PAGE
11

2. BACKGROUND

This section gives background information on subjects related to this study. After a brief introduction to artificial life, genetic algorithms, artificial neural networks and evolution techniques of ANN’s are introduced.

2.1. Artificial Life

A definition of artificial life (AL) was given by Langton [1]:

 “Artificial Life is the study of man-made systems that exhibit behaviors characteristic of natural living systems. It complements the traditional biological sciences concerned with the analysis of living organisms by attempting to synthesize life-like behaviors within computers and other artificial media. By extending the empirical foundation upon which biology is based beyond the carbon-chain life that has evolved on Earth, Artificial Life can contribute to theoretical biology by locating life-as-we-know-it within the larger picture of life-as-it-could-be.”

But there is not a consensus, even among workers in the field, on exactly what artificial life is, and many of its central concepts and working hypotheses are controversial. As a consequence, the field itself is evolving from year to year.
2.2. Genetic Algorithms

Genetic algorithms are computational models of evolution that play a central role in many artificial-life models. John Holland's pioneering book Adaptation in Natural and Artificial systems [2] showed how the evolutionary process can be applied to solve a wide variety of problems using a highly parallel technique that is now called the genetic algorithm.

The genetic algorithm transforms a population of individual objects, each with an associated fitness value, into a new generation of the population using the Darwinian principle of reproduction and survival of the fittest and naturally occurring genetic operations such as crossover and mutation. Each individual in the population represents a possible solution to a given problem. The genetic algorithm attempts to find a good solution to the problem by genetically breeding the population of individuals. Figure 2.1 shows the genetic algorithm. This algorithm runs until an individual becomes fit enough.

Figure 2.1. Genetic Algorithm

The genetic algorithm involves probabilistic steps for at least three points in the algorithm, namely creating the initial population, selecting individuals from the population on which to perform each genetic operation (e.g., reproduction, crossover), and choosing a point (i.e., the crossover point or the mutation point) within the selected individual at which to perform the genetic operation. As a result of the probabilistic nature of the genetic algorithm, it may be necessary to make multiple independent runs of the algorithm in order to obtain a satisfactory result for a given problem.

Before we can apply genetic algorithm to a problem, we need to determine how to do the followings:

· Fitness function

· Representation of individuals

· Selection of individuals

· Reproduction of individuals

Fitness function depends on the problem, but in any case, it is a function that takes an individual as input and returns a number as output.

In the conventional genetic algorithm, the individuals in the population are usually fixed-length character strings patterned after chromosome strings. Thus, specification of the representation scheme in the conventional genetic algorithm starts with a selection of the string length L and the alphabet size K. Often the alphabet is binary, so K equals 2. The most important part of the representation scheme is the mapping that expresses each possible point in the search space of the problem as a fixed-length character string (i.e., as a chromosome) and each chromosome as a point in the search space of the problem. Selecting a representation scheme that facilitates solution of the problem by the genetic algorithm often requires considerable insight into the problem and good judgment.

The selection strategy is usually randomized, with the probability of selection proportional to fitness. That is if individual x is scores twice as high as y on the fitness function than x is twice as likely to be selected for reproduction than y is. Usually selection is done with replacement, so that a very fit individual will get to reproduce several times.

Reproduction is accomplished by crossover and mutation. First, all the individuals that have been selected for reproduction are randomly paired. Then for each pair, a crossover point is randomly chosen. If the genes of each parent are numbered from one to N the crossover point is a number in that range. If that number is M then one offspring will get the genes one through M from the first parent and the rest the second parent. The second offspring will get genes 1 through m from second parent and the rest from the first. After that each gene can be altered by random mutation to a different value, with small independent probability. Figure 2.2 shows the crossover and mutation operators in action

	1
	0
	0
	1
	1
	0
	1
	0
	1
	0
	0
	1
	0

Genes 1

	1
	0
	1
	0
	0
	1
	1
	0
	1
	1
	0
	1
	0

Genes 2

	1
	0
	0
	1
	0
	1
	1
	0
	1
	1
	0
	1
	0

Offspring 1

	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	0
	1
	0

Offspring 2

	1
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	1
	0

Offspring 1

	1
	0
	1
	0
	1
	0
	1
	1
	1
	0
	0
	1
	0

Offspring 2

Figure 2.2. Crossover and mutations operators

2.3. Artificial Neural Networks

This section gives the terminology and background information for the artificial neural networks.

