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ABSTRACT 

 

 

AUTOMATED QUERY-BIASED AND STRUCTURE-PRESERVING 

DOCUMENT SUMMARIZATION FOR WEB SEARCH TASKS 
 

 

With the drastic increase of available information sources on the Internet, people 

with different backgrounds in the world share the same problem: locating useful 

information for their actual needs. Search engines provide a means for users to locate 

documents on the Web via queries. However, users still have to perform the sifting process 

by themselves; i.e., to decide the relevance of each document with respect to their actual 

information needs. At this point, automatic summarization techniques can complement the 

task of search engines. 

 

Currently available search engines, such as Google and AltaVista, only show a 

limited capability in summarizing the Web documents; e.g. displaying only two or three 

lines of text fragments which consist of the query words and their surrounding text as the 

summary. In the literature, most of the research in automatic summarization has focused on 

creating general-purpose summaries without considering user needs. Also, summarization 

approaches have mostly seen a document as a flat sequence of sentences and ignored the 

structure within the documents. In the summarization literature, the effect of query-biased 

techniques and document structure have been considered only in a few studies and 

separately investigated. This research is distinguished from previous work by combining 

these two aspects in a coherent framework. In this thesis, we propose a novel 

summarization approach for Web search, i.e., query-biased and structure-preserving 

document summarization. 

 

The proposed system consists of two main stages. The first stage is the structural 

processing of Web documents in order to extract their section and subsection hierarchy 

together with the corresponding headings and subheadings. A document in the system is 

represented as an ordered tree of headings, subheadings and other text units. First, we 
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formed a rule-based approach based on heuristics and HTML Document Object Model tree 

processing. Then, we developed a machine learning approach based on the tree 

representation using support vector machine (SVM) and perceptron algorithms. The 

methods were evaluated based on the accuracy of heading extraction and hierarchy 

extraction. 

 

The second stage of the research is to develop automatic summarization methods by 

utilizing the document structures obtained in the first stage. In the proposed method, the 

summary sentences are extracted in a query-biased way based on two levels of scoring: 

sentence scoring and section scoring. Document structure is utilized both in the 

summarization process and in the output summaries. The performance of the proposed 

system has been determined using several task-based evaluations. These include 

information retrieval tasks where the summaries will actually be used. The results of the 

experiments on Turkish and English documents show that the proposed system summaries 

are superior to Google extracts and unstructured query-biased summaries of the same size 

in terms of accuracy with reasonable judgment times. User ratings verify that query-biased 

and structure-preserving summaries are also found to be more useful by the users. 
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ÖZET 

 

 

ARAMA MOTORLARI İÇİN BİLGİ İSTEĞİNE VE METİN 

YAPISINA DAYALI OLARAK OTOMATİK DOKÜMAN 

ÖZETLENMESİ 
 

 

İnternet’teki bilgi kaynaklarındaki büyük artışla birlikte, dünyada değişik arka 

planlara sahip insanlar aynı problemi paylaşmaktadır: Gerçek ihtiyaçlarına uygun bilgileri 

bulmak. Arama motorları, kullanıcıların, bilgi istekleri vasıtasıyla İnternet’teki 

dokümanları bulmaları için bir araç sağlamaktadır. Ancak, kullanıcıların eleme işlemini, 

yani her bir dokümanın gerçek bilgi ihtiyaçlarıyla ilgisine karar verme işlemini, halen 

kendilerinin yapması gerekmektedir. Bu noktada, otomatik özetleme yöntemleri, arama 

motorlarının görevini tamamlayabilir. 

 

Günümüzde mevcut arama motorları, örneğin Google ve AltaVista, İnternet 

dokümanlarını özetlemede, sadece bilgi isteğindeki kelimeler ve çevrelerindeki metni 

içeren iki ya da üç satırlık özetler sunmak gibi, sınırlı bir yetkinlik göstermektedir. 

Literatürde, otomatik özetleme konusundaki araştırmaların çoğu, kullanıcı ihtiyaçlarını 

dikkate almayarak genel amaçlı özetler oluşturma üzerine odaklanmıştır. Ayrıca, özetleme 

yaklaşımları bir dokümanı çoğunlukla düz bir cümle dizisi olarak görmekte ve 

dokümanlardaki yapıyı göz ardı etmektedir. Özetleme literatüründe, bilgi isteğine dayalı 

yöntemler ve doküman yapısı sadece az sayıda çalışmada ve ayrı ayrı ele alınmıştır. Bu 

çalışma, önceki çalışmalardan bu iki yönü tutarlı bir çerçevede bir araya getirmesiyle 

ayrılmaktadır. Bu tezde, İnternet araması için özgün bir özetleme yaklaşımı öneriyoruz: 

Bilgi isteği ve doküman yapısına dayalı özetleme. 

 

Önerilen sistem, iki temel aşamadan meydana gelmektedir. İlk aşama, İnternet 

dokümanlarının bölüm ve alt bölüm hiyerarşilerinin ilgili başlık ve alt başlıklarla birlikte 

ortaya çıkarılması için yapısal olarak işlenmesidir. Sistemdeki her bir doküman, başlıklar, 

alt başlıklar ve diğer metin birimlerinden oluşan sıralı bir ağaç yapısı ile temsil 
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edilmektedir. İlk olarak, buluşsal yöntemler ve HTML Belge Nesne Modeli’ndeki ağaç 

yapısının işlenmesine dayalı kural tabanlı bir yaklaşım oluşturduk. Daha sonra, destek 

vektör makineleri ile algılayıcı algoritmalarını kullanan ve ağaç gösterimine dayalı bir 

makine öğrenmesi yaklaşımı geliştirdik. Yöntemler, başlık ve hiyerarşi çıkarma 

işlemlerinin başarımına göre değerlendirildi. 

 

Çalışmanın ikinci aşaması, ilk aşamada elde edilen doküman yapılarından 

faydalanılarak otomatik özetleme yöntemlerinin geliştirilmesidir. Önerilen yöntemde, özet 

cümleleri, bilgi isteğine dayalı olarak iki seviyede değerlendirmeyle seçilmektedir: Cümle 

bazında puanlama ve bölüm bazında puanlama. Doküman yapısı, hem özetleme işlemi 

sırasında hem de üretilen özetlerde kullanılmaktadır. Sistemin başarımı, göreve yönelik 

değerlendirmelerle belirlenmiştir. Değerlendirmeler, özetlerin gerçekte kullanılacağı gibi 

bilgiye erişim görevleri içermektedir. Türkçe ve İngilizce dokümanlar üzerinde yapılan 

deneylerin sonuçları, önerilen sistemin özetlerinin, Google özetleri ve aynı boyutlardaki 

doküman yapısı bilgisini kullanmayan bilgi isteğine yönelik özetlere göre, makul karar 

süreleriyle, doğruluk açısından üstünlük sağladığını göstermektedir. Kullanıcı 

derecelendirmeleri de, bilgi isteği ve doküman yapısına dayalı özetlerin kullanıcılar 

tarafından daha faydalı bulunduğunu doğrulamaktadır. 
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1. INTRODUCTION 

 

 

The drastic increase of available documents on the World Wide Web resulted in the 

wide-spread problem of “information overload” [1]. That is, Internet users now have 

access to vast amounts of information especially with the advent of search engines; 

however, it is becoming more and more difficult and time-consuming to locate useful 

information with respect to their actual information needs. The available information needs 

to be efficiently used and there is no time to read everything individually. Search engines 

usually return large numbers of results in response to user queries. A research on European 

users showed that about 50% of documents viewed by users are irrelevant to their actual 

needs [2]. Users need to explore several links in the search engine results in order to find 

useful information. This is especially the case for specific and complex queries (e.g. best 

countries for retirement) and for tasks such as background search (e.g. literature survey on 

Mexican air pollution) rather than the ones with commonplace answers (e.g. the capital 

city of Sweden). 

 

In currently available search engines, such as Google and AltaVista, each link in the 

results is associated with a short ‘summary’ (e.g. two-line extracts) of its content [3, 4]. 

The users need to scroll down the result pages, have a look at the links together with their 

extracts one by one and click only the ones that seem relevant to their information need. 

Such extracts may be very useful in directing the users to relevant documents. However, in 

practice, they are too short and although they show some of the document fragments 

containing the query words, they fail to reveal their context within the whole document in a 

higher level. In other words, especially in the case of long and complex documents, such 

extracts do not give sufficient information about the document contents. As a result of 

these inadequacies, the users can either miss relevant results or spend time with irrelevant 

ones. 

 

 In Figure 1.1, the first six results of Google in response to the TREC-2004 query (i.e. 

topic) antibiotics bacteria disease are given [5]. In that task, the aim of the user is to find 

documents that discuss how and why antibiotics become ineffective to some bacteria types. 

Examining the documents corresponding to the results in Figure 1.1, it can be seen that 
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only half of the given extracts may effectively direct users. As an example, the second 

result seems relevant considering its extract; however, when it is opened in the browser, it 

turns out to be irrelevant. For the fourth result, the opposite is the case: considering the 

search engine extract, the document seems irrelevant; however, in fact, it is relevant. 

Finally, the extract for the fifth result does not provide sufficient information to make a 

decision for its relevancy. Besides the deficiencies of such extracts, the alternative strategy 

of opening each link in the results without taking the search engine extracts into account is 

also not feasible. The reason is that page loading takes time and determining relevancy 

may be difficult and time-consuming in the case of long and complex documents. Also, 

there are usually a large number of returned results. Better approaches of summarization 

may be used to overcome these problems and to improve the search experience of Internet 

users. 

 

 

Figure 1.1. An example output of Google 
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At this point, automatic summarization research gains importance. Automatic 

summarization is a rather old field of research dating back to late 1950s [6]. However, 

there has been an increasing attention to this field from governments, academia and 

industry in recent years with the rapid growth of accessible information sources, mostly the 

World Wide Web. Automatic summarization research has traditionally aimed at creating 

human-like and generic summaries. However, as stated by Sparck-Jones [7], creating 

automatic summaries as successful as human summaries may be a long-term research 

direction, but meanwhile summaries which are not perfect can be utilized for improving 

the effectiveness of other tasks. Automatic summaries may be especially helpful in the 

information retrieval task; i.e., the task of finding relevant documents in a large collection 

in order to satisfy user queries for particular items of information. 

 

Most of the automatic summarization studies focus on creating general-purpose 

summaries of documents. However, in an information retrieval paradigm, it has become 

important to bias summaries towards user queries in order to be effective. Also, traditional 

approaches have usually considered a document as a flat sequence of sentences and 

ignored the inherent structure of documents during the summarization process and in the 

output summaries. This aspect becomes especially important in the context of Web 

documents which typically show complex organization of content, having sections and 

subsections with different topics and formatting.  

 

In this thesis, we propose a novel summarization approach for Web search which 

combines these two aspects, namely, document structure and query-biased techniques, both 

in the summarization process and in the output summaries. In the summarization literature, 

these aspects have been investigated separately and only in a small number of studies. To 

the best of our knowledge, the effects of explicit document structure and query-biased 

techniques on Web search have not been investigated together in previous studies. The 

intuition behind the proposed method is that providing the context of searched terms in a 

way that is preserving the structure of the document (i.e. sectional hierarchy and heading 

structure) may help the users to determine the relevancy of the results better. First, the 

document structure is used to determine important sections and subsections of a document 

depending on the user query. Second, the structure is also provided as a part of the 

summary (i.e. headings and subheadings under which the important sentences are located). 
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We developed a two-stage approach: Structural processing and summary extraction. 

In the first stage, the structure of a given Web document is automatically analyzed and its 

sectional hierarchy is extracted together with the headings and subheadings in the 

hierarchy. This is based on the idea that a document can be represented as a tree with order 

and containment relations between physical and logical components of the document [8]. 

We first developed a rule-based approach for document structure analysis using heuristics. 

Then, we formed a machine learning approach which can be more flexible than the rule-

based approach. Here, we adapted a tree-based learning method using support vector 

machines and perceptron. The second stage of the proposed system is summary extraction 

and depends on the output of the first stage; i.e., document structure. We developed a 

query-biased summarization approach which uses the structural information during the 

summarization process and in the output summaries. For this purpose, basic statistical 

approaches to summarization are adapted. 

 

The proposed system has been evaluated on two levels. First, the proposed document 

structure analysis methods are evaluated based on the accuracy of heading extraction and 

document sectional hierarchy extraction. Then, the outputs of the proposed summarization 

approach are tested using a task-based evaluation method, where the task is information 

retrieval. The results are compared with both Google extracts and unstructured summaries. 

The evaluation sets include Turkish and English document collections and queries.  

 

The main contributions of this thesis are outlined in the following. Some of the thesis 

results have been published: 

- A novel summarization approach based on document structure and query-biased 

techniques [9]. 

- Automatic analysis of domain-independent Web documents to obtain a hierarchy of 

sections and subsections together with the headings using a rule-based approach [10] 

and machine learning approaches [11]. 

- The first automatic summarization study for Turkish targeting Web search [12]. 

- Evaluation of the structure-preserving and query-biased summaries in Web search 

tasks [13, 14]. 
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1.1.  Research Goals 

 

We state the main research goal as creating more effective summaries than the ones 

provided by traditional search engines in order to help the users judge the relevancy of 

search results better. The targeted documents are general Web documents with no domain 

restriction. Web documents are typically heterogeneous documents containing images, 

texts in different formats, interactive forms, menus, etc. Their content may also be 

diversified with sections on different topics, advertisements, etc. The screenshot of top and 

bottom parts of a rather long Web document is given in Figure 1.2. The circles in the figure 

mark different parts of the document and will be used for reference in the following 

discussion. 

 

We concentrate on several issues related to the main research goal. One issue is the 

structural and semantic analysis of Web documents, which is a challenging task because 

documents on the Web are generally prepared for visual access and for browsing by 

Internet users. Automatic analysis of them is rarely considered when they are authored. 

However, in order to improve summarization, both document content and document 

structure need to be automatically analyzed and semantically exploited. Traditionally, Web 

documents are prepared in HTML (Hypertext Markup Language) format whose primary 

purpose is presentation of data which brings limitations when a semantic interpretation of 

document content is desired. To eliminate this problem, semantic markup languages such 

as XML (Extensible Markup Language) have been developed. However, HTML 

documents still dominate the Web; our analysis on Google results with respect to 

document types showed that there exist nearly 6.1 billion HTML pages but only 52 million 

XML pages. Therefore, better methods for processing HTML documents are needed. In 

this thesis, we address the particular problem of finding the sectional hierarchy of an 

HTML document, where a document can be considered as consisting of sections and 

subsections with corresponding headings and subheadings. 

 

The document in Figure 1.2 corresponds to the fifth extract (snippet) in Figure 1.1. 

By looking at the Google snippet, which is a linear concatenation of some document 

fragments containing the query terms, it is hard to determine whether it is a relevant 

document with respect to the query. However, if the context of the searched terms is made 
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explicit using structural clues and heading hierarchy, we expect that the users can more 

easily make a decision on its relevancy. In the example, the relevant part resides near the 

end of the document under the heading Antibiotic sensitivity. Extracting sentences from 

that part and showing them under that subheading in the summary, as well as displaying 

other parts and headings, may help the user to decide that this is actually a relevant 

document. 

 

 

Figure 1.2. Some parts of an example Web document 
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In Figure 1.2, the boundaries of tables (<table> tag in HTML) that visually divide 

the document into parts are shown as dotted lines. Such structural clues from HTML tags 

can be utilized to identify sections and subsections. However, it should be noted that such 

tags do not always correspond to meaningful division of content. Additionally, it is 

necessary to distinguish the main content from secondary parts such as menus (e.g. (2) in 

Figure 1.2), advertisements, etc. Also, headings and subheadings like (1), (a), (d) should be 

distinguished from other text (e.g. (b) in Figure 1.2). These are nontrivial tasks due to the 

underlying HTML format. 

 

Another issue we consider is the use of the structural and semantic information (i.e. 

document sectional hierarchy and content) during the summarization process as well as in 

the output summaries. This involves the identification of the importance of sections and 

subsections in a document given the user query. Important sections (i.e. sections with high 

scores) and corresponding headings should be more heavily represented in the output 

summary. This is contrary to the traditional summarization approaches where a document 

is considered as a flat sequence of sentences. This task also involves query-biased 

summarization techniques. 

 

1.2.  Outline of the Thesis 

 

The rest of this dissertation is organized as follows. In Chapter 2, we give a general 

literature survey on search engines, query types, automatic analysis of documents and 

automatic summarization. This is followed by an overview of the proposed system in 

Chapter 3, including the main approach, system architecture, implementation and data 

collection. Then, the proposed rule-based and machine learning approaches for structural 

processing of documents are detailed in Chapter 4 and Chapter 5, respectively, together 

with the performance evaluations. In Chapter 6, the proposed summarization method is 

presented which is based on the output of the structural processing stage; i.e., query-biased 

and structure-preserving summarization. The chapter also includes the task-based 

evaluations of the system comparing it with Google and unstructured summaries. Finally, 

the thesis overview and conclusions are given in Chapter 7. 
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2.  LITERATURE SURVEY 

 

 

In this chapter, we first give a brief overview of search engines and query types. This 

is followed by a survey on automatic document analysis. Then, we present background 

information and related work on automatic summarization. 

 

2.1.  Search Engines and Query Types 

 

Information retrieval discipline deals with the storage, retrieval and maintenance of 

information. The general objective of an information retrieval system is to minimize the 

time spent by a user in locating the needed information [15, 16]. Information retrieval on 

the Web, although it is a variant of classical information retrieval, shows significant 

differences when compared with traditional text retrieval systems. These differences 

mainly stem from a number of typical characteristics of the Web such as its distributed 

architecture, the heterogeneity of the available information, its size and growth rate, and so 

on [17, 18]. 

 

 One of the major components of a Web information retrieval system is the searching 

component (the search engine). A search engine allows the user to enter search terms 

(queries) that are run against a database and retrieves from its database Web pages that 

match the search terms. We can identify several types of query form supported by modern 

search engines [16, 17, 19, 20]. The basic and most-widely used mechanism is Boolean 

search, where one or more keywords separated by (implicit or explicit) Boolean operators 

are entered. Phrase search is a variant of Boolean search, in which the user requires a set of 

contiguous words to be found in the given order. A generalized form of this idea is 

proximity search in which a sequence of words or phrases is given together with a 

maximum allowed distance between them. Another mechanism is limiting the search with 

some restrictions on the search items or on the Web page properties. The most common 

types are range searching (specifying a range for a word) and field searching (restricting 

the content of a field such as the title, language or file type to a particular value). 

  



 9

 Some of the search engines support a number of more advanced query types [16, 20]. 

Natural language search is a generalization of Boolean search, where any reference to 

Boolean operators is eliminated and the user formulates the query as a question or a 

statement. The search algorithms underlying this model of searching need to be quite 

different from those of simple searching models. In thesaurus search, the search terms 

supplied by the user are expanded to also include similar words or concepts. Finally, fuzzy 

search refers to the capability of the system of handling the misspellings and variations 

(e.g. stemmed form) of the same words. 

 

The information needs of users can be classified based on three dimensions: the 

intentionality or goal of the searcher, the kind of knowledge currently known by the 

searcher, and the quality of what is known [21]. In the case of well-defined knowledge of 

the user, specific information sources are searched, whereas in ill-defined (muddled) cases, 

the search process is rather exploratory. In a related work, a summarization system is 

evaluated based on four types of information need in Web search: search for a fact, search 

for a number of items, decision search, and background search [22]. 

 

It is worth mentioning some statistical figures about search engines in order to better 

evaluate their capabilities. Researchers estimate that the content of the Web is doubling 

each year. Search engines can index only a fraction of the Web. A research dated 2003 

reported that the largest search engine at that time (Google [3]) indexes about 3.8 billion 

Web pages, which corresponds to only 16% of the Web [17]. Due to the huge size of the 

Web, response time is a critical factor for search engines. When a query is given by a user, 

a search engine normally scans all the pages indexed. However, in order not to have an 

adverse effect on the response time, usually a few of the first result screens are generated 

more quickly (e.g. by using some templates), exploiting the fact that most of the users do 

not pass beyond a few screens [23]. 

 

2.2.  Automatic Analysis of Documents 

 

Information retrieval generally focuses on documents in electronic form which are 

prepared for access and browsing by humans. Automatic analysis of documents can be 
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useful to enhance this process. In this section, we consider the general problem of 

document analysis and review the state of the art in Web document analysis. 

 

2.2.1.  General Document Analysis 

  

In recent years, there has been a dramatically increasing usage of documents in 

electronic form which have several advantages over traditional paper documents, such as 

easy maintenance, efficient retrieval and transmission. Electronic documents can also be 

processed and utilized structurally. They can be partitioned into physical components, such 

as paragraphs, words, figures, etc., and logical components such as titles, authors, sections, 

etc. This structural information can be used in indexing and retrieving useful information 

contained in the documents. As a result, there have been several studies for the conversion 

of paper documents into electronic form and the automatic analysis of document structure 

[8]. 

