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Boğaziçi University

2004



ii

A CORPUS-BASED CONCATENATIVE SPEECH SYNTHESIS SYSTEM FOR

TURKISH

APPROVED BY:
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ABSTRACT

A CORPUS-BASED CONCATENATIVE SPEECH

SYNTHESIS SYSTEM FOR TURKISH

Speech synthesis (text-to-speech) is the process of converting the written text

into machine generated synthetic speech. Concatenative speech synthesis systems ren-

der speech by concatenating pre-recorded speech units. Corpus-based methods (unit

selection) use a large inventory to select the units and concatenate. This thesis is part

of an effort to design and develop an intelligible and natural sounding corpus-based

concatenative speech synthesis system for Turkish. The implemented system contains

a relatively simple front-end comprised of text analysis, phonetic analysis, and optional

use of transplanted prosody. The unit selection algorithm is based on commonly used

Viterbi decoding algorithm of the best path in the network of the units. The back-end

is the speech waveform generation based on the harmonic coding of speech and overlap-

and-add mechanism. In this work, the different unit sizes such as syllables, phones and

half-phones have been experimented with. Speech corpus design and recording script

preparation methods have been explained. A speech model based on harmonic coding

of speech has been developed for speech representation and waveform generation. The

harmonic coding has enabled us to compress the unit inventory size by a factor of three.

A Viterbi decoding algorithm using spectral discontinuity cost and prosodic mismatch

objective cost measures has been implemented. A Turkish phoneme set has been de-

signed. Text-to-phoneme conversion for Turkish has been worked on, and a root words

pronunciation lexicon has been constructed. A simple text normalization module has

been implemented. The importance of prosody in unit selection has been studied by

using transplanted prosody vs no synthetic prosody modeling in unit selection. Sub-

jective tests have been carried out for evaluating the synthesized speech quality. The

final Turkish speech synthesis system got 4.2 MOS like score in the listening tests.
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ÖZET

TÜRKÇE İÇİN KORPUS TABANLI BİRLEŞTİRMELİ

KONUŞMA SENTEZLEME SİSTEMİ

Konuşma sentezi yazılı metnin makine tarafından üretilmiş sentetik konuşmaya

çevrilmesi işlemidir. Birleştirmeli konuşma sentezleme sistemleri sentezlemeyi daha

önceden kaydedilmiş ses parçalarını birleştirerek yapar. Korpus tabanlı metotlar (parça

seçme) birleştirilecek ses parçalarını seçmek için geniş bir ses parçası veritabanı kul-

lanırlar. Bu tez kulağa doğal insan sesi gibi gelen, anlaşılabilir korpus tabanlı bir-

leştirmeli bir konuşma sentezleme sistemi geliştirmek için harcadığımız emeğin bir

sonucudur. Tasarlanan sistem metin normalizasyonu, metin analizi ve isteğe bağlı kul-

lanılan nakledilen vurgu ön birimlerini içerir. Parça seçme algoritması veritabanındaki

parçaların oluşturduğu ağda Viterbi algoritması ile en iyi patikanın bulunmasına daya-

nır. Arka uç harmonik kodlama ses modeli ve üst üste getirip ekleme yöntemini kul-

lanarak ses dalga formunu oluşturur. Bu çalışmada farklı parça büyüklükleri, örneğin

heceler, fonemler ve yarım fonemler denenmiştir. Konuşma korpusu tasarımı ve kayıt

metinlerinin seçilmesinde kullanılan metotlar açıklanmıştır. Sesi modellemek ve ses dal-

gası oluşturmak için harmonik kodlama yöntemine dayanan bir ses modeli geliştirilmiş-

tir. Harmonik kodlama, ses veritabanını 3 kat sıkıştırmayı sağlamıştır. Parça seçmede

spektral süreksizlik ve vurgusal uyumsuzluk objektif maliyet ölçekleri kullanan Viterbi

algoritması yazılmıştır. Türkçe fonem seti oluşturulmuştur. Türkçe için metinden

foneme çevrim üzerinde çalışılmış ve de kök kelimelerin okunuşlarını içeren bir sözlük

hazırlanmıştır. Basit bir metin normalizasyon modülü yazılmıştır. Parça seçmede vur-

gunun önemini araştırmak için nakledilen vurgu kullanan ve vurgu modeli kullanmayan

sistemler karşılaştırılmıştır. Sentetik konuşma kalitesini değerlendirmek için öznel din-

leme testleri yapılmıştır. Sonuç olarak MOS benzeri bir derecelendirmede 4.2 puan

alan bir Türkçe konuşma sentezleme sistemi geliştirilmiştir.
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1. INTRODUCTION

Speech synthesis or text-to-speech (TTS) is the computer automated conversion

of raw or tagged input text into audible, intelligible speech. The use of synthetic speech

is applicable and desirable for some real world situations and applications such as in

human-machine interaction, hands and eyes free access of information, interactive voice

response systems (IVR), screen reader software for the visually handicapped and in

other applications where the text in digital form is available and speech correspondence

is required. TTS can also be considered as a speech coding system that achieves

superior compression ratios than what is possible with waveform coders and vocoders

[1]. TTS has also been used to assist in language learning. The animated agents have

benefited from TTS since the correspondence between the text and the synthesized

utterance enables the visual characters to mimic and gesture accordingly. Where the

input text changes frequently and the domain is not limited, the use of TTS provides

great flexibility instead of using pre-recorded speech, since recording all messages is

not feasible in these situations.

The generation of synthetic voice that imitates human speech from plain text is

not a trivial task, since this generally requires great knowledge about the real world, the

language, the context where the text comes from, a deep understanding of the semantics

of the text content and the relations that underlie all these information. However, many

research and commercial speech synthesis systems developed have contributed to our

understanding of all these phenomena, and have been successful in various respective

ways for many applications.

There have been three major approaches to speech synthesis: articulatory, for-

mant and concatenative [1, 2, 3, 4]. Articulatory synthesis tries to model the human

articulatory system, i.e. vocal cords, vocal tract, etc. Formant synthesis employs some

set of rules to synthesize speech using the formants that are the resonance frequencies

of the vocal tract. Since the formants constitute the main frequencies that make sounds

distinct, speech is synthesized using these estimated frequencies. Concatenative speech
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synthesis is based on the idea of concatenating pre-recorded speech units to construct

the utterance. Concatenative systems tend to be more natural than other two since

original speech recordings are used instead of models and parameters. In concatena-

tive systems, speech units can be fixed-size diphones or variable length units such as

syllables and phones. The later systems are known as unit selection, since a large

speech corpus containing more than one instance of a unit is recorded and variable

length units are selected based on some estimated objective measure to optimize the

synthetic speech quality.