2.3.1. Architecture

Neural networks provide a biologically inspired model of computation. They are composed of neurons connected together by axons. The neurons are simple processing units and the axons are communication pathways between neurons. Neurons apply a transfer function over the sum of their inputs. Transfer functions can be a variety of functions, but are often a sigmoid function for second order differentiability reasons. Neurons output a signal, which is a function of the sum of the inputs, as shown in Figure 2.3.

Figure 2.3. An artificial neuron

This function can be formulated as:

ai = g(inpi) = g (Wji aj

(2.1)

where ai denotes the activation value of the node i, Wji is the weight of the link from neuron j to neuron i, and g is the activation function.

ANNs can be divided into feed forward and recurrent classes according to their connectivity. An ANN is feed forward if there exists a method, which numbers all the nodes in the network such that there is no connection from a node with a large number to a node with a smaller number. All the connections are from nodes with small numbers to nodes with larger numbers. An ANN is recurrent if such a numbering method does not exist. The architecture of an ANN is determined by its topological structure, i.e., the overall connectivity and transfer function of each node in the network. In this thesis only feed forward networks were used. An example ANN is shown in figure 2.4.

The ANN shown in figure 2.4 is a feed forward network. But it is not a strictly layered network. In a strictly layered network, the nodes are arranged several layers. Connections may only exist to the nodes of the following layer. Yet in our case, there is a connection from the input layer to the output layer. You may call it a layered network, because the nodes of each layer are not interconnected. The nodes that lie between input and output nodes are called hidden nodes.

Figure 2.4. An example feed forward ANN

2.3.2. Learning in ANN

Learning in ANNs is typically accomplished using examples. This is also called training in ANNs because the learning is achieved by adjusting the connection weights in ANNs iteratively so that trained (or learned) ANNs can perform certain tasks. Learning in ANNs can roughly be divided into supervised, unsupervised, and reinforcement learning. Supervised learning is based on direct comparison between the actual output of an ANN and the desired correct output, also known as the target output. It is often formulated as the minimization of an error function such as the total mean square error between the actual output and the desired output summed over all available data. A gradient descent based optimization algorithm such as back propagation [3] can then be used to adjust connection weights in the ANN iteratively in order to minimize the error. Reinforcement learning is a special case of supervised learning where the exact desired output is unknown. It is based only on the information of whether or not the actual output is correct. Unsupervised learning is solely based on the correlations among input data. No information on “correct output'” is available for learning.

The essence of a learning algorithm is the learning rule, i.e., a weight updating rule which: determines how connection weights are changed. Examples of popular learning rules include the delta rule, the Hebbian rule, the antiHebbian rule, and the competitive learning rule [4].

Donald Hebb [5] developed the first set of ideas on learning for networks. Hebb proposed that a reasonable and biologically plausible physical change that would occur to a neural network under learning conditions would be to strengthen the connections between elements of the network only when both the presynaptic and postsynaptic units were active simultaneously. The essence of Hebb's ideas still persists today and any learning of this type is referred to as ”Hebbian Learning”. The ways of changing the weights of the connections in networks today may be different, but the notion that the strength of connections between the units must change in response to some matched activity of the other connected units still dominates learning models. A new version of Hebbian learning is developed and used in the ANN structures used in the work of this thesis.

2.4. Evolution of Artificial Neural Networks

Evolution works on a set of different solutions, also called individuals. All the individuals form a population. To each of the individuals we can assign a fitness value. We have to differentiate between two representations of an individual: genotype and phenotype representation. The genotype representation encodes a phenotype. It corresponds to the chromosome in biological evolution. In order to calculate the fitness we have to transform the genotype representation to the corresponding phenotype representation.

Evolution has been introduced into ANNs at roughly two different levels: connection weights and architectures. The evolution of connection weights introduces an adaptive and global approach to training, especially in the reinforcement learning and recurrent network-learning paradigm where, gradient-based training algorithms often experience great difficulties. The evolution of architectures enables ANNs to adapt their topologies to different tasks without human intervention, and thus provides an approach to automatic ANN design as both ANN connection weights and structures can be evolved.