 

In general, document structure analysis can be considered as a syntactic analysis 

problem [8]. The order and containment relations between physical and logical 

components of a document can be represented as an ordered tree. A tree grammar can be 

used to describe a document as consisting of regions or blocks. This is analogous to a 

sentence in syntactic parsing which can be described as a tree with grammatical 

relationships among its words. Therefore, some syntactic analysis approaches in natural 

language processing can be adapted to the document analysis problem. In [24], 

transformation-based learning method which was previously applied to the syntactic 

parsing problem is adapted for the conversion of HTML (Hypertext Markup Language) 

documents into XML (Extensible Markup Language) format. 

 

In a related work, the logical structure of a document is represented with a 

generalized n-gram model based on a statistical approach [25]. The document structure is 

constructed in a hierarchical way where local tree node patterns are defined similar to n-

grams in natural language processing. The tree patterns for n = 3 are given in Figure 3.1. 

As seen in the figure, the context of a node is represented by its local neighbors such as its 

siblings, ancestors or descendants. The document logical tree is incrementally built using 

best-first search. 
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Figure 2.1. The notation used to represent tree patterns [25] 

 

Another approach is to model the hierarchical segmentation of a document by means 

of a grammar [26]. Then, the document analysis problem is converted to the problem of 

finding the optimal parse of the document given the grammar. In Figure 3.2, an example 

grammar that can be used to describe printed pages is given where a page consists of 

paragraphs, a paragraph consists of lines and so on. However, such pure probabilistic 

context free grammars (PCFGs) have some limitations such as inclusion of feature 

information. To overcome this limitation, the grammar can be replaced by an attributed 

grammar; e.g. replacing the paragraph non-terminal by paragraph(lMargin, rMargin, 

linespace, justification). Nevertheless, continuous attributes are problematic and the 

grammar is generative. As an alternative, non-generative (i.e. discriminative) grammars 

allow much more powerful models of terminal dependencies without an increase in 

grammar complexity. Then, in learning, a set of parameters can be estimated which assign 

high scores to correct grammatical groupings and low scores to incorrect groupings [26]. 

 

A recent approach in syntactic analysis is incremental parsing using beam search 

[27]. In that approach, the parse tree is incrementally constructed and simple corrective 

updates are performed to the parameters during training. The heuristic approach of beam 

search is incorporated to reduce the size of the exponential search space of possible parses. 

A similar approach has been applied to the problem of automatically generating the table-

of-contents for a long document (e.g. a book) [28]. In that study, a hierarchical 
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discriminative approach which consists of a local and a global model is developed. It is 

assumed that the hierarchical segmentation of the document is provided in the input. In the 

local model, a list of candidate titles for each document segment is generated together with 

their individual likelihoods. Then, in the global model, the table-of-contents is 

incrementally created using beam search together with the information obtained in the 

local model. 

 
(Page → ParList) 
(ParList → Par ParList) 
(ParList → Par) 
(Par → LineList) 
(LineList → Line LineList) 
(LineList → Line) 
(Line → WordList) 
(WordList → Word WordList) 
(WordList → Word) 
(Word → terminal) 

 
Figure 2.2. An example grammar to describe printed pages [26] 

 

2.2.2.  Web Document Analysis 

 

 Structural and semantic analysis of Web documents is a relatively young field of 

research. Web documents are usually encoded in HTML [29] and can contain rich 

structural information. However, since HTML is mostly concerned with the presentation of 

content, it does not always correspond to the semantics of the data. As a result, Web 

documents are usually considered as “semi-structured” documents [30]. 

 

 One of the motivations in Web document analysis is to filter important content from 

Web pages by eliminating advertisements and other cluttered parts which are very common 

to Web pages [31]. Another motivation is to convert HTML documents into semantically-

rich XML documents to be utilized later [32]. This analysis may also be used for obtaining 

a hierarchical structure for the document including its sections and subsections [33, 34, 35, 

36]. Some of this work is motivated by the need of displaying content in small-screen 

devices such as PDAs (Personal Digital Assistants) [34, 35], while others leave the usage 

open, including more intelligent retrieval of information, summarization, etc. 
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Most of the related work concentrates on exploiting HTML tags for the analysis; 

some of them do the analysis by building the explicit DOM (Document Object Model) [37] 

tree. The approaches used are mostly either rule-based or machine learning-based. 

Moreover, some of them target a certain domain such as resume documents [32], whereas 

others are domain-independent. In the following subsections, we give a brief overview of 

Hypertext Markup Language and Document Object Model, and present the rule-based and 

machine learning-based approaches in the literature. 

 

2.2.2.1.  Hypertext Markup Language and Document Object Model. Hypertext Markup 

Language (HTML) is the universal publishing format on the World Wide Web [29]. It 

allows web authors to publish online documents with headings, text, tables, lists, photos, 

etc., and allows retrieval of documents via hyperlinks. It also enables the use of forms for 

conducting transactions with remote services such as searching for information or ordering 

products. 

 

HTML documents are composed using markup tags (e.g. <font>), attributes, 

attribute values (e.g. the size attribute in <font size = 3>), and text. Start and end tags (e.g. 

<p> and </p>) are used to annotate content. In HTML syntax, there are two main types of 

tag: container tags (<table>, <td>, <tr>, etc.) which include other HTML tags or text, and 

format tags (<b>, <font>, <h1>, <h2>, etc.) which are usually concerned with formatting 

of the text. In most of the Web documents, the organization of content is achieved by the 

use of container tags; mostly <table> and related tags such as <tr> (corresponding to table 

rows) and <td> (corresponding to table cells). Also, multiple levels of such tags may be 

used in a nested way to obtain a complex organization. Other tags to group related content 

include <div> to define a section in a document, <span> to group text level elements, and 

<li> to define a list. 

 

The Document Object Model is a platform and language independent interface and 

allows programs to dynamically access and update the content, structure and style of 

documents [37]. The DOM presents documents as a hierarchy of nodes, which is referred 

as the DOM tree. In Web document analysis, DOM tree of a Web document has started to 

be increasingly utilized because it provides a more global view for the document structure 

[30]. 
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2.2.2.2.  Rule-Based Approaches. The DOM tree can be used to extract useful content from 

Web documents by eliminating cluttered parts. One approach is to navigate the DOM tree 

with different filtering techniques to remove and adjust specific nodes and thus to leave 

only the useful content [31]. In [32], HTML pages in a specific domain are converted into 

semantically-rich XML documents to be utilized in later processing. For this purpose, the 

document trees are transformed by making use of concepts related to the domain and 

document restructuring rules. The accuracy of the system was evaluated based on the 

number of wrong parent-child and sibling relationships in the obtained document 

hierarchies. 

 

HTML documents can be decomposed into coherent segments in a flat or 

hierarchical way. In hierarchical structure analysis, the document is processed to obtain a 

hierarchy of segments and subsegments. One approach to obtain the hierarchical structure 

is to group visually similar objects, such as document parts with similar formatting [33]. 

Alternatively, the document can be partitioned iteratively into smaller blocks by detecting 

separators such as table borders and blank space between contents [34]. This analysis can 

also be performed by partitioning the document into semantic textual units and arranging 

the hierarchy based on emphasis differences between the units (e.g. the use of smaller or 

larger fonts) [35]. Other approaches to hierarchical structure analysis include application of 

a string matching algorithm on the DOM tree paths [36] and using presentation regularities 

[38]. Our research differs from all these studies in the sense that we concentrate on section 

and subsection headings and make use of these in building the hierarchy, whereas other 

studies do not particularly concentrate on heading-based hierarchy. 

 

2.2.2.3.  Machine Learning Approaches. In the literature, there is some related work on the 

extraction of the main title from documents in electronic form using machine learning 

techniques. In [39], classification techniques such as support vector machines (SVMs) and 

conditional random fields (CRFs) are used to extract the main title (i.e., a single title) from 

the content of Web documents. The features are obtained from a DOM tree based method 

(such as tag and formatting information) and from a vision-based method used to segment 

the rendered Web document. After the title extraction, its use in document retrieval was 

evaluated. In this thesis, we investigate a more general problem than the extraction of the 
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main title; i.e., the problem of finding all the headings in a Web document together with 

the underlying hierarchy. 

 

 In another machine learning-based work, the aim is to segment a given Web 

document into blocks [40]. Binary classification (e.g. SVM) with DOM tree and formatting 

features is used to determine whether two consecutive text nodes in the document 

constitute an information block boundary or not. For each pair of text nodes, a set of 

features is defined to represent the distance and the difference of them, such as the 

difference between their formatting. The Web document is segmented in a flat way without 

considering the hierarchical structure. Then, the blocks are classified into semantic 

categories, such as page title, form and menu. 

 

A document is modeled as a sequence of consecutive text units in [39] and [40]. 

Each unit usually corresponds to a line in the document with its particular formatting and 

feature set as in Figure 2.3; a unit may also have no textual content [39]. The model for the 

extraction of the main title is given in Figure 2.4. The learning tool takes documents as 

input, each as a sequence of units xi1, xi2, ..., xin aligned with a sequence of labels yi1, yi2, ..., 

yin denoting whether a unit is the main title or not. Then, in extraction, a previously unseen 

document, given as a sequence of units, is assigned with a sequence of labels. Based on 

this output, the main title of the document is determined. 

 

 
Figure 2.3. A sequence of units in an example HTML document [39] 
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Figure 2.4. A title extraction model [39]  

 

 In [41], the problem of identifying important blocks within a Web document is 

considered. First, a vision-based page segmentation algorithm is used to partition the 

document into blocks with a hierarchical structure. Then, SVM and neural network 

methods are used with spatial and content features of the blocks to assign importance 

values to the blocks. 

 

2.3.  Automatic Summarization 

 

2.3.1.  Background Information 

 

Automatic summarization can be defined as the process of distilling the most 

important information from a source (or sources) to produce a shortened version for 

particular users and tasks [1, 42]. There are several uses of automatic summarization in 

today’s information world. Firstly, it can be used as an aid for browsing large documents 

one by one or sets of documents. Next, it can be utilized in sifting process as an aid to 

locate useful documents in a large collection. Also, automatic summarization can aid report 

writers by providing abstracts. 

 

Automatic summarization is related to and influenced by the research in information 

retrieval and information extraction, where the former is concerned with finding 
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documents whereas the latter with finding useful information inside documents. In fact, 

summarization can be considered as a special kind of "information extraction" where the 

summary is the extracted information [15]. Another field related to summarization is text 

mining which differs from information retrieval and extraction by creating new 

information from existing information. In this context, summarization constitutes a 

borderline case. It cannot be considered as a text mining process when it simply extracts 

information from a document. However, if it provides critical review or links to documents 

not referenced in the original text or if it synthesizes information (as in cross-document 

summarization), it can be considered under the field of text mining. 

 

There are several types of summaries. One distinction is made between extracts and 

abstracts. An extract is formed simply by extracting words or sentences from the source 

text, whereas forming an abstract involves reformulation of information in a text using 

deeper techniques such as natural language generation. Summaries can also be categorized 

as generic or query-relevant. Generic summaries are general-purpose summaries which do 

not focus on a particular topic, whereas query-relevant summaries are formed considering 

the requirements of a particular user query. Query-relevant summaries can be useful for 

large documents (e.g. manual or textbook) and documents containing diverse subject 

matter (e.g. court opinions). Furthermore, summaries can be single-document or multi-

document. In the multi-document case, a single summary is obtained by considering the 

contents of a set of documents. Another classification is related to the function of the 

summary. A summary can be indicative, that is it can only briefly indicate the topics 

addressed in the text, or it can be informative, covering the concepts of the text in a more 

detailed manner. 

 

Automatic text summarization can be described in three phases as in Figure 2.5 [43]. 

In the first phase, the input text is analyzed. In the second phase, it is transformed into a 

summary representation. Finally, in the third phase, an output summary is generated, i.e. 

synthesized, using the summary representation. During these phases, three different types 

of condensation operations can be applied to obtain a condensed form of the text. These 

are selection of important and non-redundant information, aggregation of information and 

generalization of specific information [42, 43]. 
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Figure 2.5. Summarization stages [43] 

 

There may be several ways of categorizing automatic summarization approaches. 

One useful way is to categorize them according to the level of processing as surface-level, 

entity-level and discourse-level approaches. There may also be hybrid versions of these 

three approaches [1]. 

 

Surface-level approaches usually use shallow features to identify salient (i.e. 

important) information in the text. These include thematic features (e.g. based on term 

frequency statistics), location (e.g. position in text or paragraph, section depth, particular 

sections), background (e.g. presence of terms from title, headings, initial part of text or 

user query), cue words and phrases (e.g. a sentence beginning with the phrase “in 

summary”) [1, 6, 44]. 

 

Entity-level approaches build an internal representation of the text by modeling text 

entities and their relationships. They usually use the connectivity of entities, e.g. using 

graph topology, to determine what is salient in the text. Different types of relationships 

between entities include similarity (e.g. vocabulary overlap), proximity (distance between 

text units), co-occurrence (words occurring in common contexts), thesaural relationships 

(e.g. WordNet [45]), coreference, logical relations (e.g. agreement, contradiction), 

source text

INTERPRETATION 

source representation 

TRANSFORMATION

summary representation

summary text 

GENERATION 
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syntactic relations (e.g. based on parse trees) and meaning representation-based relations 

(e.g. predicate-argument relations). 

 

Discourse-level approaches model the global structure of the text and its relation to 

communicative goals. These include the format of the document (e.g. hypertext markup or 

document outlines), threads of topics as seen in the text and rhetorical structure of the text 

(e.g. argumentation or narrative structure). 

 

Evaluation of automatic summarization methods is another important area of 

research. Methods of evaluation are usually categorized into two: intrinsic and extrinsic 

evaluation. In intrinsic evaluation, the summary itself is evaluated. This can be done either 

by direct user judgments of the quality or by calculating the similarity to an “ideal” 

summary. Intuitively, the informativeness, i.e. the extent important information is 

preserved in the summary, and coherence, including the readability of the summary, are 

two different measures on the quality of a summary [46]. The measures used in most of the 

practical systems are precision and recall which are used to determine the similarity of the 

produced summary with the “ideal” summary. Other measures include Kappa, relative 

utility, cosine similarity and longest common subsequence. In extrinsic evaluation (i.e. 

task-based evaluation), the quality of a summary is determined based on how it affects the 

completion of another task as in [47]. In ad hoc task, the aim is to correctly identify the 

relevance of a document with respect to a given topic by using the summary. In 

categorization task, the aim is to correctly categorize a document with respect to a given 

set of topics by using the summary. Measures like time spent and accuracy obtained during 

these tasks can be used to assess the quality of the summary. 

 

2.3.2.  Related Work 

 

Early research in automatic summarization began in the late 1950s mainly with a 

surface-level approach [6]. The first entity-level approaches started in the early 1960s. The 

interest in the field renewed in the early 1970s, extensions are made to the surface-level 

approach, and first commercial applications were developed. In the late 1970s, more 

extensive entity-level approaches were developed and first discourse-based approaches 

appeared. The 1980s saw a variety of different work including entity-level approaches 
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based on artificial intelligence concepts. The late 1990s were described as the renaissance 

of the field. During this period, all the three types of approaches were considered with 

government and commercial interest. The focus was on extracts rather than abstracts with 

renewed interest in surface-level approaches. Also, new areas of research including multi-

document summarization, multilingual summarization and multimedia summarization 

began to be developed. Automatic summarization research has also been influenced by the 

studies of abstracting behavior, including the psychological study of human summarization 

in the laboratory and the study of professional abstractors [1]. The last decade showed a 

valuable progress in the field due to the rapid growth of publicly accessible text on the 

Web and evaluation programmes such as DUC (Document Understanding Conferences) 

[43]. The recent studies include mostly extractive approaches using statistical and/or 

shallow symbolic methods. 

 

In the following subsections, the main approaches in automatic summarization are 

considered with representative systems from the literature. These include classical, corpus-

based and discourse-based approaches. Then, more recent work is presented in the last 

subsection. 

 

2.3.2.1.  Classical Approaches. Luhn’s paper is one of the oldest work in automatic 

summarization [6]. It describes an algorithm which scores sentences based on term 

frequencies and extracts highest scored sentences. The algorithm filters terms using a stop 

list containing closed-class words such as pronouns and articles. Also, some kind of 

normalization is applied on terms, e.g. the words “similar” and “similarity” are aggregated 

together, and low-frequency terms are removed. Luhn’s basic statistical approach has had 

significant influence to the subsequent research in automatic summarization. Edmundson 

extended earlier work by using three other features in addition to word frequencies [44]. 

These are cue phrases (e.g. “significant”, “impossible”, etc.), title and heading words, and 

sentence location. 

 

2.3.2.2.  Corpus-based Approaches. In one of the representative works in the literature, 

extraction task is approached as a statistical classification problem [48]. The system uses a 

training set of documents and corresponding human abstracts. Each sentence in the training 

set is labeled based on whether it is included in the corresponding summary or not. Then, a 
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classification function is defined in order to estimate the probability that a given sentence 

will be included in the summary. For this purpose, each sentence is described by a set of 

features such as sentence length, sentence position in the paragraph, presence of high-

frequency content words, etc. Each sentence in an input text is ranked according to the 

calculated probability and a user-specified number of top scoring sentences are selected to 

be incorporated into the summary. This study has been followed by several other corpus-

based studies in this field [1]. 

 

2.3.2.3.  Discourse-based Approaches. Discourse-based approaches can be classified into 

two categories based on the distinction between cohesion and coherence [1]. Cohesion 

involves relations between words or referring expressions and is related to how tightly the 

document is connected. Such relations may include anaphora, ellipsis, conjunction and 

lexical relations such as synonymy and hypernymy. The work by Barzilay and Elhadad is 

based on lexical cohesion [49]. Coherence corresponds to macro-level relations between 

sentences or clauses; e.g. clauses linked by “although” have a contrast relation. Marcu’s 

work uses a coherence model based on rhetorical structure theory [50]. Based on several 

earlier psycholinguistic studies, Marcu states that the structure of a text is essential in 

summarizing the text [51]. 

 

2.3.2.4.  Recent Work. Sparck Jones overviews the current state of automatic 

summarization, and suggests methodologies and research strategies for this developing 

field in her position papers [7, 43]. Sparck Jones underlines the importance of context 

factors in summarization research. The proposed methodology is to determine the 

operational factors for individual cases summarization is used. There are three types of 

context factors: input factors, purpose factors and output factors [7]. Input factors include 

the form (e.g. structure, genre, language), the subject type (ordinary, specialized or 

restricted) and the unit (single or multiple sources) of the input. Purpose factors are the 

situation (i.e. the context within which the summary is used), the audience and the use of 

the summary. Output factors include the material (that is, whether the summary covers all 

the main points or is partial), the format and the style (e.g. informative, indicative, critical, 

etc.) of the output summary. Within these three factors, the most important ones to 

consider as a part of research methodology are stated as the purpose factors. 
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Most of the related work on automatic summarization aim at creating generic 

summaries rather than query-biased ones and employ extraction methods based on 

sentence weighting [52, 53, 54]. In a related work, the effects of several sentence 

weighting schemes were investigated, including sentence length, query term order, and 

query term frequency [55]. It was found that using a combination of weighting components 

improves the performance compared to any single component. 

 

Currently available major Web search engines, such as Google [3] and AltaVista [4], 

use short extracts of document contents (i.e., two or three lines of text) in displaying their 

results. Google creates document extracts using query-biased techniques. Query words 

appearing within the document are output together with some of their context; i.e., with 

leading and trailing non-query terms. 

 

Tombros and Sanderson investigate the advantages of query-biased summaries in 

information retrieval [56]. In that study, surface-level sentence extraction techniques, such 

as title, location and query features, are used for summarization. It is shown that the use of 

query-biased summaries significantly improves both the accuracy and the speed of users in 

identifying relevant documents. Another related work is WebDocSum which is a retrieval 

interface providing summaries much longer than those of the traditional search engines to 

improve the search experience of Web users [22]. Instead of displaying the long summaries 

under the search results, which may result in a cluttered view, only the link titles are listed 

and the corresponding summaries are presented in a separate window when the mouse is 

moved on a particular link. The summarization system was shown to be more effective 

than the summaries of Google and AltaVista on a task-based evaluation. WebDocSum uses 

a query-biased and surface-level technique for summarization. In [57], a structure-based 

and query-specific summarization technique was proposed. This method tries to add 

structure to a document by dividing it into text fragments (e.g. paragraphs) and connecting 

related fragments as a document graph rather than making use of the explicit document 

structure such as the sectional hierarchy. In that study, the summary is formed by a graph 

search algorithm. 