The diphone-based synthesis produces unnatural robot-sounding speech due to

the use of fixed number of speech units namely diphones that are sound-to-sound

transitions. The unit selection methods have been developed to overcome this problem

by storing more than one instance for each unit and provide better speech quality, since

using more units provides prosodic and acoustic variability found in natural speech

[3, 4, 5, 6]. Speech synthesis using more than one instance for each unit requires a unit

selection algorithm to choose the appropriate units to concatenate. The unit selection

algorithms have been generally based on dynamic programming. The input text to be

synthesized is first converted to a target specification that includes generally phonemes

and related information such as energy, duration and pitch for each phoneme. To

choose the units from the unit inventory that best fit in this specification, the units

from the unit inventory can be considered as constructing a network of nodes. Each

node has the target cost that is the cost of using that specific unit for the realization of

the target unit in the specification. The links between the units have the concatenation

cost that is an estimate of the cost of joining two units. The join cost is zero for two

units that naturally occurs adjacent in the speech database. The Viterbi decoding

algorithm is used to find the best path that is the path with the least total of all

target and concatenation costs over the path. The speech units on the path with

the minimal total cost is used to synthesize the speech waveform. Concatenating the

speech waveforms results in some glitches at the concatenation points in the synthesized

utterance. Therefore, to ensure smooth concatenation of speech waveforms and to

enable prosodic modifications on the speech units a speech model is generally used for

speech representation and waveform generation [7].
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In this thesis, we describe our efforts to develop a corpus-based concatenative

speech synthesis system for Turkish. The next chapter gives an overview of the research

on speech synthesis based on unit selection. System architecture chapter describes

our system design and shows and explains components and the interactions between

components. Speech corpus chapter explains the methods used to prepare the speech

corpus and the recording scripts. Text-to-Speech front-end chapter explains the system

components: text analysis, phonetic analysis and prosody generation that constitute

the front-end of the synthesis system. The chapter named unit selection describes the

methods and algorithms employed to solve the issues on selecting appropriate units to

concatenate. Waveform generation part describes our implementation of the harmonic

sinusoidal coding to be used for speech representation and waveform generation model.

In the experiments we talk about the methods that we tried in developing the final

system. The quality assessment describes the subjective tests that we conducted to

evaluate the system performance and discusses the test results. In conclusion, we give

a summary of the work done and the results obtained.

1.1. Problem Statement

Corpus-based concatenative speech synthesis, also called unit selection, has emerged

as a promising methodology to solve the problems with the fixed-size unit inventory

synthesis, e.g., diphone synthesis [3, 4, 8]. Using a fixed-size unit inventory requires

making unit concatenations at each unit join; as a result the output speech quality is

degraded. The prosodic modification of the units is also needed since limited number of

units exist in the inventory. These signal modifications further degrade speech quality

and result in unnatural synthetic speech.

In corpus-based systems, the acoustic units of varying sizes are selected and

concatenated from a large speech corpus. The speech corpus contains more than one

instance of each unit to capture prosodic and spectral variability found in natural

speech; hence the signal modifications needed on the selected units are minimized if

an appropriate unit is found in the unit inventory. The use of more than one instance

of each unit requires a unit selection algorithm to choose the units from the inventory
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that matches the best the target specification of the input sequence of units. The unit

selection algorithm favors choosing consecutive speech segments from the speech unit

inventory to minimize the number of joins.

The output speech quality of unit selection in terms of naturalness is much better

than fixed-size unit inventory synthesis. However the unit selection presents some

challenges to speech synthesis. The speech quality is good most of the time, but the

quality is not consistent. If the unit selection algorithm fails to find a good match for

a target unit from the inventory, the selected unit is needed to undergo some prosodic

modifications which degrade the speech quality at this segment join. Some systems

even choose not to do any signal modifications on the selected units [5]. To ensure a

consistent quality, a good speech corpus design that covers all the prosodic and acoustic

variations of the units that can be found in an utterance has to be addressed. It is not

feasible to record larger and larger databases given the complexity and combinatorics

of the language, instead we need to find a way for optimal coverage of the language [9].

The unit selection algorithm should also do a good job of selecting the appropriate

units, to ensure high quality speech synthesis. But this is not an easy task since the

unit selection algorithm has to use some objective measures to decide which units to

concatenate given the target specification of the unit sequence formed from the input

utterance to be synthesized.

The construction of the correct target specification for the unit sequence from the

input text is also very important since unit selection will be based on this specification.

The specification generally contains the identity of the units used in the system such

as phonemes, the phonetic context of the units and prosody prediction for the units.

The prosody prediction requires the intonation modeling (pitch and accent (stress)

prediction), phrase boundary detection and duration modeling (timing), which are not

easy to correctly predict from raw text.

The waveform generation should also be done in a way to smooth the discon-

tinuities around the unit concatenations. The discontinuities are due to spectral,
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phase, pitch period, energy and formant frequency mismatches. A speech represen-

tation model has to be used to ensure a smooth concatenation at unit boundaries.

Evaluating the speech synthesis quality is also a difficult task for speech synthesis

systems. The synthetic speech quality is dependent on many factors and it is hard to

evaluate the performances of system components in isolation. The complex interaction

between different system parts makes it difficult to tune the system performance using

quality assessment methods.

1.2. Motivation and Objective

The emergence of corpus-based methodologies enabled the development of high

quality speech synthesis systems for languages such as English [8, 10, 11]. In this

study, our aim is designing and developing a natural sounding Turkish text-to-speech

synthesis system and framework using corpus-based concatenative speech synthesis

methodology. We will develop an open system architecture that will be easy to improve

the functionalities of the modules. The interaction between modules will be well defined

for easy operation and integration. The unit selection techniques will be investigated

for Turkish. The agglutinative nature of Turkish will be dealt with. The speech corpus

design issues will be explored. A unit selection algorithm based on Viterbi decoding

will be implemented. Acoustic and prosodic features used in cost calculation in unit

selection will be extracted. The effect of using transplanted prosody on the voice quality

will be explored. Harmonic sinusoidal coding for representing and concatenating speech

waveforms will be studied for Turkish. Subjective tests will be carried out to assess

the output speech quality.
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2. LITERATURE SURVEY

In recent years, the research in speech synthesis has focused on corpus-based

concatenative methods. The advent of faster CPU’s and mass storage spaces with

decreasing costs have contributed to the applicability of the use of large speech corpus

and unit selection algorithms. With the concatenation of longer speech segments that

naturally occur adjacent in the speech database, the synthesized voice quality has

improved in terms of intelligibility, pleasantness and naturalness compared to the other

methods, e.g., formant synthesis and diphone synthesis.

ATR v-Talk speech synthesis system developed at ATR labs introduced the unit

selection approach from a large speech database [3]. The selection of units was based

on minimizing an accoustic distance measure between the selected units and target

spectrum. The prosodic features like duration and intonation have been added to the

target specification to choose more appropriate units in terms of prosody in CHATR

speech synthesis system [4]. A. Hunt and A. Black have contributed to the area the

idea of applying Viterbi decoding of best path algorithm for unit selection [6]. The unit

selection process as they realized has many similarities with a best path decoding algo-

rithm commonly applied in HMM-based speech recognition systems. In their system,

the units in the speech database are considered as a network of nodes and transitions.

The speech synthesis or unit selection in this system corresponds to selecting the units

on a path in this network that matches best the sequence of target specifications of

units derived from input text. In the network of units the cost of selecting a unit

corresponding to a target specification is called the target cost and is calculated as an

estimate of distance between a database unit and the target. The concatenation cost

on the other hand is an estimate of cost to concatenate two database units. By con-

structing a state transition network with these costs, a Viterbi search is carried out by

using pruning techniques based on phonetic context similarity to the target, the target

cost and the concatenation cost. They have also proposed two training algorithms for

determining the weights used in target and concatenation cost estimation. One is based

on selecting a set of weights that give an overall minimal cepstral difference between
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a set of utterances synthesized and the actual spoken correspondents. The other one

uses linear regression to estimate the weights by predicting the distance between units

and their n-best matches in the database in terms of acoustic difference by a linear

weighting of the costs.

Finite-state transducer (FST) based approach to unit selection has also been stud-

ied [12]. In that work, the unit selection architecture is represented as a composition

of FST components each tailored to a specific purpose such as lexicon, pronunciations

and waveform generation.

