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Abstract. In this paper, we propose a set of language resources for building 
Turkish language processing applications. Specifically, we present a finite-state 
implementation of a morphological parser, an averaged perceptron-based mor-
phological disambiguator, and compilation of a web corpus. Turkish is an  
agglutinative language with a highly productive inflectional and derivational 
morphology. We present an implementation of a morphological parser based on 
two-level morphology. This parser is one of the most complete parsers for 
Turkish and it runs independent of any other external system such as PC-
KIMMO in contrast to existing parsers. Due to complex phonology and mor-
phology of Turkish, parsing introduces some ambiguous parses. We developed 
a morphological disambiguator with accuracy of about 98% using averaged 
perceptron algorithm. We also present our efforts to build a Turkish web corpus 
of about 423 million words. 

Keywords: Morphological parsing, Morphological disambiguation, Turkish, 
Web corpus. 

1   Finite-State Morphological Parser 

Morphological parsing is the problem of breaking a word such as çocuklar (children) 
into the constituent morphemes, çocuk (child) and -lar (plural suffix). To build a mor-
phological parser, we need three components: a lexicon listing the stem words anno-
tated with some information such as part-of-speech of the words to determine which 
morphological rules apply to them, a morphotactics component (morphosyntax) that 
describes the word formation by specifying the ordering of morphemes, and a mor-
phophonemics component that describes the phonological alternations occurring in 
the morphemes during word formation. In finite-state morphology, all these compo-
nents can be implemented using finite-state transducers. 

To implement phonological rules, we used the two-level morphology formalism of 
Koskenniemi [5]. Two-level morphology is a formalism for describing morphological 
alternations. In this formalism, the phonological rules denote regular relations that can 



418 H. Sak, T. Güngör, and M. Saraçlar 

be represented by finite-state transducers. Two-level rules are applied in parallel or 
when implemented as finite-state transducers they can be intersected to a single mor-
phophonemics transducer. 

To show how two-level phonology is used to model phonological phenomena, we 
give an example for vowel harmony in Turkish [6]. In Turkish, the /a/ vowel in suf-
fixes is realized as /a/ or /e/ in surface form depending on the word they are attached 
to. According to vowel harmony, the /a/ vowel changes its form to agree in backness 
with the preceding stem vowel. A two-level rule that describes this phenomena in the 
case of front vowels is given below. 

A:e ⇒ @:FV [@:CONS | @:ε]* _ 

In this rule, “A” symbol is used for lexical representation of /a/ vowel in suffixes. 
“FV” symbol represents the front vowels /e/, /i/, /ö/, and /ü/. “CONS” symbol repre-
sents the set of consonants. “@” symbol means any symbol in the alphabet. This rule 
states that /a/ vowel (/A/ in lexical form) may be converted to /e/ vowel only if it is 
preceded with a surface front vowel followed possibly by a number of symbols hav-
ing consonants and epsilon realizations in the surface form. The finite-state transducer 
realization for this rule is shown in Figure 1. 

 

Fig. 1. Transducer for Turkish vowel harmony: “@:@” symbol represents any feasible lexi-
cal/surface pair absent in the transducer. “@” symbol represents any other symbol that is not 
used on any arc. 

The lexicon and morphotactics can also be encoded into a single finite-state trans-
ducer as shown in Figure 2. This FST implements a simple nominal inflection for 
Turkish. The input side of this transducer encodes the morphological features to be 
returned as the morphological parse of the words. The output side is meant to be input 
to the phonological rules transducer, therefore it needs to be expanded to letter se-
quences. As you can see the output morphemes are marked with special symbols to 
encode phonological alternations in the rules transducer. 
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Fig. 2. A transducer for a simple Turkish nominal inflection 

Given the morphophonemics and lexicon/morphotactics transducers, it is quite easy 
to build a transducer that implements a morphological parser. Simply, we compose the 
lexicon/morphotactics transducer with the morphophonemics transducer, then invert 
the resulting transducer to do morphological analysis rather than generation. 

In this implementation, we aimed to build a morphological parser that is not de-
pendent on any external system for running. We wanted to construct a finite-state 
transducer that implements a Turkish morphological parser and that can be embedded 
in other NLP applications. Therefore in this implementation, we did not use external 
systems such as PC-KIMMO and Xerox finite-state tools. For finite-state operations 
we used AT&T FSM tools [8], but these tools are not required for the parser to run. 