 

 There is few work on summarization based on explicit document structure such as the 

document sectional hierarchy. In one of the studies, the system builds a “table of content”-



 23

like hierarchy of sections and subsections for each document using heuristics on HMTL 

tags present in the documents and incorporates this structural information in the output 

summaries [58]. In fractal summarization method [59], summaries are created based on the 

hierarchical structure of a long document, including chapters, sections and subsections. 

These studies focus on general-purpose summaries, not tailored for particular user queries 

or Web search tasks. To the best of our knowledge, there is no related work on 

summarization combining explicit structure of Web documents and query-biased 

techniques. 

 

 There exist some studies on summarization of XML documents which are inherently 

structured. In one of the studies, query-biased summarization was used as an aid for 

searching XML documents [60]. In another study, a machine learning approach was 

proposed for summarization of XML documents based on structure and content [61]. 
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3.  QUERY-BIASED AND STRUCTURE-PRESERVING 

SUMMARIZATION 

 

 

In this chapter, first, the general approach and the architecture of the proposed 

system are presented. Then, the implementation of the system and the data collection are 

overviewed. A detailed description of the most important system modules will be given in 

the following chapters. 

 

3.1.  The Approach 

 

In this thesis, we develop a novel summarization approach in order to improve the 

effectiveness of Web search. The proposed approach is intended to be used together with a 

search engine, such as Google and AltaVista. The aim is to enhance the user experience of 

such search engines which usually show only a limited capability in summarizing Web 

documents; e.g. by displaying only two or three lines of document fragments which consist 

of the query words and their surrounding text as the summary. Our main aim is to improve 

the effectiveness with respect to the information retrieval task; i.e., the task of locating 

documents which are relevant to a particular search query. 

 

The proposed summarization approach is based mainly on two aspects: document 

structure and query-biased techniques. First, we consider the fact that Web documents are 

not flat texts, but they usually contain a structure. Structured documents may have sections 

and subsections with different topics and formatting, and corresponding headings and 

subheadings (see Figure 3.1 for an example structured document). Traditional approaches 

in summarization usually ignore the document structure and treat a document as a linear 

sequence of sentences. That is, they select the sentences or document fragments to be 

included in the summaries from this linear space of text, and their summary output is also 

usually unstructured. However, the use of document structure becomes important on the 

Web where documents usually have diverse content and formatting. Another aspect we 

consider is the user query, i.e., the information need of the user as entered in the Web 

search interface, which is also usually ignored in traditional approaches. However, there is 
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evidence in the literature that a query-biased approach is more suitable to Web search than 

a generic approach. 

 

 
Figure 3.1. An example structured document 

 

The structural information used in the proposed system is the document sectional 

hierarchy. It is incorporated into the summarization process in two different ways. First, it 

is used to determine important document sections and subsections based on the user query. 

Second, some structural information (i.e., headings and subheadings) is also displayed as a 

part of the output summary in order to provide the context of the text fragments selected as 

a part of the summary. In this way, the user is expected to judge the relevance of search 

results better. In Figure 3.2, an example structured summary is given. In the figure, the 

summary sentences are displayed in a structured way, and ‘…’ is used to indicate the 

content not selected as a part of the summary. 
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In the proposed system, indicative summaries are created to direct users to relevant 

documents rather than informative summaries that can be used as a replacement of the 

original documents. We use the method of sentence extraction rather than sentence 

abstraction which involves rewriting. In this way, the structure of the original document 

and the context of the selected sentences can be preserved and thus the user can judge the 

relevancy of documents more precisely. 

 
 
Automated Query-biased and Structure-preserving 
Text Summarization on Web Documents 
 
 
1. Abstract 
... 
Different from the previous work, both the structural 
information and the content to be displayed in the summary 
are selected in a query-biased way.  
... 
2. Related Work 
... 
3. Proposed System 
... 
3.1. Structural Processing 
... 
The structure of a document may be considered as a 
hierarchy, where each document has sections; each section 
has subsections, and so on. 
... 
3.2 Linguistic Processing 
... 
 

 

Figure 3.2. An example structured summary 

 

The summary length is also increased in the proposed system compared to the ones 

provided by search engines. However, if these longer summaries were again displayed 

under the corresponding titles in the search results, then the user would need to scroll too 

much to see the consecutive results. To prevent this problem, similar to a previous work in 

the literature [22], only the titles of the results are listed, and when the user moves the 

mouse on a particular link, the summary for that document is displayed in a separate frame. 

Although the summaries in this approach are much longer than the traditional approaches, 

they are still limited; e.g., to the size of the area of the screen that can be seen without 

scrolling. 
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3.2.  System Architecture 

 

The system architecture is given in Figure 3.3. There are two types of roles: the 

system and the user. In the system part, the HTML documents collected from the Internet 

are processed in order to obtain their structure; i.e. the document sectional hierarchy 

(structural processing). For each document, a hierarchical representation is obtained. Both 

the documents and user queries are processed linguistically; e.g. stemming and recognition 

of phrases. The user query and the hierarchical representations of the documents are used 

by the summarization engine to obtain the output summaries. 

 

 
Figure 3.3. The system architecture 
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3.2.1.  Structural Processing 

 

The aim of structural processing is to identify heading-based sectional hierarchy for 

Web documents. In general, the structure of a document may be considered as a hierarchy 

where each document may have sections, each section may have subsections and so on, 

together with the corresponding headings and subheadings. The targeted document format 

is HTML because it is still the most frequently used format on the Web. The input to the 

proposed system is a Web document in HTML format. The output is a tree representing the 

sectional hierarchy of the document where headings and subheadings are at the 

intermediate nodes and other text units are at the leaves (see Figure 3.4). The root contains 

a dummy unit covering the whole document. As can be seen, headings in different levels 

can be identified as a hierarchy together with the sentences under the headings. In Figure 

3.5, a part of the sectional hierarchy for an example document is given. The rule-based and 

machine-learning approaches we developed for structural processing are detailed in 

Chapters 4 and 5, respectively. 

 

 
Figure 3.4. Output of structural processing 
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Figure 3.5. Part of the sectional hierarchy for an example document 

 

3.2.2.  Summarization 

 

The summarization algorithm is run after the structural processing phase is 

completed. The algorithm works on the document tree obtained in structural processing 

and it is based on an extractive approach. The structural properties of documents are 

utilized during the summarization process and in the output summaries. The proposed 

summarization approach is detailed in Chapter 6. 

 

3.3.  Implementation 

 

The proposed system was implemented in Java programming language. We utilized 

two different frameworks: GATE Text Engineering Framework and the Cobra Toolkit. In 

the following subsections, we overview the basic properties of these frameworks and our 

implementations. 

 

 

3.3.1.  GATE Framework 

 

GATE (General Architecture for Text Engineering) is a framework and development 

environment for human language technology modules and applications [62, 63]. It is an 

open source project using component-based technology in Java and is used by several 
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academic and commercial projects. Using such a framework has several advantages 

because it includes commonly used natural language functionalities such as sentence 

splitting, part-of-speech tagging and noun phrase identification. Also, it is a modular 

environment into which new components can be easily added. 

 

GATE distinguishes between data, algorithms and the methods of their visualization. 

That is, each component in the GATE system is one of the three types: Language 

resources, processing resources and visual resources. Language resources represent entities 

such as documents and corpora. Processing resources correspond to algorithmic entities 

such as parsers and generators. Finally, visual resources are related to the visualization and 

editing of the components in the graphical user interface. The processing resources work 

on the language resources, and several processing resources can be run sequentially as a 

pipeline. The data flow between different processing resources is achieved by the 

annotation of documents. 

 

GATE supports parsing of HTML documents and it can identify HTML tags in the 

documents as annotations marked on the documents; however, it does not build the explicit 

DOM tree. We modified its algorithm in order to extract the DOM tree. In the proposed 

system, after an HTML document is loaded to the system, the following processing 

resources (modules) are applied to it in the indicated order and the final summary is 

generated: 

• Tokeniser - splits the text into tokens, such as words, numbers and 

punctuation marks. 

• Sentence Splitter - splits the text into sentences. 

• Stemmer - applies stemming to individual words. 

• Part-of-Speech Tagger - produces a part-of-speech tag on each token 

• Noun Phrase Chunker - identifies noun phrases 

• HTML Document Structure Analyzer - applies the proposed structural 

processing algorithm on the document. 

• Summarization Engine - runs the proposed summarization method on the 

document. 
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The tokeniser and sentence splitter were taken from ANNIE, a GATE 

implementation of an information extraction system. The stemmer used is a GATE plugin 

and it is based on the commonly-used Porter stemming algorithm [64]. We used English 

and Turkish versions of the stemmer. We implemented two new processing resources as 

plugins to GATE: HTML Document Structure Analyzer and Summarization Engine. 

 

3.3.2.  Cobra Toolkit 

 

In the standalone implementation of the system, we also utilized Cobra Java HTML 

Renderer and Parser Toolkit for parsing the HTML documents and building the DOM trees 

[65]. Cobra is an open source project in Java and supports HTML 4, Javascript and CSS 

(Cascading Style Sheets). Cobra provides an API for the navigation of the DOM tree. One 

advantage of Cobra is the support of Cascading Style Sheets which have been started to be 

widely used in HTML documents to separate the presentation and content. Cobra can also 

be used to obtain the visual positions (such as the x and y coordinates) of individual text 

units in the rendered Web page. 

 

3.4.  Data Collection 

 

In order to evaluate the proposed structural processing and summarization 

approaches, a sufficiently large and representative corpus of Web documents is needed. 

There may be several ways to create such a corpus, such as using a list of popular search 

queries from a search engine, defining queries that reflect current search interests of users, 

or using standard queries and collections such as TREC (Text Retrieval Conference) [39, 

66, 67]. 

 

Analyses in the literature about user behavior in forming queries have shown that 

users do not put much effort into formulating a query and they mostly use very simple 

Boolean types of query [21, 68]. It was reported that 80% of the queries are formed as a 

sequence of words without any Boolean operator in between and the average query length 

is 2.35 words [18]. Another study gives the same average length and estimates the average 

number of operators as 0.41 operators per query [19]. In addition, it was found that 25% of 

the users use a single keyword. Chowdhury states that only about 8% of the queries contain 



 32

Boolean operators and only 9% use some advanced features [17]. All these results indicate 

the poor nature of end-user searches. We follow the same approach in simulating user 

behavior in this work by using Boolean queries having a length of 2-3 words. We selected 

queries by considering current search interests of users in various domains.  

 

We created three different document collections for the experiments. The first one 

(English Collection) includes English Web documents collected from the results of Google 

in response to 10 different queries from TREC-2004 Robust Test Set (see queries 1-10 in 

Table 3.1). For each query, a set of 10 documents were randomly collected from the top 50 

results returned by Google, corresponding to a total of 100 out of 500 documents. The 

second collection (Turkish Collection) includes Turkish Web documents collected from the 

results of Google using TREC-like queries defined for Turkish [69] (Table 3.2). The 

collection includes 50 documents randomly selected out of 250 documents. For the 

machine learning algorithms, a larger document collection was needed. For this purpose, 

we created the third collection (Extended English Collection) which is an extension of the 

original English collection and includes all the 20 queries in Table 3.1. The documents for 

the collection were collected from the top results of Google in response to each query; i.e., 

top 25 HTML documents for each query, corresponding to a total of 500 documents. The 

average document length is about 1566 words in the English collection, 900 words in the 

Turkish collection and 1340 words in the extended English collection. These document 

collections were used in the evaluation of both structural processing and summarization 

methods. 
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Table 3.1. Queries used for building the English collections 

Query ID Query Keywords 
1 Hubble telescope achievements 
2 best retirement country 
3 literary/journalistic plagiarism 
4 Mexican air pollution 
5 antibiotics bacteria disease 
6 abuses of e-mail 
7 declining birth rates 
8 human genetic code 
9 mental illness drugs 
10 literacy rates Africa 
11 robotic technology 
12 creativity 
13 tourism, increase 
14 newspapers electronic media 
15 wildlife extinction 
16 R&D drug prices 
17 Amazon rain forest 
18 Osteoporosis 
19 alternative medicine 
20 health and computer terminals 

 

Table 3.2. Queries used for building the Turkish collection 

Query ID Query Keywords 
1  
 

tsunami 
(tsunami) 

2 
 

ekonomik kriz 
(economic crisis) 

3 
 

Türkiye'de meydana gelen depremler 
(earthquakes in Turkey) 

4 
 

sanat ödülleri 
(art awards) 

5 
 

bilişim eğitimi ve projeleri 
(IT education and projects) 
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4.  RULE-BASED APPROACH FOR STRUCTURAL PROCESSING 

 

 

In this chapter, we present the rule-based approach we developed for Web document 

structure analysis. It is a heuristic approach based on DOM tree processing. This is 

followed by the experiments to measure the effectiveness of the proposed method. 

 

4.1.  The Method 

 

Structural analysis of Web documents is a nontrivial task because the underlying 

HTML format is not intended for a semantic representation of data. Also, most of the 

documents on the Web show a cluttered and complex organization with diverse formatting 

and topics. In this section, we overview the proposed structural processing method to 

identify the sectional hierarchy for a given Web document; i.e. sections and subsections 

together with the corresponding headings and subheadings. The method involves three 

steps which are detailed in the following subsections: 

• DOM tree processing: The DOM tree of the document is analyzed to find out 

the structural properties of the document and internal relationships between 

text fragments. 

• Heading identification: The headings in the document are determined based 

on heuristics. 

• Hierarchy restructuring: The heading information is used to restructure the 

tree obtained in the first step and to identify the actual hierarchical 

relationships between sections and headings. 

 

4.1.1.  DOM Tree Processing 

 

The DOM tree is a hierarchical representation of an HTML document. However, it 

primarily concerns the presentation of the document contents and usually does not 

correspond directly to a semantic hierarchy. Nevertheless, this hierarchical representation 

may be partly utilized to obtain the semantic organization of a document. In Figure 4.1, a 

part of the DOM tree corresponding to the example document in Figure 1.2 is shown. The 

fragments identified with circles were marked for correspondence. 
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Figure 4.1. Part of the DOM tree for an example Web document 

 

As can be seen in the example tree, semantically related parts like (1), (2), (3), and 

(4) are grouped under certain container tags such as <table>, <td>, and <tr>. In general, 

the DOM tree usually has a complex organization with nested container and format tags. 

The depth of the tree may be quite large; it is common to find DOM trees having 20-30 

levels. Also, the DOM tree usually contains tags that do not correspond to textual content. 

Therefore, the hierarchy that is closer to the sectional hierarchy (usually with much smaller 

depths) should be distilled from this tree. 

 

The intuition behind DOM tree processing step is that semantically related parts of 

an HTML document usually occur in the same or neighboring container tags in the 

hierarchy. The approach we take in the proposed system is to convert the DOM tree into a 

simplified version of it with only containment relationships (i.e. container tags). In the 

converted tree, sentence boundaries are also taken into account. The tree is restructured 



 36

such that each leaf corresponds to exactly one sentence whereas in the original DOM tree, 

each leaf may correspond to part of a sentence or more than one sentence. The processing 

involves the following steps: 

• Prune nodes that do not contain text in the leaves beneath them and nodes 

which will not be used in summarization, such as forms or drop-down menus. 

• Split/merge leaf nodes such that each leaf node corresponds to exactly one 

sentence. 

• Simplify the tree to obtain the containment hierarchy. 

 

The algorithm to simplify the tree is given in Figure 4.2. It works in a breadth-first 

fashion starting from the root node. Nodes that have only one child or nodes with format 

tags (such as <bold>, <font>) are removed in order to simplify the tree. For this purpose, 

their children are percolated up and the format tags are passed as features to them. The 

output of this step for the example DOM tree in Figure 4.1 is given in Figure 4.3. In the 

resulting tree, document parts are grouped under block elements. Also, the main title of the 

document is identified using the <title> tag and it is percolated to the root of the document 

tree such that all the sections and subsections of the document are stored under the main 

document title. 

 

 
Figure 4.2. Document tree simplification algorithm 
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Figure 4.3. The document tree obtained after DOM tree processing 

 

4.1.2.  Heading Identification 

 

The aim of this step is to identify all the headings and subheadings in a given HTML 

document. This is a nontrivial task because of the cluttered structure found in most Web 

documents. There are usually multiple columns and blocks of content with different 

formatting styles. Actually, there are six different heading tags (<h1> through <h6>) in 

HTML to format different levels of heading. However, these tags are rarely used by Web 

authors for this purpose. Sometimes, they are even used for formatting non-heading text. 

 

We examined several Web pages (English and Turkish) in order to find out the 

characteristics that distinguish headings from non-heading text. In most of the documents, 

the headings are formed by formatting them differently from their surrounding text (e.g. 

font size, color, boldness, etc.). That is, headings usually have higher emphasis than the 

text following them in terms of formatting. For instance, the headings (1), (a), and (d) in 

Figure 1.2 are formed in this way. Also, headings usually do not end with punctuation 

marks. However, menus or links (e.g. (2) in Figure 1.2) which also do not end with 

punctuation marks should not be identified as headings. For this purpose, their content and 

surrounding text should be examined. 
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In the implementation, we took a heuristic-based approach for heading identification. 

The heuristics employed are summarized in Figure 4.4 under different categories. These 

are encoded as if-then rules in the system. The headings obtained after the application of 

the heuristics on the example document are shown underlined in Figure 4.3. 

 

 
Figure 4.4. Heuristics used for heading identification 

 

4.1.3.  Hierarchy Restructuring 

 

The aim of this step is to restructure the tree resulting from the previous steps to 

obtain a hierarchy that is closer to the actual sectional hierarchy. Since we chose to 

concentrate on headings in obtaining the hierarchy, the tree is rearranged making use of the 

heading information already discovered. In the first step (Section 4.1.1), each sentence 
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(including headings) was identified with formatting features as given in Table 4.1. The 

features may have Boolean values such as whether or not a text fragment is annotated with 

heading tags (<h1>, <h2>, etc.), integer values such as the font size, and string values 

such as the font face or CSS (Cascading Style Sheets) class. 

 

Table 4.1. Features used for identifying the format of the text 

Feature Description Data Type 
h1 <h1>, level-1 heading Boolean 
h2 <h2>, level-2 heading Boolean 
h3 <h3>, level-3 heading Boolean 
h4 <h4>, level-4 heading Boolean 
h5 <h5>, level-5 heading Boolean 
h6 <h6>, level-6 heading Boolean 
B <b>, bold Boolean 
strong <strong>, strong emphasis Boolean 
em <em>, emphasis Boolean 
A <a>, hyperlink Boolean 
U <u>, underlined Boolean 
I <i>, italic Boolean 
f_size <font size=…>, font size Integer 
f_color <font color=…>, font color String 
f_face <font face=…>, font face String 
allUpperCase all the letters of the words are in uppercase Boolean 
cssId CSS id attribute if used String 
cssClass CSS class attribute if used String 
alignment align attribute String 
li <li>, different levels of list elements Integer 

 

We use these features in differentiating between different levels of heading in the 

hierarchy. The idea is that in a semantic block of text, headings in the same level usually 

have the same features and the sectional hierarchy is achieved with distinct formatting for 

different levels of heading. In Figure 4.5, headings that correspond to two different levels 

in the hierarchy are given. 

 

The feature set in Table 4.1 is used to rearrange the hierarchy based on headings in 

different levels. The strategy we employ works bottom-up in the document tree and first 
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smaller blocks of text (deeper in the hierarchy) are restructured based on the headings. The 

algorithm to restructure a given block within the document tree is given in Figure 4.6.  

 

 
Figure 4.5. Headings corresponding to different levels in the document hierarchy 

 

 
Figure 4.6. Hierarchy restructuring algorithm 

 

According to the algorithm, given a particular node in the tree, its children are 

considered one by one. Meanwhile, the formatting features of headings and their 

corresponding levels are stored (headingFormats list). If the considered node is not a 

heading, it is appended under the last heading node encountered (textAppendPoint). If the 

node is a heading, first, it is checked whether it belongs to a heading level previously used 
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in the block. If no entry is found for that format, it is added as a new level. Then, the node 

is appended to the appropriate position in the hierarchy (headingAppendPoint). For 

example, consider block (3) in Figure 4.3. The heading “Like little…” is identified as 

belonging to the first level in that block. The sentences that follow are rearranged under 

that heading. Then, the heading “What antibiotics…” is placed to the same level as the 

former heading because it has the same features. 

 

Figure 4.7 shows the tree obtained after the application of the restructuring step on 

the tree of Figure 4.3. In this tree, the root covers the entire document. The intermediate 

nodes contain section and subsection headings and the leaves contain the underlying 

sentences. As can be seen, most of the sentences are correctly identified under the 

corresponding headings. Also, most of the headings are in correct levels. There is, 

however, an error in the level of the heading “Antibiotics and bacterial diseases” in block 

(1). It should be at a higher level than the following content. The reason for the error is that 

(1) is considered as a separate block based on DOM tree processing and thus restructured 

accordingly. 