The structure that is chosen to hold the genetic information that will be evolved by the GA is the key to the type of solution that is evolved. There are two principal methods, which can be used to store the genotype. The first method is referred to as direct encoding and stores all the neuron connections earning in a structure. The second method is indirect encoding and (normally) involves the use of a mapping function, which generates neural networks (sometimes both architecture and weights) from a parameter set.

In the following sections, first the two ANN encoding methods will be introduced. After that the evolution algorithms on these encoding methods will be discussed

2.4.1. Direct Encoding

Two different approaches have been taken in the direct encoding scheme. The first separates the architectures (structures) from the connection weights. This results in the separate evolution of architecture from the weights [6,7,8,9,10]. The second approach encodes and evolves architectures and connection weights simultaneously [11,12,13,14,15].

In the first approach, each connection of a structure is directly specified by its binary representation. For example, an N x N matrix C= (cij)NxN can represent an ANN architecture with N nodes, where cij indicates presence or absence of the connection from node i to node j. We can use cij = 1 to indicate a connection and cij = 0 to indicate no connection. In fact, cij can represent real valued connection weights from node i to node j so that the architecture and connection weights can be evolved simultaneously and this becomes the second approach.

Each matrix C has a direct one-to-one mapping to the corresponding ANN architecture. The binary string representing a structure is the concatenation of rows (or columns) of the matrix. Constraints on architectures being explored can easily be incorporated into such a representation scheme by imposing constraints on the matrix, e.g., a feed forward ANN will have nonzero entries only in the upper right triangle of the matrix. This property is also used in the architectures defined in this thesis. Figures 2.5 give an example of the direct encoding scheme of ANN architectures. It is obvious that such an encoding scheme can handle both feed forward and recurrent ANNs.

Figure 2.5. Direct encoding example of a feed forward ANN. (a) shows the architecture, (b) connectivity matrix and (c) binary string representation

Since the ANN is feed forward, we only need to represent the upper triangle of the connectivity matrix in order to reduce the chromosome length. The reduced chromosome is given by Figure 2.5(c). A genetic algorithm can then be employed to evolve a population of such chromosomes. In order to evaluate the fitness of each chromosome, we need to convert a chromosome back to an ANN, initialize it with random weights, and train it. The training error will be used to measure the fitness.

If we use real numbers in the matrix instead of bits we can encode the connection weights with the architecture. A zero value can represent the absence of a connection and a value other than zero can represent both the existence of a connection and the weight of it. When this method is used the genetic operators become important, but there is no conflict about what is actually being changed when crossover and mutation are applied.

The direct encoding scheme as described above is quite straightforward to implement. It is very suitable for the precise and fine-tuned search of a compact ANN architecture, since a single connection can be added or removed from the ANN easily. It may facilitate rapid generation and optimization of tightly pruned interesting designs [7].

One potential problem of the direct encoding scheme is scalability. A large ANN would require, a very large matrix and thus increase the computation time of the evolution. One way to cut down the size of matrices is to use domain knowledge to reduce the search space. For example, if complete connection is to be used between two neighboring layers in a feed forward ANN, its architecture can be encoded by just the number of hidden layers and nodes in each hidden layer. The architecture described in section 4.2.1 is encoded using this technique. The length of chromosome can be reduced greatly in this case. But run the risk of missing some very good solutions when we restrict the search space manually.

2.4.2. Indirect Encoding

In order to reduce the length of the genotypical representation of architectures, many researchers have used the indirect encoding scheme where only some characteristics of architecture are encoded in the chromosome. The details about each connection in an ANN is either predefined according to prior knowledge or specified by a set of deterministic developmental rules. The indirect encoding scheme can produce more compact genotypical representation of ANN architectures, but it may not be very good at finding a compact ANN with good generalization ability. Some [16,17] have argued that the indirect encoding scheme is biologically more plausible than the direct one, because it is impossible for genetic information encoded in chromosomes to specify independently the whole nervous system according to the discoveries of neuroscience.