We compiled a new lexicon of 54,267 root words. To compile this lexicon and to 
ensure the correct spelling of the words we used the Turkish Language Institution 
(TDK) dictionary. 

An example output from the morphological parser for the word alın is given below: 
 
alın[Noun]+[A3sg]+[Pnon]+[Nom] 
al[Noun]+[A3sg]+Hn[P2sg]+[Nom] 
al[Adj]-[Noun]+[A3sg]+Hn[P2sg]+[Nom] 
al[Noun]+[A3sg]+[Pnon]+NHn[Gen] 
al[Adj]-[Noun]+[A3sg]+[Pnon]+NHn[Gen] 
alın[Verb]+[Pos]+[Imp]+[A2sg] 
al[Verb]+[Pos]+[Imp]+YHn[A2pl] 
al[Verb]-Hn[Verb+Pass]+[Pos]+[Imp]+[A2sg] 
 
In the morphological parse output the first part is always the root word. Then the 

part-of-speech tag for the stem is given in brackets. These are followed by a set of 
lexical morphemes with the associated morphological features. The inflectional mor-
phemes start with a + sign, and the derivational morphemes start with a - sign. The 
morphological features are given in brackets. If the morpheme is a derivational one, 
then the morphological features for that morpheme start with the part-of-speech of the 
derived word form. It is also possible that morphological features can be assigned in 
the absence of morphemes. 

2   Morphological Disambiguation 

A morphological parser for a language with complex morphology may return more than 
one possible analysis of a word. The ambiguous parses of an example word alın were 
shown in the previous section. As can be seen in that example, some of the parses have 
different root words and have unrelated morphological features due to the productive 
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morphology of Turkish. This morphological ambiguity needs to be resolved for further 
language processing. Several approaches have been proposed for morphosyntactic tag-
ging in inflective and agglutinative languages, e.g. [2,3,4,7,9,10,13]. 

An application of the averaged perceptron algorithm to the morphological disam-
biguation of Turkish text is described in [10]. In that study, a baseline trigram-based 
model of [2] is used to enumerate n-best candidates of alternative morphological 
parses of a sentence. Then the averaged perceptron algorithm is applied to re-rank the 
n-best candidate list using a set of features. In this study, we do not use a baseline 
model to generate n-best candidates. Instead, we do a Viterbi decoding of the best 
path in the network of ambiguous morphological parses of the words in a sentence 
using the averaged perceptron algorithm to train model parameters as explained in the 
next section. 

The set of features that we included in the model are the same as in [10]. This fea-
ture set takes into account the current morphosyntactic tag (parse) and the history of 
the previous two tags. Therefore, we can do a left to right Viterbi decoding for the 
best morphological parse sequence for a sentence. 

2.1   Perceptron Algorithm 

A variant of the perceptron algorithm that can be applied to problems such as tagging 
and parsing is given in Figure 3. The algorithm estimates a parameter vector α  that 
can be used for mapping from inputs x ∈ X  to outputs y ∈ Y  using a set of training 
examples (xi , yi) . In our setting, X  is a set of sentences and Y  is a set of possible 
morphological parse sequences. The algorithm makes multiple passes (denoted by T ) 
over the training examples. For each example, it finds the highest scoring candidate 
among all candidates using the current parameter values. If the highest scoring candi-
date is not the correct one, it updates the parameter vector α  by the difference of the 
feature vector representation of the correct candidate and the highest scoring candi-
date. This way of parameter update increases the parameter values for features in the 
correct candidate and decreases parameter values for features in the competitor. 

This algorithm can be set up for the morphological disambiguation problem as  
follows: 

- The training examples are the sentence xi = w 1:ni[ ]
i  and the morphological 

parse sequence yi = t 1:ni[ ]
i  pairs for i = 1,..,n , where n  is the number of train-

ing sentences and ni  is the length of the i 'th sentence. 
 