 

 
 

Figure 4.7. Part of the document tree after restructuring 

 

4.2.  Evaluation 

 

4.2.1.  Performance Measures 

 

The accuracy of the proposed method for structural processing is evaluated according 

to two different criteria: the accuracy of heading extraction and the accuracy of hierarchy 

extraction. For this purpose, the outputs of the proposed method are compared with golden 
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standard headings and document hierarchies which are determined manually for each 

document. 

 

In order to evaluate the accuracy of heading extraction we adapted measures which 

are widely used in the field of information retrieval [19]. These are precision, recall and f-

measure. For each text unit in a document, four different results can be identified by 

comparing the results of the proposed method with the golden standard: TP (true positive), 

FP (false positive), FN (false negative), and TN (true negative) as in Table 4.2. Based on 

these values, recall (R), precision (P), and f-measure (F) values for the heading extraction 

experiment are calculated as in 4.1, 4.2 and 4.3. Here, recall is computed as the ratio of the 

number of headings correctly identified to the number of actual headings. Precision is 

calculated as the ratio of the correctly identified headings to the number of headings 

identified. F-measure is a combined measure of recall and precision. 

 

Table 4.2. Contingency table for the heading extraction experiment 

 Golden Standard 

Heading Non-heading 

Proposed Method
Heading TP FP 

Non-heading FN TN 

 

FNTP
TPR
+

≡  
(4.1)

 

FPTP
TPP
+

≡   
(4.2)

 

RP
RPF

+
××

≡
2  

(4.3)

 

 The accuracy of hierarchy extraction should be determined based on the tree structure 

of the output. We especially focus on parent-child relationships in this tree structure 

because they correspond to heading - subheading and heading - text (i.e. heading and 

underlying sentence) relationships in the document. We define the accuracy as the ratio of 
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the number of correctly identified parent-child relationships in the obtained hierarchy (as 

compared with the golden standard) over the total number of parent-child relationships. 

Formally, given a manually identified hierarchy and an automatically extracted hierarchy 

for a document i, if there exists an edge (i.e. parent-child relationship) between the node 

pair (p,c) in both of the hierarchies, we say e(p,c) = 1; otherwise, e(p,c) = 0. Given the set 

of parent-child node pairs PCi in a manually identified document hierarchy i, the hierarchy 

accuracy is computed as in 4.4. 

 

i

PCcp

PC

cpe
iAccuracyHierarchy i

∑ ∈≡ ,
),(

)(_  
(4.4)

 

4.2.2.  Experiments 

 

The structural processing algorithm was run on two different document collections 

(English Collection and Turkish Collection). The examination of the collections revealed 

that they include different levels of structured documents, ranging from flat documents to 

highly structured ones with an average sectional hierarchy depth of around four. In Figure 

4.8, the distribution of hierarchy depths in both collections are given. 
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Figure 4.8. Distribution of hierarchy depths in the document collections 

 

In order to evaluate the accuracy of the system, the hierarchy output of the algorithm 

was compared with the manually identified hierarchy as the golden standard. We also 

compared the results of the proposed system with a baseline (hierarchy formed using only 

heading tags <h1> through <h6> in HTML). In the following subsections, the results for 

English and Turkish collections are presented. 
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4.2.2.1.  English Collection. The results are given for each document set (corresponding to 

each query) in English Collection separately followed by their averages for the whole 

collection. In Table 4.3, the average number of actual headings in the documents and the 

accuracy for the heading extraction are given for the proposed system and the baseline 

method. As seen, in the proposed system, a fairly high value was obtained for heading 

recall (88%). Compared with recall, the precision obtained for heading extraction is lower 

(64%). The reason is that although most of the headings are correctly identified, some text 

fragments which are not headings are also extracted as headings. This is due to the 

cluttered organization encountered in most of the Web documents. The f-measure of the 

proposed system is calculated as 71%. In the table, the heading recall for the baseline 

method is also given, which is 43%. The precision and f-measure values for the baseline 

method could not be computed, because they were undefined in some cases where the 

baseline method failed to identify any heading correctly in a document. 

 

Table 4.3. Heading extraction results for English Collection 

Document 
Set 

Actual 
Number 

Proposed Sys. 
Recall 

Proposed Sys. 
Precision 

Proposed Sys. 
F-measure 

Baseline 
Recall 

1 6.50 0.94 0.60 0.69 0.51 
2 11.30 0.80 0.65 0.67 0.34 
3 8.20 0.91 0.56 0.66 0.68 
4 3.60 0.89 0.64 0.73 0.38 
5 9.30 0.89 0.58 0.66 0.57 
6 18.10 0.82 0.70 0.73 0.39 
7 5.40 0.84 0.59 0.67 0.27 
8 6.90 0.98 0.57 0.68 0.56 
9 12.70 0.93 0.76 0.82 0.38 
10 6.20 0.84 0.75 0.77 0.24 
Average 8.82 0.88 0.64 0.71 0.43 

 

Some statistics related to the hierarchy extraction experiment are given in Table 4.4. 

These include the average depth of document DOM trees before the processing, the 

average hierarchy depths obtained in the proposed and baseline methods and the average 

depths of the actual hierarchies. We observe that, on the average, the depth decreases from 

15.21 to 6.54, which signals a significant improvement. As mentioned previously, the 

DOM tree has a cluttered structure and contains many superfluous levels. The structural 

processing algorithm eliminates this irrelevant information and leaves the tree with only 
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the details relevant to the actual content of the document. As can be seen, the manually 

extracted hierarchies have an average depth of 4.11. Thus, the proposed method gives rise 

to hierarchies with a depth slightly larger than the actual depth. An analysis of individual 

documents explains this situation: users sometimes express the contents on the same level 

with different styles of writing, but these are identified incorrectly by the algorithm as 

belonging to different sections. On the other hand, the depth of the baseline hierarchy is 

less than that of the actual hierarchy. This is an expected result since the users usually do 

not use the heading tags for dividing the document into sections; instead this is achieved by 

changing the style in between the sections. Thus, the scarcity of heading tags in the 

documents results in smaller depths. 

 

Table 4.4. Statistics related to the hierarchy depths  

Document 
Set 

DOM 
Tree 

Proposed Sys. 
Hierarchy 

Baseline 
Hierarchy 

Actual 
Hierarchy 

1 15.80 5.50 3.40 3.70 
2 20.80 8.20 3.10 4.20 
3 12.10 7.30 3.90 4.10 
4 13.90 4.90 3.40 3.90 
5 13.20 6.10 3.70 4.00 
6 13.00 7.00 3.60 4.40 
7 19.20 6.20 3.10 3.80 
8 12.80 6.10 3.70 4.20 
9 17.50 7.10 3.30 4.00 
10 13.80 7.00 2.90 4.80 
Average 15.21 6.54 3.41 4.11 

  

 Table 4.5 shows the accuracy results for hierarchy extraction. The average accuracy 

obtained in the proposed system is 71%, whereas it is 50% in the baseline method. This 

result indicates that half of the sectional relationships in the hierarchy extracted from an 

HTML document using heading tags are wrong. A significant improvement is possible via 

a heuristics-based analysis of the document structure. 

 

In Figure 4.9, we also show the accuracies of the proposed system and the baseline 

method with respect to the percentage of documents. The figure indicates that nearly half 

of the documents have accuracy between 80% and 100% in the proposed system, while 

only about 25% of the documents achieve this rate in the baseline method. We observe that 
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for majority of the documents, acceptable accuracy rates were obtained in the proposed 

method. 

 

Table 4.5. Hierarchy accuracy results for English Collection 

Document 
Set 

Baseline 
(only h tags) 

Proposed 
System 

1 0.57 0.58 
2 0.52 0.81 
3 0.64 0.74 
4 0.40 0.66 
5 0.51 0.66 
6 0.40 0.65 
7 0.54 0.74 
8 0.55 0.69 
9 0.48 0.77 
10 0.36 0.78 
Average 0.50 0.71 
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Figure 4.9. Distribution of accuracy results in hierarchy extraction 

 

4.2.2.2.  Turkish Collection. We adapted our rule-based approach for structural processing 

to Turkish Web documents. For this purpose, we modified some of the heuristics used in 

heading extraction. These include content-related heuristics to recognize cue phrases 

commonly encountered in Turkish Web documents; e.g. “burayı tıklayın” (“click here”), 

“favorilere ekle” (“add to favorites”), etc. 

 

In Table 4.6, first, the average numbers of headings in document sets, as found in 

manual investigation, are given. Then, the performance of the automatic analysis is given 

in terms of recall, precision and f-measure. The results show 79% recall for heading 

extraction. Compared with recall, the precision obtained for heading extraction is lower 
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(57%). In the experiment, we obtained 70% average accuracy for hierarchy extraction 

(Table 4.7). 

 

Table 4.6. Heading extraction results for Turkish Collection 

Document 
Set 

Number of 
Headings Recall Precision F-measure 

1 7.60 0.81 0.56 0.64 
2 5.40 0.67 0.63 0.61 
3 5.10 0.84 0.49 0.66 
4 4.90 0.89 0.54 0.68 
5 9.20 0.89 0.68 0.73 

Average 5.40 0.79 0.57 0.65 

 

Table 4.7. Hierarchy extraction results for Turkish Collection 

Document 
Set 

DOM Tree 
Depth 

Hierarchy 
Depth 

Hierarchy 
Accuracy 

1 17.6 6.5 0.49 
2 16.2 5.0 0.61 
3 20.4 7.5 0.78 
4 18.8 5.6 0.80 
5 19.2 5.1 0.81 

Average 17.2 6.1 0.70 
 

The baseline method failed for Turkish collection because the particular <h> tags 

were not used in any of the documents. Instead, the sectional hierarchy was achieved using 

other features on the DOM tree such as format tags. In order to test whether the methods 

work on Turkish documents in general, we performed an additional analysis on documents 

of a Turkish university Web site (50 documents on boun.edu.tr domain) and obtained 71% 

accuracy using the proposed approach, which proves the robustness of the algorithm for 

Turkish Web pages. 
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5.  MACHINE LEARNING APPROACH FOR STRUCTURAL 

PROCESSING 

 

 

In the structural processing of Web documents, we first developed a rule-based 

approach for the extraction of headings and sectional hierarchies of documents in which 

we obtained acceptable results as presented in Chapter 4. However, a rule-based approach 

has also some disadvantages. It is less adaptive and less robust when compared with a 

machine learning approach. Although the heuristics employed may be suitable for most of 

the cases, they cannot model exceptions sufficiently. A machine learning approach can be 

more flexible; as an example, a classifier can combine different features to make a decision 

rather than using some predefined rules to filter headings. For this reason, we decided to 

investigate the structural processing also using machine learning techniques.  

 

The problem we consider is the extraction of all the headings in a document and the 

underlying hierarchy which is a more complex problem than extracting a single title for a 

document which was previously investigated in the literature [39]. In the hierarchical 

analysis, a structure-based learning (i.e. tree-based learning) approach is needed rather than 

the simpler case of classification. In the literature, structure-based learning approaches 

have been applied to natural language processing tasks such as syntactic parsing whose 

output is also a tree structure. In fact, the document sectional hierarchy extraction problem 

we consider is analogous to the syntactic parsing of sentences. In the former, the input to 

be parsed is a document consisting of text fragments (sentences or paragraphs), whereas in 

the latter, the input is a single sentence consisting of words.  

 

The main difficulty in developing a tree-based learning approach is the exponential 

search space encountered due to the nature of the problem. We considered several 

approaches to this problem proposed in the literature. In [70], the main approaches in 

statistical parsing are considered. One approach is nondeterministic parsing with the use of 

generative probabilistic models and dynamic programming. Such parsing techniques can 

be improved by using a discriminative model. Another approach is using discriminative 

models to search the complete space of possible parses. Finally, a different approach is 

using a greedy algorithm which makes a sequence of locally optimal choices to 
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approximate a globally optimal solution. This methodology has been emerged as an 

alternative to more complex models especially in dependency parsing. This is also the 

approach we take in this part of the thesis. 

 

In the proposed system, we aim to model the dependency relations between 

document fragments analogous to the dependency relations between word/phrase pairs in 

syntactic parsing. These include heading - underlying text and heading – subheading 

relations in the document hierarchy. Also, we use a discriminative machine learning 

approach rather than a generative approach, because it allows a large number of features as 

required by the problem we consider. To the best of our knowledge, this is a novel 

approach in the structural processing of Web documents. In order to develop such a 

machine learning approach, several issues need to be considered with respect to training 

and testing phases. These are overviewed in the following: 

(1) Training: The training phase includes design decisions with respect to the 

machine learning models, algorithms and types of features: 

(a) Machine learning models: This includes developing a representation for Web 

documents and models suitable for the learning task. A classification approach 

can be appropriate for heading extraction task; whereas a structure-based 

approach is needed for hierarchy extraction.  

(b) Machine learning algorithms: Several algorithms such as support vector 

machines (SVMs) and perceptron can be adapted for the learning task. 

(c) Types of features: This includes developing appropriate feature representations 

with respect to the document content and structure as required by heading and 

hierarchy extraction tasks. Then, the effects of using combinations of different 

types of features can be evaluated. 

(2) Testing: The performance of each method can be evaluated on a sufficiently large 

and representative test set using cross validation. 

 

The rest of this chapter is organized as follows. We present the proposed machine 

learning models and feature sets in sections 5.1 and 5.2, respectively. These are followed 

by the incremental learning approach in Section 5.3 and variations of the testing approach 

in Section 5.4. Finally, we present the implementation (Section 5.5) and evaluation details 

(Section 5.6). 
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5.1.  Machine Learning Models 

 

In the proposed system, we model a Web document as a sequence of text units based 

on the order in the HTML source of the document. This is analogous to sentence parsing 

where each sentence is modeled as a sequence of words. We define a text unit ui in the 

document as a text fragment delimited by a newline (i.e. paragraph) as illustrated by 

rectangles in Figure 5.1. We developed two main machine learning models: heading 

extraction model and hierarchy extraction model. These are detailed in the following 

subsections. 

 

 

Figure 5.1. Part of an example HTML document 

 

5.1.1.  Heading Extraction Model 

 

In the heading extraction model, the Web document is considered as a flat sequence 

of text units and binary classification is performed. The training examples include (ui, yi) 

pairs for i = 1…t where ui correspond to a text unit and yi to its label. The label denotes 

whether the text unit is a heading or not. In Figure 5.2, the representation of an example 

document (consisting of n units) in the heading extraction model is given where xij for j = 
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1…k correspond to the features of a unit ui. Then, the task is to learn the classification 

model in order to distinguish positive instances (headings) from negative instances (non-

headings). 

 

 u1: x11 x12 x13 …..…………... x1k  y1 (heading) 

 u2: x21 x22 x23 …………….… x2k  y2 (heading) 

 u3: x31 x32 x33 ……………..…x3k  y3 (non-heading) 

 … …     … 

 … …     … 

 … …     … 

 un-1: x(n-1)1 x(n-1)2 x(n-1)3 …..… x(n-1)k  yn-1 (heading) 

 un: xn1 xn2 xn3 …..…………… xnk  yn (non-heading) 

Figure 5.2. Representation of an example document in heading extraction model 

 

5.1.2.  Hierarchy Extraction Model 

 

In hierarchy extraction, the general problem of learning a mapping from inputs 

Xx∈  to outputs Yy∈  is considered. In the case of syntactic parsing, X is a set of 

sentences and Y is a set of possible parse trees [27]. Analogously, in the structural analysis 

of Web documents, we define X as a set of documents and Y as a set of possible sectional 

hierarchies of documents using the following framework: 

- Training examples (xi, yi) for i = 1…n 

- A function GEN(x) which enumerates a set of possible outputs for an input x 

- A representation Φ mapping each ( ) YXyx ii ×∈,  to a feature vector Φ(xi, yi) 

- A parameter vector α 

 

In the proposed system, the training set includes (xi, yi) pairs where xi is a Web 

document and yi is the golden standard tree corresponding to the document sectional 

hierarchy. In Figure 5.3, part of the sectional hierarchy for the example document in Figure 

5.1 is given. 
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Figure 5.3. Part of the sectional hierarchy for an example document 

 

In this framework, the learning task is to estimate the parameter vector α using the 

training examples as evidence. The parameter vector α is estimated such that it will give 

the highest scores to correct outputs as in 5.1. 

 

F(x) = arg α⋅Φ
∈

),(max
)(

yx
xGENy

 (5.1)

 

In document sectional hierarchy extraction, we work on trees (i.e. document 

sectional hierarchies) analogous to parse trees in syntactic parsing. In general, the main 

difficulty in developing a tree-based learning approach is the exponential search space 

encountered during the solution of the problem. That is, the set of candidate outputs for an 

input x, enumerated by GEN(x), can grow exponentially with the size of x, making the 

brute force enumeration of the set members intractable. One solution to this problem is to 

use a heuristic method, such as beam search, to reduce the search space. Such an approach 

has previously been successfully applied to other tasks in the literature, such as syntactic 

parsing and generating a table-of-contents for a general document [27, 28]. In this 

approach, the output tree is incrementally built by making a sequence of locally optimal 

choices in order to approximate a globally optimal solution, which is also the approach we 

take. 
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5.2.  Features 

 

We define the types of features used in the proposed machine learning models 

according to different levels of a document. The first one includes the features 

corresponding to the smallest unit (i.e. text unit) in a document. This is followed by the 

features based on the context of a unit; i.e. the neighboring units. Finally, global features 

are defined considering the document as a whole. 

 

5.2.1.  Unit Features 

 

A text unit (delimited with a newline) is the smallest unit in our machine learning 

models and is associated with a set of features. We determine text units automatically 

using certain tags which are used to specify paragraphs in HTML, such as <br> and <p>. 

A text unit may correspond to one or more nodes in the HTML Document Object Model 

(DOM) tree because different parts of a text unit may be enclosed in different HTML tags. 

For example, a paragraph may contain one or more bold words, i.e. enclosed in <b> tags, 

whereas it may not be bold in the remaining parts. As a design decision, the formatting 

features used at the beginning of a text unit may be used for that unit. 

 

In most of the Web documents, Cascading Style Sheets (CSS) rules are used to 

define the presentation of document contents. We use Cobra HTML Renderer and Parser 

which supports parsing of the DOM tree and CSS information [65]. After the parsing 

process, text units in the HTML document are automatically identified and associated with 

features. The unit features include formatting features, DOM tree features, content features 

and other types of features as outlined in the following subsections. 

 

5.2.1.1.  Formatting Features. These features are mostly based on HTML tags and 

attributes used for formatting the text unit, such as font size, boldness, color, etc. (Table 

5.1). The features are similar to the formatting features used in the rule-based approach.  

However, we use the formatting information obtained after CSS information is 

incorporated. Therefore, we do not define additional features for CSS. The features have 

Boolean, integer or string values. The letter case information may have three different 

values: All letters in upper case (e.g. “RELATED WORK”), initial letters in uppercase 
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(e.g. “Related Work”) and other (e.g. “Related work”). Finally, an emphasis score may be 

defined for a unit based on its formatting differences with a given unit. 

 

Table 5.1. Formatting features of a text unit 

Feature Description Data Type 
h1 <h1>, level-1 heading Boolean 
h2 <h2>, level-2 heading Boolean 
h3 <h3>, level-3 heading Boolean 
h4 <h4>, level-4 heading Boolean 
h5 <h5>, level-5 heading Boolean 
h6 <h6>, level-6 heading Boolean 
B <b>, bold Boolean 
strong <strong>, strong emphasis Boolean 
em <em>, emphasis Boolean 
A <a>, hyperlink Boolean 
U <u>, underlined Boolean 
I <i>, italic Boolean 
f_size <font size=…>, font size Integer 
f_color <font color=…>, font color String 
f_face <font face=…>, font face String 
b_color Background color of the text unit String 
li <li>, different levels in a list Integer 
lettercase Letter case used in the text unit Integer 

 

5.2.1.2.  DOM Tree Features. These features are related to the DOM tree parse of the 

document. Although the DOM tree is mostly concerned with the presentation of a 

document, it can also contain valuable information about the structural organization of the 

document. In most of the HTML documents, the organization is achieved by using nested 

tables (<table>) and divisions (<div>). 

 

We can use the DOM address of a unit in order to incorporate structural information 

[40]. For this purpose, starting from <html> node (i.e. the root), the children of each node 

are numbered consecutively starting from 0 (see Figure 5.4). Then, the DOM address of a 

unit may be determined by following the path from the root node to the leaves covering the 

unit. For example, the unit with the text content “Introduction” in the figure has the DOM 
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address “0.1.0.0.0.1.0”. The DOM path of a unit (e.g. “html.body.div.table.tr.td.b”) can 

also be used as another feature. An alternative feature is the position of a text unit within 

the innermost table or division according to the DOM tree. This information may be 

especially useful in heading extraction because headings are often found at the first 

position within a table or division. 