An indirect encoding scheme is parametric representation. ANN architectures may be specified by a set of parameters such as the number of hidden layers, the number of hidden nodes in each layer, the number of connections between two layers, etc. These parameters can be encoded in various forms in a chromosome. Harp et al. [18,19] used a “blueprint” to represent a structure, which consists of one or more segments representing an area (layer) and its efferent connectivity (projections). Although the parametric representation method can reduce the length of binary chromosome specifying ANN's architectures, GAs can only search a limited subset of the whole feasible architecture space. For example, if we encode only the number of hidden nodes in the hidden layer, we may basically assume strictly layered feed forward ANNs with a single hidden layer. In general, the parametric representation method will be most suitable when we know what kind of architectures we are trying to find.

Another indirect encoding method is to encode developmental rules, which are used to construct architectures, in chromosomes [16,20]. The shift from the direct optimization of architectures to the optimization of developmental rules has brought some benefits, such as more compact genotypical representation, to the evolution of architectures. The destructive effect of crossover will also be lessened since the developmental rule representation is capable of preserving promising building blocks found so far [16].

2.4.3. Evolution of Weights

Weight training in ANNs is usually formulated as minimization of an error function, such as the mean square error between target and actual outputs averaged over all examples, by iteratively adjusting connection weights. Most training algorithms, such as back propagation are based on gradient descent. But BP has drawbacks due to its use of gradient descent. It often gets trapped in a local minimum of the error function and is incapable of finding a global minimum if the error function is multimodal and/or nondifferentiable.

One way to train ANNs is to adopt evolutionary artificial neural networks (EANN), i.e., to formulate the training process as the evolution of connection weights in the environment determined by the architecture and the learning task. Genetic algorithms can then be used effectively in the evolution to find a near optimal set of connection weights. The fitness of an ANN can be defined according to different needs. Two important factors, which often appear in the fitness function, are the error between target and actual outputs and the complexity of the ANN.

The evolutionary approach to weight training in ANNs consists of two major phases. The first phase is to decide the representation of connection weights, i.e., whether in the form of binary strings or not. The second one is the evolutionary process simulated by a GA, in which genetic operators such as crossover and mutation have to be decided in conjunction with the representation scheme. Different representations and search operators can lead to quite different training performance. The different representation schemes are described in section 2.4.1 and 2.4.2.

2.4.4. Evolution of Architectures

The architecture rain of an ANN includes its connectivity, and the transfer function of each node in the ANN. Architecture design is crucial in the successful application of ANNs because the architecture has significant impact on a network's information processing capabilities. Given a learning task, an ANN with only a few connections and linear nodes may not be able to perform the task at all due to its limited capability, while an ANN with a large number of connections and nonlinear nodes may over fit noise in the training data and fail to have good generalization ability.

Similar to the evolution of connection weights, two major phases involved in the evolution of architectures are the genotype representation scheme of architectures and the GA used to evolve ANN architectures. One of the key issues in encoding ANN architectures is to decide how much information about an architecture should be encoded in the chromosome. At one extreme, all the details, i.e., every connection and node of an architecture can be specified by the chromosome. This kind of representation scheme is called direct encoding as stated earlier in section 2.4.1. At the other extreme, only the most important parameters of an architecture, such as the number of hidden layers and hidden nodes in each layer are encoded. Other details about the architecture are left to the training process to decide. As it is stated in section 2.4.2 this kind of representation scheme is called indirect encoding. After a representation scheme has been chosen, the evolution of architectures can progress according to the genetic algorithm.

2.4.5. Evolution of Architectures with Weights

Connection weights have to be learned after a near optimal architecture is found. This is especially true if one uses the indirect encoding scheme. One major problem with the evolution of architectures without connection weights is noisy fitness evaluation [14]. In other words, fitness evaluation is very inaccurate and noisy because a phenotype's fitness is used to approximate its genotype's fitness.

One way to alleviate this problem is to evolve ANN architectures and connection weights simultaneously. In this case, each individual in a population is a fully specified ANN with complete weight information. Since there is a one-to-one mapping between a genotype and its phenotype, fitness evaluation is accurate. This technique is used in this thesis is described in section 4.2.3.

(c)

(b)

(a)

11110 0011 011 01 0

0 1 1 1 1 0

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

Outputs

ai

aj

Wji

Inputs

	 		 g

 ∫

summation activation

4

5

6

3

1

1

2

4

5

6

3

2

j

Crossover

Mutation

Reproduce Childs

(Crossover,Mutation)

Reproduce Childs

(Crossover,Mutation)

Select Parents

Assign Fitness Values

Generate Initial Population