For synthesis back-end, various speech representation models and waveform gen-

eration methods have been devised [1, 7]. Using a speech model to represent speech

waveform is required since it enables us to concatenate units smoothly and it may fa-

cilitate compressing the large speech databases. Linear predictive coding (LPC) as an

analysis-by-synthesis (AbS) speech model tries to model the speech by a set of linear

coefficients [1]. LPC is actually an auto-regressive (AR) filter. The filter coefficients

can be in a number of ways including auto-correlation method. Some variations of

LPC such as residual excited linear prediction (RELP) have also been employed for

better quality speech modeling. The harmonic sinusoidal coding tries to represent the

speech by sum of the sinusoids that are harmonically related [13].

The Next-Gen speech synthesis system developed at the AT&T labs is one of

the commercial systems that use unit selection [8]. The system unifies the best chosen

approaches from AT&T Flextalk, the Festival and CHATR system. The front-end,

i.e. the text and linguistic analysis and prosody generation is from Flextalk, the unit

selection is a modified version of CHATR and the framework for all these is borrowed

from the Festival. As an improvement to the CHATR unit selection, the system uses

half phones compared to phonemes as the basic speech units [14]. This allows phoneme

or diphone concatenation at a unit boundary. For the back-end, a Harmonic plus Noise

Model (HNM) representation of the speech has been developed [7]. HNM considers the

speech is composed of a sum of harmonic sinusoids plus a noise component. These two

components are separated in the frequency domain as a low band harmonic part and a
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high band noise part. The calculation of the amplitudes and phases of the harmonics

is reduced to minimizing a least-squares criterion between the original signal and the

harmonic sinusoidal approximation to the signal. The noise part is modeled as an AR

filter excited by Gaussian noise. The phase mismatches at the unit boundaries are

eliminated by an offline process that updates the unit boundaries using the center-

of-gravity approach [15]. Also for smooth concatenation at unit boundaries, a linear

interpolation of HNM parameters for the joining units is done. The output speech

waveform is synthesized using the overlap-and-add process.

To reduce the runtime complexity of the unit selection, some algorithms for pre-

selection of units have been proposed [16]. The first method proposed is preselection

filtering which uses preselection of n best units for each synthesis context of five phones

in the unit database. Then in the selection of the candidate units for a particular phone

in a triphone context, all contexts of five phones that cover the triphone sequence are

taken. The second method uses a synthesis-based preselection. In the analysis part,

a huge sentence database is synthesized storing to an inventory file which units are

chosen for each triphone sequence. Then for a synthesis request, only the units for the

triphone sequences that have been previously selected and recorded in the inventory

are used. A speed up factor of 10 without the loss of speech quality in the unit selection

is reported.

Unit selection based concatenative speech synthesis approach has also been used

in the IBM Trainable Speech Synthesis System [11, 17]. The system uses the Hidden

Markov Models (HMMs) to phonetically label the recorded speech corpus and aligns

HMM states to the data. The units used in the unit selection process are HMM state

sized speech segments. The unit selection is a dynamic programming based search,

which uses decision trees to facilitate the choice of appropriate units, with a cost

function to optimize. The segments in the speech database is coded into mel frequency

cepstrum coefficients (MFCCs). A unit pre-selection algorithm that discards some of

the units is used to reduce the database size and to improve the runtime performance

of the system. Prosody generation is carried out by a rule-based front-end.
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Weighted finite-state transducers have been successfully applied to the multilin-

gual text analysis at Bell Labs [18]. The lexicon, morphological rules for morphological

analysis, language model rules for phrasal accentuation and prosodic phrasing, rules

for expansion of numbers in digits and abbreviations, and phonological rules for deter-

mining the pronunciation of words are all represented by weighted FSTs.

Duration analysis and modeling of Turkish has been recently studied [19]. In that

work, first duration analysis of Turkish phonemes are given and the factors that are

found to be effective in governing timing in Turkish utterances are extracted. Then

four duration models namely mean durations of the phonemes, mean durations of the

triphones, tree-based modeling of triphone durations and a linear model all trained

from phonetically labeled speech corpus are implemented. The linear additive and

triphone tree models are found to be superior than others.

Intonation and stress characteristics in Turkish sentences have also been inves-

tigated [20]. The fundamental frequency contours for sentences in a single speaker

speech database have been analyzed and a fundamental frequency contour generation

system has been presented. The system is based on a template sentence pitch con-

tour database that has been constructed using sentence type, syntactic structures of

sentences using part-of-speech (POS) tagging and word stress. The input sentence is

matched with one of the templates and the pitch contour of the selected template is

used for predicting the pitch contour of the input sentence.

In a study to determine what is more important in a concatenative speech syn-

thesis system, the effect of pitch, duration and acoustics is experimentally evaluated

using Microsoft Whistler TTS engine [21]. It is found that synthetic pitch degrades

the speech quality most, while a simple look-up table for phoneme durations does a

good job.

Turkish is an agglutinative language and uses affixes that are mostly suffixes with

a few exceptional prefixes. A TTS system for Turkish requires use of a morphological

analysis component for pronunciation lexicons and linguistic analysis. For morpholog-
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ical analysis of Turkish, augmented transition networks (ATNs) [22] and finite-state

techniques [23] have been applied. A pronunciation lexicon for Turkish has been re-

cently developed using finite-state techniques [24].

Speaker selection is also a critical decision in terms of synthesis quality. According

to [8], the speaker selection has up to 0.3 MOS score effect on the output synthesis

quality. There have been some work on evaluating the speaker voice appropriateness

to TTS [8].
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3. SYSTEM ARCHITECTURE

The corpus-based concatenative Turkish speech synthesis system architecture is

shown in Figure 3.1. The system components shown are common in most of the speech

synthesis systems using unit selection. The system can be mainly divided into three

parts: the front-end, the unit selection and the back-end. The front-end is responsible

for producing an internal linguistic and prosodic description from the input text to

be used for unit selection. This description is fed into the unit selection as the target

specification. The unit selection uses this specification to choose the units from the

speech database that minimize a cost function between the specification and the units

from the speech unit inventory. The waveforms for the selected units are concatenated

in the back-end. The smoothing of concatenation points are also handled in the back-

end.

The outputs from system components can also be seen in Figure 3.1. The system

uses a well-defined internal data structure to store the information for the text to be

synthesized. This structure is communicated between components and each component

appends extracted information using the already existing information in the structure

and task specific algorithms. This enables each system component to be developed

independently and makes it flexible to improve the functionalities of each component

separately if required.

The system components and the responsibilities are briefly described below. The

following sections explain the system components in detail.

Turkish Pronunciation Lexicon: The lexicon (dictionary)is a collection of words

and their pronunciations and any other word level information. The text analysis com-

ponent uses the lexicon for determining the pronunciation of the words. The Turkish

Figure 3.1. Corpus-based concatenative Turkish speech synthesis system architecture
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lexicon that we prepared is a root word pronunciation lexicon. The lexicon may be

expanded to contain any information about a word if the other components need it.

Speech Unit Inventory: The speech recordings from a speaker are processed to

construct an inventory of speech units (speech corpus). The construction of the speech

inventory is an offline process. The unit inventory stores the waveforms for the units,

phone identities of the units, phonetic context and prosodic annotations for the units.

The waveforms in the speech corpus have been compressed for efficient storage of units

using a harmonic sinusoidal coding method.

Text Analysis: Text analysis component is responsible for converting the input

text into an internal linguistic description. Text normalization and sentence breaking

is the sub-processes carried out in this component. The input to this component is raw

text and the output is an internal data structure that is a linked list of sentences which

are also a linked list of words that have the normalized forms. This text structure con-

tains room for the information that other components will gather and is communicated

through components.

Phonetic Analysis: Phonetic analysis refers to the conversion of the linguistic

description in orthographic form to phonemes. This component is responsible for

grapheme-to-phoneme conversion for Turkish. The input is the text structure from the

previous component and the pronunciations for the words normalized are appended to

this structure.