 
Figure 5.4. Illustration of DOM addresses on an example DOM tree 

 

5.2.1.3.  Content Features. These features are related to the textual content of a unit, such 

as features to specify whether a unit contains certain cue words or phrases (e.g. “back to 

top”, “login”, etc.). Other content related features include the number of characters in the 

text unit (e.g. 0-50, 51-100, >100), the number of sentences the text unit contains, and the 

punctuation mark at the end of the text unit (‘.’, ‘,’, ‘;’, ‘:’, ‘!’, no punctuation mark, etc.). 

Such features are especially important in the heading extraction task; in general, headings 

are limited in length, consist of no more than one sentence and contain no punctuation 

marks at the end. Content features may have binary and integer values. 

 

5.2.1.4.  Other Features. Several other features may be defined for a text unit. Some of 

these are related to the visual position of the unit in a rendered Web document; i.e., as it is 

displayed in a browser (see Figure 5.5). For this purpose, the x and y coordinates of the text 
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units are computed using the Cobra HTML Parser and Renderer. This information may be 

useful both for heading and hierarchy extraction tasks and can be incorporated to the 

machine learning models as the visual position difference between two given units in the 

document. Other features include a feature designating whether a unit is the document root 

or not, and the usage of a horizontal line (<hr> tag in HTML) in a portion of the document 

to separate content. 

 

Figure 5.5. Visual coordinates of a text unit in a rendered Web document 

 

5.2.2.  Contextual Features 

 

In the proposed machine learning models, the contextual information of a text unit is 

utilized based on the ordering of units in a document and the document sectional hierarchy. 

In heading extraction, the context of a unit is investigated based on the preceding and 

succeeding units in the document. In order to incorporate hierarchical information, the 

context of a unit in the tree corresponding to the document sectional hierarchy is 

considered. In Figure 5.6, the potential attachment of a unit u, to the unit u10 in a partial 

tree is given. We use uij to denote the unit i levels above a unit u, and j units to its left 

similar to a syntactic parsing study [27]. For example, u10 denotes the parent unit of the 

unit u, u20 denotes the grandparent unit, and u01 denotes the preceding sibling unit. 

 

We define composite features of two units u and uij as Fij in order to incorporate the 

contextual information into the machine learning models. For this purpose, we mainly 

utilize the difference and distance of two units in context because it can provide useful 

Text Unit 1

Text Unit 2

(0,0) 
x

y 
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information in determining the headings and the sectional hierarchy. Intuitively, a heading 

unit (i.e. parent unit) is usually more emphasized than the underlying text unit or 

subheadings in terms of formatting. Similarly, units under the same heading, i.e. sibling 

units, generally have similar formatting features. 

 

 

Figure 5.6. Contextual information in document sectional hierarchy 

 

Composite features of two units are defined for formatting, DOM tree and visual 

features in our system. For binary and integer formatting features, these are defined as the 

difference of the corresponding values. For example, to determine the composite value of 

h1 feature for two units m and n, we calculate m.h1-n.h1. If h1 value of m is 1 and h1 value 

of n is 0, their difference is 1. Similarly, if m has a font size 12 and n has font size 14, their 

difference can be calculated as -2. 

 

In calculating the composite feature for the DOM addresses of two units, we consider 

the similarity of their addresses starting from the root of the DOM tree. In Figure 5.7, some 

units of an example document (based on the order of their appearance in the document) are 

given together with their DOM addresses. The units that are headings are shown as bold. 

As previously noted in Chapter 4, semantically related parts in a document show spatial 

locality in the DOM tree. As a result, related parts usually have similar DOM addresses. 

We define the composite DOM address feature for two units as the length of the path 

common to their DOM addresses starting from the root. This value can be normalized by 

dividing it to the depth of the overall DOM tree for that document in order to overcome 

DOM path length differences across different documents. In Figure 5.7, the length of 

common paths for given unit pairs from Figure 5.8 are computed. As seen, the DOM 
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address of a section heading is more similar to the DOM address of the following content 

compared to a unit in another section. 

 

Text Unit:        DOM tree address: 

…      … 

“Medline”      0.20.1.0.3.1.3.0.3.3.1.1.1.1.3.3.3.1.1.0.0 

“Congress Resource Centre”    0.20.1.0.3.1.3.0.3.3.1.1.1.1.3.3.5.1.1.0.0 

“EXPLORE :”    0.20.1.0.3.1.9.1.1.0.2.0.0 

Most Read News     0.20.1.0.3.1.9.1.1.0.2.5.1.0.0 

All News      0.20.1.0.3.1.9.1.1.0.2.5.5.1.1.0 

…      … 

“Osteoporosis”     0.20.1.1.16.1.0 

“The latest medical news and…”  0.20.1.1.18.1.1.1.0.0 

“Medical News and Alerts”   0.20.1.1.18.1.1.6.1.3.0.0.0 

…      … 
 

Figure 5.7. DOM addresses of text units in an example document 

 

Example 1: 
“EXPLORE :”     0.20.1.0.3.1.9.1.1.0.2.0.0 
“Most Read News”     0.20.1.0.3.1.9.1.1.0.2.5.1.0.0 

Common path length:11 
 
Example 2: 
 “EXPLORE :”    0.20.1.0.3.1.9.1.1.0.2.0.0 
 “Osteoporosis”     0.20.1.1.16.1.0 

Common path length: 3 
 

Figure 5.8. Calculation of DOM address similarity 

 

We define composite features for visual positions of two units m and n by 

considering the visual x and y coordinate differences between the units. The difference of x 

coordinates and the difference of y coordinates can be considered separately as positive, 

negative or zero. As an example, if the difference of y coordinates is positive, this means 

that m comes below n in the visual display of the Web document; therefore, m cannot be a 

heading of n. The difference of x and y coordinates can also be compared to a threshold 
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value. As an example, if the visual y position difference between two consecutive units m 

and n is very large, n cannot be a heading of m. 

 

5.2.3.  Global Features 

 

In addition to the features of a single unit and the contextual features, we can also 

define global features by considering the document or the document sectional hierarchy as 

a whole. These features may be incorporated to the process of building the document 

sectional hierarchy. One such feature we use is the depth of the document sectional 

hierarchy at a given step in training or testing. 

 

5.3.  The Incremental Learning Approach 

 

In document sectional hierarchy extraction, we take an incremental approach based 

on one or more machine learning models. In Figure 5.9, part of a graph representing the 

sectional hierarchy of a Web document is given. In the graph, the root node is a dummy 

node covering the whole document and each of the other nodes corresponds to a text unit 

in the document. The nodes are arranged from left to right according to their order of 

appearance in the document. The actual dependency relations between node pairs (i.e., 

parent-child relationships like heading-underlying text or heading-subheading) are shown 

as regular lines. These correspond to positive examples for the learning process. The 

negative examples are the potential dependency relations which are not realized in the 

golden standard hierarchy (e.g. the dashed lines in Figure 5.9). 

 

The main training algorithm for constructing the document sectional hierarchy is 

given in Figure 5.10. The input to the algorithm is the training set consisting of Web 

documents and corresponding golden standard hierarchies. For each document in the 

training set, the algorithm works on the units one by one starting from the first unit, and 

considers the attachment of a unit to its parent unit as a positive example and other 

potential attachments of the unit as negative examples. In this process, two constraints due 

to the document flow are applied. First, a unit cannot be attached to a heading unit coming 

after it in the document order. Second, the connections cannot cross each other according 

to the projectivity rule as in dependency parsing [71]. The projectivity rule states that if a 
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unit uj depends on the unit uj-k, (i.e., uj-k is the parent of uj), then all the units between uj-k 

and uj must also be descendants of uj-k in the hierarchy. This rule can be implemented as in 

the following definition (lines 5-11 in Figure 5.10): 

Projectivity: “When searching for the parent of a unit uj, consider only the previous 

unit (uj-1), the parent of uj-1, that unit’s parent, and so on to the root of the tree. 

 

 

Figure 5.9. Part of an example document graph 

  

Algorithm Train_Hierarchy_Extraction_Model 
Input 
      Training set (xi, yi) 
begin 
1:   for each document xi in the training set 
2:         for each unit uj in xi    
3:                p = parent(uj) 
4:               Set (p, uj) as positive_example 
5:               prev = uj-1 
6:               while (prev != null) 
7:                     if (prev != p) 
8:                           Set (prev, uj) as negative_example 
9:                     end if 
10:                   prev = parent(prev) 
11:             end while 
12:       end for  
13: end for 
14: Build machine learning model 
End 

Figure 5.10. The training algorithm for document sectional hierarchy extraction 
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5.4.  Variations of the Testing Approach 

 

In document sectional hierarchy extraction, the testing phase includes incrementally 

building the hierarchy for a previously unseen document. The document is automatically 

decomposed into text units each of which is associated with features. The testing algorithm 

operates on each text unit sequentially based on the order in the document; at each step, 

alternative partial solutions (trees) are generated. We take the approach of maintaining 

only the most likely partially generated solutions at each step using the heuristic approach 

of beam search. Beam search algorithm is based on breadth-first search. At each level, all 

successors of the states in the current level are generated; however, only a predetermined 

number of states are stored which is called the beam width. For this purpose, we maintain a 

set of partial analyses (i.e. partial trees) of the given document. The set is initially empty 

and is updated at each step of the algorithm. 

 

We adapt two operations similar to the previous work in syntactic parsing [27, 28]: 

ADV (i.e. advance) and FILTER. Whenever the next text unit in the document is 

processed, the ADV operation is applied. The potential attachments of the current unit to 

the partial trees are considered and the set is updated to include new partial trees. In Figure 

5.11, potential attachments of a unit (u9) to an example partial tree are shown with dashed 

lines. During this process, restrictions on the search space due to the document flow are 

also applied (direction of attachments and projection principle). To prevent the exponential 

growth of the set of partial trees, the FILTER operation is introduced. For this purpose, the 

score for each partial tree is computed using the machine learning models and the partial 

trees with lower scores are eliminated. We take the approach of maintaining only the top k 

(i.e. beam width) highest scored partially generated trees at each step. 

 

In order to improve the accuracy of hierarchy extraction, we also utilize the output of 

heading extraction. For this purpose, we define a preprocessing step to the incremental 

approach which is based on the idea that a heading unit is always immediately followed by 

a child unit in the hierarchy. That is, by definition, a heading in a document has always at 

least one text unit (heading or non-heading) as the underlying content immediately 

following it. We use the binary classification model in Section 5.1.1 to determine the 

heading units in a given document. Based on the output of the heading extraction model, if 
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a unit uj is a heading, we attach uj+1 to uj. In Figure 5.12, the output of the preprocessing 

step is shown on the units of an example document. The heading units are shown with bold 

circles in the figure. Assuming that the heading units are correctly identified, each heading 

unit is connected with its immediately following unit in the preprocessing. 

 

 

Figure 5.11. Potential attachments of a unit to an example partial tree  

 

 

Figure 5.12. Preprocessing for heading units 

 

The main algorithm to build the sectional hierarchies for previously unseen 

documents (i.e., the test set) is given in Figure 5.13. The algorithm works on each unit of a 

document sequentially. The first unit of the document is attached to the document root. 

This corresponds to the initial tree stored in the set of partial trees (PartialTrees). The 

potential attachments of a unit are considered if the unit was not already attached in the 

preprocessing step (lines 8-14 in Figure 5.13). Another restriction used in the algorithm is 
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to allow a unit to attach only to a heading unit. In this way, the potential attachments of a 

unit to a non-heading unit are eliminated. 

 

Algorithm Test_Hierarchy_Extraction_Model 
Input 
      Test set (xi, yi) 
      k: beam width 
begin 
1:  for each document xi in the test set 
2:        PartialTrees = {} 
3:        Attach u1 to document_root, add the tree to PartialTrees 
4:        for each unit uj in xi  (j = 2 to n) 
5:              if unit uj not already attached in preprocessing 
6:                    for each tree T in PartialTrees 
7:                          Remove T from PartialTrees 
8:                          prev = uj-1       
9:                          while prev != null 
10:                              if prev is a heading 
11:                                    Attach uj to prev, add the tree to PartialTrees (ADV) 
12:                                    prev = parent(prev) 
13:                              end if 
14:                        end while 
15:                  end for 
16:                  Run hierarchy extraction model on all alternative attachments 
17:                  Keep only top k highest scored trees in PartialTrees (FILTER) 
18:            end if 
19:      end for 
20: end for 
end 

Figure 5.13. The testing algorithm for hierarchy extraction 

 

We developed several modifications to the main testing algorithm to investigate their 

effect on the accuracy of sectional hierarchy extraction. These are detailed in the 

following: 

• Modification 1: Instead of using the score obtained from the machine learning 

model for hierarchy extraction directly, it is possible to convert it into a probability 

value. The conversion of a machine learning model output (e.g. Support Vector 

Machines) into a probability value has been investigated in previous studies [72, 73]. 

In this conversion, a sigmoid function can be used (see 5.1). The sigmoid function 

parameters A and B can be estimated using an iterative method [72]. Alternatively, 

the sigmoid function can be used with fixed parameters; e.g. A=-2, B=0 [73], which 
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is also the approach we take. Given a sequence of units in a document as u1 to un, we 

define the sequence of parent-child dependencies as parent(1) to parent(n) where 

parent(i) = j means that the unit j is the parent of unit i in document sectional 

hierarchy. We make a simplifying assumption that the probabilities of such 

dependencies are mutually independent in a document; i.e., the attachment of unit i 

to unit j is independent from the other attachments in the hierarchy. Then, the 

probability of building a document hierarchy with n units can be defined using the 

multiplication rule of probability for independent events as in 5.2. 

 

f(x) = 1 / (1 + exp (Ax + B)) (5.1)

 

∏
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The application of the algorithms M0 (the main testing algorithm in Figure 5.13) and 

M1 (Modification 1) on an example document for units i=5 and i=7 are illustrated in 

Figure 5.14 and Figure 5.15, respectively. The dashed lines in the figures show the 

alternative partial trees obtained in those steps together with the scores obtained in 

the alternative methods. In M0, at each step, the scores output by the machine 

learning algorithm are directly used. In M1, the scores output by the algorithm are 

converted to probabilities. Then, the probabilities at each step are multiplied to form 

the current score. 

 

• Modification 2: An alternative implementation is to run the testing algorithm in 

two levels. In the first level the algorithm is applied on only heading units; i.e. only 

heading units are connected in order to obtain the overall heading hierarchy of the 

document. Then, in the second level, the algorithm continues with the output of the 

first level and non-heading units are attached to the correct positions in the hierarchy. 

 

• Modification 3: In this implementation, integer ranks are used instead of using the 

scores output by the machine learning models directly. The partial trees are given 

ranks starting from “1” which is given to the best scored tree(s). During the filtering, 
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the times a partial tree has obtained rank “1” are summed to obtain its score. The 

trees with higher scores are favored. 

 

• Modification 4: The partial trees are given integer ranks similar to Modification 3. 

Then, the ranks at each step are summed to determine the score of a given partial 

tree. The trees with smaller scores are favored. 

 

 

Figure 5.14. Alternative partial trees at i = 5 
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Figure 5.15. Alternative partial trees at i = 7 
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5.5.  Implementation 

 

The proposed machine learning approaches have been implemented as a standalone 

application in Java. The program runs on each document in the collection and 

automatically identifies the text units and their features by utilizing Cobra HTML Parser 

and Renderer. The units of each document are stored automatically in MS Excel files 

separately for each document to allow manual annotation of document sectional 

hierarchies (see Figure 5.16). 

 

 
Figure 5.16. The internal representation of a document in implementation 

 

Each unit in a document is associated with a unique identification number (ID) based 

on its order of appearance in the document. The document root contains the main title of 

the document as enclosed in <title> tags in HTML, and its ID is 0. For each unit, the ID of 

its parent unit (ParentID) is also stored to keep track of the hierarchical structure (i.e. tree). 

In golden standard hierarchies, the parent IDs are manually annotated based on the original 

document. In the testing process, the parent IDs are determined automatically based on the 

machine learning models. Figure 5.16 also shows a part of the features associated with 

each unit and the corresponding values. The training and testing data for heading and 

hierarchy extraction models are obtained by utilizing this hierarchical information and 

features. 
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The proposed heading and hierarchy extraction models were implemented using two 

different machine learning algorithms: support vector machines and perceptron. In the 

following, the algorithms and their usage are overviewed. 

 

5.5.1.  Support Vector Machines-Based Approach 

 

Support vector machines (SVMs) are machine learning methods commonly used in 

classification. In this approach, given two classes C1 and C2 and a training set X = {xt, rt} 

where rt is +1 if xt  C1 and rt is -1 if xt  C2, the aim is to find w and w0 such that the 

conditions in 5.3 and 5.4 are satisfied [74]. These two conditions can be rewritten as in 5.5. 

The aim is to separate the instances in two classes using a hyperplane and to have them 

with some distance away from each other. The distance from the hyperplane to the closest 

instances on either side of it is called the margin. The optimal separating hyperplane is 

defined as the hyperplane maximizing the margin. 

 

wT xt + w0 ≥ +1 for rt = +1 (5.3)

 

wT xt + w0 ≤ -1 for rt = -1 (5.4)

 

rt (wT xt + w0) ≥ +1 (5.5)

 

The distance of xt to the hyperplane can be written as in 5.6. To maximize the 

margin, ||w|| is minimized by solving the optimization problem in 5.7. This problem can be 

rewritten in dual form using Lagrange multipliers αt as in 5.8. The set of xt whose αt > 0 

are support vectors. The obtained discriminant function is called the support vector 

machine (SVM). During testing, g(x) = wT x + w0 is calculated. If g(x) > 0, C1 is chosen; 

otherwise, C2 is chosen. 

 

rt (wT xt + w0) / ||w|| (5.6)

 

Minimize 
2
1 ||w||2 subject to rt (wT xt + w0) ≥ +1, t∀  (5.7)
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Maximize - ∑∑
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t
∑α  subject to t

t

t r∑α = 0 and 0≥tα , t∀  (5.8)

 

If the training data are not linearly separable, a solution with the least error can be 

calculated (soft margin hyperplane). In the case of nonlinear problems, it is also possible to 

map the problem to a new space by a nonlinear transformation using appropriate functions 

(kernel functions) and then use a linear model in this new space. Commonly used kernel 

functions include polynomials of degree d (see 5.9) and radial basis functions where σ 

defines the radius (see 5.10). 

 

K(xt, x) = (xT xt + 1)d (5.9)

 

K(xt, x) = exp(- ||xt – x||2 / σ2) (5.10)

 

In the implementation, we utilized SVM-light support vector machine 

implementation [75]. It supports classification, regression, preference ranking, and several 

kernel functions including linear, polynomial and radial basis functions. In heading 

extraction, SVM classification is performed. In hierarchy extraction, positive and negative 

examples for the learning process are created based on the incremental approach. 

 

5.5.2.  Perceptron-Based Approach 

 

Perceptron is a type of artificial neural network. It performs classification by 

mapping an input x to an output y, basically as a weighted sum as in 5.11 [74]. The weights 

wj are called connection weights associated with each dimension of the input (xj for j = 

1…d), and w0 is used to make the model more general as a bias value. In this way, the 

perceptron defines a hyperplane to divide the input space into two: positive and negative 

examples. In training the perceptron, generally online learning is used where the training 

instances are given one by one and the parameters are updated after each instance. Initially, 

it starts with random initial weights and adapts itself slowly. 

 

y = 0
1

wxw j

d

j
j +∑

=
 (5.11)
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In general, the update rule of perceptron has the form in 5.12 [74]. At any step, if the 

actual output is equal to the desired output, no update is performed. If they are different, 

the magnitude of the update is proportional to the difference between the desired output 

and the actual output. The magnitude of the update also depends on the learning factor. If 

the learning factor is large, the updates depend much on recent instances; i.e., as if the 

system has short memory. 

 

Update = LearningFactor · (DesiredOutput – ActualOutput) · Input (5.12)

 

In heading extraction, we implemented a perceptron-based classifier. For hierarchy 

extraction, we developed an incremental approach based on perceptron. In Figure 5.17, a 

variant of the perceptron-based training algorithm used in the hierarchy extraction task is 

given. In the algorithm, the weight vector α is updated if the highest scored tree is not the 

golden standard parse at the end of the processing of a document (lines 9-12 in Figure 

5.17). The learning may be performed over several iterations. The average of the weight 

vectors obtained during the iterations may be used in the testing phase. 