Inputs: Training examples xi , yi( ) 

Initialization: Set α = 0 
Algorithm: 

For t = 1,..,T ,  i = 1,..,n  
Calculate zi = arg max z∈GEN (xi ) Φ(xi ,z) ⋅α  
If zi ≠ yi( ) then α = α + Φ(xi , yi) − Φ(xi ,zi)  

Output: Parameters α  
Fig. 3. A variant of the perceptron algorithm 
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- The function GEN (xi)  maps the input sentence to the candidate parse  
sequences. 

- The representation Φ(x, y) ∈ ℜd  is a feature vector, the components of which 

are defined as Φs w 1:n[ ], t 1:n[ ]( )= φs ti−2 , ti−1, ti( )i=1
n∑ , where φs ti−2, ti−1, ti( ) is 

an indicator function for a feature that depends on the current morphosyntactic 
tag (morphological parse) and the history of the previous two tags. Then the 

feature vector components Φs w 1:ni[ ] , t 1:ni[ ]( ) are just the counts of the local 

features φs ti−2, ti−1, ti( ). For example one feature might be: 

φ100 ti−2, ti−1, ti( )=
1 if current parse t i is al + Verb + Pos + Imp + A2pl

and previous parse t i-1 is a pronoun                 

0 otherwise                                                              

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

- The expression Φ(x, y) ⋅α  is the inner product αsΦ s(x, y)
s∑ . 

- The function arg max z∈GEN (xi ) Φ(xi ,z) ⋅α  can be efficiently calculated using 

dynamic programming since the features that we use depend on only the cur-
rent tag and the previous two tags. 

For the application of the model to the test examples, we use the “averaged pa-
rameters” since they are more robust to noisy or unseparable data [1]. The averaged 
parameters γ  are calculated by summing the parameter values for each feature after 
each training example and dividing this sum by the total number of examples used to 
update the parameters. With this setting, the perceptron algorithm learns an averaged 
parameter vector γ  that can be used to choose the most likely morphological parse 
sequence of a test sentence x  using the following function: 

F (x) = arg max y∈GEN(x) Φ(x, y) ⋅γ  

                = arg max y∈GEN (x) Φ s(x, y) ⋅γ s
s=1

d

∑  

2.2   Experiments 

We used a morphologically disambiguated Turkish corpus of about 950,000 tokens 
(including markers such as begin and end of sentence markers). Alternative ambigu-
ous parses of the words are also available in the corpus as output from a morphologi-
cal analyzer. This data set was divided into a training, development, and test set. The 
training set size is about 750,000 tokens or 45,000 sentences. The development set 
size is about 40,000 tokens or 2,500 sentences. The test set size is also about 40,000 
tokens or 2,500 sentences. The training set is used for parameter estimation and the 
development set is used to tune some of the parameters in the perceptron algorithm. 
The final tests were done on the test set. 

The accuracy of the perceptron algorithm on the test set is 97.81%. For a compari-
son of accuracy of the Viterbi decoding with averaged perceptron with the trigram-
based model of [2] and trigram-based model plus perceptron re-ranking as described 
in [10], see Table 1. 
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Table 1. Comparative Results on Test Set (40K tokens) 

Method Accuracy (%) 
Trigram-based model [2] 93.61 
Trigram-based + Perceptron [10] 96.76 
Perceptron (this study) 97.81 

3   Web Corpus 

In the domain of language processing, we need large corpora for the application and 
evaluation of statistical methods. Such corpora are also important for empirical meth-
ods that the linguists and lexicographers use to infer information about language. 
There have been very few efforts to build a Turkish text corpus [11,12] and they were 
quite limited in terms of size and coverage to be successfully used in statistical natural 
language applications. 

In this research, a large corpus for Turkish was built and cleaned using some heu-
ristics and the morphological parser. The corpus is composed of four sub corpora. 
Three of these corpora (referred as NewsCor) are from three major newspapers in 
Turkish. The other corpus (referred as GenCor) is a general sampling of Turkish web 
pages. The combined corpus of these two corpora will be referred as BOUN Corpus. 