Prosodic Analysis: Prosody analysis annotates the internal linguistic description

with prosodic features i.e. the pitch, energy and duration for each phoneme to produce

a target specification of the input text to be used in unit selection. The current

implementation of the prosody analysis component does not include any synthetic

prosody generation and uses only transplanted prosody that is the real prosody from

the original speech recordings.
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Unit Selection: The selection of the appropriate units from the speech corpus that

contains thousands of units is dealt with here. The unit selection algorithm that we

used is based on commonly used dynamic programming. The input to this component

is the internal text structure annotated with phonetic and prosodic features that is

called target specification and the output is the sequence of the units selected from the

speech inventory.

Waveform Generation: The unit speech waveforms need to be concatenated

smoothly to generate the synthesized speech waveform. Since the waveforms of two

joining units may come from different utterances, the concatenation points may sound

some glitches caused by acoustic and prosodic mismatches in the units. The para-

metric encoding of speech waveforms for more natural concatenation and easy speech

modifications are the methods employed here.
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4. SPEECH CORPUS DESIGN

The speech corpus used for testing the algorithms in this thesis is a female speaker

speech database. It is commercially owned by the company named GVZ that develops

Turkish speech related technologies. The speech corpus contains about 20 hours of

speech recorded by a professional speaker covering about 30000 Turkish phrases. The

speech corpus has been divided into two sets namely training and test set. The test set

contains about 1000 phrases used for the purpose of evaluating the synthesis quality.

The remaining recordings have been used to construct two speech unit inventories of

different sizes. One of the speech inventories uses all the recordings from the training

set and contains about 19 hours of speech recording. The other speech unit inventory

has been confined to contain 5000 phrases corresponding to about 3 hours of speech.

Use of two training sets of different sizes enables us to evaluate the relative performance

of algorithms on different sized speech corpora. We also want to see the effect of speech

database size on the output speech quality. The use of smaller speech database during

system development is also beneficial and justified by being able to see the effects of

our works on speech quality more easily and faster and easier modifications on small

databases. We have in final system compared the MOS scores from the listening tests

for the two speech inventory in the section named quality assessment.

The unit inventory design has a major effect on speech quality. In unit selection

finding units that match best the target specification is more probable with a large

number of units in a carefully designed database since we can capture much more

prosodic and acoustic variability for the phones. The speech quality is severely degraded

when an appropriate unit can not be found. The prosodic modifications of the selected

units also degrade the speech quality so it should be done minimally, such a thing is

possible only when we find a close match.

The recording scripts have been constructed by a Greedy algorithm that tries

to choose sentences based on their phonetic context. The recording script contains

phrases or word groups rather than full sentences to prevent common repeating of



15

some words that makes the database size bigger while adding to overall synthesis

quality little. The phrases have been collected from online Turkish text material and

have been preprocessed to break into phrases by using punctuation marks. They have

been checked manually to ensure the phrases are complete and well formed otherwise

eliminated. Then a greedy algorithm has been used to select the phrase with greatest

score calculated as the total frequency of the triphone contexts found in the phrase

normalized by the number of triphones to ensure the short ones are promoted. The

algorithm updates the frequencies of selected phrase triphones to zero and runs again

on the remaining phrases. The algorithm produced 30000 phrases. These phrases have

been recorded by a professional female speaker in a sound isolated room in multiple

sessions. The recordings then have been phonetically auto-labeled by using GVZ’s

speech recognition engine. The phoneme boundaries have been manually corrected by

hand. There has been no prosodic labeling on speech data.

To choose the subset of speech corpus that we used to construct 5000 phrase

sized speech unit inventory we have used a Greedy algorithm similar to the one used

in constructing recording scripts. It tries to choose the syllables that have not been

yet covered in the selected phrases. In Turkish, syllables have a prosodic integrity

in themselves. We can categorize syllables in Turkish as having the patterns V, VC,

VCC, CV, CVC, and CVCC where C designates consonant and V vowel phonemes. We

have also considered syllable boundaries, sentence start and end, and word boundaries.

Using the greedy algorithm we choose the subset of the speech corpus that covers

all variations of these patterns. The algorithm chooses 5000 phrases from the speech

corpus having 30000 phrases.

The phonetically labeled speech corpus is converted to a binary indexed speech

unit inventory file to be used in the unit selection process. The speech inventory

contains the unit identities, the phonetic context information, the prosodic features

namely energy, duration and pitch of units which are automatically extracted from the

speech waveform and the speech waveforms of the units. Since in waveform generation

we use a harmonic coding based speech model, the speech waveforms are stored with

the parameters of this model. Using parametric coding of speech enables us to compress
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the speech unit inventory about three times with a slight effect on the output speech

quality. Since for unit selection we use units of size half-phone, the phone sized units

in the labeled speech are converted automatically to half-phone sized units. The half-

phone unit boundaries are aligned to the frame boundaries of the parametric harmonic

speech model.
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5. FRONT-END

The front-end of our speech synthesis system is responsible for producing an

internal linguistic and prosodic description from the input text. This description is

input to the unit selection as the target specification for the utterance to be synthesized.

In this thesis, the functionalities of the front-end have been kept at minimal and we

concentrated our efforts on unit selection and waveform generation. The following

subsections describe the Turkish phoneme set used and the subsystem components in

the front-end.

5.1. Turkish Phoneme Set

Phonemes are the smallest units of speech sound in a language that can serve to

distinguish one word from another [1]. Turkish alphabet has 29 letters classified as 8

vowels (a, e, ı, i, o, ö, u, ü) and 21 consonants (b, c, ç, d, f, g, ğ, h, j, k, l, m, n, p, r, s, ş,

t, v, y, z). However, Turkish orthography can not represent all the sounds in Turkish.

In our system for phonetic transcriptions we adopted a new phoneme set based on the

SAMPA standard. The SAMPA identifies 8 vowels and 24 consonants (excluding two

consonantal allophones, /w, N/)for representing Turkish sounds and designates a length

mark /:/ to represent the lengthening of some vowels in loanwords in Turkish. Based

on the SAMPA phoneme set for Turkish, we adopted a new phoneme set as shown in

Tables 5.1 and 5.2 with example words and corresponding SAMPA phonemes. The new

phoneme set designates new symbols for some of the SAMPA phonemes and introduces

three more phonemes, /öo, üu, ea/ corresponding to allophones of the phonemes /o,

u, a/, respectively.

5.2. Lexicon

For phonetic analysis and text analysis, a Turkish lexicon has been constructed.

The lexicon is used for phonetic pronunciations, abbreviation and acronym expansion.

The lexicon contains approximately 3500 entries for the words in root form and their
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Table 5.1. Turkish phoneme set

Phonemes Example Words SAMPA

a aşk a

b bugün b

c cuma dZ

ç çamur tS

d dünya d

e evet e

f futbol f

g gece gj

ğ doğa G

h hayat h

ı ışık 1

i insan i

j jüri Z

k kader c

l lider l

m mavi m

n nisan n

o oyun o

ö özgürlük 2

p para p

r renk r

s ses s

ş şans S

t tat t

u uyku u

ü ülke y

v veda v
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Table 5.2. Turkish phoneme set(cont.)

Phonemes Example Words SAMPA

y yeni j

z zaman z

aa alim a:

öo alkol

üu sükunet

uu kanunen u:

ii mill i i:

ea dikkat

ee memur e:

gg gaga g

kk akıl k

ll alkış 5

corresponding pronunciations. The lexicon currently contains only pronunciations for

the words. The small size of the lexicon is the result of the Turkish’s relatively simple

pronunciation schema compared to English. In Turkish, pronunciations of many words

can be derived easily by one-to-one mapping of letters to phonemes. The exception is

the words that have been borrowed from other languages such as Arabic and Persian.

