6: Append n as child to rextdppendPoin

else

8: Check headingFormats list

9- if (there is no entrv for the format of the current node)

10: Addthenew heading format to headingFormats list as the
next level in the hierarchv

11: end if

12: Update headingAppendFPoit

13- Append » as child to headingdppendFPoint

14: Update textdppendPoint

13: end if

16: end for

end

Figure 4.6. Hierarchy restructuring algorithm

According to the algorithm, given a particular node in the tree, its children are
considered one by one. Meanwhile, the formatting features of headings and their
corresponding levels are stored (headingFormats list). If the considered node is not a
heading, it is appended under the last heading node encountered (textAppendPoint). If the

node is a heading, first, it is checked whether it belongs to a heading level previously used
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in the block. If no entry is found for that format, it is added as a new level. Then, the node
is appended to the appropriate position in the hierarchy (headingAppendPoint). For

2

example, consider block (3) in Figure 4.3. The heading “Like little...” is identified as
belonging to the first level in that block. The sentences that follow are rearranged under
that heading. Then, the heading “What antibiotics...” is placed to the same level as the

former heading because it has the same features.

Figure 4.7 shows the tree obtained after the application of the restructuring step on
the tree of Figure 4.3. In this tree, the root covers the entire document. The intermediate
nodes contain section and subsection headings and the leaves contain the underlying
sentences. As can be seen, most of the sentences are correctly identified under the
corresponding headings. Also, most of the headings are in correct levels. There is,
however, an error in the level of the heading “Antibiotics and bacterial diseases” in block
(1). It should be at a higher level than the following content. The reason for the error is that
(1) is considered as a separate block based on DOM tree processing and thus restructured

accordingly.

“Antbistics,..”

“Antibiotics..” “FishDoc...” “Disease...”... “Like little...” “What “Antibiotic - “Fishdoe w.”
| antibio,.”  sensitivity”

“hacteria — what...” @/\\(D /\\ ’/\

“Pacteria are..” “Every con,..” ... “Bacterial..,

Figure 4.7. Part of the document tree after restructuring

4.2. Evaluation

4.2.1. Performance Measures

The accuracy of the proposed method for structural processing is evaluated according

to two different criteria: the accuracy of heading extraction and the accuracy of hierarchy

extraction. For this purpose, the outputs of the proposed method are compared with golden
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standard headings and document hierarchies which are determined manually for each

document.

In order to evaluate the accuracy of heading extraction we adapted measures which
are widely used in the field of information retrieval [19]. These are precision, recall and f-
measure. For each text unit in a document, four different results can be identified by
comparing the results of the proposed method with the golden standard: 7P (true positive),
FP (false positive), FN (false negative), and TN (true negative) as in Table 4.2. Based on
these values, recall (R), precision (P), and f-measure (F) values for the heading extraction
experiment are calculated as in 4.1, 4.2 and 4.3. Here, recall is computed as the ratio of the
number of headings correctly identified to the number of actual headings. Precision is
calculated as the ratio of the correctly identified headings to the number of headings

identified. F-measure is a combined measure of recall and precision.

Table 4.2. Contingency table for the heading extraction experiment

Golden Standard
Heading | Non-heading
Heading TP FP
Proposed Method
Non-heading | /N TN
R= P (4.1)
" TP+FN
P o (4.2)
TP + FP
Fe 2xPxR (4.3)
P+R

The accuracy of hierarchy extraction should be determined based on the tree structure
of the output. We especially focus on parent-child relationships in this tree structure
because they correspond to heading - subheading and heading - text (i.e. heading and

underlying sentence) relationships in the document. We define the accuracy as the ratio of
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the number of correctly identified parent-child relationships in the obtained hierarchy (as
compared with the golden standard) over the total number of parent-child relationships.
Formally, given a manually identified hierarchy and an automatically extracted hierarchy
for a document i, if there exists an edge (i.e. parent-child relationship) between the node
pair (p,c) in both of the hierarchies, we say e(p,c) = 1; otherwise, e(p,c) = 0. Given the set
of parent-child node pairs PC; in a manually identified document hierarchy i, the hierarchy

accuracy is computed as in 4.4.

Zp,cePC[ e(p’ C) (44)
|PC,|

Hierarchy Accuracy(i) =

4.2.2. Experiments

The structural processing algorithm was run on two different document collections
(English Collection and Turkish Collection). The examination of the collections revealed
that they include different levels of structured documents, ranging from flat documents to
highly structured ones with an average sectional hierarchy depth of around four. In Figure

4.8, the distribution of hierarchy depths in both collections are given.

N W wh N
O 01 o O
L

o English Collection

m Turkish Collection

Documents (%)

- anN
o oo U o
L

2 3 4 5 6 7
Hierarchy Depth

Figure 4.8. Distribution of hierarchy depths in the document collections

In order to evaluate the accuracy of the system, the hierarchy output of the algorithm
was compared with the manually identified hierarchy as the golden standard. We also
compared the results of the proposed system with a baseline (hierarchy formed using only
heading tags <h/> through <h6> in HTML). In the following subsections, the results for

English and Turkish collections are presented.
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4.2.2.1. English Collection. The results are given for each document set (corresponding to

each query) in English Collection separately followed by their averages for the whole
collection. In Table 4.3, the average number of actual headings in the documents and the
accuracy for the heading extraction are given for the proposed system and the baseline
method. As seen, in the proposed system, a fairly high value was obtained for heading
recall (88%). Compared with recall, the precision obtained for heading extraction is lower
(64%). The reason is that although most of the headings are correctly identified, some text
fragments which are not headings are also extracted as headings. This is due to the
cluttered organization encountered in most of the Web documents. The f-measure of the
proposed system is calculated as 71%. In the table, the heading recall for the baseline
method is also given, which is 43%. The precision and f-measure values for the baseline
method could not be computed, because they were undefined in some cases where the

baseline method failed to identify any heading correctly in a document.

Table 4.3. Heading extraction results for English Collection

Document | Actual Proposed Sys. | Proposed Sys. | Proposed Sys. | Baseline
Set Number |Recall Precision F-measure Recall
1 6.50 0.94 0.60 0.69 0.51

2 11.30 0.80 0.65 0.67 0.34

3 8.20 0.91 0.56 0.66 0.68

4 3.60 0.89 0.64 0.73 0.38

5 9.30 0.89 0.58 0.66 0.57

6 18.10 0.82 0.70 0.73 0.39

7 5.40 0.84 0.59 0.67 0.27

8 6.90 0.98 0.57 0.68 0.56

9 12.70 0.93 0.76 0.82 0.38
10 6.20 0.84 0.75 0.77 0.24
Average 8.82 0.88 0.64 0.71 0.43

Some statistics related to the hierarchy extraction experiment are given in Table 4.4.
These include the average depth of document DOM trees before the processing, the
average hierarchy depths obtained in the proposed and baseline methods and the average
depths of the actual hierarchies. We observe that, on the average, the depth decreases from
15.21 to 6.54, which signals a significant improvement. As mentioned previously, the
DOM tree has a cluttered structure and contains many superfluous levels. The structural

processing algorithm eliminates this irrelevant information and leaves the tree with only
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the details relevant to the actual content of the document. As can be seen, the manually
extracted hierarchies have an average depth of 4.11. Thus, the proposed method gives rise
to hierarchies with a depth slightly larger than the actual depth. An analysis of individual
documents explains this situation: users sometimes express the contents on the same level
with different styles of writing, but these are identified incorrectly by the algorithm as
belonging to different sections. On the other hand, the depth of the baseline hierarchy is
less than that of the actual hierarchy. This is an expected result since the users usually do
not use the heading tags for dividing the document into sections; instead this is achieved by
changing the style in between the sections. Thus, the scarcity of heading tags in the

documents results in smaller depths.

Table 4.4. Statistics related to the hierarchy depths

Document | DOM | Proposed Sys. |Baseline | Actual
Set Tree Hierarchy Hierarchy | Hierarchy
1 15.80 [5.50 3.40 3.70

2 20.80 [8.20 3.10 4.20

3 12.10 [7.30 3.90 4.10

4 13.90 [4.90 3.40 3.90

5 13.20 [6.10 3.70 4.00

6 13.00 [7.00 3.60 4.40

7 19.20  [6.20 3.10 3.80

8 12.80 [6.10 3.70 4.20

9 17.50 [7.10 3.30 4.00
10 13.80 [7.00 2.90 4.80
Average |15.21 6.54 341 4.11

Table 4.5 shows the accuracy results for hierarchy extraction. The average accuracy
obtained in the proposed system is 71%, whereas it is 50% in the baseline method. This
result indicates that half of the sectional relationships in the hierarchy extracted from an
HTML document using heading tags are wrong. A significant improvement is possible via

a heuristics-based analysis of the document structure.

In Figure 4.9, we also show the accuracies of the proposed system and the baseline
method with respect to the percentage of documents. The figure indicates that nearly half
of the documents have accuracy between 80% and 100% in the proposed system, while

only about 25% of the documents achieve this rate in the baseline method. We observe that
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for majority of the documents, acceptable accuracy rates were obtained in the proposed

method.

Table 4.5. Hierarchy accuracy results for English Collection

Document | Baseline Proposed

Set (only h tags) | System

1 0.57 0.58

2 0.52 0.81

3 0.64 0.74

4 0.40 0.66

5 0.51 0.66

6 0.40 0.65

7 0.54 0.74

8 0.55 0.69

9 0.48 0.77

10 0.36 0.78

Average |0.50 0.71
8 50
% 40
é 30 O Baseline
S 20 m Proposed
g 10 | :t
2 0

020 2040 4060 60-80 80-100

Accuracy (%)

Figure 4.9. Distribution of accuracy results in hierarchy extraction

4.2.2.2. Turkish Collection. We adapted our rule-based approach for structural processing

to Turkish Web documents. For this purpose, we modified some of the heuristics used in
heading extraction. These include content-related heuristics to recognize cue phrases
commonly encountered in Turkish Web documents; e.g. “buray1 tiklayin” (“click here”),

“favorilere ekle” (“add to favorites™), etc.

In Table 4.6, first, the average numbers of headings in document sets, as found in
manual investigation, are given. Then, the performance of the automatic analysis is given
in terms of recall, precision and f-measure. The results show 79% recall for heading

extraction. Compared with recall, the precision obtained for heading extraction is lower
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(57%). In the experiment, we obtained 70% average accuracy for hierarchy extraction

(Table 4.7).

Table 4.6. Heading extraction results for Turkish Collection

Document Numl‘)er of Recall | Precision | F-measure
Set Headings

1 7.60 0.81 0.56 0.64

2 5.40 0.67 0.63 0.61

3 5.10 0.84 0.49 0.66

4 4.90 0.89 0.54 0.68

5 9.20 0.89 0.68 0.73

Average 5.40 0.79 0.57 0.65

Table 4.7. Hierarchy extraction results for Turkish Collection

Document | DOM Tree | Hierarchy | Hierarchy
Set Depth Depth Accuracy

1 17.6 6.5 0.49

2 16.2 5.0 0.61

3 20.4 7.5 0.78

4 18.8 5.6 0.80

5 19.2 5.1 0.81

Average 17.2 6.1 0.70

The baseline method failed for Turkish collection because the particular <A4> tags
were not used in any of the documents. Instead, the sectional hierarchy was achieved using
other features on the DOM tree such as format tags. In order to test whether the methods
work on Turkish documents in general, we performed an additional analysis on documents
of a Turkish university Web site (50 documents on boun.edu.tr domain) and obtained 71%
accuracy using the proposed approach, which proves the robustness of the algorithm for

Turkish Web pages.
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5. MACHINE LEARNING APPROACH FOR STRUCTURAL
PROCESSING

In the structural processing of Web documents, we first developed a rule-based
approach for the extraction of headings and sectional hierarchies of documents in which
we obtained acceptable results as presented in Chapter 4. However, a rule-based approach
has also some disadvantages. It is less adaptive and less robust when compared with a
machine learning approach. Although the heuristics employed may be suitable for most of
the cases, they cannot model exceptions sufficiently. A machine learning approach can be
more flexible; as an example, a classifier can combine different features to make a decision
rather than using some predefined rules to filter headings. For this reason, we decided to

investigate the structural processing also using machine learning techniques.

The problem we consider is the extraction of all the headings in a document and the
underlying hierarchy which is a more complex problem than extracting a single title for a
document which was previously investigated in the literature [39]. In the hierarchical
analysis, a structure-based learning (i.e. tree-based learning) approach is needed rather than
the simpler case of classification. In the literature, structure-based learning approaches
have been applied to natural language processing tasks such as syntactic parsing whose
output is also a tree structure. In fact, the document sectional hierarchy extraction problem
we consider is analogous to the syntactic parsing of sentences. In the former, the input to
be parsed is a document consisting of text fragments (sentences or paragraphs), whereas in

the latter, the input is a single sentence consisting of words.

The main difficulty in developing a tree-based learning approach is the exponential
search space encountered due to the nature of the problem. We considered several
approaches to this problem proposed in the literature. In [70], the main approaches in
statistical parsing are considered. One approach is nondeterministic parsing with the use of
generative probabilistic models and dynamic programming. Such parsing techniques can
be improved by using a discriminative model. Another approach is using discriminative
models to search the complete space of possible parses. Finally, a different approach is

using a greedy algorithm which makes a sequence of locally optimal choices to
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approximate a globally optimal solution. This methodology has been emerged as an
alternative to more complex models especially in dependency parsing. This is also the

approach we take in this part of the thesis.

