PAGE
32

4. DESIGN OF THE ARTIFICIAL LIFE WORLD

This section gives the details of the of the artificial life world designed for this thesis.

4.1. Overview

ALW is a complex system consists of agents (carnivorous, herbivorous) and plants. Agents and plants live on a 2 dimensional hypothetical world. Plants are randomly scattered around the world and emerges at a random point on the world when they are eaten or died because of decay. Agents try to continue their life by eating and mating. They use vision as input to their artificial neural network brain, which utilizes Hebbian learning [5] at its connection weights. The output of the brain determines the behavior of the agent. Vision information is produced by constructing a pixel map of the world from the agent’s point of view by considering direction and view angle of that organism.

Agents have energy levels. This energy decreases with each action they perform (even doing nothing). They increase their energy level by eating. Carnivorous (from now on they will be called as predators) can eat herbivorous (from now on they will be called as preys) and also dead predators. Preys eat only plants. When agents are died they turn into food for predators. So predators can kill and eat other agents for replenishing their energies.

Agents, which have more than a certain energy level, can mate. If two agents have this ability and they are close enough to each other and also if both of them want to mate, they mate. Reproduction occurs by taking the genetic material from the two parent agents, subjecting them to crossover and mutation, and than expressing the new chromosome (genes) as a child agent.

Each agent has a chromosome and this chromosome determines the structure of that agents’ artificial neural network brain. Several distinct ANN encoding schemes are developed and used in this study and some of them store the weights of the ANN in the chromosome and some not. But all of them fully specify the architecture of the neural network.

The genes passing to the further generations are done by reproduction. And this is done by similar to the nature. Agents have to find their mates themselves. And for an agent to find a mate successfully, it must travel and search for a mate. To do this it must have energy and to gain energy it must eat something. To eat something it must search for food. And if that agent does these actions it can be considered as enough fit agent to be selected as a parent. This is also describes the nature’s way of selecting the parents to produce children. No fitness function is used to manually mate the fittest agents. But only for some specified period of time, a minimum number of agents are preserved according to a fitness function. Until this period ends if the number of agents decrease too much that a lower limit exceeded, a new agent is selected from living agents of the world and a clone of it is inserted to the world at a random location. This is because when a world starts, all of its agents are created from scratch with random neural network architectures and random weights. And most of these agents are not capable of surviving and even approximately half of them cannot move until they die. So choosing a more capable of agents at the beginning of simulation increases the chance of reaching successful breeds. This fitness function rewards agents for eating, mating and moving with more points to eating and mating.

4.2. Genetics

Each agent has a chromosome consists of genes that encode its neural architecture. Three different structures and encoding schemes used in this work for representing the ANN architecture.

4.2.1. Fixed Architecture

First of theses structures use a fixed, fully connected, strictly layered feed-forward ANN. Genetic code stores only the weights of the connections. Weights stored as real values in an array of constant length in contrast to bit string. There are some studies on the evolution of artificial neural networks that uses real values as the weights and there are some uses bit strings as mentioned in section 2.4.

Number of input neurons and output neurons are fixed. Number of hidden layers and number of neurons in each hidden layer can be specified before simulation starts. When a network created its weights are initialized with a real number selected from a range of uniform distributed real numbers. Range of numbers can be specified before simulation runs and typically gets the values from the interval like [-3.0,3.0). When two agents mate their genes are subjected to crossover and mutation operators to get the genes of the child agent. Crossover is applied to the genes array directly for this architecture. The maximum number of crossover and probability of happening a crossover when producing the new genome can be specified globally. Typical crossover rate values used in the experiments were changed from 10 per cent to 40 per cent. Mutation operator and the mutation rate can also be specified globally. Mutation rates tested in this study changed between five per cent and 25 percent. And as the mutation operator we generally simply change the sign of the weight.

4.2.2. Evolving Architecture without Weights Encoded

Second structure uses an encoding schema that encodes the existence of the connections between neurons. Weights of the connections are not encoded in the chromosome. Architecture is feed-forward as in the previous architecture. But this time it is not fully connected and strictly layered. Hidden layers can still said to exist but this time a neuron can have connections to the neurons in layers, which are not a neighbor to the layer of that neuron. Here, a layer is a neighbor of another one if that layer is just precedes or proceeds the other layer.