The entries in the lexicon are mostly these kinds of words. Such a word from the lexicon

is fedakarlık which has the pronunciation /f e d aa k ea r l ı k/ using our conventional

phoneme set. The fourth letter /a/ has a standard pronunciation of phoneme /a/,

however in this word this letter is pronounced much longer than the standard /a/

phoneme, so our phoneme set has introduced the /aa/ phoneme that sounds similar

to /a/ phoneme with a longer duration. This sound has contributed to Turkish from

Arabic.
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5.3. Text Analysis

The input text to the speech synthesis system needs to be processed and converted

to a linguistic representation which should be in a suitable form for the subsequent op-

erations to work on. The text analysis component in a TTS system generally includes

text normalization, document structure detection and linguistic analysis subcompo-

nents. In this work a relatively simple text analysis is done.

The input text is first parsed into sentences and words using white space char-

acters and punctuation marks and stored in an internal text data structure that is a

linked list of sentence structure that is also a linked list of word structure. The sentence

structure has been designed to store sentence level information such as sentence type

and word structure has been designed to store word level information such as POS

tagging and word pronunciation. No linguistic analysis on syntax and semantics is

done. However a simple text normalization has been included in this study. Text nor-

malization component converts nonorthographic symbols into orthographic symbols.

The abbreviations and acronyms are expanded and digit sequences are converted to

word forms. The characters that can not be converted to speech are discarded. The

punctuation marks are preserved.

5.4. Phonetic Analysis

Turkish is a phonetic language meaning that a simple grapheme-to-phoneme con-

version is possible for most of the words due to close relationship with Turkish or-

thography and phonology. Phonetic analysis component converts text in orthographic

(written) form to phonemes. However there are some exceptional words that are mostly

loanwords. The Turkish pronunciation lexicon is mainly used for determining the pro-

nunciations of these words. There are also cases where one-to-one mapping is not

possible such as vowel lengthening and palatalization in pronunciations of some suf-

fixes depending on vowel harmony as described in [24]. A complete phonetic analysis

for Turkish requires use of morphological analysis and finite-state techniques and such

a system is described in [24].



21

For grapheme-to-phoneme (letter-to-sound) conversion, we developed a simpler

system that gives satisfactory results for most of the words. Turkish is an agglutina-

tive language, therefore for text to phoneme conversion, a morphological parser im-

plementation for Turkish based on augmented transition networks has been used[22].

Morphological parser is used to separate the root word and suffixes. The root word

pronunciations are looked up in the pronunciation lexicon. The pronunciations of suf-

fixes are found by a direct mapping of letters to the phonemes in the phoneme set. The

root word pronunciation lexicon contains about 3400 word-pronunciation pairs. The

pronunciations of other root words that are not in the lexicon are found by a direct

mapping as in the case of suffixes.

5.5. Prosodic Analysis

The system has been designed to use a prosodic analysis component. However,

the current work does not contain a prosody generation module implementation. We

are planning to add pitch contour synthesis and duration modeling. To evaluate the

efficiency of using prosodic analysis we tailored the system to optionally use the trans-

planted prosody from the original speech utterances. Prosody generation module can

provide pitch, duration, and energy information for an original speech utterance which

can be used as the target specification in the unit selection process to synthesize the

input text. This method has been used in quality assessments to see the effect of real

prosody on the output speech quality. Test results can be seen in quality assessment

section.



22

6. UNIT SELECTION

The output of the front-end of our system is a target unit sequence corresponding

to the input text to be synthesized. The target specification is a sequence of phonemes

each having target energy, pitch and duration values. The speech corpus has also been

processed to construct a unit inventory storing the phonemes with the same prosodic

features as target sequence and the phoneme context information. Since we use a

large speech database, there is more than one instance for each phoneme, each possibly

having different phonetic context and prosodic and acoustic realizations. Therefore

for the target specification we have a large number of choices from the unit inventory.

In concatenative speech synthesis, choosing the right units is very important for the

quality of the synthesized voice. An appropriate selection of units may also allow to get

rid of prosodic modifications of the selected units which generally degrade the output

speech quality. The unit selection module tries to choose the optimal set of units

from the unit inventory that best matches the target specification. The algorithm that

we employed is based on the unit selection algorithm first applied in CHATR speech

synthesis system [6]. The following sections describe the unit size that we used in unit

selection and the unit selection algorithm.

6.1. Unit Size

In unit selection, units of differing sizes have been used in literature. The syllable,

phoneme, diphone, halfphone, HMM state-sized units have all been used in various

systems [6, 8, 11]. The unit selection in CHATR uses phonemes as the speech units.

The diphones that are the speech units from the second half of a phone to the first

half of the following phone, are used in diphone-based concatenative synthesis. The

diphone synthesis produces highly intelligible speech due to the fact that diphones

capture some of the coarticulation effect at the phone boundaries. The AT&T Next-

Gen speech synthesis system uses halfphones for the basic speech units. Since the

halfphones provide the flexibility of using phonemes or diphones or a mixture of both

for the speech segments, we also adopted the halfphones as basic speech units. We
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have done some experiments to empirically decide the relative costs of using halfhones

and diphones.

6.2. Decoding Using Viterbi Search

Optimal unit selection given the target specification from the unit inventory re-

sembles the best-path decoding algorithm commonly used in HMM-based speech rec-

ognizers [6]. The speech unit inventory is analogous to the grammar network in HMM-

based recognizers and can be considered as a state-transition network. The best-path

decoding of the words in the grammar is very similar to determining optimal unit se-

quence in the network of units. The transition cost in speech recognizers corresponds

to the concatenation cost in unit selection. The target cost used in unit selection corre-

sponds to HMM state observation cost. This analogy guides us to the use of dynamic

programming to find the optimal unit sequence. The pruned Viterbi search algorithm

commonly used in HMM-based speech recognizers can be easily adopted to the prob-

lem of the unit selection. The algorithm that we used in unit selection is a Viterbi

best path decoding algorithm that is very similar to the one used in CHATR speech

synthesis system, and is described below using the notation from [6].

The unit selection algorithm can be stated as given the target specification tn1 =

(t1, ..., tn) finding the unit sequence un
1 = (u1, ..., un) that optimizes a cost function of

the distance between the target specification and the unit sequence. In unit selection,

there are two kinds of cost function, namely target cost and concatenation cost as

shown in Figure 6.1. Target cost, also called unit cost, is an estimate of the cost of

using a selected unit in place of the target specification of that unit. This cost is a

measure of how well the unit from the unit inventory suits the corresponding target

unit in the specification. This cost can be calculated as a weighted sum of the target

sub-costs as follows:

Ct(ti, ui) =
P∑

j=1

wt
jC

t
j(ti, ui)
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Figure 6.1. Target and concatenation cost in unit selection

where P is the number of target sub-costs and wt
j is the corresponding weights.

The concatenation or join cost is an estimate of the cost of concatenating two

consecutive units. This cost is a measure of how well two units join together in terms of

spectral and prosodic characteristics. The concatenation cost for the two units that are

naturally adjacent in the unit inventory is zero. Therefore choosing adjacent units in

unit selection is promoted resulting in better speech quality. This cost can be calculated

as a weighted sum of the concatenation sub-costs as follows:

Cc(ui, ui+1) =

Q∑
j=1

wc
jC

c
j (ui, ui+1)

where Q is the number of concatenation sub-costs and wc
j is the corresponding weights.