For data collection from the web, we implemented a web crawler - an automated 
script to browse the web as used by the search engines. Since the collected data from 
the web is very noisy, we employed some automatic normalization and filtering 
methods to clean the corpus. We followed a multi step process to clean the corpus as 
described below: 

1. Decode HTML entities 
2. Trim white spaces at the start and end of the lines 
3. Estimate letter sequence counts from a Turkish text and use these counts to fil-

ter documents 
4. Remove duplicate lines to get rid of repetitions in web pages, such as text in 

navigation menus 
5. Remove documents with less than 1,000 characters 
6. Parse the documents using the morphological parser and remove those for 

which more than 25% of the words cannot be parsed 

The normalization and filtering step removes about 60% of the text collected for 
NewsCor and 90% of the text collected for GenCor. This difference is expected since 
the web corpus data is very noisy when compared to the newspaper data. 

The tokenization and segmentation of the corpus is often needed in language appli-
cations. Since the corpus is very large for manual operation, we employed automatic 
methods to tokenize and segment the corpus to sentences. The morphological parser 
that we have developed was very useful in this process. We used the parser as a com-
putational lexicon to look for the words in the corpus. 

For the encoding of the web corpus, we used the XML Corpus Encoding Standard, 
XCES (see http://xces.org) as used in [12]. We encode the corpus in paragraph and sen-
tence level. We also plan to annotate the corpus linguistically in morphosyntactic level. 
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3.1   Contents of the Corpus 

As stated before, Turkish web corpus is formed of four sub corpora. Three of these 
are from three major newspapers in Turkish and the other one is a general sampling of 
Turkish web pages. The statistics about the number of words (all words in the cor-
pus), number of tokens (words and lexical units such as punctuation marks), and types 
(distinct tokens) are shown in Table 2. The percentages of tokens and types that can 
be successfully parsed by the morphological parser are also indicated. We can inter-
pret the figures on the table from different points of view. 

First, we observe that, due to the agglutinative nature of the language, the number 
of types is quite large. Turkish dictionaries on general domain have a typical size of 
50,000-100,000 words. The number of types in the corpus being about 50-60 times 
larger than the typical number of (mostly) stems indicates that derived words are used 
commonly in written language. 

Table 2. Web Corpus Size 

Corpus Words Tokens Types 
Tokens 
parsed (%) 

Types 
parsed (%) 

Milliyet 59M 68M 1.1M 96.7 63.5 
Ntvmsbnc 75M 86M 1.2M 96.4 55.8 
Radikal 50M 58M 1.0M 97.0 65.7 
NewsCor 184M 212M 2.2M 96.7 52.2 
GenCor 239M 279M 3.0M 94.6 39.5 
BOUN Corpus 423M 491M 4.1M 95.5 38.4 

 
Second, a significant difference exists between the percentages of tokens and types 

successfully parsed. This is an expected result, since most of the tokens in the corpus 
are grammatical words and there is a relatively small amount of other kinds of tokens 
(punctuation symbols, proper nouns, etc.) that cannot be parsed. On the other hand, 
each distinct token is treated equally in the last column of the table, without taking 
frequencies into consideration. We see that the parser can return an analysis only for 
38.4% of the types; the rest cannot be parsed. However, this percentage of types in 
fact constitutes 95.5% of the corpus. The main reasons for the unparsed types are the 
proper nouns that do not exist in the lexicon and the spelling errors in the corpus. 

Another observation is about the cleanness of the corpus. When we compare Gen-
Cor with NewsCor, we notice a decrease in the number of words that can be parsed. 
The difference is about 2% in the case of tokens while it is much higher (12.7%) in 
the case of types. These figures indicate that NewsCor is much cleaner than GenCor, 
as might be expected. Also the analysis of the number of words, tokens, and types in 
the two subcorpora shows that GenCor includes more types that are not actually 
words and there are also some unparsed tokens with high frequencies on this subcor-
pus. These observations signal that the words used by general web users are more 
diverse than those used in news portals and some of these words seem to be accepted 
(due to their high frequencies) by the web community. 
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Finally, the performance ratios for the morphological parser are quite satisfactory. 
The success is 96.7% on NewsCor and it is slightly lower for GenCor due to special 
characteristics of the written text on the web. 