Chromosome is a bit string, that each bit represents the existence of a connection between some neurons. Chromosome is produced from a matrix representation of the neural network. Figure 4.2. shows a matrix that represents the ANN showed in figure 4.1. While generating chromosome we use some known features of structure of the underlying neural network to shorten the length of the bit string. The network can be represented by a matrix of NxN (N is the number of neurons in the network) bits. But we take advantage of our neural networks feed-forward structure: neurons can be connected to other neurons only in one direction. So we need only an upper triangular matrix to represent a feed-forward network. In addition to that we also know that no connection goes into input neurons from other neurons. And no connection goes out from output neurons to other neurons. By using that feature we can decrease de column and row sizes of the representation matrix. Since we don’t have any connection to the input neurons we can omit the first i columns of the matrix (i is the number of input neurons). Again we don’t have any connections from the output neurons so we omit the last o rows from the matrix (o is the number of output neurons). In figure 4.2. gray shaded cells shows the representation matrix used for the ANN of figure 4.1.

Figure 4.1. A sample feed-forward artificial neural network

	Neurons
	1
	2
	3
	4
	5
	6

	Input
	1
	0
	0
	1
	0
	0
	1

	
	2
	0
	0
	1
	1
	1
	0

	3
	0
	0
	0
	1
	0
	1

	4
	0
	0
	0
	0
	0
	1

	Output
	5
	0
	0
	0
	0
	0
	0

	
	6
	0
	0
	0
	0
	0
	0

Figure 4.2. Connection matrix representing the ANN of figure 4.1.

When constructing chromosome we both of these properties to minimize the length. Construction of chromosome is done by taking the columns of the connection matrix and appending them one after one. So the bit string that constructs the chromosome of the ANN shown in figure 4.1. can be written as;

11 011 0100 1011

The reason of adding columns together instead of rows is to hold all the connections to a neuron in a group. This gains us an advantage when new chromosomes are produced from this chromosome by using crossover. With this structure we can group these connections as functional units and can preserve their structure while performing crossover operation on them. Crossover operator does not divide the chromosome at these functional units so the connections of a neuron stay intact after a crossover. An example crossover is shown at figure 4.3. Functional groups are shown with different tones.

	1
	1
	0
	1
	1
	0
	1
	0
	0
	1
	0
	1
	1

Chromosome 1

	1
	0
	1
	1
	0
	0
	1
	1
	1
	0
	0
	1
	0

Chromosome 2

	1
	1
	0
	1
	1
	0
	1
	1
	1
	0
	0
	1
	0

Child chromo.

Figure 4.3
Applying crossover operator

4.2.3. Evolving Architecture with Weights Encoded
This structure is very similar to the one described in section 4.2.2. The difference is that chromosome also holds the weight information as well as connection information. Weights are stored in real number format. The bits in the architecture of section 4.2.2. are replaced by real numbers in this architecture. If a connection exists between two neurons than its weight is different than zero. A zero value in the matrix and chromosome means that a connection does not exist between two neurons. With this structure successful parents can transfer their connection weights as well as connection architecture to their children. This may help children to adapt more easily to the environment. The effects of this attribute on learning process will be discussed in section 2.4. An example ANN and its corresponding matrix representation are given in figures 4.4. and 4.5 respectively.

Figure 4.4. A sample feed-forward artificial neural network with real valued weights

	Neurons
	3
	4
	5
	6
	7
	8

	Input
	1
	2.2
	3.1
	0
	0.7
	0
	0

	
	2
	0
	-1.4
	2.0
	0
	0
	0

	3
	0
	0
	0
	-2.2
	0
	0

	4
	0
	0
	-1.6
	1.1
	0
	0

	5
	0
	0
	0
	1.9
	0
	-3.0

	6
	0
	0
	0
	0
	4.3
	-1.2

Figure 4.5. Connection matrix representing the ANN of figure 4.4.

Crossover operation performs same as the architecture described in section 4.2.2. Mutation function can be specified globally per simulation as for the architecture of section 4.2.1. We generally add a random number to weight to perform mutation. This has the effect of not only updating the current weight but also can add or remove a connection from the architecture by zeroing the connection weight.

4.3. Neural Systems and Learning

Each agent has a neural network brain that gets its main inputs from the agent’s vision information. Another input is a normalized value of agent’s current energy level. This input may help the agent to plan its movements. If it has plenty of energy it may move to far points or mate with another agent. Although it is not specifically observed that this input is changing the behavior of the agent. Some simulations used the outputs of the network at the previous step as the inputs at the current step to utilize short-term memory.