The total cost of selecting a unit sequence un
1 given the target specification tn1 is

the sum of the target and concatenation costs:

C(tn1 , u
n
1 ) =

n∑
i=1

Ct(ti, ui) +
n−1∑
i=1

Cc(ui, ui+1)

The unit selection algorithm tries to find the unit sequence un
1 from the unit inventory

that minimizes the total cost:

min
un
1

C(tn1 , u
n
1 )

We have implemented a Viterbi decoding algorithm to find the optimal unit sequence.

A state-transition network for the units from the speech inventory can be seen in Figure

6.2. The Viterbi algorithm tries to find the optimal path through the network of the

nodes. Since the number of units in unit inventory is very large, we have implemented

some pruning methods to limit the number of units considered in unit selection. For the
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Figure 6.2. Unit selection using Viterbi algorithm can be seen as finding the optimal

path through the network of speech units

run-time efficiency of the Viterbi search, we first prune the units from the unit selection

based on the length of the matching phonetic context. We start with units that matches

3 phonemes to the left or right with the target specification. If we can not find some

minimum number of units matching, we consider the phonemes with matching context

length of 2 phonemes. If the number of units is less than a minimal number, we consider

all the units that phonetically match the unit in target specification.

For the target sub-costs Ct
j(ti, ui), we use the context match length, the energy,

duration and pitch difference between the target and selected unit, the place of the

unit in the syllable, word and sentence.

For the concatenation sub-costs Cc
j (ui, ui+1), we use the cepstral distance and

energy, duration and pitch difference between the consecutive units. The cepstral

distance cost calculation is described in the following section.

6.2.1. Cepstral Distance Cost

The cepstral distance at the concatenation points of two consecutive units (uiui+1)

is used in concatenation cost calculation. The cepstral distance is an objective measure

of the spectral mismatch between two joining units. For cepstral distance calculation,

we used Mel-Frequency Cepstrum Coefficients (MFCC’s). We extract the MFCC of the

last frame of the first unit and the first frame of the second unit and use the distance

between two MFCC vectors for cepstral distance cost.

For calculation of the MFCC’s, we window the signal with a hamming window
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Figure 6.3. Hamming window for N=30

Figure 6.4. Windowed speech signal

as shown in Figure 6.3 which is calculated using the following equation.

h[n] =

0.54− 0.46 cos(2πn/N) 0 ≤ n < N

0 otherwise


The effect of applying a hamming window on a speech waveform is shown in Figure

6.4.

MFCC’s of a speech signal can be calculated by taking the discrete cosine trans-

form (DCT) of the filtered magnitude of the Fourier transform of that signal by non-

linear triangular filters [1]. The use of nonlinear triangular filters is motivated by the

workings principle of the human hearing system.

The DFT of a signal can be calculated as follows.

X[k] =
N−1∑
n=0

x[n]e−j2πnk/N , 0 ≤ k ≤ N

The boundary points of the triangular filters can be found using the following equation.

f [m] = (
N

Fs

)Mel−1(Mel(fl) + m
B(fh)−Mel(fl)

M + 1
)

where Fs is the sampling frequency, N is the FFT size, M is the number of filters in

the filterbank, fl and fh are the lowest and highest frequencies of the filterbank. Mel

is defined as follows:

Mel(f) = 1125 ln(1 +
f

700
)
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Mel−1 is is the inverse of the Mel:

Mel−1(f) = 700(exp(
f

1125
)− 1)

The triangular filter m in the filter bank of M filters is given by:

Hm[k] =



0 k < f [m− 1]

(k−f [m−1])
(f [m]−f [m−1])

f [m− 1] ≤ k < f [m]

(f [m+1]−k)
(f [m+1]−f [m])

f [m] ≤ k ≤ f [m + 1]

0 k > f [m + 1]


The log-energy of the filtered FFT of the signal at output of each filter is calculated

as:

S[m] = ln

[
N−1∑
k=0

|X[k]|2Hm[k])

]
, 0 < m ≤ M

The discrete cosine transform of the M filter outputs give the mel-frequency cepstrum

coefficients of the input speech signal:

c[n] =
M−1∑
m=0

S[m] cos(πn(m− 1/2)/M), 0 ≤ n < M

The spectral discontinuity cost between the last frame of the unit ui and the first frame

of ui+1 is calculated as the squared magnitude of the difference between the MFCC’s

of the frames as follows:

Cc
spectral(ui, ui+1) = |ci(N − 1)− ci+1(0)|2

where N denotes the number of frames of the unit ui and ci(n) the MFCC of the unit

ui at frame n.
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7. WAVEFORM GENERATION

The unit selection outputs a sequence of units from the speech inventory to be

used for the generation of waveform for the input text. The waveform generation

module concatenates the speech waveforms of the selected units. We used a speech

representation and waveform generation method based on harmonic sinusoidal coding

of speech. Analysis-by-synthesis technique has been used for sinusoidal modeling.

The sinusoidal coding encodes the signal with a sum of sinusoids whose frequency,

amplitude and phase are adequate to describe each sinusoid. The harmonic coding

is a special case of the sinusoidal coding where the frequencies of the sinusoids are

constrained to be the multiples of the fundamental frequency. The harmonic coding

takes the advantage of the periodic structure of the speech and is very effective in

coding the voiced and unvoiced signals. The harmonic structure of the speech signal

can be seen in Figure 7.1. The method that we used for speech representation and

waveform concatenation is based on harmonic coding of voiced/unvoiced speech.

The harmonic coding is a parametric coding method. Unlike waveform coders

which try to construct the original waveform, parametric coders (vocoders) try to

encode the speech into a parametric representation that capture its perceptually im-

portant characteristics. For the parameter estimation of harmonic coding, an analysis-

by-synthesis framework is used. Harmonic coders represent the speech signal using the

magnitudes and phases of its spectrum at multiples of the fundamental frequency. Low

bit rate harmonic coders even use the synthetic phase rather than original phase to

lower the bit rate. However a high quality speech synthesis requires that the speech

representation should be transparent to the listener. Therefore, we used the original

phase in the harmonic coding of speech. The coded speech quality heavily depends

Figure 7.1. Power spectral density of a speech signal. The peaks at the pitch

harmonics can be clearly seen in the figure
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on the correct parameter estimation. For robust parameter estimation we used an

analysis-by-synthesis methodology.

A perfectly periodic signal can be represented as a sum of sinusoids:

x[n] =

T0−1∑
k=0

Ak cos(nkω0 + φk)

where T0 is the fundamental frequency of the signal, ω0 = 2π/T0, φk is the phase of the

kth harmonics, and Ak is the amplitude of the kth harmonics. For the quasiperiodic

speech signals the same equation can be used to approximate the signal. This approx-

imation can even be used to model the unvoiced sounds. In this case, the fundamental

frequency is set to 100 Hz. The error in representing the speech by a harmonic model

is estimated as:

ε =

T0∑
k=−T0

w2[k](x[k]− x̃[k])2

where w is a windowing function, x is the real speech signal and x̃ is the harmonic

model for the speech signal. For parameter estimation of the harmonic coding, we use

this function for error minimization criterion. The values for Ak and φk that minimize

the error is calculated by solving the linear set of equations obtained by integrating

the error function. Finding model parameters is a least squares problem. We used

QR factorization method for solving the set of linear equations to obtain the model

parameters. The correct pitch period estimation is an important part of harmonic

coding. The following section describes the method that we used for fundamental

frequency estimation.

The model parameters are calculated in a pitch-synchronous manner using over-

lapping windows of two pitch periods. The scalar quantization of model parameters is

done. The unit speech inventory has been compressed about 3 times using quantized

model parameters.
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Figure 7.2. The original spectrogram for the utterance “Birdenbire karşıdan iri bir

köpek geçti”

Figure 7.3. The spectrogram for the reconstructed utterance “Birdenbire karşıdan iri

bir köpek geçti” using harmonic coding

The waveform generation using the model parameters for speech waveforms of

units are done by taking inverse FFT of the parameters and then overlap-and-add

mechanism is used for smooth concatenation of the units. The effect of harmonic

coding on a sample utterance is shown in Figures 7.2, 7.3 and 7.4.