In the proposed system, we aim to model the dependency relations between
document fragments analogous to the dependency relations between word/phrase pairs in
syntactic parsing. These include heading - underlying text and heading — subheading
relations in the document hierarchy. Also, we use a discriminative machine learning
approach rather than a generative approach, because it allows a large number of features as
required by the problem we consider. To the best of our knowledge, this is a novel
approach in the structural processing of Web documents. In order to develop such a
machine learning approach, several issues need to be considered with respect to training
and testing phases. These are overviewed in the following:

(1) Training: The training phase includes design decisions with respect to the

machine learning models, algorithms and types of features:

(a) Machine learning models: This includes developing a representation for Web

documents and models suitable for the learning task. A classification approach
can be appropriate for heading extraction task; whereas a structure-based
approach is needed for hierarchy extraction.

(b) Machine learning algorithms: Several algorithms such as support vector

machines (SVMs) and perceptron can be adapted for the learning task.

(c) Types of features: This includes developing appropriate feature representations

with respect to the document content and structure as required by heading and
hierarchy extraction tasks. Then, the effects of using combinations of different
types of features can be evaluated.

(2) Testing: The performance of each method can be evaluated on a sufficiently large

and representative test set using cross validation.

The rest of this chapter is organized as follows. We present the proposed machine
learning models and feature sets in sections 5.1 and 5.2, respectively. These are followed
by the incremental learning approach in Section 5.3 and variations of the testing approach
in Section 5.4. Finally, we present the implementation (Section 5.5) and evaluation details

(Section 5.6).
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5.1. Machine Learning Models

In the proposed system, we model a Web document as a sequence of text units based
on the order in the HTML source of the document. This is analogous to sentence parsing
where each sentence is modeled as a sequence of words. We define a text unit u; in the
document as a text fragment delimited by a newline (i.e. paragraph) as illustrated by
rectangles in Figure 5.1. We developed two main machine learning models: heading

extraction model and hierarchy extraction model. These are detailed in the following

subsections.

Chaootw an baus Area v il *] Chssa & Ragion 5 [l ]

L13 P'ln'.thlspac{ ud Emal thi -aqe|

OUR WORK Global Warming is Pushing Wildlife Towards Extinction: Countless Imperiled To‘
Species Need Our Help
I the Cowta & on the F ¥
n Brief: Global cimate change is threatening our wildlife, including those already on the w[TaKE AcTion: | '
Cases brink of extinction. -
Victeries - - ¥ DONATE NOW:
By now, many people have heard of the plight of the polar bear, and how as Arctic ice melts
Policies due to global warming, polar bears are losing the place it calls home and the habitat they w
reed for survival. What most of us may not know is that we do not have to look as far as e
Campaigns the Arctic to see how global warming is adversely affecting species. In fact, many of us _
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and endangered species have less ability to bounce back when hit by new threats from

global warming - any new adverse effects could be enough to push them over the edge.
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Figure 5.1. Part of an example HTML document
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5.1.1. Heading Extraction Model

In the heading extraction model, the Web document is considered as a flat sequence
of text units and binary classification is performed. The training examples include (u;, y;)
pairs for i = 1...t where u; correspond to a text unit and y; to its label. The label denotes
whether the text unit is a heading or not. In Figure 5.2, the representation of an example

document (consisting of » units) in the heading extraction model is given where x;; for j =
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1...k correspond to the features of a unit ;. Then, the task is to learn the classification

model in order to distinguish positive instances (headings) from negative instances (non-

headings).
up. X1ITX12X13 cveveeeennnenennanes X1k V1 (heading)
Uz X21X22X23 tvveeinnnennnnnenns X2k 2 (heading)
us. X31X32X33 coveerennennannnnnns X3k V3 (non-heading)
Un-10 Xn-1)1 X(n-1)2 X(n-1)3 +vovever- X(n-1)k Vn-1 (heading)
Uy: Xl Xi2 X3 eneeeeeeenenannn, Xnk V,» (non-heading)

Figure 5.2. Representation of an example document in heading extraction model
5.1.2. Hierarchy Extraction Model

In hierarchy extraction, the general problem of learning a mapping from inputs

xe X to outputsy et is considered. In the case of syntactic parsing, X is a set of

sentences and Y is a set of possible parse trees [27]. Analogously, in the structural analysis
of Web documents, we define X as a set of documents and Y as a set of possible sectional
hierarchies of documents using the following framework:

- Training examples (x;, y;) fori=1...n

- A function GEN(x) which enumerates a set of possible outputs for an input x

- A representation ® mapping each (xi , Y ) € X xY to a feature vector @(x;, y;)

- A parameter vector a

In the proposed system, the training set includes (x;, y;) pairs where x; is a Web
document and y; is the golden standard tree corresponding to the document sectional
hierarchy. In Figure 5.3, part of the sectional hierarchy for the example document in Figure

5.11s given.
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In this framework, the learning task is to estimate the parameter vector o using the

training examples as evidence. The parameter vector o is estimated such that it will give

the highest scores to correct outputs as in 5.1.

F(x)=arg max ®(x,y)-«a
yeGEN (x)

(5.1)

In document sectional hierarchy extraction, we work on trees (i.e. document

sectional hierarchies) analogous to parse trees in syntactic parsing. In general, the main

difficulty in developing a tree-based learning approach is the exponential search space

encountered during the solution of the problem. That is, the set of candidate outputs for an

input x, enumerated by GEN(x), can grow exponentially with the size of x, making the

brute force enumeration of the set members intractable. One solution to this problem is to

use a heuristic method, such as beam search, to reduce the search space. Such an approach

has previously been successfully applied to other tasks in the literature, such as syntactic

parsing and generating a table-of-contents for a general document [27, 28]. In this

approach, the output tree is incrementally built by making a sequence of locally optimal

choices in order to approximate a globally optimal solution, which is also the approach we

take.



53

5.2. Features

We define the types of features used in the proposed machine learning models
according to different levels of a document. The first one includes the features
corresponding to the smallest unit (i.e. text unit) in a document. This is followed by the
features based on the context of a unit; i.e. the neighboring units. Finally, global features

are defined considering the document as a whole.

5.2.1. Unit Features

A text unit (delimited with a newline) is the smallest unit in our machine learning
models and is associated with a set of features. We determine text units automatically
using certain tags which are used to specify paragraphs in HTML, such as <br> and <p>.
A text unit may correspond to one or more nodes in the HTML Document Object Model
(DOM) tree because different parts of a text unit may be enclosed in different HTML tags.
For example, a paragraph may contain one or more bold words, i.e. enclosed in <b> tags,
whereas it may not be bold in the remaining parts. As a design decision, the formatting

features used at the beginning of a text unit may be used for that unit.

In most of the Web documents, Cascading Style Sheets (CSS) rules are used to
define the presentation of document contents. We use Cobra HTML Renderer and Parser
which supports parsing of the DOM tree and CSS information [65]. After the parsing
process, text units in the HTML document are automatically identified and associated with
features. The unit features include formatting features, DOM tree features, content features

and other types of features as outlined in the following subsections.

5.2.1.1. Formatting Features. These features are mostly based on HTML tags and

attributes used for formatting the text unit, such as font size, boldness, color, etc. (Table
5.1). The features are similar to the formatting features used in the rule-based approach.
However, we use the formatting information obtained after CSS information is
incorporated. Therefore, we do not define additional features for CSS. The features have
Boolean, integer or string values. The letter case information may have three different

values: All letters in upper case (e.g. “RELATED WORK?), initial letters in uppercase
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(e.g. “Related Work™) and other (e.g. “Related work™). Finally, an emphasis score may be

defined for a unit based on its formatting differences with a given unit.

Table 5.1. Formatting features of a text unit

Feature Description Data Type
hl <hI>, level-1 heading Boolean
h2 <h2>, level-2 heading Boolean
h3 <h3>, level-3 heading Boolean
h4 <h4>, level-4 heading Boolean
h5 <h5>, level-5 heading Boolean
h6 <h6>, level-6 heading Boolean
B <b>, bold Boolean
strong <strong>, strong emphasis Boolean
em <em>, emphasis Boolean
A <a>, hyperlink Boolean
U <u>, underlined Boolean
| <i>, italic Boolean
f size <font size=...>, font size Integer
f color <font color=...>, font color String

f face <font face=...>, font face String

b color Background color of the text unit String

li <[i>, different levels in a list Integer
lettercase Letter case used in the text unit Integer

5.2.1.2. DOM Tree Features. These features are related to the DOM tree parse of the

document. Although the DOM tree is mostly concerned with the presentation of a

document, it can also contain valuable information about the structural organization of the

document. In most of the HTML documents, the organization is achieved by using nested

tables (<table>) and divisions (<div>).

We can use the DOM address of a unit in order to incorporate structural information

[40]. For this purpose, starting from <Atm/> node (i.e. the root), the children of each node

are numbered consecutively starting from 0 (see Figure 5.4). Then, the DOM address of a

unit may be determined by following the path from the root node to the leaves covering the

unit. For example, the unit with the text content “Introduction” in the figure has the DOM
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address “0.1.0.0.0.1.0”. The DOM path of a unit (e.g. “html.body.div.table.tr.td.b”) can
also be used as another feature. An alternative feature is the position of a text unit within
the innermost table or division according to the DOM tree. This information may be
especially useful in heading extraction because headings are often found at the first

position within a table or division.

0 himl
n head 1 body
o div 1 table
0 table
0 ir . 2T
0ol 1 td i td 0 td
'e |
| -
= i
:_ E ':_|
s =] =
Z z =
= . i
=
£

Figure 5.4. Illustration of DOM addresses on an example DOM tree

5.2.1.3. Content Features. These features are related to the textual content of a unit, such

as features to specify whether a unit contains certain cue words or phrases (e.g. “back to
top”, “login”, etc.). Other content related features include the number of characters in the
text unit (e.g. 0-50, 51-100, >100), the number of sentences the text unit contains, and the
punctuation mark at the end of the text unit (*.”, *,’, *;°, *°, ‘I’, no punctuation mark, etc.).
Such features are especially important in the heading extraction task; in general, headings
are limited in length, consist of no more than one sentence and contain no punctuation

marks at the end. Content features may have binary and integer values.

5.2.1.4. Other Features. Several other features may be defined for a text unit. Some of

these are related to the visual position of the unit in a rendered Web document; i.e., as it is

displayed in a browser (see Figure 5.5). For this purpose, the x and y coordinates of the text
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units are computed using the Cobra HTML Parser and Renderer. This information may be
useful both for heading and hierarchy extraction tasks and can be incorporated to the
machine learning models as the visual position difference between two given units in the
document. Other features include a feature designating whether a unit is the document root
or not, and the usage of a horizontal line (<A»> tag in HTML) in a portion of the document

to separate content.

<

Text Unit 1

Text Unit 2

Figure 5.5. Visual coordinates of a text unit in a rendered Web document

5.2.2. Contextual Features

In the proposed machine learning models, the contextual information of a text unit is
utilized based on the ordering of units in a document and the document sectional hierarchy.
In heading extraction, the context of a unit is investigated based on the preceding and
succeeding units in the document. In order to incorporate hierarchical information, the
context of a unit in the tree corresponding to the document sectional hierarchy is
considered. In Figure 5.6, the potential attachment of a unit u, to the unit u;o in a partial
tree 1s given. We use u;; to denote the unit 7 levels above a unit », and j units to its left
similar to a syntactic parsing study [27]. For example, u;o denotes the parent unit of the

unit u, upo denotes the grandparent unit, and uo; denotes the preceding sibling unit.

We define composite features of two units u and u;; as F; in order to incorporate the
contextual information into the machine learning models. For this purpose, we mainly

utilize the difference and distance of two units in context because it can provide useful
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information in determining the headings and the sectional hierarchy. Intuitively, a heading
unit (i.e. parent unit) is usually more emphasized than the underlying text unit or
subheadings in terms of formatting. Similarly, units under the same heading, i.e. sibling

units, generally have similar formatting features.

Figure 5.6. Contextual information in document sectional hierarchy

Composite features of two units are defined for formatting, DOM tree and visual
features in our system. For binary and integer formatting features, these are defined as the
difference of the corresponding values. For example, to determine the composite value of
hl feature for two units m and n, we calculate m.hl-n.hl. If hl value of m is 1 and /41 value
of n 1s 0, their difference is 1. Similarly, if m has a font size 12 and » has font size 14, their

difference can be calculated as -2.

In calculating the composite feature for the DOM addresses of two units, we consider
the similarity of their addresses starting from the root of the DOM tree. In Figure 5.7, some
units of an example document (based on the order of their appearance in the document) are
given together with their DOM addresses. The units that are headings are shown as bold.
As previously noted in Chapter 4, semantically related parts in a document show spatial
locality in the DOM tree. As a result, related parts usually have similar DOM addresses.
We define the composite DOM address feature for two units as the length of the path
common to their DOM addresses starting from the root. This value can be normalized by
dividing it to the depth of the overall DOM tree for that document in order to overcome
DOM path length differences across different documents. In Figure 5.7, the length of

common paths for given unit pairs from Figure 5.8 are computed. As seen, the DOM
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address of a section heading is more similar to the DOM address of the following content

compared to a unit in another section.