 

Algorithm Train_Perceptron_Based_Hierarchy_Extraction_Model 
Input 
      Training set (xi, yi) 
begin 
1:  Initialize weight vector α to 0 
2:  for each learning iteration t 
3:        for each document xi in the training set 
4:              PartialTrees = {} 
5:              Attach u1 to document_root, add the tree to PartialTrees 
6:              for each unit uj in xi  (j = 2 to n) 
7:                     FILTER(ADV(PartialTrees)) 
8:              end for 
9:              Calculate zi = arg ),(max

)(
zxixGENz i

Φ
∈

· α  

10:            if (zi != yi) 
11:                  α = α + LearningFactor · ( ),( ii yxΦ - ),( ii zxΦ ) 
12:            end if 
13:      end for 
14: end for 
end 

Figure 5.17. The perceptron-based training algorithm 
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Other variants of the perceptron-based algorithm may also be defined. As a variant, 

the update may be performed earlier (early update as in [27]), if the set of partial trees no 

longer contains the golden standard partial tree during the processing of a document. Then, 

the set may be updated to include only the golden standard partial parse. As another 

variant, the weight vector may be updated after the processing of each document unit 

rather than at the end of the processing of a document.  

 

5.6.  Evaluation 

 

5.6.1.  Corpus 

 

For the experiments, we used the Extended English Collection presented in Chapter 3 

which contains a total of 500 documents. We used a specification for manually annotating 

the headings in the documents (Figure 5.18). Document sectional hierarchies were 

manually marked based on the identified headings and the document organization. The 

agreement between two different annotators was measured as 70%. 

 

1. Number 
• In addition to the main document title (enclosed in <title> tags), 

an HTML document may have zero or more section headings. 
 
2. Form 

• A section heading consists of one line and is separated from the 
surrounding text with one or more line breaks. 

• Section headings are more emphasized than the surrounding text 
in terms of formatting (e.g. font family, font weight, font color, 
font style, alignment, and background color). 

 
3. Content 

• Section headings cannot be too long. 
• Section headings mostly do not end with punctuation marks. 

Sometimes they end with a punctuation mark such as ”:”. 
 
4. Other 

• Text contents in images are not considered. 

Figure 5.18. The specification for manual annotation 

 

Some statistics for the document collection are given in Table 5.2. The average sizes 

of documents are given as the number of text units (i.e. paragraphs separated by line 
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breaks) in the documents. As seen, on the average, a Web document contains about 110 

text units. The average depth of document sectional hierarchies and the average number of 

headings in the documents were determined based on manual marking. The statistics show 

that the Web documents have an average sectional hierarchy depth of about four and they 

contain around 10 headings on the average. 

 

Table 5.2. Statistics for the document collection 

Number of documents 500 
Avg. number of text units 110.7 

Avg. hierarchy depth 4.1 
Avg. number of headings 10.6 

 

5.6.2.  Experiments 

 

In the experiments, the output of heading and hierarchy extraction models were 

compared against golden standard headings and hierarchies in order to determine the 

performance of the proposed system. The performance measures defined in Chapter 4 were 

used which include recall, precision and f-measure for heading extraction, and accuracy for 

hierarchy extraction. The experiments were also performed for our previously developed 

rule-based approach. For this purpose, the sentence-based approach developed in Chapter 4 

was converted to a paragraph-based implementation. Different from Chapter 4, the 

document sectional hierarchies were created based on all the units in a document. In the 

previous approach, the secondary parts such as menus were not considered in this process. 

 

All the experiments were performed using cross-validation. Generally, in K-fold 

cross-validation, the dataset is divided randomly into K parts with equal sizes [74]. Then, 

one of the K parts is kept as the validation set and the remaining K-1 parts are used as the 

training set. This process is repeated K times; each time for a different one of the K parts. 

One advantage of this method is that all observations are used for training and validation, 

and each observation is used for validation exactly once. In the experiments, we performed 

5-fold cross-validation. We divided the test collection randomly into K=5 different parts 

with the restriction that all the parts contain an equal proportion of documents for each 
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query in the set. The tests were performed on five rounds and the averages of the results 

were taken. 

 

5.6.2.1.  Heading Extraction. We used the binary classification model described in Section 

5.1.1 in order to classify text units as heading or not. In this model, the document is 

considered as a flat sequence of text units. The intuitive idea is that, heading and non-

heading units can be determined based on their context. For this purpose, we define 

features considering the units that immediately follow and precede the current unit. We 

used five different feature sets (see Table 5.3). These include different combinations of 

features; i.e., features of the current unit (Fn), composite features of the current unit with 

immediately following two units (Fn(n+1), Fn(n+2)) and immediately preceding two units 

(Fn(n-1), F n(n-2)). The number of features in each case is also shown in the table. 

Table 5.3. Feature sets used in heading extraction 

Feature Set Features Number of 

Features 

Φ1 Fn, Fn(n+1) 58 
Φ2 Fn, Fn(n+1), Fn(n-1) 86 
Φ3 Fn, Fn(n+1), Fn(n+2) 82 
Φ4 Fn, Fn(n+1), Fn(n+2), Fn(n-1) 110 
Φ5 Fn, Fn(n+1), Fn(n+2), Fn(n-1), Fn(n-2) 134 

 

We evaluated the performance of heading extraction using support vector machines 

and perceptron with different feature sets. In the support vector machine case, we also 

experimented with different cost factors. The cost factor adjusts the cost of training errors 

on positive examples (false positives) versus the cost of errors on negative examples (false 

negatives). In this way, it is possible to achieve different levels of precision and recall. The 

cost factor becomes especially important when there is an imbalance in the number of 

positive and negative examples in a training set. In heading extraction task, the number of 

negative examples (non-heading text units) is much larger than positive examples (i.e. 

headings) resulting in relatively low recall rates. To overcome this problem, a cost factor 

greater than 1 may be used. In the experiments, we obtained accurate results when a cost 

factor of 2 was used. We also experimented with different kernel types: linear, polynomial 
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and radial basis function (RBF). In polynomial kernel, we used power 2 (i.e., d=2) because 

it provides accurate results.  

 

Table 5.4 shows the precision, recall and f-measure obtained for heading extraction. 

The best results for SVM were obtained for polynomial and RBF kernels. The most 

accurate results were obtained for the feature set Φ5 where all the mentioned features were 

included. The effect of different feature sets is less obvious for linear SVM. In the case of 

perceptron, the increased use of contextual information in features generally improved f-

measure rates. In Table 5.5, the most accurate results obtained in SVM and perceptron 

algorithms are given together with the results of the rule-based approach. The results show 

that machine learning approaches provide dramatic increase in the accuracy of heading 

extraction compared to the rule-based approach. The improvements become especially 

noticeable with the use of a nonlinear technique (i.e. polynomial kernel) in SVM. 

Table 5.4. Performance results of machine learning methods in heading extraction 

Method Feature 
Set 

Recall Precision F-measure

SVM – Linear Φ1 0.85 0.78 0.81 
Φ2 0.83 0.78 0.80 
Φ3 0.81 0.77 0.79 
Φ4 0.83 0.78 0.80 
Φ5 0.83 0.78 0.80 

SVM – Polynomial Φ1 0.87 0.80 0.83 
Φ2 0.85 0.80 0.82 
Φ3 0.87 0.82 0.84 
Φ4 0.85 0.80 0.82 
Φ5 0.87 0.84 0.85 

SVM – RBF Φ1 0.84 0.76 0.80 
Φ2 0.84 0.79 0.81 
Φ3 0.87 0.81 0.84 
Φ4 0.88 0.83 0.85 
Φ5 0.87 0.83 0.85 

Perceptron Φ1 0.71 0.77 0.74 
Φ2 0.70 0.78 0.74 
Φ3 0.71 0.84 0.77 
Φ4 0.78 0.82 0.80 
Φ5 0.77 0.81 0.79 
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In the literature, machine learning techniques (such as SVM) have been applied to 

the extraction of the main title (i.e. a single heading) from HTML documents where a 

maximum f-measure of 0.80 was obtained [39]. Compared with that study, the investigated 

problem, i.e. extracting all the headings in a given HTML document, is a more general and 

challenging problem where we obtained an f-measure of 0.85. 

Table 5.5. Overview of performance results in heading extraction 

Method Recall Precision F-measure 
SVM  0.87 0.84 0.85 
Perceptron 0.78 0.82 0.80 
Rule-based Approach 0.72 0.64 0.68 

 

5.6.2.2.  Hierarchy Extraction. The second model we evaluated is the tree-based learning 

approach for sectional hierarchy extraction. In hierarchy extraction, contextual features are 

defined based on the document sectional hierarchy. Whenever a new unit is added to the 

partial hierarchy in the incremental learning approach, the features of the units in its 

context are considered. We experimented with different feature sets including the 

composite features of the current unit with its candidate parent unit (F10), candidate sibling 

units (F01, F20) and candidate grandparent unit (F02) as given in Table 5.6. Based on the 

initial experimental results, we decided to use only features related to the distance and 

difference between two text units (i.e. relative features such as the font size difference) and 

eliminated the features with absolute values, such as the font size of the current unit. 

 

Table 5.6: Feature sets used in hierarchy extraction 

Feature Set Features Number of Features 
Φ1 F10 17 
Φ2 F10, F01 40 
Φ3 F10, F01, F20 57 
Φ4 F10, F01, F20, F02 73 

 

We investigated the effect of using heading information in the task of hierarchy 

extraction. The basic idea is that a heading is always the parent for the immediately 

following unit. Based on the output of the heading extraction model, each heading is 
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connected with its immediately following unit (preprocessing step). The initial experiments 

showed that the use of such information improves the accuracy. Therefore, we utilized 

heading information in the following experiments. In all the experiments, SVM with 

polynomial kernel was used with all the features for heading extraction because this was 

the case best accuracies were obtained (i.e., 0.85 for f-measure). 

 

The accuracy of hierarchy extraction is given in Table 5.7 for the proposed 

approaches based on SVM and perceptron with different combinations of features and a 

beam width of 100. The results show that the SVM-based approach performs better than 

the perceptron-based one. The use of increased number of features usually resulted in 

improved accuracy in SVM. The best results (67%) were obtained when all the features, 

i.e. the composite features of the current unit with parent unit, sibling units and 

grandparent unit, were used together.  However, this was not the case in perceptron which 

is based on a linear approach. SVM performed the best results for polynomial and RBF 

kernels rather than the linear kernel. We also experimented with different beam widths. In 

Table 5.8, the accuracies for SVM polynomial and RBF kernels are given for different 

beam widths ranging from 1 to 100. As seen in the table, there is not much change in the 

accuracies when the beam widths are varied. 

 

Table 5.7. Performances of SVM and perceptron for hierarchy extraction 

Learning Algorithm Feature Set
Φ1 Φ2 Φ3 Φ4 

SVM – Linear 0.42 0.61 0.61 0.61 
SVM – Polynomial 0.57 0.63 0.63 0.65 
SVM – RBF 0.58 0.66 0.67 0.67 
Perceptron 0.51 0.46 0.46 0.46 

 

Table 5.8. Effects of different beam widths in hierarchy extraction 

Learning Algorithm Beam width 
1 10 20 50 100 

SVM – Polynomial 0.64 0.65 0.65 0.65 0.65 
SVM – RBF 0.66 0.66 0.66 0.66 0.67 

 

In Table 5.9, some experiment results for the main decoding algorithm (M0) and the 

variations (M1 to M4) detailed in Section 5.4 are given. We evaluated the methods using 



 77

the feature set Φ4 and two different kernels. The tests were performed using a beam width 

of 100. The best results were obtained for the variation M4 with polynomial kernel. 

 

We compared the effects of using headings extracted with the machine learning 

model and manually extracted (golden standard) headings. The tests were performed using 

the feature set Φ4 and a beam width of 100 for perceptron and SVM.  The best accuracy for 

hierarchy extraction was obtained when manually extracted headings were used (0.82). 

When using the headings output by the heading extraction model (Model 1), which 

corresponds to a fully automatic approach, the highest accuracy obtained was 0.68. In this 

case, SVM-based approach is superior to the rule-based approach. The performance 

difference between the fully automatic approach and the approach using manually 

identified headings stems from imperfect recall and precision rates in the automatic 

extraction of headings. 

 

Table 5.9. Results for alternative methods in hierarchy extraction 
 

Learning Algorithm Method 
M0 M1 M2 M3 M4 

SVM – Polynomial 0.65 0.67 0.59 0.64 0.68 
SVM – RBF 0.67 0.67 0.59 0.67 0.66 

 

Table 5.10. Overview of performance results in hierarchy extraction 

Method Model 1 
headings 

Manual 
headings  

Rule-based Approach 0.61 0.81 
Perceptron 0.51 0.82 
SVM 0.68 0.79 

 

We conducted an error analysis on the results obtained using the machine learning 

models and identified the main causes of inaccuracies. One source of inaccuracy in 

hierarchy extraction is errors in heading extraction. Although we have obtained a high 

performance in heading extraction (85% f-measure), the remaining inaccuracies (15%) 

result in a 10-15% decrease of accuracy in hierarchy extraction. False negatives of 

headings result in loss of structure, whereas false positives result in creation of structure 

which does not actually exist. Another source of inaccuracy in hierarchy extraction is 
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related to the heuristic-based incremental approach. In order to prevent the exponential 

growth of partial trees, at each step, only a certain number of partial trees are kept. In some 

cases, correct partial trees are eliminated later in the processing which results in some 

errors. Part of the imperfect results in sectional hierarchy extraction result from connecting 

text units in unrelated document parts. There are cluttered Web documents with complex 

table-based layouts. Also, we have not eliminated secondary parts such as menus from 

documents and performed hierarchy extraction on the document as a whole. As a result, 

some text content and headings may be connected to wrong heading levels. Finally, there 

are sources of inaccuracies over which we do not have any control. These include errors 

made by Web document authors; e.g., ambiguous or wrong usage of tags and styles. 

Nevertheless, we obtained acceptable results as a full automatic approach for sectional 

hierarchy extraction which is a much more challenging task than identifying only the 

headings in a document. 



79 
 

6.  SUMMARY EXTRACTION 

 

 

In this chapter, the proposed summarization method, i.e. structure-preserving and 

query-biased summarization, is detailed. Then, task-based evaluations on different 

document collections and the discussion are presented. 

 

6.1.  The Method 

 

In this thesis, we focus on summarization in the context of Web search. Our main 

aims are: (1) To enable users to make more accurate relevance judgments as compared to 

search engine extracts; i.e., by preventing them missing relevant results or spending time 

with irrelevant items; (2) To have reasonable times for relevance judgment using the 

summaries as compared to judging the relevance of the original document. 

 

We developed a novel summarization approach for Web search combining two main 

ideas distinguishing it from the traditional approaches. First, it is based on the idea that 

utilizing the explicit document structure can help the users more accurately judge the 

relevance of documents on the Web, where documents have high diversity in structure and 

complex internal organizations. Second, it is a query-biased method suitable to Web 

search. 

 

In the proposed system, indicative summaries are created using the method of 

sentence extraction. The summarization algorithm is run after the structural processing 

phase described in previous chapters. The structural information is utilized in two different 

ways in the system. First, it is used in determining the importance of sentences and 

document sections. Second, the structure, i.e. the context of extracted sentences, is also 

preserved in the output summaries. 

  

The summaries of the proposed system are created using two levels of scoring. In the 

first level, individual sentences of a document are scored. In the second level, the sections 

and subsections are scored in order to determine important ones. Then, based on these two 
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types of scores, the final summaries are formed. The scoring methods are explored in the 

following subsections. 

 

6.1.1.  Sentence Scoring 

 

The text content of the Web document is split into sentences and a variant of the 

basic sentence scoring metrics in the literature is employed. This includes four different 

types of sentence scoring methods: Heading, location, term frequency and query methods. 

We adapted these methods such that they utilize the output of the structural processing 

step. 

• Heading method: The intuition behind this approach is that headings in a document 

usually contain key words related to the content of the document. Therefore, the 

sentences containing such words may be important. This approach has been 

investigated in various studies [22, 44, 56, 59]. However, most of the previous studies 

either use only the main title of the document, or they utilize the headings without 

investigating the automatic extraction of them which poses a challenge for Web 

documents. This study targets all the headings in a Web document based on the output 

of the structural processing step. Words in the headings are stored in a heading word 

list after stop words are eliminated and stemming is applied. A heading score is 

assigned to each sentence as the number of heading words it contains. 

 

• Location method: This method is based on the idea that sentences located at certain 

positions of the document usually convey salient (i.e., important) information [22, 44, 

56, 59]; e.g., sentences occurring near the start or end of the document or its 

paragraphs. We modified this approach to incorporate sectional information. Sentences 

are given a positive score if they are the first sentence of a section or subsection as 

found by the structural processing step. 

 
• Term frequency method: The motivation for this method comes from the idea that 

terms occurring frequently within a document usually convey important information 

and sentences with higher number of such words are important sentences [44, 56, 59]. 

In the proposed system, each sentence is given a term frequency score by summing the 
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frequencies of the constituting words. In finding the term frequencies, stop words are 

eliminated and stemming is applied. 

 
• Query method: In information retrieval context, biasing summaries towards queries 

becomes important [22, 56]. By heavily selecting sentences containing query words, it 

is expected that the users can judge the relevance of the search results better. Therefore, 

in the proposed system, each sentence is given a query score as the number of query 

words it contains after stemming is applied. 

 

The scores obtained in each of these methods are normalized by dividing them to the 

maximum score obtained for that method in a given document; in this way, the normalized 

scores are in the interval [0, 1]. The overall sentence score is calculated as the weighted 

sum of these four types of scores as in 6.1 where s’s represent method scores and w’s 

correspond to method weights. Table 6.1 shows the score calculation for the following 

example sentence. 

 

ssentence = sheading × wheading +  slocation × wlocation + stf × wtf +  squery × wquery (6.1)

 

Example: 

Query: antibiotics bacteria disease 

Sentence: “These are the bacteria that are usually involved with bacterial disease such as 

ulcers, fin rot, acute septicaemia and bacterial gill disease.” 

 

In Table 6.1, the application of the four methods on the example sentence is shown 

together with the applicable terms and the scores. In the example, heading, location and 

term frequency methods are given equal weights whereas query method is given three 

times more weight; i.e., wheading = wlocation = wtf = 1 and wquery = 3. The stems bacteria, 

bacteri, and diseas appear in the headings throughout the document. Each occurrence of 

these words in the sentence increases its heading score by one. The location score is either 

1 or 0, depending on whether the sentence is the first sentence of any section or subsection. 

In the example, it is 0. The term frequency score is calculated by summing the frequency 

of each term in the sentence multiplied by its frequency in the whole document (given with 

parentheses in the table). Finally, the query score applies to two query terms occurring in 
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the sentence (bacteria, diseas). In the table, the maximum score in the whole document for 

each method is also indicated. These values are used in the normalization of the scores. 

The sentence score is obtained as the weighted sum of the normalized scores. 

 

Table 6.1 Application of scoring methods on an example sentence 

Method Applicable terms Sentence 
score 

Maximum score 
in document 

Normalized 
sentence score 

Heading bacteria, bacteri, 
diseas 5 6 0.83 

Location –– 0 1 0.00 

Term 
Frequency 

bacteria(17), 
involv(1), 
bacteri(11), 
diseas(7), ulcer(5), 
fin(1), rot(1), 
acut(1), 
septicaemia(1), 
gill(1) 

64 261 0.25 

Query bacteria, diseas 2 2 1.00 
Overall    4.08 

 

6.1.2.  Section Scoring 

 

Traditional summarization approaches usually create summaries by considering the 

document as a linear sequence of sentences. Some of them score sentences by considering 

some structural information; e.g. heading and location information. However, during the 

extraction phase, most of the approaches still select the sentences from an unstructured 

space of sentences, and also form unstructured summary outputs. In the proposed 

approach, we consider that different sections and subsections of a document may have 

different importance values and should be represented at different extents in the summary 

depending also on the user query. For instance, a section whose content is closely related 

to the information need of the user may be represented with much more sentences in the 

final summary than a section with a similar length but less relevant material. Moreover, in 

the proposed system, structured summaries, which include context of sentences in the form 

of headings and subheadings, are created rather than flat text summaries. 
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In the system, each section and subsection of a document is given a section score as a 

measure of its importance. Sections with higher scores are represented with more sentences 

in the output summary. The section score is calculated as the sum of scores of sentences in 

a given section. Also, in a hierarchical way, the score of a section can be calculated as the 

sum of the scores of constituting subsections. Each section or subsection is assigned a 

quota based on its section score. The quota determines the number of sentences with which 

that section will be represented in the output summary. The quota for the whole document 

is selected as 25 which is the approximate number of sentences in the output summary. 

Then, hierarchically, this quota is divided among the sections and subsections as in 6.2 

where s’s represent section and subsection scores. The summarization algorithm runs on 

the document tree (sectional hierarchy) obtained in structural processing. A variant of the 

algorithm is given in Figure 6.1. 