7.1. Pitch Estimation

Pitch or fundamental frequency is the rate at which the vocal folds in the human

speech production system vibrate, that is the opening and closing of the glottis. Voiced

sounds like /a/ cause the vocal folds vibrate, however the unvoiced sounds like /s/ does

not vibrate the folds. For the harmonic coding of speech, correct pitch estimation is

very important. The quality of the coded speech is severely degraded at the wrong

pitch marks. Pitch estimation is also used in unit selection process since the pitch

contributes to the perceived prosody most [21]. The algorithm that we used for pitch

estimation is based on the normalized autocorrelation method. The autocorrelation of

a signal using N samples can be calculated as follows:

R[k] =
N−1−k∑

n=0

x[n]w[n]x[n + k]w[n + k]

Figure 7.4. The spectrogram for the reconstructed utterance “Birdenbire karşıdan iri

bir köpek geçti” using harmonic coding with parameter quantization
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Figure 7.5. Speech waveform for the utterance “karşıdan”

Figure 7.6. Pitch track with autocorrelation for the utterance “karşıdan”

where x[n] is the input signal and w[n] is a window of length N, possibly a rectangular

window.

The autocorrelation function has been commonly used for pitch estimation. The

value of k that gives the highest value of the autocorrelation function R[k] excluding

k = 0, is determined to be the pitch period of the signal. The search for the pitch is

constrained to a region that the pitch period can be, i.e. 50 Hz-500Hz. The window

size is set to be at least two expected maximum pitch period. The speech waveform

for the utterance karşıdan and its pitch track based on autocorrelation method can

be seen in Figures 7.5 and 7.6. The unvoiced regions such as for /k/, /ş/ sounds are

shown to have zero pitch. At the end of the utterance pitch doubling has occurred.

The normalized autocorrelation is calculated as:

Rn(k) =

∑N−1
n=0 x[n]x[n + k]√∑N−1

n=0 x2[n]
∑N−1

n=0 x2[n + k]

The normalized autocorrelation method is more reliable than autocorrelation method,

since the number of samples used in calculation is constant. The unsmoothed pitch

track with normalized autocorrelation method can be seen in Figure 7.7. The normal-

ized autocorrelation function gives the same value at multiples of the pitch period for

perfectly periodic signals. This may cause the detection of pitch period as two times

pitch period, that is called pitch halving. We used a decaying factor in the calcula-

tion of the normalized autocorrelation which decreases the value of the function as k

increases. As can be seen in Figure 7.8, this helps to correct most of the pitch halving

errors.
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Figure 7.7. Unsmoothed pitch track for the utterance “karşıdan”

Figure 7.8. Unsmoothed pitch track with a decaying term for the utterance

“karşıdan”

We also performed some post-processing to smooth the pitch track, since the

normalized autocorrelation method is error prone. The smoothing process takes into

the consideration that the pitch does not change drastically from frame to frame. We

applied median smoothing that keeps a history of the pitch values, sorts it and takes

the one in the middle. Smoothed pitch track is shown in Figure 7.9.

Figure 7.9. Smoothed pitch track for the utterance “karşıdan”
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8. EXPERIMENTS

In the development of the Turkish text-to-speech system many experiments have

been done to evaluate the system performance with different configurations.

In unit selection, different unit sizes have been experimented with. The use of

halfphones in unit selection enables us to use relative weighting for diphone and phone

concatenation. In the informal listening tests we can conclude that using a mixture of

two concatenation gives best speech quality.

Since the current implementation does not include a prosody generation module,

we wanted to see the effect of transplanted prosody on the output speech quality.

For this purpose, the prosody of original recordings have been extracted and used in

the unit selection as the target specification. The original recording, the synthesized

utterance with no prosody and the synthesized utterance with transplanted prosody

are evaluated in the quality assessment section.

During the development of the harmonic coder, the autocorrelation and crosscor-

relation based pitch detection algorithms have been experimented. The crosscorrelation

method has been found to give better performance on the coded speech quality. The

different scalar quantization methods have been tried to lower the bit rate of the coder.

The weights used in cost calculation in the unit selection have been empirically

decided by changing the parameters and listening the output speech quality. The

cepstral distance between units have been experimented.

Two speech inventory of different sizes have been used in quality assessment to

measure the affect of using large speech databases in unit selection.

For waveform concatenation, time-domain waveform joining and harmonic coding

based overlap-and-add mechanism was tried. Time-domain waveform joining was found



34

to cause glitches in the synthesized speech. The use of harmonic coding with overlap-

and-add mechanism results in smoother concatenations.

The effect of using the cost of mismatch in pitch periods of two joining units has

been experimented. The units that are longer than average has been given extra cost.
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9. QUALITY ASSESSMENT

For the evaluation of the synthetic voice quality, we carried out formal listening

tests. The tests were of two type. One of the test requires the listeners to rank the

voice quality in terms of naturalness, intelligibility and pleasantness using a MOS like

scoring. The other test is a diagnostic rhyme test.

Mean opinion score (MOS) tests are commonly used for evaluating the quality

of speech coding algorithms. The MOS have also been used to assess the synthesized

speech quality. The MOS scores for speech synthesis are generally have been given in

three categories, namely the intelligibility, the naturalness and the pleasantness. We

carried out formal subjective MOS like tests to assess the quality of the synthesized

speech produced from our system. The test was carried out by snythesizing a set of 50

sentences that have been selected from the speech corpus randomly that has been kept

separate from the training set used for constructing synthesis database. The reason for

choosing the sentences for which we have also the original speech waveforms spoken

by our speaker is that we also use the original recordings in our tests to ensure the

reliability of our test results. In the MOS test, 10 subjects (2 females) and 50 sentences

were used. The subjects listened the sentences using headphones. The sentences were

at 16kHz and 16 bits. The subjects were instructed to rate the sentences on a scale of 1-

5 where 1 is very poor and 5 is excellent. Some speech samples of speech coders having

different MOS scores were presented to the subjects to ensure consistency in evaluating

the speech quality. The subjects were also familiarized with the speech synthesis by

listening some example utterances of varying quality. In the MOS test we evaluated the

quality of the five systems. The first system uses the original recordings, that have been

coded by our harmonic coder and reconstructed, from the test speech corpus that have

been kept separate from the training set. The second system uses our unit selection

synthesizer with a speech unit inventory containing about 19 hours of speech recording.

The third system uses a speech inventory containing about 3 hours of recording. The

fourth system is the same system with the second one except that the original prosody

from the original recordings are used in the unit selection process. The final system
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Table 9.1. Systems evaluated in MOS test with average scores

System Description MOS

X The original recordings with harmonic coding 4.91

T Speech synthesis using 19 hours of speech 4.2

W Speech synthesis using 3 hours of speech with original prosody 4.11

G Speech synthesis using 19 hours of speech with original prosody 4.01

R Speech synthesis using 3 hours of speech 4

Figure 9.1. MOS scores for the evaluated systems

is the same system with the third system except the original prosody is used. Using

five systems 50 sentences that can be found in the appendix A are synthesized. 250

sentences from all of the systems are divided into five sets of 50 sentences. Each set

contains 10 sentence from each system. In each set, all of the sentences are used and no

repeating of the same sentence from different systems is allowed. Each set is listened

by two subjects. The subjects give ratings in terms of intelligibility, naturalness and

pleasantness to each sentence. The evaluated systems and their average MOS scores

can be seen in Table 9.1. Each system’s MOS scores for each category is shown in

Figures 9.1 and 9.2. The detailed scores for each system is given in the appendix B.