Text Unit: DOM tree address:

“Medline” 0.20.1.0.3.1.3.0.3.3.1.1.1.1.3.3.3.1.1.0.0
“Congress Resource Centre” 0.20.1.0.3.1.3.0.3.3.1.1.1.1.3.3.5.1.1.0.0
“EXPLORE :” 0.20.1.0.3.1.9.1.1.0.2.0.0

Most Read News 0.20.1.0.3.1.9.1.1.0.2.5.1.0.0

All News 0.20.1.0.3.1.9.1.1.0.2.5.5.1.1.0
“Osteoporosis” 0.20.1.1.16.1.0

“The latest medical news and...” 0.20.1.1.18.1.1.1.0.0

“Medical News and Alerts” 0.20.1.1.18.1.1.6.1.3.0.0.0

Figure 5.7. DOM addresses of text units in an example document

Example 1:
“EXPLORE :” 0.20.1.0.3.1.9.1.1.0.2.0.0
“Most Read News” 0.20.1.0.3.1.9.1.1.0.2.5.1.0.0
Common path length:11
Example 2:
“EXPLORE :” 0.20.1.0.3.1.9.1.1.0.2.0.0
“Osteoporosis” 0.20.1.1.16.1.0
Common path length: 3

Figure 5.8. Calculation of DOM address similarity

We define composite features for visual positions of two units m and n by
considering the visual x and y coordinate differences between the units. The difference of x
coordinates and the difference of y coordinates can be considered separately as positive,
negative or zero. As an example, if the difference of y coordinates is positive, this means
that m comes below 7 in the visual display of the Web document; therefore, m cannot be a

heading of n. The difference of x and y coordinates can also be compared to a threshold
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value. As an example, if the visual y position difference between two consecutive units m

and n is very large, n cannot be a heading of m.

5.2.3. Global Features

In addition to the features of a single unit and the contextual features, we can also
define global features by considering the document or the document sectional hierarchy as
a whole. These features may be incorporated to the process of building the document
sectional hierarchy. One such feature we use is the depth of the document sectional

hierarchy at a given step in training or testing.

5.3. The Incremental Learning Approach

In document sectional hierarchy extraction, we take an incremental approach based
on one or more machine learning models. In Figure 5.9, part of a graph representing the
sectional hierarchy of a Web document is given. In the graph, the root node is a dummy
node covering the whole document and each of the other nodes corresponds to a text unit
in the document. The nodes are arranged from left to right according to their order of
appearance in the document. The actual dependency relations between node pairs (i.e.,
parent-child relationships like heading-underlying text or heading-subheading) are shown
as regular lines. These correspond to positive examples for the learning process. The
negative examples are the potential dependency relations which are not realized in the

golden standard hierarchy (e.g. the dashed lines in Figure 5.9).

The main training algorithm for constructing the document sectional hierarchy is
given in Figure 5.10. The input to the algorithm is the training set consisting of Web
documents and corresponding golden standard hierarchies. For each document in the
training set, the algorithm works on the units one by one starting from the first unit, and
considers the attachment of a unit to its parent unit as a positive example and other
potential attachments of the unit as negative examples. In this process, two constraints due
to the document flow are applied. First, a unit cannot be attached to a heading unit coming
after it in the document order. Second, the connections cannot cross each other according

to the projectivity rule as in dependency parsing [71]. The projectivity rule states that if a
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unit «; depends on the unit u;, (i.e., uj is the parent of u;), then all the units between wu;.;
and u; must also be descendants of u;, in the hierarchy. This rule can be implemented as in
the following definition (lines 5-11 in Figure 5.10):

Projectivity: “When searching for the parent of a unit u;, consider only the previous

unit (u;.1), the parent of uj.;, that unit’s parent, and so on to the root of the tree.

Document root

Figure 5.9. Part of an example document graph

Algorithm Train Hierarchy Extraction Model
Input
Training set (x;, ;)
begin
1: for each document x; in the training set
2 for each unit u; in x;
3 p = parent(u;)
4: Set (p, u)) as positive_example
5: prev=uj
6: while (prev !=null)
7 if (prev !=p)
8: Set (prev, u)) as negative_example
9: end if
10: prev = parent(prev)
11: end while
12: end for
13: end for
14: Build machine learning model
End

Figure 5.10. The training algorithm for document sectional hierarchy extraction
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5.4. Variations of the Testing Approach

In document sectional hierarchy extraction, the testing phase includes incrementally
building the hierarchy for a previously unseen document. The document is automatically
decomposed into text units each of which is associated with features. The testing algorithm
operates on each text unit sequentially based on the order in the document; at each step,
alternative partial solutions (trees) are generated. We take the approach of maintaining
only the most likely partially generated solutions at each step using the heuristic approach
of beam search. Beam search algorithm is based on breadth-first search. At each level, all
successors of the states in the current level are generated; however, only a predetermined
number of states are stored which is called the beam width. For this purpose, we maintain a
set of partial analyses (i.e. partial trees) of the given document. The set is initially empty

and is updated at each step of the algorithm.

We adapt two operations similar to the previous work in syntactic parsing [27, 28]:
ADV (i.e. advance) and FILTER. Whenever the next text unit in the document is
processed, the ADV operation is applied. The potential attachments of the current unit to
the partial trees are considered and the set is updated to include new partial trees. In Figure
5.11, potential attachments of a unit (u9) to an example partial tree are shown with dashed
lines. During this process, restrictions on the search space due to the document flow are
also applied (direction of attachments and projection principle). To prevent the exponential
growth of the set of partial trees, the FILTER operation is introduced. For this purpose, the
score for each partial tree is computed using the machine learning models and the partial
trees with lower scores are eliminated. We take the approach of maintaining only the top &

(i.e. beam width) highest scored partially generated trees at each step.

In order to improve the accuracy of hierarchy extraction, we also utilize the output of
heading extraction. For this purpose, we define a preprocessing step to the incremental
approach which is based on the idea that a heading unit is always immediately followed by
a child unit in the hierarchy. That is, by definition, a heading in a document has always at
least one text unit (heading or non-heading) as the underlying content immediately
following it. We use the binary classification model in Section 5.1.1 to determine the

heading units in a given document. Based on the output of the heading extraction model, if
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a unit »; is a heading, we attach ;. to u;. In Figure 5.12, the output of the preprocessing
step is shown on the units of an example document. The heading units are shown with bold
circles in the figure. Assuming that the heading units are correctly identified, each heading

unit is connected with its immediately following unit in the preprocessing.

Figure 5.11. Potential attachments of a unit to an example partial tree

Figure 5.12. Preprocessing for heading units

The main algorithm to build the sectional hierarchies for previously unseen
documents (i.e., the test set) is given in Figure 5.13. The algorithm works on each unit of a
document sequentially. The first unit of the document is attached to the document root.
This corresponds to the initial tree stored in the set of partial trees (PartialTrees). The
potential attachments of a unit are considered if the unit was not already attached in the

preprocessing step (lines 8-14 in Figure 5.13). Another restriction used in the algorithm is
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to allow a unit to attach only to a heading unit. In this way, the potential attachments of a

unit to a non-heading unit are eliminated.

Algorithm Test Hierarchy Extraction Model
Input
Test set (x;, v/)
k: beam width
begin
1: for each document x; in the test set
2: PartialTrees = {}
3 Attach u; to document_root, add the tree to PartialTrees
4 for each unit u; in x; (j =2 to n)
5: if unit u; not already attached in preprocessing
6.
7
8

for each tree T in PartialTrees
Remove T from PartialTrees

; prev = uj.

9: while prev != null

10: if prev is a heading

11: Attach u; to prev, add the tree to PartialTrees (ADV)
12: prev = parent(prev)

13: end if

14: end while

15: end for

16: Run hierarchy extraction model on all alternative attachments
17: Keep only top & highest scored trees in PartialTrees (FILTER)
18: end if

19:  end for

20: end for

end

Figure 5.13. The testing algorithm for hierarchy extraction

We developed several modifications to the main testing algorithm to investigate their
effect on the accuracy of sectional hierarchy extraction. These are detailed in the

following:

e Modification 1: Instead of using the score obtained from the machine learning
model for hierarchy extraction directly, it is possible to convert it into a probability
value. The conversion of a machine learning model output (e.g. Support Vector
Machines) into a probability value has been investigated in previous studies [72, 73].
In this conversion, a sigmoid function can be used (see 5.1). The sigmoid function
parameters A and B can be estimated using an iterative method [72]. Alternatively,

the sigmoid function can be used with fixed parameters; e.g. 4=-2, B=0 [73], which
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is also the approach we take. Given a sequence of units in a document as u; to u,, we
define the sequence of parent-child dependencies as parent(1) to parent(n) where
parent(i) = j means that the unit j is the parent of unit /i in document sectional
hierarchy. We make a simplifying assumption that the probabilities of such
dependencies are mutually independent in a document; i.e., the attachment of unit i
to unit j is independent from the other attachments in the hierarchy. Then, the
probability of building a document hierarchy with # units can be defined using the

multiplication rule of probability for independent events as in 5.2.
fx)=1/(1+exp (Ax + B)) (5.1)

ﬁP(parent(i) = /) (5.2)
i=1

The application of the algorithms My (the main testing algorithm in Figure 5.13) and
M; (Modification 1) on an example document for units /=5 and /=7 are illustrated in
Figure 5.14 and Figure 5.15, respectively. The dashed lines in the figures show the
alternative partial trees obtained in those steps together with the scores obtained in
the alternative methods. In My, at each step, the scores output by the machine
learning algorithm are directly used. In M, the scores output by the algorithm are
converted to probabilities. Then, the probabilities at each step are multiplied to form

the current score.

e Modification 2: An alternative implementation is to run the testing algorithm in

two levels. In the first level the algorithm is applied on only heading units; i.e. only
heading units are connected in order to obtain the overall heading hierarchy of the
document. Then, in the second level, the algorithm continues with the output of the

first level and non-heading units are attached to the correct positions in the hierarchy.

e Modification 3: In this implementation, integer ranks are used instead of using the
scores output by the machine learning models directly. The partial trees are given

ranks starting from “1” which is given to the best scored tree(s). During the filtering,
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the times a partial tree has obtained rank “1” are summed to obtain its score. The

trees with higher scores are favored.

e Modification 4: The partial trees are given integer ranks similar to Modification 3.

Then, the ranks at each step are summed to determine the score of a given partial

tree. The trees with smaller scores are favored.

Mo: 1.2 My: 0.8

My: 0.9 My 0.5

Mo 1.0 My 0.7

Figure 5.14. Alternative partial trees ati = 5
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1.2 My 0.8"01
;01 M;:0.8%0.4
1.2 M, 0.8"0.8

1.0 M, 0.8%0.7

;05 M, 0.8*0.2

1.2 M. 0.5%0.7
1.2 My 0.570.1
1-0.5 M;:0.5%0.2

:08 M,;:05%05

0.5 My 07702

1.0 My 0.7%0.7

1.2 My 0.7°0.1

Mo: -1.2 My: 0.1*0.1

(u7) M09 M;:0.1%05

Figure 5.15. Alternative partial trees at i =7
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5.5. Implementation

The proposed machine learning approaches have been implemented as a standalone
application in Java. The program runs on each document in the collection and
automatically identifies the text units and their features by utilizing Cobra HTML Parser
and Renderer. The units of each document are stored automatically in MS Excel files
separately for each document to allow manual annotation of document sectional

hierarchies (see Figure 5.16).

ID [ParentlD|H1 [H2 [H3 [H4 [H5 |HE |B

Retire to aly, the most popular retirement country o1 0 |0 |0 0|0 |0 |0
Why "ou Should Retire to kaly 1 [0 1 |0 |0 ojo |60 [
So you've decided that you'd like to retire to Raly, but yvour g2 |1 g (o |0 0 (o |0 (0
What Would Life be Like in Raly? N o |1 |0 ojo |60 [
VWhen vou retire to aly |, vou'll find yvourzelf amidzt a be{d4 |2 0 |0 |0 0|0 |0 |0

Another reazon to consider retirement in aly is that, ifyS |3 o (o |0 0 (o |0 (0
Enjoving the Ralian Culture and People g |1 o N 0 oojooqe 1

If vou firzt pay a vizit, you'll love the friendly people voul7? |8 0 |0 |0 0|0 |0 |0

Best of all, vou'll like the prices in faly. While there are 4& |6 o (o |0 0 (o |0 (0

And wheo could forget the great kaly food 7 Pasta iz ondS |6 0 |0 |0 0|0 |0 |0

Climate Information - 300 Days of Sun 10 |1 o N 0 oojooqe 1

Az | mentioned before, the climate iz temperate, with mil| 11 |10 o0 (o |0 0 (o |0 (0

Click here to return from Retire to kahy to The Best Places To Retif12 |0 o0 |0 |0 0|0 [0 |0
Topicz 12 [0 oo N ojo |60 [
@ 2008 Retiring-Overzeaz.com. No Reproduction Without Permizg 14 |0 o (o |0 0 (0o |0 (0
Privacy Policy 15 [0 o0 |0 |0 0|0 |0 |0

Figure 5.16. The internal representation of a document in implementation

Each unit in a document is associated with a unique identification number (ID) based
on its order of appearance in the document. The document root contains the main title of
the document as enclosed in <title> tags in HTML, and its ID is 0. For each unit, the ID of
its parent unit (ParentID) is also stored to keep track of the hierarchical structure (i.e. tree).
In golden standard hierarchies, the parent IDs are manually annotated based on the original
document. In the testing process, the parent IDs are determined automatically based on the
machine learning models. Figure 5.16 also shows a part of the features associated with
each unit and the corresponding values. The training and testing data for heading and
hierarchy extraction models are obtained by utilizing this hierarchical information and

features.
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The proposed heading and hierarchy extraction models were implemented using two
different machine learning algorithms: support vector machines and perceptron. In the

following, the algorithms and their usage are overviewed.