3.2   Corpus Statistics 

In this section, we will present statistical results about the corpus in order to get an 
idea about the coverage of a corpus of this size for an agglutinative language and also 
to observe the morphological characteristics of Turkish language. Figure 4 shows 
statistics about the types relative to the corpus size (number of tokens). As can be 
seen, the number of types is increasing continuously for both corpora and for the 
combined corpus. It seems that if corpus size is increased beyond the current size of 
491M tokens, new types will still continue to emerge. This is supported by the evi-
dence that when the corpus size was increased from 490M to 491M, 5,539 new types 
(of which 1,009 can be parsed successfully) have been added to the corpus. This is 
partly due to the productive morphological structure of Turkish and partly to the rich 
web environment. These facts indicate that the size of the current corpus does not 
cover all language usage. It should be extended until at least the number of types that 
can be parsed becomes stable, corresponding to the situation that nearly all possible 
derived forms are represented in the corpus. Adding more data beyond this limit will 
just cause an increase in the number of special tokens (e.g. proper nouns) and mis-
spelled words. 

Figure 5 shows coverage statistics with respect to the vocabulary size (number of 
types). The figure was obtained by first sorting the types in decreasing order of fre-
quencies and then summing up the frequencies beginning from the topmost entry for 
the indicated vocabulary sizes. 50% of the corpus is formed of only about 1,000 dis-
tinct words. We observe that about 300K types are necessary in order to attain an ac-
ceptable coverage ratio (97-98%). The agglutinative nature of the language and the 
diversity of the web contents are the basic reasons of this result. The analysis of a 
similar statistic for the percentages of infrequent types shows that almost half of the 
types (about 2.0M) occur only once in the corpus. The number of types occurring less 
than 10 times is 3.4M and they represent 7.5M tokens in the corpus. Thus, the major-
ity of types in the corpus are very infrequent and 98.4% of the corpus is formed of 
only 15.9% of the types. 

To understand the source of the large number of types in the corpus, we give statis-
tics for the stems and lexical endings (tokens stripped of their stems in lexical form 
such as +lAr+Hn) of the tokens that can be parsed in Figure 6. As the number of  
tokens considered reaches to the size of the corpus, the number of unique stems ap-
proaches to the size of our lexicon (54,267 root words). However, as can be expected, 
all the words in the lexicon do not appear in the corpus and even a corpus of this size 
does not contain any occurrence of 5,630 words. On the other hand, the number of 
unique endings increases steadily as new data are added. Note that the figure consid-
ers only the tokens that can be successfully parsed. Hence, this increase means that 
people freely derive new word forms by making use of suffix combinations not used 
before. This is an interesting result. Although we know that theoretically there is no 
limit on the number of derivations in Turkish, we might expect that in practice a 
(large) subset of all possible derived forms will cover the daily use of the language. 
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However, this expectation does not hold even for a set of nearly 500M tokens and 
about 9,000 new words, 40 stems, and 60 lexical endings emerge per 10M tokens at 
this size. When the whole corpus is considered, about 30 different words can be ob-
tained from a single root form, which is an indication of the productive morphological 
structure of the language. 

 

Fig. 4. Type statistics for subcorpora and combined corpus 

 

Fig. 5. Coverage statistics for subcorpora and combined corpus 
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Fig. 6. Stem and ending statistics for subcorpora and combined corpus 

4   Conclusions 

In this paper, we presented some language resources and tools for Turkish that can be 
used to build Turkish NLP applications. We already used the morphological parser as 
a computational lexicon to implement a spell checker for Mac OS X. Our primary 
motivation in compiling these resources is to develop a large vocabulary speech rec-
ognition system for Turkish. 

The language resources obtained as output of this research are: (i) A highly efficient 
finite-state morphological parser that does not depend on any other environment to run. 
It is one of the most complete parsers in terms of lexicon coverage, morphotactics, and 
morphophonemics; (ii) An efficient averaged perceptron-based morphological disam-
biguator that uses Viterbi decoding. The disambiguation accuracy of 97.81% is the 
highest accuracy reported so far for Turkish; (iii) A web corpus containing about 500 
million tokens. The corpus has been cleaned using some heuristics and the morpho-
logical parser developed in this work and then converted to XCES XML format. 

We believe that the methodologies described here for Turkish can be applied to 
other languages with complex morphology to build high-quality language resources. 
The resources obtained have the potential of being used as building blocks in large-
scale language applications. As a future work, we plan to use the morphological 
parser and the disambiguator for linguistic annotation of the web corpus. 
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