There are five outputs of the brain that determine the primitive behaviors of the agent. These behaviors are eating, mating, fighting, moving and waiting. The outputs are real numbers changing between zero and one.

There are 16 input neurons 15 of them are the visual information and the one is the current energy level of the agent as stated before. Optionally there can be six more inputs come from the outputs of the brain calculated at one step before the current step. The connections of the input and output neurons to the input neurons are determined at the genes of the agent as specified in section 4.2. The connections and their weights are determined randomly when the agent created. There is no predefined functionality of internal neurons and connections. Their functionality is determined by evolution.

Bias values of each neuron changes during the simulation with the change of weights. Biases are connected to the neuron as if they are a synaptic connection from another neuron. This way bias values can be updated using the same learning technique of the updating weights.

When simulation runs, at each time step input neurons are set to the values of the vision information and agent’s current energy level. Activation values of the neurons are calculated according to formula:

y(i) = (ajt * wji

 (4.1)

ai t+1 = 1 / (1 + e –(*y(i))

(4.2)

where ajt is the activation value of neuron j at time t, wji is the weight of the connection from neuron j to neuron i at time t, ai t+1 is the activation value of neuron i at time t+1, and (is the logistic slope. The second formula is the well-known sigmoid function.

Brain can learn in two forms: short-term learning and long-term learning. Long-term learning is the learning by evolution. It is developed by natural selection as the genes of more fit agents are carried to the next generations. Short-time learning is the learning of an individual agent for the duration of its life. Hebbian learning [5] is adopted for short time learning in this thesis work. Weights (and bias) are updated by a Hebbian learning rule as in the PolyWorld [26] and Linsker’s work [30,31,32]. Linsker in his work demonstrated that Hebbian learning can self-organize important types of neural response patterns observed in early visual systems of real organisms. Hebbian learning is an unsupervised learning technique. That means that no external judgment is done for the outputs of the ANN and no external help is provided to the ANN to change its outputs. In this work it must be this way because in real life most of the times organisms must learn without a supervisor.

Hebbian learning adjusts the network's weights (synaptic efficacies) such that its output reflects its familiarity with an input. The more probable an input, the larger the output will become (on average). It makes the network responds to the same inputs with the same outputs. And this makes the network more stable.

We can define the Hebbian learning rule as: If xj is the output of the presynaptic neuron, xi the output of the postsynaptic neuron, and wij the strength of the connection between them, and LR learning rate, then according to the Hebbian learning rule

wij (t+1) = wij (t) + LR * aj * ai

(4.3)

This weight update occurs for each neuron at each time step that network calculates its outputs. Here ai and aj can be positive or negative. If they carry different multiplicative signs then weight will be decreased so that the effect of presynaptic neuron on the postsynaptic neuron will be decreased. If they carry the same multiplicative sign than the weight of the connection will be increased so that the effect of presynaptic neuron on the postsynaptic neuron will be increased.

In this thesis work a new version of Hebbian rule is defined:

wijt+1 = wij t + LR * (ajt+1 - ai t)

 (4.4)

where wijt+1 stands for the weight of the connection from neuron i to neuron j at time step (t+1). ajt+1 is the activation value of the neuron j at time step (t+1) and ai t is the activation value of the neuron j at time step t. LR is the learning rate constant defined globally for the simulation. LR typically ranges from 0.0 to 0.3. Weights of the network are updated according to this rule at every step.

Long-term learning is applied with to different techniques in this work. When an agent born its chromosome is constructed by using its parent’s chromosomes. If the connection weights, which are updated during the parent’s lifetime, are used to construct child’s weights, child can learn what its parent have learnt up to that time. This kind of learning is called Lamarckian learning and it is used in this work with the structures of section 4.2.1 and section 4.2.2. If the updated weights during the lifetime of parent do not pass to the child then this kind of learning is called Darwinian and it is used in this work with the structures of the section 4.2.2 and section 4.2.3.

4.4. Senses

The sense information that agents are provided is vision. Vision information is provided by rendering an image of the world from agent’s point of view and using the resulting pixel map as input to the brain. Pixel map consists of 15 pixels. Each pixel holds information about an agent (if there are any) in its view area. This information consists of the type of the agent which current agent sees and its distance to current agent.

Figure 4.6. Vision architecture of agents

Each agent has a view angle, direction angle and a view distance attribute. These attributes define the way the agent sees. The world, which agents live on, is a grid consists of square cells as stated before. View angle is divided by 15 (length of the pixel map) equal angles and the view sight that agent see is divided into 15 equal areas. The cells on the grid that intersects with these areas are checked and if an agent is found in them their type and distance information is assigned to the appropriate pixel of the pixel map.