5.5.1. Support Vector Machines-Based Approach

Support vector machines (SVMs) are machine learning methods commonly used in
classification. In this approach, given two classes C; and C, and a training set X = {x', 7}
where # is +1 if X' € C; and # is -1 if X' € C,, the aim is to find w and wy such that the
conditions in 5.3 and 5.4 are satisfied [74]. These two conditions can be rewritten as in 5.5.
The aim is to separate the instances in two classes using a hyperplane and to have them
with some distance away from each other. The distance from the hyperplane to the closest
instances on either side of it is called the margin. The optimal separating hyperplane is

defined as the hyperplane maximizing the margin.

w! x'+wy>+1 for ¥ =+1 (5.3)
w' X'+ wo<-1forr =-1 (5.4)
F(w' X+ wp) > +1 (5.5)

The distance of x' to the hyperplane can be written as in 5.6. To maximize the
margin, ||wl|| is minimized by solving the optimization problem in 5.7. This problem can be
rewritten in dual form using Lagrange multipliers «' as in 5.8. The set of x' whose a' > 0
are support vectors. The obtained discriminant function is called the support vector
machine (SVM). During testing, g(x) = w’ x + wy is calculated. If g(x) > 0, C; is chosen;

otherwise, C is chosen.

W X'+ wo) /|| (5.6)

Minimize % I|w]|* subject to 7 (w” X' + wo) > +1, V¢ (5.7)
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Maximize -%ZZatasrtrs o)' ¥+ > a' subjectto Y a'r'=0and a' 20, Vt (5.8)
t t

t s

If the training data are not linearly separable, a solution with the least error can be
calculated (soft margin hyperplane). In the case of nonlinear problems, it is also possible to
map the problem to a new space by a nonlinear transformation using appropriate functions
(kernel functions) and then use a linear model in this new space. Commonly used kernel
functions include polynomials of degree d (see 5.9) and radial basis functions where &

defines the radius (see 5.10).
K(x', x)=(x"x"+1)? (5.9)
K(x', x) = exp(- |x' — x||*/ o) (5.10)

In the implementation, we utilized SVM-light support vector machine
implementation [75]. It supports classification, regression, preference ranking, and several
kernel functions including linear, polynomial and radial basis functions. In heading
extraction, SVM classification is performed. In hierarchy extraction, positive and negative

examples for the learning process are created based on the incremental approach.
5.5.2. Perceptron-Based Approach

Perceptron is a type of artificial neural network. It performs classification by
mapping an input x to an output y, basically as a weighted sum as in 5.11 [74]. The weights
w; are called connection weights associated with each dimension of the input (x; for j =
1...d), and wy is used to make the model more general as a bias value. In this way, the
perceptron defines a hyperplane to divide the input space into two: positive and negative
examples. In training the perceptron, generally online learning is used where the training
instances are given one by one and the parameters are updated after each instance. Initially,

it starts with random initial weights and adapts itself slowly.

d
Y= 2WiX; W (5.11)

J=1
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In general, the update rule of perceptron has the form in 5.12 [74]. At any step, if the
actual output is equal to the desired output, no update is performed. If they are different,
the magnitude of the update is proportional to the difference between the desired output
and the actual output. The magnitude of the update also depends on the learning factor. If
the learning factor is large, the updates depend much on recent instances; i.e., as if the

system has short memory.

Update = LearningFactor - (DesiredOutput — ActualOutput) - Input (5.12)

In heading extraction, we implemented a perceptron-based classifier. For hierarchy
extraction, we developed an incremental approach based on perceptron. In Figure 5.17, a
variant of the perceptron-based training algorithm used in the hierarchy extraction task is
given. In the algorithm, the weight vector o is updated if the highest scored tree is not the
golden standard parse at the end of the processing of a document (lines 9-12 in Figure
5.17). The learning may be performed over several iterations. The average of the weight

vectors obtained during the iterations may be used in the testing phase.

Algorithm Train Perceptron Based Hierarchy Extraction Model
Input
Training set (x;, v;)
begin
1: Initialize weight vector a to 0
2: for each learning iteration ¢
for each document x; in the training set
PartialTrees = {}
Attach u; to document _root, add the tree to PartialTrees
for each unit u; in x; (j =2 to n)
FILTER(ADV (PartialTrees))
end for
9: Calculate z; = arg max ®(x,,z)- a

zeGEN(x;)
10: if (Zl' !:yi)
11: a=a + LearningFactor - (D(x,,y,) - D(x;,z;))
12: end if
13:  end for
14: end for
end

I A s

Figure 5.17. The perceptron-based training algorithm
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Other variants of the perceptron-based algorithm may also be defined. As a variant,
the update may be performed earlier (early update as in [27]), if the set of partial trees no
longer contains the golden standard partial tree during the processing of a document. Then,
the set may be updated to include only the golden standard partial parse. As another
variant, the weight vector may be updated after the processing of each document unit

rather than at the end of the processing of a document.

5.6. Evaluation

5.6.1. Corpus

For the experiments, we used the Extended English Collection presented in Chapter 3
which contains a total of 500 documents. We used a specification for manually annotating
the headings in the documents (Figure 5.18). Document sectional hierarchies were
manually marked based on the identified headings and the document organization. The

agreement between two different annotators was measured as 70%.

1. Number
e In addition to the main document title (enclosed in <title> tags),
an HTML document may have zero or more section headings.

2. Form
e A section heading consists of one line and is separated from the
surrounding text with one or more line breaks.

e Section headings are more emphasized than the surrounding text
in terms of formatting (e.g. font family, font weight, font color,
font style, alignment, and background color).

3. Content
e Section headings cannot be too long.

e Section headings mostly do not end with punctuation marks.
Sometimes they end with a punctuation mark such as :”.

4. Other
e Text contents in images are not considered.

Figure 5.18. The specification for manual annotation

Some statistics for the document collection are given in Table 5.2. The average sizes

of documents are given as the number of text units (i.e. paragraphs separated by line
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breaks) in the documents. As seen, on the average, a Web document contains about 110
text units. The average depth of document sectional hierarchies and the average number of
headings in the documents were determined based on manual marking. The statistics show
that the Web documents have an average sectional hierarchy depth of about four and they

contain around 10 headings on the average.

Table 5.2. Statistics for the document collection

Number of documents 500
Avg. number of text units 110.7
Avg. hierarchy depth 4.1
Avg. number of headings 10.6

5.6.2. Experiments

In the experiments, the output of heading and hierarchy extraction models were
compared against golden standard headings and hierarchies in order to determine the
performance of the proposed system. The performance measures defined in Chapter 4 were
used which include recall, precision and f-measure for heading extraction, and accuracy for
hierarchy extraction. The experiments were also performed for our previously developed
rule-based approach. For this purpose, the sentence-based approach developed in Chapter 4
was converted to a paragraph-based implementation. Different from Chapter 4, the
document sectional hierarchies were created based on all the units in a document. In the

previous approach, the secondary parts such as menus were not considered in this process.

All the experiments were performed using cross-validation. Generally, in K-fold
cross-validation, the dataset is divided randomly into K parts with equal sizes [74]. Then,
one of the K parts is kept as the validation set and the remaining K-1 parts are used as the
training set. This process is repeated K times; each time for a different one of the K parts.
One advantage of this method is that all observations are used for training and validation,
and each observation is used for validation exactly once. In the experiments, we performed
5-fold cross-validation. We divided the test collection randomly into K=5 different parts

with the restriction that all the parts contain an equal proportion of documents for each
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query in the set. The tests were performed on five rounds and the averages of the results

were taken.

5.6.2.1. Heading Extraction. We used the binary classification model described in Section

5.1.1 in order to classify text units as heading or not. In this model, the document is
considered as a flat sequence of text units. The intuitive idea is that, heading and non-
heading units can be determined based on their context. For this purpose, we define
features considering the units that immediately follow and precede the current unit. We
used five different feature sets (see Table 5.3). These include different combinations of
features; i.e., features of the current unit (F,), composite features of the current unit with
immediately following two units (Fyu+1), Fun+2) and immediately preceding two units

(Fun-1), F n(n-2))- The number of features in each case is also shown in the table.

Table 5.3. Feature sets used in heading extraction

Feature Set Features Number of
Features
@, Fou, Fugirn) 58
D, Foy Fagrety, Fune1y 86
D, Fo, Fugys Fune2) 82
D, Fouy Funetys Fune2)s Fun-1 110
ds Fo, Fagirtys Fn2)s Fun-1), Fn-2) 134

We evaluated the performance of heading extraction using support vector machines
and perceptron with different feature sets. In the support vector machine case, we also
experimented with different cost factors. The cost factor adjusts the cost of training errors
on positive examples (false positives) versus the cost of errors on negative examples (false
negatives). In this way, it is possible to achieve different levels of precision and recall. The
cost factor becomes especially important when there is an imbalance in the number of
positive and negative examples in a training set. In heading extraction task, the number of
negative examples (non-heading text units) is much larger than positive examples (i.e.
headings) resulting in relatively low recall rates. To overcome this problem, a cost factor
greater than 1 may be used. In the experiments, we obtained accurate results when a cost

factor of 2 was used. We also experimented with different kernel types: linear, polynomial



74

and radial basis function (RBF). In polynomial kernel, we used power 2 (i.e., =2) because

it provides accurate results.

Table 5.4 shows the precision, recall and f-measure obtained for heading extraction.
The best results for SVM were obtained for polynomial and RBF kernels. The most
accurate results were obtained for the feature set @5 where all the mentioned features were
included. The effect of different feature sets is less obvious for linear SVM. In the case of
perceptron, the increased use of contextual information in features generally improved f-
measure rates. In Table 5.5, the most accurate results obtained in SVM and perceptron
algorithms are given together with the results of the rule-based approach. The results show
that machine learning approaches provide dramatic increase in the accuracy of heading
extraction compared to the rule-based approach. The improvements become especially

noticeable with the use of a nonlinear technique (i.e. polynomial kernel) in SVM.

Table 5.4. Performance results of machine learning methods in heading extraction

Method Feature | Recall | Precision | F-measure

Set

SVM - Linear (O} 0.85 0.78 0.81
o, 0.83 0.78 0.80
(O} 0.81 0.77 0.79
(O 0.83 0.78 0.80
(O 0.83 0.78 0.80

SVM — Polynomial (ON 0.87 0.80 0.83
O, 0.85 0.80 0.82
(O} 0.87 0.82 0.84
(O 0.85 0.80 0.82
(OF 0.87 0.84 0.85

SVM - RBF (O} 0.84 0.76 0.80
O, 0.84 0.79 0.81
(O} 0.87 0.81 0.84
(O 0.88 0.83 0.85
(OF 0.87 0.83 0.85

Perceptron (O 0.71 0.77 0.74
O, 0.70 0.78 0.74
(O} 0.71 0.84 0.77
D, 0.78 0.82 0.80
[OF 0.77 0.81 0.79
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In the literature, machine learning techniques (such as SVM) have been applied to
the extraction of the main title (i.e. a single heading) from HTML documents where a
maximum f-measure of 0.80 was obtained [39]. Compared with that study, the investigated
problem, i.e. extracting all the headings in a given HTML document, is a more general and

challenging problem where we obtained an f-measure of 0.85.

Table 5.5. Overview of performance results in heading extraction

Method Recall | Precision | F-measure
SVM 0.87 0.84 0.85
Perceptron 0.78 0.82 0.80
Rule-based Approach 0.72 0.64 0.68

5.6.2.2. Hierarchy Extraction. The second model we evaluated is the tree-based learning

approach for sectional hierarchy extraction. In hierarchy extraction, contextual features are
defined based on the document sectional hierarchy. Whenever a new unit is added to the
partial hierarchy in the incremental learning approach, the features of the units in its
context are considered. We experimented with different feature sets including the
composite features of the current unit with its candidate parent unit (#¢), candidate sibling
units (Fo1, Fa) and candidate grandparent unit (F,) as given in Table 5.6. Based on the
initial experimental results, we decided to use only features related to the distance and
difference between two text units (i.e. relative features such as the font size difference) and

eliminated the features with absolute values, such as the font size of the current unit.

Table 5.6: Feature sets used in hierarchy extraction

Feature Set Features Number of Features
D, Fio 17
D, Fio, For 40
03 Fio, Fo1, 2o 57
D, Fro, Fo1, Fa0, Foz 73

We investigated the effect of using heading information in the task of hierarchy
extraction. The basic idea is that a heading is always the parent for the immediately

following unit. Based on the output of the heading extraction model, each heading is
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connected with its immediately following unit (preprocessing step). The initial experiments
showed that the use of such information improves the accuracy. Therefore, we utilized
heading information in the following experiments. In all the experiments, SVM with
polynomial kernel was used with all the features for heading extraction because this was

the case best accuracies were obtained (i.e., 0.85 for f-measure).

The accuracy of hierarchy extraction is given in Table 5.7 for the proposed
approaches based on SVM and perceptron with different combinations of features and a
beam width of 100. The results show that the SVM-based approach performs better than
the perceptron-based one. The use of increased number of features usually resulted in
improved accuracy in SVM. The best results (67%) were obtained when all the features,
i.e. the composite features of the current unit with parent unit, sibling units and
grandparent unit, were used together. However, this was not the case in perceptron which
is based on a linear approach. SVM performed the best results for polynomial and RBF
kernels rather than the linear kernel. We also experimented with different beam widths. In
Table 5.8, the accuracies for SVM polynomial and RBF kernels are given for different
beam widths ranging from 1 to 100. As seen in the table, there is not much change in the

accuracies when the beam widths are varied.

Table 5.7. Performances of SVM and perceptron for hierarchy extraction

Learning Algorithm Feature Set

D, D, D; Dy
SVM — Linear 0.42 0.61 0.61 0.61
SVM — Polynomial 0.57 0.63 0.63 0.65
SVM — RBF 0.58 0.66 0.67 0.67
Perceptron 0.51 0.46 0.46 0.46

Table 5.8. Effects of different beam widths in hierarchy extraction

Learning Algorithm Beam width

1 10 20 50 100
SVM — Polynomial 0.64 0.65 0.65 0.65 0.65
SVM — RBF 0.66 0.66 0.66 0.66 0.67

In Table 5.9, some experiment results for the main decoding algorithm (My) and the

variations (M; to My) detailed in Section 5.4 are given. We evaluated the methods using
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the feature set @4 and two different kernels. The tests were performed using a beam width

of 100. The best results were obtained for the variation My with polynomial kernel.

