
A. Ranta (Ed.): GoTAL 2008, LNAI 5221, pp. 417–427, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Turkish Language Resources: Morphological Parser,
Morphological Disambiguator and Web Corpus

Haşim Sak1, Tunga Güngör1, and Murat Saraçlar2

1 Boğaziçi University, Computer Engineering Department, Bebek,
34342 İstanbul, Turkey

hasim.sak@boun.edu.tr, gungort@boun.edu.tr
2 Boğaziçi University, Electrical and Electronic Engineering Department, Bebek,

34342 İstanbul, Turkey
murat.saraclar@boun.edu.tr

Abstract. In this paper, we propose a set of language resources for building
Turkish language processing applications. Specifically, we present a finite-state
implementation of a morphological parser, an averaged perceptron-based mor-
phological disambiguator, and compilation of a web corpus. Turkish is an
agglutinative language with a highly productive inflectional and derivational
morphology. We present an implementation of a morphological parser based on
two-level morphology. This parser is one of the most complete parsers for
Turkish and it runs independent of any other external system such as PC-
KIMMO in contrast to existing parsers. Due to complex phonology and mor-
phology of Turkish, parsing introduces some ambiguous parses. We developed
a morphological disambiguator with accuracy of about 98% using averaged
perceptron algorithm. We also present our efforts to build a Turkish web corpus
of about 423 million words.

Keywords: Morphological parsing, Morphological disambiguation, Turkish,
Web corpus.

1 Finite-State Morphological Parser

Morphological parsing is the problem of breaking a word such as çocuklar (children)
into the constituent morphemes, çocuk (child) and -lar (plural suffix). To build a mor-
phological parser, we need three components: a lexicon listing the stem words anno-
tated with some information such as part-of-speech of the words to determine which
morphological rules apply to them, a morphotactics component (morphosyntax) that
describes the word formation by specifying the ordering of morphemes, and a mor-
phophonemics component that describes the phonological alternations occurring in
the morphemes during word formation. In finite-state morphology, all these compo-
nents can be implemented using finite-state transducers.

To implement phonological rules, we used the two-level morphology formalism of
Koskenniemi [5]. Two-level morphology is a formalism for describing morphological
alternations. In this formalism, the phonological rules denote regular relations that can

418 H. Sak, T. Güngör, and M. Saraçlar

be represented by finite-state transducers. Two-level rules are applied in parallel or
when implemented as finite-state transducers they can be intersected to a single mor-
phophonemics transducer.

To show how two-level phonology is used to model phonological phenomena, we
give an example for vowel harmony in Turkish [6]. In Turkish, the /a/ vowel in suf-
fixes is realized as /a/ or /e/ in surface form depending on the word they are attached
to. According to vowel harmony, the /a/ vowel changes its form to agree in backness
with the preceding stem vowel. A two-level rule that describes this phenomena in the
case of front vowels is given below.

A:e ⇒ @:FV [@:CONS | @:ε]* _

In this rule, “A” symbol is used for lexical representation of /a/ vowel in suffixes.
“FV” symbol represents the front vowels /e/, /i/, /ö/, and /ü/. “CONS” symbol repre-
sents the set of consonants. “@” symbol means any symbol in the alphabet. This rule
states that /a/ vowel (/A/ in lexical form) may be converted to /e/ vowel only if it is
preceded with a surface front vowel followed possibly by a number of symbols hav-
ing consonants and epsilon realizations in the surface form. The finite-state transducer
realization for this rule is shown in Figure 1.

Fig. 1. Transducer for Turkish vowel harmony: “@:@” symbol represents any feasible lexi-
cal/surface pair absent in the transducer. “@” symbol represents any other symbol that is not
used on any arc.

The lexicon and morphotactics can also be encoded into a single finite-state trans-
ducer as shown in Figure 2. This FST implements a simple nominal inflection for
Turkish. The input side of this transducer encodes the morphological features to be
returned as the morphological parse of the words. The output side is meant to be input
to the phonological rules transducer, therefore it needs to be expanded to letter se-
quences. As you can see the output morphemes are marked with special symbols to
encode phonological alternations in the rules transducer.