Pixels have real values. A pixel can have a value from one of three intervals:

[min_prey, max_prey], [min_pred, max_pred],
[min_plant, max_plant].

These values are constant real values and they can change from simulation to simulation. Typically they are [0.0,0.2], [0.4,0.6], [0.8,1.0]. The value of the pixel changes with the distance of the looking agent to the target object. It is calculated by the formula:

p = object_value + (d / view_dist) * object_value_interval

 (4.4)

where p is the pixel value, object_value is the minimum value of the interval for that objects type (i.e. for plants it is 0.8), d is the distance of the object to the looking agent, view_distance is the maximum distance that a prey or predator can see, and object_value_interval is the value of the distance of the intervals (i.e. it is 0.2 = 0.6 - 0.4). Distances are measured in the cell units of the grid that is one side of the square cells length is one unit.

4.5. Behaviors

The agents (preys and predators) have a group of defined simple behaviors. These behaviors are: eating, mating, moving and fighting. Agents are expected to develop complex behaviors using these simple behaviors. An agent can perform only one of these behaviors at a time step. Agents express these simple behaviors by raising the activation level of a predefined output neuron. Each behavior has a specific output neuron for expressing it. When the activation value of that neuron exceeds the predefined threshold then the action associated with that neuron can be activated. There are five output neurons to determine the behavior of the agent. While the first four of them determines the type of behavior fifth is used for only move action. Performing an action can depend on the performing of other actions. All actions have an order of priority and agent’s behavior is determined at a specific time according to this order.

Eating action is considered as the most important action and takes the first place in the order of priority list. Eating is the most important action because all of the agents must eat to continue their lives. When an agent express its eating behavior, the three cells in front of the agent is checked and if an entity is found which can be eaten by this agent then it eats that entity. If there is nothing to eat than agent can try the next action in the priority list: mating. Eating action is actually an energy transfer action. When an agent eats something its energy increases by a predefined value and the energy of the eaten entity is decreased by the same amount. As all of the other actions, eating action makes the agent loose some energy. Preys can only eat plants but predators can eat both preys and other predators.

The next action in the priority list is mating. When an agent does not want to eat or does not find something to eat it is checked if it wants to mate. This check is the control of the one of the specific output neurons. If that neurons activation value exceeds a predefined value than it is understood that it wants to mate. If an agent express mating behavior, the three cells in front of the agent is checked to find an agent of same type, which also wants to mate. If an agent is found with that criterion than these two agents mate to create a new agent. Genes of the child is constructed by using genes of the parents by applying the genetic operators (crossover and mutation) on them. The newborn child is placed some empty place around the parents. The maximum number of agents permitted in the world may affect the outcome of the mating. If number of agents in the world is at the maximum level permitted by the parameters mating is not allowed. This restriction is made to keep the computational resources.

The third action of the priority list is fighting. This action is used for only predators for now. When a predator does not eat or mate it is checked to see if it wants to fight. If it wants to fight the three cells in front of the agent is checked to find another predator. If there is another predator then an energy operation takes place between them. Both of them loose energy by the amount of its rival’s energy. The one with the more energy wins the fight. Looser predator dies immediately and becomes a food item for the predators. If the winner predator express its eating behavior than eat its victim. And this is the one of the complex behaviors expected to be emerge.

The last action is moving. If an agent does not take the other three actions it may move if the activation value of the fourth output neuron exceed a predetermined value. If agent wants to move than the fifth (and the last) output neuron of the network is checked. This neurons activation value determines the direction of the movement. An agent can move to one of the three directions: directly forward, forward and left, forward and right. This movement scheme is used because it makes the agents turn more smoothly and so its visual inputs changes more smoothly. More importantly the smooth turning of agents when they see an object produce better results of behavior because they may reach that object more easily. Other movement schemas were also tried in early stages of work but they were not given this much successful results. One schema were using two output neurons for the direction information and giving complete freedom of direction to the agents.

4

5

6

3

2

1

4

5

6

3

2

1

8

7

-2.2

2.0

-1.4

3.1

0.7

2.2

-3.0

-1.6

4.3

1.9

1.1

Y

Direction Angle

-1.2

X

Ray

Pixel Map

Point of view

View Distance

View Angle