We compared the effects of using headings extracted with the machine learning
model and manually extracted (golden standard) headings. The tests were performed using
the feature set @4 and a beam width of 100 for perceptron and SVM. The best accuracy for
hierarchy extraction was obtained when manually extracted headings were used (0.82).
When using the headings output by the heading extraction model (Model 1), which
corresponds to a fully automatic approach, the highest accuracy obtained was 0.68. In this
case, SVM-based approach is superior to the rule-based approach. The performance
difference between the fully automatic approach and the approach using manually
identified headings stems from imperfect recall and precision rates in the automatic

extraction of headings.

Table 5.9. Results for alternative methods in hierarchy extraction

Learning Algorithm Method

M, M, M, M; My
SVM — Polynomial 0.65 0.67 0.59 0.64 0.68
SVM — RBF 0.67 0.67 0.59 0.67 0.66

Table 5.10. Overview of performance results in hierarchy extraction

Method Model 1 Manual
headings headings
Rule-based Approach 0.61 0.81
Perceptron 0.51 0.82
SVM 0.68 0.79

We conducted an error analysis on the results obtained using the machine learning
models and identified the main causes of inaccuracies. One source of inaccuracy in
hierarchy extraction is errors in heading extraction. Although we have obtained a high
performance in heading extraction (85% f-measure), the remaining inaccuracies (15%)
result in a 10-15% decrease of accuracy in hierarchy extraction. False negatives of
headings result in loss of structure, whereas false positives result in creation of structure

which does not actually exist. Another source of inaccuracy in hierarchy extraction is
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related to the heuristic-based incremental approach. In order to prevent the exponential
growth of partial trees, at each step, only a certain number of partial trees are kept. In some
cases, correct partial trees are eliminated later in the processing which results in some
errors. Part of the imperfect results in sectional hierarchy extraction result from connecting
text units in unrelated document parts. There are cluttered Web documents with complex
table-based layouts. Also, we have not eliminated secondary parts such as menus from
documents and performed hierarchy extraction on the document as a whole. As a result,
some text content and headings may be connected to wrong heading levels. Finally, there
are sources of inaccuracies over which we do not have any control. These include errors
made by Web document authors; e.g., ambiguous or wrong usage of tags and styles.
Nevertheless, we obtained acceptable results as a full automatic approach for sectional
hierarchy extraction which is a much more challenging task than identifying only the

headings in a document.
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6. SUMMARY EXTRACTION

In this chapter, the proposed summarization method, i.e. structure-preserving and
query-biased summarization, is detailed. Then, task-based evaluations on different

document collections and the discussion are presented.

6.1. The Method

In this thesis, we focus on summarization in the context of Web search. Our main
aims are: (1) To enable users to make more accurate relevance judgments as compared to
search engine extracts; i.e., by preventing them missing relevant results or spending time
with irrelevant items; (2) To have reasonable times for relevance judgment using the

summaries as compared to judging the relevance of the original document.

We developed a novel summarization approach for Web search combining two main
ideas distinguishing it from the traditional approaches. First, it is based on the idea that
utilizing the explicit document structure can help the users more accurately judge the
relevance of documents on the Web, where documents have high diversity in structure and
complex internal organizations. Second, it is a query-biased method suitable to Web

search.

In the proposed system, indicative summaries are created using the method of
sentence extraction. The summarization algorithm is run after the structural processing
phase described in previous chapters. The structural information is utilized in two different
ways in the system. First, it is used in determining the importance of sentences and
document sections. Second, the structure, i.e. the context of extracted sentences, is also

preserved in the output summaries.

The summaries of the proposed system are created using two levels of scoring. In the
first level, individual sentences of a document are scored. In the second level, the sections

and subsections are scored in order to determine important ones. Then, based on these two
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types of scores, the final summaries are formed. The scoring methods are explored in the

following subsections.

6.1.1. Sentence Scoring

The text content of the Web document is split into sentences and a variant of the
basic sentence scoring metrics in the literature is employed. This includes four different
types of sentence scoring methods: Heading, location, term frequency and query methods.
We adapted these methods such that they utilize the output of the structural processing
step.

e Heading method: The intuition behind this approach is that headings in a document

usually contain key words related to the content of the document. Therefore, the
sentences containing such words may be important. This approach has been
investigated in various studies [22, 44, 56, 59]. However, most of the previous studies
either use only the main title of the document, or they utilize the headings without
investigating the automatic extraction of them which poses a challenge for Web
documents. This study targets all the headings in a Web document based on the output
of the structural processing step. Words in the headings are stored in a heading word
list after stop words are eliminated and stemming is applied. A heading score is

assigned to each sentence as the number of heading words it contains.

e [ ocation method: This method is based on the idea that sentences located at certain

positions of the document usually convey salient (i.e., important) information [22, 44,
56, 59]; e.g., sentences occurring near the start or end of the document or its
paragraphs. We modified this approach to incorporate sectional information. Sentences
are given a positive score if they are the first sentence of a section or subsection as

found by the structural processing step.

e Term frequency method: The motivation for this method comes from the idea that

terms occurring frequently within a document usually convey important information
and sentences with higher number of such words are important sentences [44, 56, 59].

In the proposed system, each sentence is given a term frequency score by summing the
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frequencies of the constituting words. In finding the term frequencies, stop words are

eliminated and stemming is applied.

e Query method: In information retrieval context, biasing summaries towards queries

becomes important [22, 56]. By heavily selecting sentences containing query words, it
is expected that the users can judge the relevance of the search results better. Therefore,
in the proposed system, each sentence is given a query score as the number of query

words it contains after stemming is applied.

The scores obtained in each of these methods are normalized by dividing them to the
maximum score obtained for that method in a given document; in this way, the normalized
scores are in the interval [0, 1]. The overall sentence score is calculated as the weighted
sum of these four types of scores as in 6.1 where s’s represent method scores and w’s
correspond to method weights. Table 6.1 shows the score calculation for the following

example sentence.

Ssentence — Sheading X Wheading + s location >* Wlocation +s tf X Wyt + Squery x Waquery (6 1)

Example:
Query: antibiotics bacteria disease
Sentence: “These are the bacteria that are usually involved with bacterial disease such as

ulcers, fin rot, acute septicaemia and bacterial gill disease.”

In Table 6.1, the application of the four methods on the example sentence is shown
together with the applicable terms and the scores. In the example, heading, location and
term frequency methods are given equal weights whereas query method is given three
times more weight; 1.€., Wheading = Wiocation = Wir = 1 and wyuer, = 3. The stems bacteria,
bacteri, and diseas appear in the headings throughout the document. Each occurrence of
these words in the sentence increases its heading score by one. The location score is either
1 or 0, depending on whether the sentence is the first sentence of any section or subsection.
In the example, it is 0. The term frequency score is calculated by summing the frequency
of each term in the sentence multiplied by its frequency in the whole document (given with

parentheses in the table). Finally, the query score applies to two query terms occurring in
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the sentence (bacteria, diseas). In the table, the maximum score in the whole document for
each method is also indicated. These values are used in the normalization of the scores.

The sentence score is obtained as the weighted sum of the normalized scores.

Table 6.1 Application of scoring methods on an example sentence

Method Applicable terms | Sentence | Maximum score | Normalized
score in document sentence score
Heading bgcterla, bacteri, 5 6 0.83
diseas
Location — 0 1 0.00
bacteria(17),
involv(1),
bacteri(11),
Term diseas(7), ulcer(5),
Frequency | fin(1), rot(1), 64 261 0.25
acut(1),
septicaemia(l),
gill(1)
Query bacteria, diseas 2 2 1.00
Overall 4.08

6.1.2. Section Scoring

Traditional summarization approaches usually create summaries by considering the
document as a linear sequence of sentences. Some of them score sentences by considering
some structural information; e.g. heading and location information. However, during the
extraction phase, most of the approaches still select the sentences from an unstructured
space of sentences, and also form unstructured summary outputs. In the proposed
approach, we consider that different sections and subsections of a document may have
different importance values and should be represented at different extents in the summary
depending also on the user query. For instance, a section whose content is closely related
to the information need of the user may be represented with much more sentences in the
final summary than a section with a similar length but less relevant material. Moreover, in
the proposed system, structured summaries, which include context of sentences in the form

of headings and subheadings, are created rather than flat text summaries.
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In the system, each section and subsection of a document is given a section score as a
measure of its importance. Sections with higher scores are represented with more sentences
in the output summary. The section score is calculated as the sum of scores of sentences in
a given section. Also, in a hierarchical way, the score of a section can be calculated as the
sum of the scores of constituting subsections. Each section or subsection is assigned a
quota based on its section score. The quota determines the number of sentences with which
that section will be represented in the output summary. The quota for the whole document
is selected as 25 which is the approximate number of sentences in the output summary.
Then, hierarchically, this quota is divided among the sections and subsections as in 6.2
where s’s represent section and subsection scores. The summarization algorithm runs on
the document tree (sectional hierarchy) obtained in structural processing. A variant of the

algorithm is given in Figure 6.1.

(6.2)

S subsection

quota = quota X

subsection section

section

The process starts at the root node of the tree which covers the entire document. The
root is given a quota which also corresponds to the maximum summary size as the number
of sentences (e.g. 25). The document tree nodes are visited in a breadth-first fashion. If the
quota of a node is greater than a predetermined threshold (e.g. 3) and the node has non-leaf
nodes (i.e. it contains other subsections rather than only sentences), its quota is shared
among the subsections based on the scores of the subsections. When the quota of a section
or subsection reaches a certain threshold or the section has no more subsections, the
highest scored sentences are selected from that section one by one to be included in the
summary together with the heading of that section. Also the predecessor headings in the
hierarchy, all the way to the main heading, are selected as a part of the summary if not
already included. The summarization continues until the summary quota for the whole
document is reached. In Figure 6.2, the summarization process is illustrated on an example
document tree containing heading nodes (h) and non-heading nodes (t). The initial quota is
25. One is reserved for the root (containing the document title) and the remaining quota
(i.e. 24) is divided among child nodes. This process continues in a hierarchical way. Some
of the nodes selected as part of the summary are shown as bold. As seen, whenever a node

is selected, its predecessor heading nodes are also incorporated to the summary.



Algorithm Summarize

Input

root: root node of the document tree
begin
1: Set a threshold for section quotas
2: Insert root into queue with a quota
3: while (queue not empty)

4: summarize = false

5: Get the next node x from queue

6: sentencelList = {}

7: if (quota,> threshold)

8: sentencelList = {x} if x |= root

9: for each child node ¢ of x

10: if (c is leaf)

11: summarize = true

12: insert ¢ into sentencelList

13: else

14: quota. = quota, * sectionScore. | sectionScore,

15: Insert ¢ into queue

16: end if

17: end for

18: else

19: summarize = true

20: Insert all the sentences under x into sentencelList

21: end if

22: if(summarize)

23: Get quota for sentencelList

24 while (quota and summary size limit not exceeded)

25: Mark next highest scored sentence s from sentenceList
for inclusion in summary

26: while (summary size limit not exceeded)

27: Mark ancestors of s (i.e. headings) in hierarchy

for inclusion in summary

28: end while

29: end while

30: end if

31: end while

end

Figure 6.1. A variant of the summarization algorithm

84
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Figure 6.2. Illustration of the summarization process
6.2. Evaluation

6.2.1. Experiment Setup

We conducted a task-based (extrinsic) evaluation for the summaries of the proposed
system. In this type of evaluation, the quality of a summary is evaluated based on how it
effects the completion of another task. Here, the task is information retrieval where the
summaries are planned to be actually used. That is, the summaries are judged according to
their usefulness in a search engine. We preferred extrinsic evaluation since it is more
suitable for cases where the summarizer is embedded within another system (e.g. a search

engine) [42], which is the case in this research.

We used the TREC queries (topics) and documents which were also used in heading
and hierarchy extraction experiments. Four types of summaries (document surrogates)
were used for comparison. These are:

e Google — Query-biased extracts provided by Google for the given document.

o Unstructured — Query-biased summary without the use of structural information

(including extraction of menu information).
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o Structuredl — Structure-preserving and query-biased summary created by the
proposed system using the output of the structural processing step.
o Structured? — Structure-preserving and query-biased summary created by the

proposed system using manually identified structure.

All the summaries except Google extracts are longer summaries with about the same
size (about 25 sentences) to make them comparable with each other. When calculating the
sentence scores for the summaries, we have experimented with different weight values for
Equation 6.1. We observed that giving similar weights to heading, location, and term
frequency metrics and assigning a weight to the query metric a few times more than the
others give rise to the best performances. This indicates that query terms provide the most
important information, but the other sources of information also have an effect and should
not be disregarded. The results shown in this section were obtained using the weighting

factors Wheading = Wiocation = Wy =1 and Woyer, = 3.

In creating the unstructured summaries, structural information, i.e. heading and
location methods, is not used. Instead, those summaries are formed using only term
frequency and query methods. Structured summaries are based on the document sectional
hierarchy. Navigation menus in the Web documents (e.g. links) which cause a cluttered
view were identified using heuristics and eliminated in structured summaries. An example
summary output of the proposed system and an example unstructured summary for the
query Antibiotics Bacteria Disease are given in Figure 6.3 and Figure 6.4, respectively. In
the summaries, query keywords are highlighted. Each summary sentence is output as a
single line; for this purpose, the end parts of longer sentences are replaced by °...°
(allowing a maximum of about 100 characters for each sentence). The structured
summaries are displayed in a hierarchical way in accordance with the sectional hierarchy

obtained in the structural processing step. Also, headings and subheadings are given as

bold.