The differences in system ratings were found to be significant using ANOVA analysis.

The analysis yielded an F-value of about 21 whereas the critical F-values are about 3.3

and 5.0 for P=0.01 and P=0.001, respectively.

We also conducted an intelligibility test. Diagnostic rhyme test (DRT) uses mono-

syllabic words that have the consonant-vowel-consonat pattern. This test measures the

capability of discrimination of the initial consonants for the system evaluated. The DRT

word list of ANSI standard for English contains one hundred and ninety two words ar-

ranged in ninety six rhyming pairs which differ only in their initial consonant sounds.

Figure 9.2. MOS scores for the evaluated systems grouped by test category
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Table 9.2. DRT word list for Turkish

Voicing Nasality Sustenation Sibilation Graveness Compactness

var far mal bal van ban çent kent biz diz türk kürk

ben ten mat bat ve be saç taç pas tas fan han

gez kez naz daz var bar sez tez boz doz ver yer

bul pul mil bil şap çap jön yön pek tek faz haz

din tin mit bit vur bur jel gel pers ters dün gün

diz tiz mor bor şam çam sin tin fon ton tap kap

zor sor mut but şan çan zan tan post tost tuş kuş

zevk sevk mir bir fes pes say tay put tut toz koz

zar sar muz buz şark çark zam tam pak tak tas kas

zen sen nam dam fil pil zat tat poz toz taş kaş

zil sil nar dar şal çal zerk terk pür tür tat kat

bay pay nem dem şık çık çal kal bağ dağ tel kel

ders ters nur dur şok çok sak tak bul dul düz güz

gör kör nal dal fas pas çil kil bel del tül kül

vay fay nil dil fark park çim kim but dut ton kon

göl çöl men ben fiş piş san tan fer ter tork kork

The list has been divided into six categories depending on the distinctive features of

speech. The categories has been constructed in terms of voicing, nasality, sustenation,

sibilation, graveness, and compactness characteristics of the sounds. For assessing the

intelligibility of the synthesized speech in Turkish, we constructed a DRT word list for

Turkish based on the categories of the DRT word list of English as shown in Table 9.2.

The DRT list has been designed to exploit the distinctive features of Turkish speech

at maximum. The list contains total of 96 words in pairs.

Using the DRT word list for Turkish, we carried out an intelligibility test for

our system. The randomly selected words from each pair of the DRT word list was

synthesized using our TTS system. The output speech waveforms were played to 10

native Turkish listeners who were then asked to choose which one of the words given in
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pairs from the DRT list they heard. The listeners were assured to have a good hearing

and discrimination of sounds. The test results are shown in Table 9.3 as the percentage

of number of correct selections for the two systems evaluated.

Table 9.3. Systems evaluated in DRT test with DRT scores

System Description DRT

T Speech synthesis using 19 hours of speech 0.95

R Speech synthesis using 3 hours of speech 0.94
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10. CONCLUSIONS

In this work, a corpus-based concatenative speech synthesis system architecture

for Turkish has been designed and implemented. We have done a literature survey on

corpus-based concatenative speech synthesis research. Different techniques have been

investigated and applied for optimal speech corpus design. Turkish phonetics have been

studied to create a phoneme set that is suitable and adequate for representing all the

sounds in Turkish to be used in a speech synthesis system. A pronunciation lexicon for

the root words in Turkish has been prepared. A simple text normalization module for

Turkish has been implemented. A grapheme-to-phoneme conversion module based on

morphological analysis of Turkish has been implemented. Transplanted prosody have

been experimented for evaluating the importance of intonation and duration modeling

in the system. A unit selection algorithm based on dynamic programming has been

implemented. Target and concatenation costs to be used in unit selection have been

extracted. A cepstral distance measure used in concatenation cost calculation was im-

plemented. A speech representation based on harmonic coding has been implemented.

Speech corpus has been compressed by a factor of three with slight degradation on the

voice quality using the speech model. The smooth concatenation of speech units have

been succeeded using the harmonic coding parameters. As a result a unit selection-

based concatenative speech synthesis system capable of generating highly intelligible

and natural synthetic speech for Turkish has been developed. Subjective tests have

been carried out to assess the speech quality generated by the system. A DRT word

list for Turkish has been constructed to carry out the intelligibility tests. The final

system got 4.2 MOS like score and 0.95 DRT correct word discrimination percentage.
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APPENDIX A: SENTENCES USED FOR MOS TESTS

1. bugün ata adlı özel uçakla çorluya gitti.

2. sonuç olarak herkes konuyu kendine göre yorumladı.

3. ve beni ölüm cezasına çarptırdılar.

4. musaya apaçık dokuz mucize verdik.

5. kafesleri tüm aramalarına karşın bulamamışlar.

6. herkesin birden cesareti kırıldı.

7. yelken bezinden bir çuval vardı.

8. nasıl yararlı kullanılabileceği anlatılıyor.

9. müzikle pek ilgisi kalmamıştı.

10. kalbinin en soluksuz atışıydı.

11. o gün kralın söylediği en akıllıca söz bu olmuştu.

12. ünlü sanatçı zülfü livaneli.

13. cumhurbaşkanı turgut özal.

14. felsefe antik yunanda çıktıysa da...

15. gabriel evli bir kadın.

16. bu dilencinin babası ha!

17. neyle itham ediliyorsun?

18. ister suçlu ister suçsuz olsun.

19. bu tutarsızlıktan kurtulmanın bir yolu var mıdır?

20. derslerden yeter derecede bilgi edinebildim mi?

21. herkeste büyük şaşkınlık uyandırdı.
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22. üç boyutlu cisimlerin iki boyutlu izdüşümleridir.

23. o bölümü yazıyorum şimdi.

24. kısa vadeli dış borçların ödenmesinde zorluklar olmuştur.

25. üzerini yapraklarla kapladı.

26. mari için büyük bir darbe oldu.

27. her kesimden insanımızın namus borcudur.

28. ben o kadar büyük bir günahkarım ki.

29. allah onların ne gizlediklerini bilir.

30. sivrisineklere yem oldu.

31. zaman en kötü günü de sona erdirir.

32. iki tane aktif yanardağı vardı.

33. kendisinin de vardır sigortası kardeşinin de.

34. dördüncü bölüm siyasi haklar ve ödevler.

35. yavaş yavaş tatlı düşlere kaptırdı kendini.

36. aslında evsizlik beni hiç rahatsız etmiyor.

37. güzel mi güzel bir yer burası.

38. üçü de yolun ilk dönemecinde çarçabuk gözden yittiler.

39. bilimsel yayınları acıyla izledim.

40. fuar altı eylüle kadar açık kalacak.

41. ben ordu başkumandanına çıktım.

42. yoksa okulu kapatmak zorunda kalacağım.

43. bu durum çok doğal karşılanır.
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44. ekonomide radikal önlemlere ihtiyaç olduğunu yazdı.

45. elle işlenmiş çok hoş bir porselen fincan.

46. diplomasi ermeni ve rum sorununu tartışıyor.

47. yoksa hiç öğrenmesem mi?

48. yaşamak yalnız yemek ve uyumak olmamalı.

49. güvenilir bir ortam yaratmaktır.

50. kendini eğitmesi zaman aldı.
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APPENDIX B: MOS TEST RESULTS

The detailed MOS test scores for each system explained in Table 9.1 can be seen

in the following figures.

Figure B.1. Speech synthesis system G
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Figure B.2. Speech synthesis system R

Figure B.3. Speech synthesis system T

Figure B.4. Speech synthesis system W

Figure B.5. Speech synthesis system X
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