 

tion

tionsub
tiontionsub s

s
quotaquota

sec

sec
secsec ×≡  

(6.2)

 

The process starts at the root node of the tree which covers the entire document. The 

root is given a quota which also corresponds to the maximum summary size as the number 

of sentences (e.g. 25). The document tree nodes are visited in a breadth-first fashion. If the 

quota of a node is greater than a predetermined threshold (e.g. 3) and the node has non-leaf 

nodes (i.e. it contains other subsections rather than only sentences), its quota is shared 

among the subsections based on the scores of the subsections. When the quota of a section 

or subsection reaches a certain threshold or the section has no more subsections, the 

highest scored sentences are selected from that section one by one to be included in the 

summary together with the heading of that section. Also the predecessor headings in the 

hierarchy, all the way to the main heading, are selected as a part of the summary if not 

already included. The summarization continues until the summary quota for the whole 

document is reached. In Figure 6.2, the summarization process is illustrated on an example 

document tree containing heading nodes (h) and non-heading nodes (t). The initial quota is 

25. One is reserved for the root (containing the document title) and the remaining quota 

(i.e. 24) is divided among child nodes. This process continues in a hierarchical way. Some 

of the nodes selected as part of the summary are shown as bold. As seen, whenever a node 

is selected, its predecessor heading nodes are also incorporated to the summary. 
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Algorithm Summarize 
Input 
      root: root node of the document tree 
begin 
1:   Set a threshold for section quotas 
2:   Insert root into queue with a quota 
3:   while (queue not empty) 
4:          summarize = false 
5:          Get the next node x from queue 
6:          sentenceList = {} 
7:         if (quotax > threshold) 
8:                sentenceList = {x} if x != root 
9:               for each child node c of x 
10:                   if (c is leaf) 
11:                         summarize = true 
12:                         insert c into sentenceList 
13:                   else 
14:                         quotac = quotax * sectionScorec / sectionScorex 
15:                         Insert c into queue 
16:                   end if 
17:             end for 
18:       else 
19:             summarize = true 
20:             Insert all the sentences under x into sentenceList 
21:       end if 
22:       if(summarize) 
23:             Get quota for sentenceList 
24:             while (quota and summary size limit not exceeded) 
25:                   Mark next highest scored sentence s from sentenceList  
                        for inclusion in summary 
26:                   while (summary size limit not exceeded) 
27:                         Mark ancestors of s (i.e. headings) in hierarchy  
                              for inclusion in summary 
28:                   end while 
29:             end while 
30:       end if 
31: end while 
end 

Figure 6.1. A variant of the summarization algorithm 
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Figure 6.2. Illustration of the summarization process 

 

6.2.  Evaluation 

 

6.2.1.  Experiment Setup 

 

We conducted a task-based (extrinsic) evaluation for the summaries of the proposed 

system. In this type of evaluation, the quality of a summary is evaluated based on how it 

effects the completion of another task. Here, the task is information retrieval where the 

summaries are planned to be actually used. That is, the summaries are judged according to 

their usefulness in a search engine. We preferred extrinsic evaluation since it is more 

suitable for cases where the summarizer is embedded within another system (e.g. a search 

engine) [42], which is the case in this research.  

 

We used the TREC queries (topics) and documents which were also used in heading 

and hierarchy extraction experiments. Four types of summaries (document surrogates) 

were used for comparison. These are: 

• Google – Query-biased extracts provided by Google for the given document. 

• Unstructured – Query-biased summary without the use of structural information 

(including extraction of menu information). 
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• Structured1 – Structure-preserving and query-biased summary created by the 

proposed system using the output of the structural processing step. 

• Structured2 – Structure-preserving and query-biased summary created by the 

proposed system using manually identified structure. 

 

All the summaries except Google extracts are longer summaries with about the same 

size (about 25 sentences) to make them comparable with each other. When calculating the 

sentence scores for the summaries, we have experimented with different weight values for 

Equation 6.1. We observed that giving similar weights to heading, location, and term 

frequency metrics and assigning a weight to the query metric a few times more than the 

others give rise to the best performances. This indicates that query terms provide the most 

important information, but the other sources of information also have an effect and should 

not be disregarded. The results shown in this section were obtained using the weighting 

factors wheading = wlocation = wtf = 1 and wquery = 3. 

 

In creating the unstructured summaries, structural information, i.e. heading and 

location methods, is not used. Instead, those summaries are formed using only term 

frequency and query methods. Structured summaries are based on the document sectional 

hierarchy. Navigation menus in the Web documents (e.g. links) which cause a cluttered 

view were identified using heuristics and eliminated in structured summaries. An example 

summary output of the proposed system and an example unstructured summary for the 

query Antibiotics Bacteria Disease are given in Figure 6.3 and Figure 6.4, respectively. In 

the summaries, query keywords are highlighted. Each summary sentence is output as a 

single line; for this purpose, the end parts of longer sentences are replaced by ‘…’ 

(allowing a maximum of about 100 characters for each sentence). The structured 

summaries are displayed in a hierarchical way in accordance with the sectional hierarchy 

obtained in the structural processing step. Also, headings and subheadings are given as 

bold. 

 

The experiments were performed on human subjects. We considered several 

experimental methodologies proposed in the literature. Generally, in experiments 

performed on humans, the differences in the responses of different people to the same 

treatment may be very large due to individual differences, such as differences in 
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experience, training or background. As a result, it may be difficult to detect real differences 

between treatments or systems. In order to control this variability between different 

subjects, a repeated measures (i.e. within-subjects) design may be used [76]. In this 

experimental design, each of the n treatments is used in each person (i.e. subject). In this 

way, the effects of differences among subjects are minimized. Therefore, we decided to use 

a repeated measures design. In the proposed system, each of the summary types for a 

document (corresponding to different system treatments; e.g. Google, Unstructured, 

Structured1, etc.) are presented to the user. Also, the summary type and documents are 

presented in a random order to reduce carryover effects and the original full-text document 

is not displayed until all the summaries for that document are displayed. In the 

experiments, each query and corresponding summary sets were evaluated by more than 

one subject (between 4 and 10 subjects).  

 

Figure 6.3. An example summary output of the proposed system  

 

In the experiments, the subjects were given the necessary instructions and the queries 

one by one, and were asked to determine the relevance of the documents with respect to 

the given query (either relevant or not) based on the summaries. An example query is given 

in Figure 6.5. As seen in the figure, each query is presented with a title (query terms), a 

description, and a narrative part. The description states what is intended by the query terms 
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and the narrative part provides a guide for deciding on the relevancy of a document.  The 

subjects performed the experiment tasks on a web-based interface which is overviewed in 

the next section.  

 

Figure 6.4. An example unstructured summary 

 

 

Figure 6.5. An example TREC query used in the experiments 
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6.2.2.  Experiment Interface 

 

The Web-based interface for the task-based evaluation has been developed using 

ASP.NET framework and SQL Server 2005 database. The users enter the system using 

predefined user ID and passwords. Then, the instructions for the experiment and the details 

of the current query are displayed. After the instructions, the user is presented with the 

actual evaluation screen. In Figure 6.6, a screenshot of the interface is given. It contains a 

frame in which the summaries are displayed one by one in a predetermined random order. 

The summaries (including Google ones) are presented in a consistent formatting style in 

order to prevent the effect of recognition of one particular system. The user has to evaluate 

a given summary/document as either relevant or irrelevant. The decision times of the users 

are also recorded automatically. During the experiment, the details of the current query are 

always presented at the bottom of the page. 

 

Figure 6.6. A screenshot of the Web-based experiment interface 
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In the recent experiments, we also added a user poll to rate the helpfulness of each 

summary. For this purpose, a Likert scale was used with ratings between 1 and 5 (i.e., 1 as 

not helpful and 5 as very helpful). Such questionnaires have also been used in previous 

task-based evaluation studies for summarization systems [22, 56]. 

 

6.2.3.  Performance Measures 

 

In the task-based evaluation, our aim is to determine how well the proposed system 

summaries help the users judge the relevancy of documents. In most previous 

summarization studies, the user judgments for the summaries are compared with golden 

standard judgments for documents (determined by annotators). That is, each document is 

strictly marked as relevant or irrelevant beforehand. In relevance prediction, which is a 

more recent approach, the subject’s judgment on a summary is compared with his or her 

own judgment on the original full-text document. This is an intuitive approach and 

parallels also with what a user does in a real-world task using a search engine; i.e., the user 

judges the relevancy of the original document based on the summary and decides whether 

or not to open the document in the browser. If the user judges that the document is 

relevant, he or she opens it in the browser and investigates whether their decision was 

correct. 

 

The relevance prediction approach has been found to be more reliable than the gold 

standard approach [77]. As the performance measure, we also used relevance prediction 

instead of relying on a golden standard. In this way, we expect to reduce the effect of 

differences in human subjects and obtain more reliable information on the utility of each 

summarization method with better agreement levels. As another advantage, this method 

eliminates the need for defining golden standard relevance judgments. 

 

For each summarization method, four different types of results can be identified by 

comparing the relevance judgments for the summaries and the original documents: TP 

(true positive), FP (false positive), FN (false negative) and TN (true negative) as in Table 

6.2. According to these values, accuracy (A), recall (R), precision (P) and f-measure (F) 

values for the method can be calculated. Accuracy is calculated as the number of cases the 

user makes consistent judgment for the summary and the original document (i.e. both 
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relevant or both irrelevant) divided by the number of judgments as in 6.3. Recall is 

calculated as the ratio of the number of documents identified as relevant using both the 

summaries and the original documents to the number of relevant judged original 

documents (see 4.1). Precision is calculated as the ratio of the documents identified as 

relevant using both the original documents and summaries to the number of summaries 

identified as relevant (see 4.2). F-measure is a combined measure of recall and precision 

(as defined in 4.3). Additional performance measures may also be defined. False negative 

rate is calculated as the number of false negatives over total number of actual positive 

instances as in 6.4. False positive rate is defined as the number of false positives over total 

number of actual negative instances as in 6.5. False negative rate corresponds to the cases 

relevant documents are missed by the user due to inadequate summaries. False positive rate 

corresponds to the cases where the users spend time by viewing irrelevant results although 

the summary seems relevant; this includes the time to loading the document in the browser 

and viewing the document. For all the performance measures, the results of each query set 

completed by a user are averaged. 

 

Table 6.2. Contingency table for the summarization experiment 

 
Original document judgment 

Relevant Irrelevant 

Summary judgment 
Relevant TP FP 

Irrelevant FN TN 

 

FNFPTNTP
TNTPA

+++
+

≡  
(6.3)

 

TPFN
FNFNR
+

≡  
(6.4)

 

TNFP
FPFPR
+

≡  
(6.5)
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6.2.4.  Results 

 

The summarization approach has been tested on the queries and document 

collections described in Chapter 3 (English Collection, Turkish Collection and Extended 

English Collection). In the following subsections, the results for different collections are 

presented. 

 

6.2.4.1.  English Collection. The queries used in this experiment cover different types of 

information need (see Q1-Q10 in Appendix A.1), including search for a number of items (7 

queries), decision search (1 query) and background search (2 queries). The effectiveness of 

each method is shown in Table 6.3. A total of 300 judgments were made for each 

summarization method. In the table, the numbers of true positive, false positive, false 

negative and true negative judgments are given together with the average values of 

accuracy, precision, recall, and f-measure. First, we see that all three methods involving 

longer summaries (Structured1, Structured2, and Unstructured) perform significantly 

better than Google. Second, the structured summaries (Structured1 and Structured2) are 

superior to unstructured ones. Third, we observe that Structured2 (i.e., summaries using 

manually identified structure) performs the best under all performance measures, and the 

performance of the proposed fully automated method (Structured1) is quite similar to that 

of Structured2. Another point of view for the effectiveness of the methods is the false 

negative and false positive rates (Table 6.4). We see that structured summaries 

significantly reduce the amount of missed relevant results compared to Google and 

unstructured summaries (false negative rate). Also, structured summaries significantly 

reduce the lost time viewing irrelevant results (false positive rate). 

 

Table 6.5 shows the performance improvement provided by the proposed method 

(Structured1) over Google and Unstructured methods. Especially when compared with a 

state-of-the-art search engine (Google), a significant increase in performance reveals itself 

(26.98% in f-measure). The performance increase is not so high when compared with 

unstructured summaries. However, the effect of structure identification is explicit. We also 

performed suitable statistical tests, i.e. repeated measures ANOVA (analysis of variance), 

on the results using SPSS Toolkit. The statistical tests verify that Structured1 method 

yields significantly better results than both Google and unstructured summaries with 
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p<0.001 for f-measure. We also measured the effect of summary sizes on decision times. 

Table 6.6 shows the average time of making judgments together with the average size of 

the summaries for each method and the original document. The values show that the 

proposed system has acceptable judgment times despite the much longer summary size. 

 

Table 6.3. Results of the summarization experiment (English Collection) 

System TP FP FN TN A P R F 
Google 107 38 60 95 0.67 0.73 0.62 0.63 
Unstructured 131 28 36 105 0.79 0.82 0.76 0.77 
Structured1 137 25 30 108 0.82 0.85 0.80 0.80 
Structured2 138 23 29 110 0.83 0.85 0.83 0.82 

 

Table 6.4. False negative and false positive rates (English Collection) 

System FNR FPR 
Google 0.36 0.29 
Unstructured 0.22 0.21 
Structured1 0.18 0.19 
Structured2 0.17 0.17 

 

Table 6.5. Improvement of proposed system over other methods (English Collection) 

System A P  R F FNR FPR 
Google +22.39% +16.44% +29.03% +26.98% -50% -34.48% 
Unstructured +3.80% +3.66% +5.26% +3.90% -18.18% -9.52% 

 

Table 6.6. Average judgment times versus average summary/document sizes (English 

Collection) 

System Time 
(seconds) 

Size 
(words) 

Google 14.58 41 
Unstructured 27.24 278 
Structured1 27.60 264 
Structured2 28.58 253 
Original 41.43 1566 

 

6.2.4.2.  Turkish Collection. The Turkish queries used in this experiment cover different 

types of information need (see Appendix A.2), including search for a number of items (2 

queries) and background search (3 queries). The effectiveness of each method is shown in 
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Table 6.7. A total of 150 judgments were made for each summarization method. In the 

table, the numbers of true positive, false positive, false negative and true negative 

judgments are given together with the average values of accuracy, precision, recall, and f-

measure. The results show that structured summaries (Structured1 and Structured2) are 

superior to unstructured ones and Google snippets. It is interesting to note that Structured1 

performed better than Structured2. The effectiveness of each method is also given in Table 

6.8 as the false negative and false positive rates. We see that structured summaries 

significantly reduce the amount of missed relevant results and lost time viewing irrelevant 

results compared to Google and unstructured summaries. 

 

Table 6.7. Results of the summarization experiment (Turkish Collection) 

System TP FP FN TN A P R F 
Google 45 20 10 75 0.80 0.69 0.82 0.75 
Unstructured 43 13 12 82 0.83 0.77 0.78 0.77 
Structured 1 49 8 6 87 0.91 0.86 0.89 0.88 
Structured 2 47 10 8 85 0.88 0.82 0.85 0.84 

 

Table 6.8. False negative and false positive rates (Turkish Collection) 

System FNR FPR 
Google 0.18 0.21 
Unstructured 0.22 0.14 
Structured 1 0.11 0.08 
Structured 2 0.15 0.11 

 

Table 6.9 shows the performance improvement provided by the proposed method 

(Structured1) over Google and Unstructured methods. The proposed system has 17.33% 

improvement over Google and 14.29% improvement over unstructured summaries in terms 

of f-measure. The statistical tests (repeated measures ANOVA) we performed on the 

results verify that Structured1 method yields significantly better results than both Google 

and unstructured summaries with p<0.05 for f-measure. Table 6.10 shows the average 

judgment times of the users and average sizes for each method and original documents. 

Although Structured1, Structured2 and Unstructured methods provide summaries much 

longer than Google snippets, we see that the time increase in response time is moderate. 
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Table 6.9. Improvement of proposed system over other methods (Turkish Collection) 

System A P  R F FNR FPR 
Google +13.75% +24.64% +8.54% +17.33% -38.89% -61.90% 
Unstructured +9.64% +11.69% +14.10% +14.29% -50% -42.86% 

 

Table 6.10. Average judgment times versus average summary/document sizes (Turkish 

Collection) 

System Time 
(seconds) 

Size  
(words) 

Google 11.04 30 
Unstructured 19.96 216 
Structured1 19.96 230 
Structured2 19.71 235 
Original 24.53 900 

  

6.2.4.3.  Extended English Collection. The queries used in this experiment cover different 

types of information need (see Q1-Q20 in Appendix A.1), including search for a number of 

items (12 queries), decision search (2 queries) and background search (6 queries). The 

structured summaries of the proposed system were created using the output of the machine 

learning approach for document structure analysis. Two different types of unstructured 

summaries were defined. In Unstructured1, the secondary parts (e.g. menus) of the 

document are not eliminated. In Unstructured2, this information is also eliminated as in 

structured summaries. 

  

The effectiveness of each method is shown in Table 6.11 as the numbers of true 

positive, false positive, false negative, true negative judgments and the average values of 

accuracy, precision, recall, and f-measure. A total of 400 judgments were made for each 

summarization method. This experiment also verifies that structured summaries are 

superior to both Google extracts and unstructured summaries. The average values of false 

negative and false positive rates are given in Table 6.12. The results show that structured 

summaries significantly reduce the number missed results in the searches. The results of 

this experiment are not explicit for the false positive rate which corresponds to the time 

spent with irrelevant items. 
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Table 6.11. Results of the summarization experiment (Extended English Collection) 

System TP FP FN TN A P R F 
Google 118 36 120 126 0.57 0.72 0.47 0.52 
Unstructured1 179 54 59 108 0.72 0.77 0.75 0.73 
Unstructured2 176 53 62 109 0.72 0.77 0.73 0.72 
Structured1 185 50 53 112 0.74 0.78 0.77 0.76 
Structured2 183 40 55 122 0.75 0.82 0.76 0.77 

 

Table 6.12. False negative and false positive rates (Extended English Collection) 

System FNR FPR 
Google 0.50 0.23 
Unstructured1 0.23 0.32 
Unstructured2 0.24 0.30 
Structured1 0.20 0.30 
Structured2 0.22 0.24 

 

 

Table 6.13 shows the performance improvement provided by the proposed method 

(Structured1) over Google, Unstructured1 and Unstructured2 methods. As seen, the 

proposed system has significant improvement over Google extracts and unstructured 

summaries in terms of f-measure. The repeated measures ANOVA test also verify that the 

results are significant with p<0.05 for f-measure. Table 6.14 shows the average time of 

making judgments together with the average size of the summaries for each method and 

the original document. In this experiment, we also included an additional measure for 

rating the helpfulness of the summaries between 1 and 5. The average results of the ratings 

performed by the subjects are also given in Table 6.14. The results show that the structured 

summaries have very high ratings compared to Google extracts and unstructured 

summaries and values close to original documents. 

 

Table 6.13. Improvement of proposed system over other methods (Extended English 

Collection) 

System A P  R F FNR FPR 
Google +30.68% +9.66% +63.88% +44.97% -59.65% +29.80% 
Unstructured1 +3.60% +1.31% +2.98% +3.35% -9.90% -4.91% 
Unstructured2 +3.14% +1.79% +5.42% +4.90% -16.31% -0.30% 
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Table 6.14. Average judgment times, summary/document sizes and ratings (Extended 

English Collection) 

System Time 
(seconds) 

Size 
(words) 

Rating 

Google 10.20 30 2.60 
Unstructured1 17.70 298 2.77 
Unstructured2 18.44 306 2.77 
Structured1 17.51 277 3.03 
Structured2 17.02 274 3.12 
Original 23.59 1340 3.10 

 

6.3.  Discussion 

 

The importance of summarization in information retrieval tasks was recognized in 

several studies related to human cognition. One of the studies compares the response time 

and accuracy of relevancy assessment for original documents and their summaries, and 

shows that the time decreases more or less linearly with the length while accuracy 

decreases only logarithmically [15]. This implies that we can gain from time substantially 

without a significant loss in accuracy when using summaries rather than original 

documents. This hypothesis was also supported by Marcu, who reports an experiment on 

an information retrieval task [51]. The time when summaries are used was found to be 

about 80% of the time required to perform the same task using the original documents, 

with recall and precision remaining approximately the same. 

 

Current search engines use short extracts for displaying the results to the user. Such 

extracts focus only on the query words and thus miss the parts of the documents actually 

intended by the user.  We have shown that a significant performance improvement is 

possible by using summaries much longer than the extracts generated by traditional search 

engines (e.g. Google). Longer summaries can show the parts of a document relevant to the 

user query explicitly even if those parts do not contain any of the query terms. We have 

also shown the importance of maintaining document structure in the summaries. Structured 

summaries increased the performance of the system significantly when compared with 

unstructured summaries of the same size. A structured summary provides an overview of 
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the document and makes it for the user much easier to focus on the relevant parts which 

can be considered as some sort of semantic information for the user. 