The experiments were performed on human subjects. We considered several
experimental methodologies proposed in the literature. Generally, in experiments
performed on humans, the differences in the responses of different people to the same

treatment may be very large due to individual differences, such as differences in
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experience, training or background. As a result, it may be difficult to detect real differences
between treatments or systems. In order to control this variability between different
subjects, a repeated measures (i.e. within-subjects) design may be used [76]. In this
experimental design, each of the n treatments is used in each person (i.e. subject). In this
way, the effects of differences among subjects are minimized. Therefore, we decided to use
a repeated measures design. In the proposed system, each of the summary types for a
document (corresponding to different system treatments; e.g. Google, Unstructured,
Structuredl, etc.) are presented to the user. Also, the summary type and documents are
presented in a random order to reduce carryover effects and the original full-text document
is not displayed until all the summaries for that document are displayed. In the
experiments, each query and corresponding summary sets were evaluated by more than

one subject (between 4 and 10 subjects).

Antibiotics and bacterial infections ...
Fish disease treatmenits
Antibiotics and bacterial diseases ...
Like little chemical factories ...
There are matry different types of bacteria and they are probably the most diverse group.. ..
This simple groupimng is based on a staming techmque in which Gram-negative bactena stain ...
Bacteria stained using Gram differential staining method ...
Stained Gram-negative bacteria viewed at high magnification
Most bactenal fish pathogens, such as Aeromonas Pseudomonas, Vibrio, Flavobacterium and Cytophaga...
These are the bacteria that are usually involved with bacterial disease such as ulcers_ fin .. ..
How do bacteria cause disease? ...
AszIhave said, bactena are like little chemical factones. ...
So although tity, the net effect of millions of bacteria can quickly overwhelm the defences ..
How do antibiotics work?
Antibiotics are chemical substances produced by microorganisms that either destroy bactericidal...
Antibiotics can be either broad spectrum, which means that they are active against a wide range of ..
What antibiotics are available? ...
In the UK all antibiotics are classed as POMSs (Prescription only Medicines) and are only available... .
These are bactericidal in action and are effective against Gram-positive and Gram-negative...
Chloramphenicol is a broad spectrum antibiofic, but again it 15 not usually effective ... ...
Gentamicin is a broad spectrum antibiotic with a bactericidal effect. .
There is concern that bactenia may acquire rapid resistance, so it would not be the dmg... ..
Antibiotic sensitivity
Bacterial resistanice is an issue that needs to be considered when choosing an appropriate antibiotic. .
While it may be necessary to start a course of treatment based on personal expenence, itis... ...

Figure 6.3. An example summary output of the proposed system

In the experiments, the subjects were given the necessary instructions and the queries
one by one, and were asked to determine the relevance of the documents with respect to
the given query (either relevant or not) based on the summaries. An example query is given
in Figure 6.5. As seen in the figure, each query is presented with a title (query terms), a

description, and a narrative part. The description states what is intended by the query terms
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and the narrative part provides a guide for deciding on the relevancy of a document. The
subjects performed the experiment tasks on a web-based interface which is overviewed in

the next section.

Antibiotics and bacterial infections ...

Fish disease treatments _.

Antibiotics and bacterial diseases

Fish disease. diagnosis and treatments ...

There are many different types of bactena and they are probably the most diverse group... ...

This simple grouping is based on a staining technique in which Gram-negative bactena stam ...

Bactena stained using Gram differential staming method

Stained Gram-positive bacteria viewed at hizh magnification

Stained Gram-negative bacteria viewed at high magnification

Most bacterial fish pathogens, such as Aeromonas Pseudomonas, Vibrio, Flavobacterium and Cytophaga...
These are the bactenia that are usually involved with bacterial disease such as uleers, fin ... ..

How do bactetia cause disease?

Although they are incredible small most pathogenic bacteria have tremendous reproductive potential .. .
Other bactetia, particularly the Gram-negatives do not secrete a soluble toxin but make an endotoxin... ...
In addition to toxns the vinilence of many bactena is partly due to the production of extracellular...

So although ftiny, the net effect of millions of bactena can quickly overwhelm the defences ... ..
Anfibiotics are chemical substances produced by microorzanisms that either destroy bactenicidal...
Antibiotics can be either broad spectrum, which means that they are active against a wide range of ... ...
These are bactericidal in action and are effective against Gram-positive and Gram-negative...
Chloramphenicol is a broad spectrum antibiotic, but again it is not usually effective .. ...

Gentamicin is a broad spectrum antibiotic with a bactericidal effect.

There is concern that bacteria may acquire rapid resistance, so it would not be the drg... ..

Bacterial resistance is an issue that needs to be considered when choosing an appropriate antibiotic. .
While it may be necessary to start a course of treatment based on personal experience itis_

Figure 6.4. An example unstructured summary

<topF
<ran= Number: 333
<title® Antihiotics Bacteria Disease

“descx Description:
Dretermine the reasons why bactetia seems to be winning the war against antibiotics and
rendering antibiotics now less effective in treating dizeases than they wete in the past.

“hart’ Narrative:

& relevant document will address the questions of how and why, and to what degree,
hacteria ate ahle to fend off the curative effects of antibiotics. Owverase of antibiotics, as
well as the increasing use of antibiotics in promoting the growth of crops and animals
whosze food products are meant for human consumption have played roles it creating a
situation whete every khown bactetia-generated disease now has versions that resist at
least one of the more than 100 antibiotics now in use.

“ftop

Figure 6.5. An example TREC query used in the experiments
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The Web-based interface for the task-based evaluation has been developed using

ASP.NET framework and SQL Server 2005 database. The users enter the system using

predefined user ID and passwords. Then, the instructions for the experiment and the details

of the current query are displayed. After the instructions, the user is presented with the

actual evaluation screen. In Figure 6.6, a screenshot of the interface is given. It contains a

frame in which the summaries are displayed one by one in a predetermined random order.

The summaries (including Google ones) are presented in a consistent formatting style in

order to prevent the effect of recognition of one particular system. The user has to evaluate

a given summary/document as either relevant or irrelevant. The decision times of the users

are also recorded automatically. During the experiment, the details of the current query are

always presented at the bottom of the page.

RESEARCH EXPERIMENT

Antibiotics and bacterial infections ...
Fish disease treatments ..
Antibiotics and bacterial diseases ...
Like little chemical factories ...
There are many different types of bacteria and they are probably the most diverse group... ...
This simple grouping is based on a staining technique in which Gram-negative bacteia stain ...
Bacteria stained using Gram differential staining method ...
Stained Gram-negative bacteria viewed at high magnification
Most bactenal fish pathogens, such as Aeromonas Pseudomenas, Vibrio, Flavobacterium and Cytophaga...
These are the bacteria that are usually involved with bacterial disease such as ulcers fin .. .
How do bacteria cause disease? ...
AsThave said, bacteria are like little chemical factories. ...
So although tiny, the net effect of millions of bacteria can quickly overwhelm the defences ...
How do antibiotics work?
Antibiotics are chemical substances produced by microorganisms that either destroy bactericidal. .
Antibiotics can be either broad spectrum, which means that they are active against a wide range of .. ..
‘What antibiotics are available? ...
In the UK all antibiotics are classed as POMs (Prescription only Medicines) and are only available.. ..
These are bactericidal in action and are effective against Gram-positive and Gram-negative...
Chloramphenicol is a broad spectrum anfibiotic, but again it is not usually effective .. ..
Gentamicin is a broad spectrum antibiotic with a bactericidal effect. ...
There is concern that bacteria may acquire rapid resistance, so it would not be the drug... ..
Antibiotic sensitivity
Bacterial resistance is an issue that needs to be considered when choosing an appropriate antibiotic

While it may be necessary to start a course of treatment based on personal experience, itis... ... 2

Document # 59 O Irrelevant &) Relevant

Was the document helpfl? (1: not helpfl ___ 5:veryhelpfi) O1 O2 O3 O4 @5

Antibiotics Bacteria Disease
Query

Determine the reasons why bacteria seems to be winning the war against
antibiotics and rendering antibiotics now less effective in treating

Description
diseases than they were in the past.

Figure 6.6. A screenshot of the Web-based experiment interface
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In the recent experiments, we also added a user poll to rate the helpfulness of each
summary. For this purpose, a Likert scale was used with ratings between 1 and 5 (i.e., 1 as
not helpful and 5 as very helpful). Such questionnaires have also been used in previous

task-based evaluation studies for summarization systems [22, 56].

6.2.3. Performance Measures

In the task-based evaluation, our aim is to determine how well the proposed system
summaries help the users judge the relevancy of documents. In most previous
summarization studies, the user judgments for the summaries are compared with golden
standard judgments for documents (determined by annotators). That is, each document is
strictly marked as relevant or irrelevant beforehand. In relevance prediction, which is a
more recent approach, the subject’s judgment on a summary is compared with his or her
own judgment on the original full-text document. This is an intuitive approach and
parallels also with what a user does in a real-world task using a search engine; i.e., the user
judges the relevancy of the original document based on the summary and decides whether
or not to open the document in the browser. If the user judges that the document is
relevant, he or she opens it in the browser and investigates whether their decision was

correct.

The relevance prediction approach has been found to be more reliable than the gold
standard approach [77]. As the performance measure, we also used relevance prediction
instead of relying on a golden standard. In this way, we expect to reduce the effect of
differences in human subjects and obtain more reliable information on the utility of each
summarization method with better agreement levels. As another advantage, this method

eliminates the need for defining golden standard relevance judgments.

For each summarization method, four different types of results can be identified by
comparing the relevance judgments for the summaries and the original documents: 7P
(true positive), FP (false positive), FN (false negative) and 7N (true negative) as in Table
6.2. According to these values, accuracy (A4), recall (R), precision (P) and f-measure (F)
values for the method can be calculated. Accuracy is calculated as the number of cases the

user makes consistent judgment for the summary and the original document (i.e. both



91

relevant or both irrelevant) divided by the number of judgments as in 6.3. Recall is
calculated as the ratio of the number of documents identified as relevant using both the
summaries and the original documents to the number of relevant judged original
documents (see 4.1). Precision is calculated as the ratio of the documents identified as
relevant using both the original documents and summaries to the number of summaries
identified as relevant (see 4.2). F-measure is a combined measure of recall and precision
(as defined in 4.3). Additional performance measures may also be defined. False negative
rate is calculated as the number of false negatives over total number of actual positive
instances as in 6.4. False positive rate is defined as the number of false positives over total
number of actual negative instances as in 6.5. False negative rate corresponds to the cases
relevant documents are missed by the user due to inadequate summaries. False positive rate
corresponds to the cases where the users spend time by viewing irrelevant results although
the summary seems relevant; this includes the time to loading the document in the browser
and viewing the document. For all the performance measures, the results of each query set

completed by a user are averaged.

Table 6.2. Contingency table for the summarization experiment

Original document judgment
Relevant Irrelevant
Relevant | 7P FP
Summary judgment
Irrelevant | FN TN
A= TP+TN (6.3)
~ TP+TN + FP+ FN
FNR = FN (6.4)
FN +TP
FP (6.5)

R=—
FP+TN
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6.2.4. Results

The summarization approach has been tested on the queries and document
collections described in Chapter 3 (English Collection, Turkish Collection and Extended
English Collection). In the following subsections, the results for different collections are

presented.

6.2.4.1. English Collection. The queries used in this experiment cover different types of

information need (see Q1-Q10 in Appendix A.1), including search for a number of items (7
queries), decision search (1 query) and background search (2 queries). The effectiveness of
each method is shown in Table 6.3. A total of 300 judgments were made for each
summarization method. In the table, the numbers of true positive, false positive, false
negative and true negative judgments are given together with the average values of
accuracy, precision, recall, and f-measure. First, we see that all three methods involving
longer summaries (Structuredl, Structured?, and Unstructured) perform significantly
better than Google. Second, the structured summaries (Structuredl and Structured?) are
superior to unstructured ones. Third, we observe that Structured? (i.e., summaries using
manually identified structure) performs the best under all performance measures, and the
performance of the proposed fully automated method (Structuredl) is quite similar to that
of Structured?. Another point of view for the effectiveness of the methods is the false
negative and false positive rates (Table 6.4). We see that structured summaries
significantly reduce the amount of missed relevant results compared to Google and
unstructured summaries (false negative rate). Also, structured summaries significantly

reduce the lost time viewing irrelevant results (false positive rate).

Table 6.5 shows the performance improvement provided by the proposed method
(Structuredl) over Google and Unstructured methods. Especially when compared with a
state-of-the-art search engine (Google), a significant increase in performance reveals itself
(26.98% in f-measure). The performance increase is not so high when compared with
unstructured summaries. However, the effect of structure identification is explicit. We also
performed suitable statistical tests, i.e. repeated measures ANOVA (analysis of variance),
on the results using SPSS Toolkit. The statistical tests verify that Structuredl method

yields significantly better results than both Google and unstructured summaries with
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p<0.001 for f-measure. We also measured the effect of summary sizes on decision times.
Table 6.6 shows the average time of making judgments together with the average size of
the summaries for each method and the original document. The values show that the

proposed system has acceptable judgment times despite the much longer summary size.

Table 6.3. Results of the summarization experiment (English Collection)

System TP FP FN TN A P R F

Google 107 38 60 95 0.67 ]0.73 0.62 0.63
Unstructured 131 28 36 105 0.79 0.82 0.76 0.77
Structuredl 137 25 30 108 0.82 |0.85 0.80 0.80
Structured? 138 23 29 110 0.83 |0.85 0.83 0.82

Table 6.4. False negative and false positive rates (English Collection)

System FNR FPR
Google 0.36 0.29
Unstructured |0.22 0.21
Structuredl 0.18 0.19
Structured? 0.17 0.17

Table 6.5. Improvement of proposed system over other methods (English Collection)

System A P R F FNR FPR
Google +22.39% | +16.44%  +29.03% | +26.98% | -50% -34.48%
Unstructured +3.80% |+3.66% |+5.26% |+3.90% |-18.18% |-9.52%

Table 6.6. Average judgment times versus average summary/document sizes (English

Collection)
System Time Size
(seconds) (words)

Google 14.58 41
Unstructured 27.24 278
Structuredl 27.60 264
Structured? 28.58 253
Original 41.43 1566

6.2.4.2. Turkish Collection. The Turkish queries used in this experiment cover different

types of information need (see Appendix A.2), including search for a number of items (2

queries) and background search (3 queries). The effectiveness of each method is shown in
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Table 6.7. A total of 150 judgments were made for each summarization method. In the
table, the numbers of true positive, false positive, false negative and true negative
judgments are given together with the average values of accuracy, precision, recall, and f-
measure. The results show that structured summaries (Structuredl and Structured?) are
superior to unstructured ones and Google snippets. It is interesting to note that Structured]
performed better than Structured?. The effectiveness of each method is also given in Table
6.8 as the false negative and false positive rates. We see that structured summaries
significantly reduce the amount of missed relevant results and lost time viewing irrelevant

results compared to Google and unstructured summaries.

Table 6.7. Results of the summarization experiment (Turkish Collection)

System TP |FP |FN |TN | A P R F

Google 45 |20 |10 [75 |0.80 0.69 0.82 0.75
Unstructured |43 |13 |12 |82 |0.83 0.77 0.78 0.77
Structured 1 49 |8 6 87 10.91 0.86 0.89 0.88
Structured 2 47 |10 |8 85 |0.88 0.82 0.85 0.84

Table 6.8. False negative and false positive rates (Turkish Collection)

System FNR FPR
Google 0.18 0.21
Unstructured |0.22 0.14
Structured 1 0.11 0.08
Structured 2 0.15 0.11

Table 6.9 shows the performance improvement provided by the proposed method
(Structuredl) over Google and Unstructured methods. The proposed system has 17.33%
improvement over Google and 14.29% improvement over unstructured summaries in terms
of f-measure. The statistical tests (repeated measures ANOVA) we performed on the
results verify that Structuredl method yields significantly better results than both Google
and unstructured summaries with p<0.05 for f-measure. Table 6.10 shows the average
judgment times of the users and average sizes for each method and original documents.
Although Structuredl, Structured? and Unstructured methods provide summaries much

longer than Google snippets, we see that the time increase in response time is moderate.
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System A P R F FNR FPR
Google +13.75% | +24.64% | +8.54% |+17.33% | -38.89% |-61.90%
Unstructured +9.64% |+11.69% | +14.10% | +14.29% |-50% -42.86%

Table 6.10. Average judgment times versus average summary/document sizes (Turkish

Collection)
System Time Size
(seconds) (words)

Google 11.04 30

Unstructured 19.96 216
Structuredl 19.96 230
Structured?2 19.71 235
Original 24.53 900

6.2.4.3. Extended English Collection. The queries used in this experiment cover different

types of information need (see Q1-Q20 in Appendix A.1), including search for a number of
items (12 queries), decision search (2 queries) and background search (6 queries). The
structured summaries of the proposed system were created using the output of the machine
learning approach for document structure analysis. Two different types of unstructured
summaries were defined. In Unstructuredl, the secondary parts (e.g. menus) of the
document are not eliminated. In Unstructured?2, this information is also eliminated as in

structured summaries.

The effectiveness of each method is shown in Table 6.11 as the numbers of true
positive, false positive, false negative, true negative judgments and the average values of
accuracy, precision, recall, and f-measure. A total of 400 judgments were made for each
summarization method. This experiment also verifies that structured summaries are
superior to both Google extracts and unstructured summaries. The average values of false
negative and false positive rates are given in Table 6.12. The results show that structured
summaries significantly reduce the number missed results in the searches. The results of
this experiment are not explicit for the false positive rate which corresponds to the time

spent with irrelevant items.
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Table 6.11. Results of the summarization experiment (Extended English Collection)

System TP FP FN TN A P R F

Google 118 36 120 126 0.57 10.72 0.47 0.52
Unstructuredl | 179 54 59 108 0.72 0.77 0.75 0.73
Unstructured?2 | 176 53 62 109 0.72 0.77 0.73 0.72
Structuredl 185 50 53 112 0.74 10.78 0.77 0.76
Structured? 183 40 55 122 0.75 10.82 0.76 0.77

Table 6.12. False negative and false positive rates (Extended English Collection)

System FNR |FPR
Google 0.50 0.23
Unstructuredl |0.23 0.32
Unstructured? |0.24 0.30
Structuredl 0.20 0.30
Structured? 0.22 0.24

Table 6.13 shows the performance improvement provided by the proposed method
(Structuredl) over Google, Unstructuredl and Unstructured? methods. As seen, the
proposed system has significant improvement over Google extracts and unstructured
summaries in terms of f-measure. The repeated measures ANOVA test also verify that the
results are significant with p<0.05 for f-measure. Table 6.14 shows the average time of
making judgments together with the average size of the summaries for each method and
the original document. In this experiment, we also included an additional measure for
rating the helpfulness of the summaries between 1 and 5. The average results of the ratings
performed by the subjects are also given in Table 6.14. The results show that the structured
summaries have very high ratings compared to Google extracts and unstructured

summaries and values close to original documents.

Table 6.13. Improvement of proposed system over other methods (Extended English

Collection)
System A P R F FNR FPR
Google +30.68% | +9.66% | +63.88% | +44.97% |-59.65% |+29.80%
Unstructuredl |+3.60% |+1.31% |+2.98% |+3.35% -9.90% -4.91%
Unstructured? |+3.14% |+1.79% |+5.42% |+4.90% -16.31% | -0.30%
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Table 6.14. Average judgment times, summary/document sizes and ratings (Extended

English Collection)
System Time Size Rating
(seconds) (words)
Google 10.20 30 2.60
Unstructuredl 17.70 298 2.77
Unstructured? 18.44 306 2.77
Structuredl 17.51 277 3.03
Structured?2 17.02 274 3.12
Original 23.59 1340 3.10

6.3. Discussion

The importance of summarization in information retrieval tasks was recognized in
several studies related to human cognition. One of the studies compares the response time
and accuracy of relevancy assessment for original documents and their summaries, and
shows that the time decreases more or less linearly with the length while accuracy
decreases only logarithmically [15]. This implies that we can gain from time substantially
without a significant loss in accuracy when using summaries rather than original
documents. This hypothesis was also supported by Marcu, who reports an experiment on
an information retrieval task [51]. The time when summaries are used was found to be
about 80% of the time required to perform the same task using the original documents,

with recall and precision remaining approximately the same.

Current search engines use short extracts for displaying the results to the user. Such
extracts focus only on the query words and thus miss the parts of the documents actually
intended by the user. We have shown that a significant performance improvement is
possible by using summaries much longer than the extracts generated by traditional search
engines (e.g. Google). Longer summaries can show the parts of a document relevant to the
user query explicitly even if those parts do not contain any of the query terms. We have
also shown the importance of maintaining document structure in the summaries. Structured
summaries increased the performance of the system significantly when compared with

unstructured summaries of the same size. A structured summary provides an overview of
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the document and makes it for the user much easier to focus on the relevant parts which

can be considered as some sort of semantic information for the user.

In current search engines, a major limitation for the user is the size of the display
screen which constrains the number of results and the extracts. To optimize the number of
results reviewed per screen, most of the search engines display a few lines of the document
that include the query terms. However, this does not seem to be a suitable choice and it is
argued that human cognition does not conform to this style of displays [78]. In this work,
we combined the objective of displaying as many results as possible on a page with the

objective of giving a detailed view for each result by using a dynamic summary window.

The high success rates of the Structuredl and Structured? methods indicate that
combining structural processing with summary extraction is a convenient approach. The
size of a summary prepared with these methods ranges about between 15-25% of the
corresponding document on the average. By looking at a summary of this size, the users
are able to determine the relevancy with about 75-90% correctness. When we compare
these two methods with each other, we see that they give similar success rates. Structured?
may be expected to yield a better performance since it is based on manually identified
hierarchical structures of documents. This is indeed the case for both English collections.
However, interestingly, Structuredl shows a little better performance than Structured? in
the Turkish collection. We conjecture this result to the two-stage nature of the process in
the sense that the summarization component can work on an imperfect structure and
humans are good at coping with vagueness. Based on the high performance of the
proposed method, Structuredl, we can conclude that it is a fully automatic method that can

be incorporated into a search engine.

An analysis of user response times (Table 6.6, Table 6.10 and Table 6.14) shows that
summaries, although they are 6-9 times longer than Google extracts, cause only less than
two times increase in response time. This indicates that people just look at the related parts
of the summaries and then arrive at a decision. Thus we see that the proposed system has

acceptable user response times despite the much longer summary sizes.
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In this research, the main aim is not only to reduce the searching time, but to balance
the time spent viewing the document summaries with the accuracy obtained in the given
task. In this context, false negative rates of the summarization methods become important.
The experiments show that Google extracts result in high false negative rates which
correspond to the cases relevant documents are incorrectly identified as irrelevant; thus, the
users miss useful items of information. In fact, the importance of false negative rates
depends on the type of the query. This rate becomes especially important in the case of
background search where more than one result may be necessary (e.g. the query
newspapers electronic media where the aim is to find the effects of the electronic media on
the newspaper industry) as well as specific and complex queries (e.g. the query creativity

where the aim is to find ways of measuring creativity).

Another point of view for the results is the false positive rate of a summarization
method which corresponds to the cases irrelevant documents are identified as relevant and
as a result, users spend time examining them unnecessarily. That is, when the user clicks
on the link of an irrelevant document, he/she will spend some time during page loading and
to understand that the document is in fact irrelevant. We can define the time overhead of a
summarization method as in 6.6 where Tummary 1S the average time to view the summary of
a particular system, Tjocumens 1S the average time to examine the original document and
Thage loaa 1s the time to load the original document into the browser (depending on the speed
of the Internet connection). The time overhead is calculated as the sum of time spent

viewing the summaries and the time spent with irrelevant items (i.e., false positives).

Time Overhead = Number of Results Viewed * Tsummary T FP - (Tpage 1oad + Taocument)  (6.6)

By substituting the average values obtained in the experiments into the formula, we
see that the proposed system summaries (Structuredl) result in a 55-60% increase of time
compared to Google extracts. However, the number of relevant documents missed using
the Google extracts reaches about two times the ones using the proposed system
summaries. Thus, we see that there is a tradeoff between the time spent with the summaries
and the accuracy obtained. Our justification regarding the superiority of the proposed
system summaries is as follows. In the case of common-place queries (e.g. the population

of Germany), the users can locate the relevant information just by viewing a few of the top
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results of the search engine; as a result, the total time spent and the overhead of the
summarization method is less important. In the case of more complex queries and
background search, the accuracy provided by the summarization method becomes more
important. The proposed system is preferable because it results in a reduced number of
missed items (false negative rates) compared with the other systems. Also, using the
proposed system can usually be less tedious for users in these tasks because of low false
positive rates. That is, in the proposed system, the users usually spent less time examining
the irrelevant documents. Finally, the proposed system has also received very high user
ratings compared with Google and unstructured summaries. This verifies that the

structured summaries have also been found more helpful and preferable by users.

An analysis of the time complexity of a search engine built on the proposed
techniques shows that it is linear in document length. Document structural processing step
(detailed in chapters 4 and 5) is independent of the user query and needs to be performed
once for each document. This process can be done offline similar to the indexing phase of
search engines. Summary extraction step (detailed in this chapter) has a linear time
complexity. Given a document hierarchy with n nodes (sentences), the extraction algorithm
(Figure 6.1) operates on at most n nodes in a top-down fashion. At each node, the quota of
the node is calculated and the sentences are selected based on the quota if a threshold is
reached, both of which require constant time. As a result, the time complexity of the whole

process is O(n).
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7. CONCLUSION

There is a drastic increase of information sources on the World Wide Web. Search
engines provide a means for Internet users to locate documents on the Web via queries.
However, the users still have to complete the sifting process by themselves; that is, to
decide on the relevance of the returned documents according to their actual needs. During
Web search, one aid of users is the short document summaries (extracts) provided in the
search results. However, the summaries provided by current search engines have
limitations in directing users to relevant documents. As a result, the users often miss

relevant results or spend time with irrelevant ones.

In this thesis, we developed a novel summarization approach, i.e. structure-
preserving and query-biased summarization, to improve the effectiveness of Web search. It
is a query-biased method utilizing document structure both during the summarization
process and in the output summaries. In this way, the context of searched terms is
preserved in the output summaries. To the best of our knowledge, it is the first approach

using both explicit document structure and query-biased techniques in Web search context.

The proposed system has been developed in Java by utilizing GATE Text
Engineering Framework which is an open source framework widely used in both academic
and commercial projects of human language technology, and open source Cobra HTML
Parser and Renderer Toolkit. We created English and Turkish document collections from
the results of Google in response to several search queries that reflect current search

interests of users in various domains.