 

In current search engines, a major limitation for the user is the size of the display 

screen which constrains the number of results and the extracts. To optimize the number of 

results reviewed per screen, most of the search engines display a few lines of the document 

that include the query terms. However, this does not seem to be a suitable choice and it is 

argued that human cognition does not conform to this style of displays [78]. In this work, 

we combined the objective of displaying as many results as possible on a page with the 

objective of giving a detailed view for each result by using a dynamic summary window. 

 

The high success rates of the Structured1 and Structured2 methods indicate that 

combining structural processing with summary extraction is a convenient approach. The 

size of a summary prepared with these methods ranges about between 15-25% of the 

corresponding document on the average. By looking at a summary of this size, the users 

are able to determine the relevancy with about 75-90% correctness. When we compare 

these two methods with each other, we see that they give similar success rates. Structured2 

may be expected to yield a better performance since it is based on manually identified 

hierarchical structures of documents. This is indeed the case for both English collections. 

However, interestingly, Structured1 shows a little better performance than Structured2 in 

the Turkish collection. We conjecture this result to the two-stage nature of the process in 

the sense that the summarization component can work on an imperfect structure and 

humans are good at coping with vagueness. Based on the high performance of the 

proposed method, Structured1, we can conclude that it is a fully automatic method that can 

be incorporated into a search engine. 

 

An analysis of user response times (Table 6.6, Table 6.10 and Table 6.14) shows that 

summaries, although they are 6-9 times longer than Google extracts, cause only less than 

two times increase in response time. This indicates that people just look at the related parts 

of the summaries and then arrive at a decision. Thus we see that the proposed system has 

acceptable user response times despite the much longer summary sizes. 
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In this research, the main aim is not only to reduce the searching time, but to balance 

the time spent viewing the document summaries with the accuracy obtained in the given 

task. In this context, false negative rates of the summarization methods become important. 

The experiments show that Google extracts result in high false negative rates which 

correspond to the cases relevant documents are incorrectly identified as irrelevant; thus, the 

users miss useful items of information. In fact, the importance of false negative rates 

depends on the type of the query. This rate becomes especially important in the case of 

background search where more than one result may be necessary (e.g. the query 

newspapers electronic media where the aim is to find the effects of the electronic media on 

the newspaper industry) as well as specific and complex queries (e.g. the query creativity 

where the aim is to find ways of measuring creativity).  

 

Another point of view for the results is the false positive rate of a summarization 

method which corresponds to the cases irrelevant documents are identified as relevant and 

as a result, users spend time examining them unnecessarily. That is, when the user clicks 

on the link of an irrelevant document, he/she will spend some time during page loading and 

to understand that the document is in fact irrelevant. We can define the time overhead of a 

summarization method as in 6.6 where Tsummary is the average time to view the summary of 

a particular system, Tdocument is the average time to examine the original document and 

Tpage_load is the time to load the original document into the browser (depending on the speed 

of the Internet connection). The time overhead is calculated as the sum of time spent 

viewing the summaries and the time spent with irrelevant items (i.e., false positives). 

 

Time Overhead = Number of Results Viewed · Tsummary + FP · (Tpage_load + Tdocument) (6.6)

 

By substituting the average values obtained in the experiments into the formula, we 

see that the proposed system summaries (Structured1) result in a 55-60% increase of time 

compared to Google extracts. However, the number of relevant documents missed using 

the Google extracts reaches about two times the ones using the proposed system 

summaries. Thus, we see that there is a tradeoff between the time spent with the summaries 

and the accuracy obtained. Our justification regarding the superiority of the proposed 

system summaries is as follows. In the case of common-place queries (e.g. the population 

of Germany), the users can locate the relevant information just by viewing a few of the top 
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results of the search engine; as a result, the total time spent and the overhead of the 

summarization method is less important. In the case of more complex queries and 

background search, the accuracy provided by the summarization method becomes more 

important. The proposed system is preferable because it results in a reduced number of 

missed items (false negative rates) compared with the other systems. Also, using the 

proposed system can usually be less tedious for users in these tasks because of low false 

positive rates. That is, in the proposed system, the users usually spent less time examining 

the irrelevant documents. Finally, the proposed system has also received very high user 

ratings compared with Google and unstructured summaries. This verifies that the 

structured summaries have also been found more helpful and preferable by users. 

 

An analysis of the time complexity of a search engine built on the proposed 

techniques shows that it is linear in document length. Document structural processing step 

(detailed in chapters 4 and 5) is independent of the user query and needs to be performed 

once for each document. This process can be done offline similar to the indexing phase of 

search engines. Summary extraction step (detailed in this chapter) has a linear time 

complexity. Given a document hierarchy with n nodes (sentences), the extraction algorithm 

(Figure 6.1) operates on at most n nodes in a top-down fashion. At each node, the quota of 

the node is calculated and the sentences are selected based on the quota if a threshold is 

reached, both of which require constant time. As a result, the time complexity of the whole 

process is O(n). 
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7. CONCLUSION 

 

 

There is a drastic increase of information sources on the World Wide Web. Search 

engines provide a means for Internet users to locate documents on the Web via queries. 

However, the users still have to complete the sifting process by themselves; that is, to 

decide on the relevance of the returned documents according to their actual needs. During 

Web search, one aid of users is the short document summaries (extracts) provided in the 

search results. However, the summaries provided by current search engines have 

limitations in directing users to relevant documents. As a result, the users often miss 

relevant results or spend time with irrelevant ones. 

 

In this thesis, we developed a novel summarization approach, i.e. structure-

preserving and query-biased summarization, to improve the effectiveness of Web search. It 

is a query-biased method utilizing document structure both during the summarization 

process and in the output summaries. In this way, the context of searched terms is 

preserved in the output summaries. To the best of our knowledge, it is the first approach 

using both explicit document structure and query-biased techniques in Web search context. 

 

The proposed system has been developed in Java by utilizing GATE Text 

Engineering Framework which is an open source framework widely used in both academic 

and commercial projects of human language technology, and open source Cobra HTML 

Parser and Renderer Toolkit. We created English and Turkish document collections from 

the results of Google in response to several search queries that reflect current search 

interests of users in various domains. 

 

The proposed approach is composed of two stages: structural processing and 

summary extraction. In the first stage, we considered the rather unexplored problem of 

heading-based sectional hierarchy extraction for unrestricted domain of Web documents. 

We represented a document as an ordered tree in which headings and subheadings are at 

intermediate nodes, and other text units are at the leaves. We first developed a rule-based 

approach for structural processing based on heuristics and HTML DOM tree processing. 
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In the progress, we developed a machine learning approach for structural processing 

of Web documents because it can be more flexible than a rule-based approach. For 

sectional hierarchy extraction, a tree-based learning approach was needed rather than the 

simpler case of classification. To overcome the exponential search space encountered in 

the solution, we developed an incremental learning approach based on beam search. We 

defined several features for learning, including features to represent the context of a unit in 

a document tree. We developed several variations of the approach using SVM and 

perceptron algorithms, and evaluated them using cross-validation. For extraction of 

headings, we obtained an f-measure of 85%. For hierarchy extraction, an accuracy of 82% 

was obtained with manually identified headings, whereas 68% accuracy was obtained 

using the output of heading extraction. The machine learning approach, as a fully 

automatic approach, performed better than the rule-based approach on the same document 

set. There are not many studies in the literature on heading-based analysis of Web 

documents. One related work is about the identification of the main title of an HTML 

document in which a maximum f-measure of 80% was obtained [39]. In the proposed 

system, we investigated a more challenging and general task; that is, the identification of 

all the headings in a document together with their levels in the sectional hierarchy.  

 

The second stage of the proposed system is summary extraction where the 

documents are summarized with respect to the user queries and the structural information 

obtained in the first stage. We adapted basic statistical techniques and created indicative 

summaries based on two levels of processing: sentence scoring and section scoring. The 

structure is preserved in the output summaries by providing the context of extracted 

sentences in the form of headings and subheadings. The effectiveness of the proposed 

system was compared with Google extracts and unstructured summaries of the same size 

on task-based evaluations using a Web-based interface. We used a within subjects design 

and the recent relevance prediction approach. The approach has been applied to Turkish 

document collections and queries as well as English ones. This makes it the first automatic 

summarization study of Turkish targeting Web search. 

 

The overall performance of the proposed summarization approach was measured 

about 75-90%. This corresponds to a significant performance improvement compared with 

a state-of-the-art search engine, Google. Also, there was a statistically significant 
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performance gain when the document structures were preserved as compared to 

unstructured summaries. The accuracy obtained in the structural processing stage was also 

proved to be an acceptable performance for the summarization phase: the results of using 

the proposed structural processing are very close to the results where manually identified 

hierarchical structures of documents are used. This indicates that the errors of hierarchy 

extraction step can well be tolerated during later processing. Thus, we conclude that 

structure-preserving and query-biased summarization, as a fully automatic method, greatly 

influences the accuracy of Web search tasks.  

 

The experiments also showed that the proposed system has acceptable user response 

times despite the much longer summary sizes compared to search engine extracts. Thus, 

we have reached our main goals for summarization as defined in Chapter 6; that is, to 

enable users to make more accurate relevance judgments as compared to search engine 

extracts in reasonable times. The proposed system resulted in great reduction in false 

negative rates; i.e., reducing the cases where the users miss relevant results. Also, the 

system usually resulted in reduced false positive rates, causing users to spend less time 

with irrelevant items. Finally, the user ratings also showed that the proposed system 

summaries are found to be more helpful than other system summaries. Time complexity 

analysis for the proposed system revealed that it is a practical approach which can be 

incorporated into a search engine. The structural processing stage can be performed offline 

and once; the summarization stage has linear time complexity. 

 

In addition to the domain of search engines, the proposed approach can also be 

utilized in several other fields related to document processing. Information systems where 

large amounts of document need to be analyzed such as library systems, law, and medicine 

are the typical candidates. The methods proposed in this study allow browsing large 

documents with the help of the structural information. The structural information may also 

be used for classification and indexing of documents. Also, the summaries provided by the 

system can be taken as an outline in creating manual summaries. The proposed system has 

applications including display of Web content on small-screen devices such as PDAs. 
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There may be two directions for future work: structural processing and summary 

extraction. An issue in structural processing is to correctly identify some document 

components commonly encountered in Web pages, such as identification of menus, 

references and advertisements. Here, we have a heuristic-based approach which can be 

extended using machine learning. Such information can also be used in the summarization 

process to eliminate irrelevant information and improve the summaries. Currently, phrases 

in queries and stemming are used as linguistic information in the summarization process. 

The summarization approach can be extended using linguistic information in syntactic and 

semantic levels; such as incorporation of syntactic phrases and WordNet [45]. As an 

example, query terms can be extended using synonyms, “is-a” and “part-of” relations 

based on WordNet. New query-biased methods may be developed for the scoring of 

sentences. The effects of different search tasks, such as searching for a particular fact or 

searching for background information about a subject, can be investigated to refine the 

system. Also, the effects of different document types (i.e. genre) can be considered for 

summarization. Finally, another issue is the automatic evaluation of the summaries. 
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APPENDIX A:  QUERIES USED IN THE EXPERIMENTS 
 

 

A.1.  Turkish Queries 

 

Q1: 

Title: Tsunami 

Description: Güney Asya’yı 26 Aralık 2004’te vuran büyük Tsunami faciası ve bu facianın 

sonuçları.  

Narrative: Güney Asya’da 26 Aralık 2004 tarihinde meydana gelen 8.9 büyüklüğündeki 

deprem ve bu deprem sonrasında oluşan dev dalgalar, bu facia sonrasında hangi ülkede kaç 

kişinin öldüğüne dair bilgiler, ve afetten sonra diğer ülkeler tarafından yapılan yardımları 

içeren bir doküman. 

 

Q2: 

Title: Ekonomik kriz 

Description: Türkiye'de ekonomik krize neden olan olaylar. 

Narrative: Türkiye'de son bir kaç yıl içinde olan ekonomik krizlerin nedenleri ve bunlara 

zemin hazırlayan olaylar. 

 

Q3: 

Title: Türkiye'de meydana gelen depremler  

Description: Türkiye'de meydana gelen depremlerin insanlar üzerindeki etkileri ve bu 

depremlere karşı alınan önlemler. 

Narrative: Türkiye'de meydana gelen depremlere karşı insanların aldığı eğitim ve önlemler. 

Depremlerin, meydana geldikten sonra insanlarda bıraktığı etkiler ve devletin 

depremlerden sonra aldığı önlemler. 

 

Q4: 

Title: Sanat ödülleri 

Description: Türkiye'de edebiyat, müzik, resim, sinema gibi sanat dallarında verilmiş 

ödüller.  



115 
 

Narrative: Türkiye'de sanatın değişik dallarına ne gibi ödüller, hangi yıllarda kimlere 

verilmiş. Bu ödüllerin sebepleri, sonuçları, etkileri... 

 

Q5: 

Title: Bilişim eğitimi ve projeleri 

Description: Türkiye'de yapılan bilişim eğitimi ve bilişim projeleri, bu eğitimin ve 

projelerin kaliteleri ve sanayiye katkıları 

Narrative: Türkiye'de yapılan bilişim eğitimi ve projelerinin süreçleri, sorunları ve ülkeye 

sağladığı katkılar. Bu eğitimin ve projelerin yaygınlaştırılması konusunda görüş ve öneriler 

 

A.2.  English Queries 

 

Q1: 

Title: Hubble Telescope Achievements  

Description: Identify positive accomplishments of the Hubble telescope since it was 

launched in 1991.  

Narrative: Documents are relevant that show the Hubble telescope has produced new data, 

better quality data than previously available, data that has increased human knowledge of 

the universe, or data that has led to disproving previously existing theories or hypotheses. 

Documents limited to the shortcomings of the telescope would be irrelevant. Details of 

repairs or modifications to the telescope without reference to positive achievements would 

not be relevant. 

 

Q2: 

Title: Best Retirement Country  

Description: Aside from the United States, which country offers the best living conditions 

and quality of life for a U.S. retiree?  

Narrative: A relevant document will contain information describing the living conditions 

and/or costs in one or more foreign countries.  It will provide information that a potential 

retiree could use in deciding where to establish a retirement home. 

 

Q3: 

Title: Literary/Journalistic Plagiarism  
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Description: Find instances of plagiarism in the literary and journalistic worlds.  

Narrative: A relevant document will report any occasion or suspected instance of 

plagiarism in the areas of either literature or journalism. Relevant documents will also 

include such areas as doctorate and master's theses and will encompass writings as well as 

the ideas and concepts developed by some authors and taken or borrowed by others 

without attribution. 

 

Q4: 

Title: Mexican Air Pollution  

Description: Mexico City has the worst air pollution in the world.  Pertinent Documents 

would contain the specific steps Mexican authorities have taken to combat this deplorable 

situation. 

Narrative: Relevant documents would discuss the steps the Mexican Government has taken 

to alleviate the air pollution in Mexico City.  Steps such as reducing the number of 

automobiles in the city, encouraging the use of mass public transportation, and creating 

new mass transportation systems are relevant, among others.  Mention of any new methods 

in the design stage would also be appropriate. 

 

Q5: 

Title: Antibiotics Bacteria Disease  

Description: Determine the reasons why bacteria seems to be winning the war against 

antibiotics and rendering antibiotics now less effective in treating diseases than they were 

in the past.  

Narrative: A relevant document will address the questions of how and why, and to what 

degree, bacteria are able to fend off the curative effects of antibiotics.  Overuse of 

antibiotics, as well as the increasing use of antibiotics in promoting the growth of crops 

and animals whose food products are meant for human consumption have played roles in 

creating a situation where every known bacteria-generated disease now has versions that 

resist at least one of the more than 100 antibiotics now in use. 

 

Q6: 

Title: Abuses of E-Mail  
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Description: The availability of E-mail to many people through their job or school 

affiliation has allowed for many efficiencies in communications but also has provided the 

opportunity for abuses.  What steps have been taken world-wide by those bearing the cost 

of E-mail to prevent excesses?  

Narrative: To be relevant, a document will concern dissatisfaction by an entity paying for 

the cost of electronic mail.  Particularly sought are items which relate to system users (such 

as employees) who abuse the system by engaging in communications of the type not 

related to the payer's desired use of the system. 

Q7: 

Title: declining birth rates  

Description: Do any countries other than the U.S. and China have a declining birth rate?  

Narrative: To be relevant, a document will name a country other than the U.S. or China in 

which the birth rate fell from the rate of the previous year.  The decline need not have 

occurred in more than the one preceding year. 

 

Q8: 

Title: human genetic code  

Description: What progress is being made in the effort to map and sequence the human 

genetic code?  

Narrative: Documents must discuss specific progress in mapping the human genome. 

 Documents that simply describe applications of the research, such as using DNA in 

criminal cases, using the genetic code to treat disease, or creating genetically engineered 

organisms are irrelevant. 

 

Q9: 

Title: mental illness drugs 

Description: Identify drugs used in the treatment of mental illness.  

Narrative: A relevant document will include the name of a specific or generic type of 

drug. Generalities are not relevant. 

 

Q10: 

Title: literacy rates Africa  

Description: What are literacy rates in African countries?  
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Narrative: A relevant document will contain information about the literacy rate in an 

African country. General education levels that do not specifically include literacy rates are 

not relevant. 

 

Q11: 

Title: robotic technology   

Description: What are the latest developments in robotic technology?  

Narrative: A relevant document will contain information on current applications of robotic 

technology.  Discussions of robotics research or simulations of robots are not relevant. 

 

Q12: 

Title: creativity   

Description: Find ways of measuring creativity.  

Narrative: Relevant items include definitions of creativity, descriptions of characteristics 

associated with creativity, and factors linked to creativity. 

 

Q13: 

Title: tourism increase  

Description: What countries are experiencing an increase in tourism?  

Narrative: A relevant document will name a country that has experienced an increase in 

tourism. The increase must represent the nation as a whole and tourism in general, not be 

restricted to only certain regions of the country or to some specific type of tourism (e.g., 

adventure travel).  Documents discussing only projected increases are not relevant. 

 

Q14: 

Title: newspapers electronic media  

Description: What has been the effect of the electronic media on the newspaper industry?  

Narrative: Relevant documents must explicitly attribute effects to the electronic media: 

information about declining readership is irrelevant unless it attributes the cause to the 

electronic media. 

 

Q15: 

Title: wildlife extinction  
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Description: The spotted owl episode in America highlighted U.S. efforts to prevent the 

extinction of wildlife species.  What is not well known is the effort of other countries to 

prevent the demise of species native to their countries.  What other countries have begun 

efforts to prevent such declines?  

Narrative: A relevant item will specify the country, the involved species, and steps taken to 

save the species. 

 

Q16: 

Title: R&D drug prices  

Description: Identify documents that discuss the impact of the cost of research and 

development (R&D) on the price of drugs.  

Narrative: Documents that describe how any aspect of the development of a drug affects its 

price are relevant. Documents that discuss other factors that affect drug prices, such as 

advertising, without also discussing R&D costs, are not relevant. 

 

Q17: 

Title: Amazon rain forest  

Description: What measures are being taken by local South American authorities to 

preserve the Amazon tropical rain forest?  

Narrative: Relevant documents may identify: the official organizations, institutions, and 

individuals of the countries included in the Amazon rain forest; the measures being taken 

by them to preserve the rain forest; and indications of degrees of success in these 

endeavors. 

 

Q18: 

Title: osteoporosis  

Description: Find information on the effects of the dietary intakes of potassium, 

magnesium and fruits and vegetables as determinants of bone mineral density in elderly 

men and women thus preventing osteoporosis (bone decay).   

Narrative: A relevant document may include one or more of the dietary intakes in the 

prevention of osteoporosis. Any discussion of the disturbance of nutrition and mineral 

metabolism that results in a decrease in bone mass is also relevant. 
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Q19: 

Title: alternative medicine  

Description: What forms of alternative medicine are being used in the treatment of 

illnesses or diseases and how successful are they?  

Narrative: A relevant document should identify a form of alternative medicine which is 

being utilized in the treatment of a disease or illness, identify the illness or disease being 

treated, and provide an indication of the success of the procedure. 

 

Q20: 

Title: health and computer terminals   

Description: Is it hazardous to the health of individuals to work with computer terminals on 

a daily basis?  

Narrative: Relevant documents would contain any information that expands on any 

physical disorder/problems that may be associated with the daily working with computer 

terminals. Such things as carpel tunnel, cataracts, and fatigue have been said to be 

associated, but how widespread are these or other problems and what is being done to 

alleviate any health problems. 

 