The proposed approach is composed of two stages: structural processing and
summary extraction. In the first stage, we considered the rather unexplored problem of
heading-based sectional hierarchy extraction for unrestricted domain of Web documents.
We represented a document as an ordered tree in which headings and subheadings are at
intermediate nodes, and other text units are at the leaves. We first developed a rule-based

approach for structural processing based on heuristics and HTML DOM tree processing.
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In the progress, we developed a machine learning approach for structural processing
of Web documents because it can be more flexible than a rule-based approach. For
sectional hierarchy extraction, a tree-based learning approach was needed rather than the
simpler case of classification. To overcome the exponential search space encountered in
the solution, we developed an incremental learning approach based on beam search. We
defined several features for learning, including features to represent the context of a unit in
a document tree. We developed several variations of the approach using SVM and
perceptron algorithms, and evaluated them using cross-validation. For extraction of
headings, we obtained an f-measure of 85%. For hierarchy extraction, an accuracy of 82%
was obtained with manually identified headings, whereas 68% accuracy was obtained
using the output of heading extraction. The machine learning approach, as a fully
automatic approach, performed better than the rule-based approach on the same document
set. There are not many studies in the literature on heading-based analysis of Web
documents. One related work is about the identification of the main title of an HTML
document in which a maximum f-measure of 80% was obtained [39]. In the proposed
system, we investigated a more challenging and general task; that is, the identification of

all the headings in a document together with their levels in the sectional hierarchy.

The second stage of the proposed system is summary extraction where the
documents are summarized with respect to the user queries and the structural information
obtained in the first stage. We adapted basic statistical techniques and created indicative
summaries based on two levels of processing: sentence scoring and section scoring. The
structure is preserved in the output summaries by providing the context of extracted
sentences in the form of headings and subheadings. The effectiveness of the proposed
system was compared with Google extracts and unstructured summaries of the same size
on task-based evaluations using a Web-based interface. We used a within subjects design
and the recent relevance prediction approach. The approach has been applied to Turkish
document collections and queries as well as English ones. This makes it the first automatic

summarization study of Turkish targeting Web search.

The overall performance of the proposed summarization approach was measured
about 75-90%. This corresponds to a significant performance improvement compared with

a state-of-the-art search engine, Google. Also, there was a statistically significant
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performance gain when the document structures were preserved as compared to
unstructured summaries. The accuracy obtained in the structural processing stage was also
proved to be an acceptable performance for the summarization phase: the results of using
the proposed structural processing are very close to the results where manually identified
hierarchical structures of documents are used. This indicates that the errors of hierarchy
extraction step can well be tolerated during later processing. Thus, we conclude that
structure-preserving and query-biased summarization, as a fully automatic method, greatly

influences the accuracy of Web search tasks.

The experiments also showed that the proposed system has acceptable user response
times despite the much longer summary sizes compared to search engine extracts. Thus,
we have reached our main goals for summarization as defined in Chapter 6; that is, to
enable users to make more accurate relevance judgments as compared to search engine
extracts in reasonable times. The proposed system resulted in great reduction in false
negative rates; i.e., reducing the cases where the users miss relevant results. Also, the
system usually resulted in reduced false positive rates, causing users to spend less time
with irrelevant items. Finally, the user ratings also showed that the proposed system
summaries are found to be more helpful than other system summaries. Time complexity
analysis for the proposed system revealed that it is a practical approach which can be
incorporated into a search engine. The structural processing stage can be performed offline

and once; the summarization stage has linear time complexity.

In addition to the domain of search engines, the proposed approach can also be
utilized in several other fields related to document processing. Information systems where
large amounts of document need to be analyzed such as library systems, law, and medicine
are the typical candidates. The methods proposed in this study allow browsing large
documents with the help of the structural information. The structural information may also
be used for classification and indexing of documents. Also, the summaries provided by the
system can be taken as an outline in creating manual summaries. The proposed system has

applications including display of Web content on small-screen devices such as PDAs.
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There may be two directions for future work: structural processing and summary
extraction. An issue in structural processing is to correctly identify some document
components commonly encountered in Web pages, such as identification of menus,
references and advertisements. Here, we have a heuristic-based approach which can be
extended using machine learning. Such information can also be used in the summarization
process to eliminate irrelevant information and improve the summaries. Currently, phrases
in queries and stemming are used as linguistic information in the summarization process.
The summarization approach can be extended using linguistic information in syntactic and
semantic levels; such as incorporation of syntactic phrases and WordNet [45]. As an
example, query terms can be extended using synonyms, “is-a” and “part-of” relations
based on WordNet. New query-biased methods may be developed for the scoring of
sentences. The effects of different search tasks, such as searching for a particular fact or
searching for background information about a subject, can be investigated to refine the
system. Also, the effects of different document types (i.e. genre) can be considered for

summarization. Finally, another issue is the automatic evaluation of the summaries.
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APPENDIX A: QUERIES USED IN THE EXPERIMENTS

A.1. Turkish Queries

Ql:

Title: Tsunami

Description: Giiney Asya’y1 26 Aralik 2004°te vuran biiyiik Tsunami faciasi ve bu facianin
sonuclari.

Narrative: Giliney Asya’da 26 Aralik 2004 tarihinde meydana gelen 8.9 biiyiikliigiindeki
deprem ve bu deprem sonrasinda olusan dev dalgalar, bu facia sonrasinda hangi iilkede kag
kisinin 6ldiigiine dair bilgiler, ve afetten sonra diger iilkeler tarafindan yapilan yardimlari

iceren bir dokiiman.

Q2:

Title: Ekonomik kriz

Description: Tiirkiye'de ekonomik krize neden olan olaylar.

Narrative: Tirkiye'de son bir ka¢ yil i¢cinde olan ekonomik krizlerin nedenleri ve bunlara

zemin hazirlayan olaylar.

Q3:

Title: Tiirkiye'de meydana gelen depremler

Description: Tiirkiye'de meydana gelen depremlerin insanlar iizerindeki etkileri ve bu
depremlere kars1 alinan 6nlemler.

Narrative: Tiirkiye'de meydana gelen depremlere karsi insanlarin aldigi egitim ve 6nlemler.
Depremlerin, meydana geldikten sonra insanlarda biraktigi etkiler ve devletin

depremlerden sonra aldig1 dnlemler.

Q4:
Title: Sanat odiilleri
Description: Tiirkiye'de edebiyat, miizik, resim, sinema gibi sanat dallarinda verilmis

odiller.
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Narrative: Tiirkiye'de sanatin degisik dallarina ne gibi 6diiller, hangi yillarda kimlere

verilmis. Bu ddiillerin sebepleri, sonuglari, etkileri...

Qs:

Title: Bilisim egitimi ve projeleri

Description: Tiirkiye'de yapilan bilisim egitimi ve bilisim projeleri, bu egitimin ve
projelerin kaliteleri ve sanayiye katkilar1

Narrative: Tiirkiye'de yapilan bilisim egitimi ve projelerinin siiregleri, sorunlar ve iilkeye

sagladigi katkilar. Bu egitimin ve projelerin yayginlastirilmasi konusunda goriis ve oneriler

A.2. English Queries

Ql:

Title: Hubble Telescope Achievements

Description: Identify positive accomplishments of the Hubble telescope since it was
launched in 1991.

Narrative: Documents are relevant that show the Hubble telescope has produced new data,
better quality data than previously available, data that has increased human knowledge of
the universe, or data that has led to disproving previously existing theories or hypotheses.
Documents limited to the shortcomings of the telescope would be irrelevant. Details of
repairs or modifications to the telescope without reference to positive achievements would

not be relevant.

Q2:

Title: Best Retirement Country

Description: Aside from the United States, which country offers the best living conditions
and quality of life for a U.S. retiree?

Narrative: A relevant document will contain information describing the living conditions
and/or costs in one or more foreign countries. It will provide information that a potential

retiree could use in deciding where to establish a retirement home.

Q3:

Title: Literary/Journalistic Plagiarism
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Description: Find instances of plagiarism in the literary and journalistic worlds.

Narrative: A relevant document will report any occasion or suspected instance of
plagiarism in the areas of either literature or journalism. Relevant documents will also
include such areas as doctorate and master's theses and will encompass writings as well as
the ideas and concepts developed by some authors and taken or borrowed by others

without attribution.

Q4:

Title: Mexican Air Pollution

Description: Mexico City has the worst air pollution in the world. Pertinent Documents
would contain the specific steps Mexican authorities have taken to combat this deplorable
situation.

Narrative: Relevant documents would discuss the steps the Mexican Government has taken
to alleviate the air pollution in Mexico City. Steps such as reducing the number of
automobiles in the city, encouraging the use of mass public transportation, and creating
new mass transportation systems are relevant, among others. Mention of any new methods

in the design stage would also be appropriate.

Qs:

Title: Antibiotics Bacteria Disease

Description: Determine the reasons why bacteria seems to be winning the war against
antibiotics and rendering antibiotics now less effective in treating diseases than they were
in the past.

Narrative: A relevant document will address the questions of how and why, and to what
degree, bacteria are able to fend off the curative effects of antibiotics. Overuse of
antibiotics, as well as the increasing use of antibiotics in promoting the growth of crops
and animals whose food products are meant for human consumption have played roles in
creating a situation where every known bacteria-generated disease now has versions that

resist at least one of the more than 100 antibiotics now in use.

Q6:
Title: Abuses of E-Mail
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Description: The availability of E-mail to many people through their job or school
affiliation has allowed for many efficiencies in communications but also has provided the
opportunity for abuses. What steps have been taken world-wide by those bearing the cost
of E-mail to prevent excesses?

Narrative: To be relevant, a document will concern dissatisfaction by an entity paying for
the cost of electronic mail. Particularly sought are items which relate to system users (such
as employees) who abuse the system by engaging in communications of the type not
related to the payer's desired use of the system.

Q7:

Title: declining birth rates

Description: Do any countries other than the U.S. and China have a declining birth rate?
Narrative: To be relevant, a document will name a country other than the U.S. or China in
which the birth rate fell from the rate of the previous year. The decline need not have

occurred in more than the one preceding year.

Q8:

Title: human genetic code

Description: What progress is being made in the effort to map and sequence the human
genetic code?

Narrative: Documents must discuss specific progress in mapping the human genome.
Documents that simply describe applications of the research, such as using DNA in
criminal cases, using the genetic code to treat disease, or creating genetically engineered

organisms are irrelevant.

Qo:

Title: mental illness drugs

Description: Identify drugs used in the treatment of mental illness.

Narrative: A relevant document will include the name of a specific or generic type of

drug. Generalities are not relevant.

Q10:
Title: literacy rates Africa

Description: What are literacy rates in African countries?
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Narrative: A relevant document will contain information about the literacy rate in an
African country. General education levels that do not specifically include literacy rates are

not relevant.

Qll:

Title: robotic technology

Description: What are the latest developments in robotic technology?

Narrative: A relevant document will contain information on current applications of robotic

technology. Discussions of robotics research or simulations of robots are not relevant.

Q12:

Title: creativity

Description: Find ways of measuring creativity.

Narrative: Relevant items include definitions of creativity, descriptions of characteristics

associated with creativity, and factors linked to creativity.

Q13:

Title: tourism increase

Description: What countries are experiencing an increase in tourism?

Narrative: A relevant document will name a country that has experienced an increase in
tourism. The increase must represent the nation as a whole and tourism in general, not be
restricted to only certain regions of the country or to some specific type of tourism (e.g.,

adventure travel). Documents discussing only projected increases are not relevant.

Ql14:

Title: newspapers electronic media

Description: What has been the effect of the electronic media on the newspaper industry?
Narrative: Relevant documents must explicitly attribute effects to the electronic media:
information about declining readership is irrelevant unless it attributes the cause to the

electronic media.

Q15:

Title: wildlife extinction
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Description: The spotted owl episode in America highlighted U.S. efforts to prevent the
extinction of wildlife species. What is not well known is the effort of other countries to
prevent the demise of species native to their countries. What other countries have begun
efforts to prevent such declines?

Narrative: A relevant item will specify the country, the involved species, and steps taken to

save the species.

Qle:

Title: R&D drug prices

Description: Identify documents that discuss the impact of the cost of research and
development (R&D) on the price of drugs.

Narrative: Documents that describe how any aspect of the development of a drug affects its
price are relevant. Documents that discuss other factors that affect drug prices, such as

advertising, without also discussing R&D costs, are not relevant.

Q17:

Title: Amazon rain forest

Description: What measures are being taken by local South American authorities to
preserve the Amazon tropical rain forest?

Narrative: Relevant documents may identify: the official organizations, institutions, and
individuals of the countries included in the Amazon rain forest; the measures being taken
by them to preserve the rain forest; and indications of degrees of success in these

endeavors.

Q18:

Title: osteoporosis

Description: Find information on the effects of the dietary intakes of potassium,
magnesium and fruits and vegetables as determinants of bone mineral density in elderly
men and women thus preventing osteoporosis (bone decay).

Narrative: A relevant document may include one or more of the dietary intakes in the
prevention of osteoporosis. Any discussion of the disturbance of nutrition and mineral

metabolism that results in a decrease in bone mass is also relevant.
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Q19:

Title: alternative medicine

Description: What forms of alternative medicine are being used in the treatment of
illnesses or diseases and how successful are they?

Narrative: A relevant document should identify a form of alternative medicine which is
being utilized in the treatment of a disease or illness, identify the illness or disease being

treated, and provide an indication of the success of the procedure.

Q20:

Title: health and computer terminals

Description: Is it hazardous to the health of individuals to work with computer terminals on
a daily basis?

Narrative: Relevant documents would contain any information that expands on any
physical disorder/problems that may be associated with the daily working with computer
terminals. Such things as carpel tunnel, cataracts, and fatigue have been said to be
associated, but how widespread are these or other problems and what is being done to

alleviate any health problems.