 Turkish Language Resources 419

Fig. 2. A transducer for a simple Turkish nominal inflection

Given the morphophonemics and lexicon/morphotactics transducers, it is quite easy
to build a transducer that implements a morphological parser. Simply, we compose the
lexicon/morphotactics transducer with the morphophonemics transducer, then invert
the resulting transducer to do morphological analysis rather than generation.

In this implementation, we aimed to build a morphological parser that is not de-
pendent on any external system for running. We wanted to construct a finite-state
transducer that implements a Turkish morphological parser and that can be embedded
in other NLP applications. Therefore in this implementation, we did not use external
systems such as PC-KIMMO and Xerox finite-state tools. For finite-state operations
we used AT&T FSM tools [8], but these tools are not required for the parser to run.

We compiled a new lexicon of 54,267 root words. To compile this lexicon and to
ensure the correct spelling of the words we used the Turkish Language Institution
(TDK) dictionary.

An example output from the morphological parser for the word alın is given below:

alın[Noun]+[A3sg]+[Pnon]+[Nom]
al[Noun]+[A3sg]+Hn[P2sg]+[Nom]
al[Adj]-[Noun]+[A3sg]+Hn[P2sg]+[Nom]
al[Noun]+[A3sg]+[Pnon]+NHn[Gen]
al[Adj]-[Noun]+[A3sg]+[Pnon]+NHn[Gen]
alın[Verb]+[Pos]+[Imp]+[A2sg]
al[Verb]+[Pos]+[Imp]+YHn[A2pl]
al[Verb]-Hn[Verb+Pass]+[Pos]+[Imp]+[A2sg]

In the morphological parse output the first part is always the root word. Then the

part-of-speech tag for the stem is given in brackets. These are followed by a set of
lexical morphemes with the associated morphological features. The inflectional mor-
phemes start with a + sign, and the derivational morphemes start with a - sign. The
morphological features are given in brackets. If the morpheme is a derivational one,
then the morphological features for that morpheme start with the part-of-speech of the
derived word form. It is also possible that morphological features can be assigned in
the absence of morphemes.

2 Morphological Disambiguation

A morphological parser for a language with complex morphology may return more than
one possible analysis of a word. The ambiguous parses of an example word alın were
shown in the previous section. As can be seen in that example, some of the parses have
different root words and have unrelated morphological features due to the productive

420 H. Sak, T. Güngör, and M. Saraçlar

morphology of Turkish. This morphological ambiguity needs to be resolved for further
language processing. Several approaches have been proposed for morphosyntactic tag-
ging in inflective and agglutinative languages, e.g. [2,3,4,7,9,10,13].

An application of the averaged perceptron algorithm to the morphological disam-
biguation of Turkish text is described in [10]. In that study, a baseline trigram-based
model of [2] is used to enumerate n-best candidates of alternative morphological
parses of a sentence. Then the averaged perceptron algorithm is applied to re-rank the
n-best candidate list using a set of features. In this study, we do not use a baseline
model to generate n-best candidates. Instead, we do a Viterbi decoding of the best
path in the network of ambiguous morphological parses of the words in a sentence
using the averaged perceptron algorithm to train model parameters as explained in the
next section.

The set of features that we included in the model are the same as in [10]. This fea-
ture set takes into account the current morphosyntactic tag (parse) and the history of
the previous two tags. Therefore, we can do a left to right Viterbi decoding for the
best morphological parse sequence for a sentence.

2.1 Perceptron Algorithm

A variant of the perceptron algorithm that can be applied to problems such as tagging
and parsing is given in Figure 3. The algorithm estimates a parameter vector α that
can be used for mapping from inputs x ∈ X to outputs y ∈ Y using a set of training
examples (xi , yi) . In our setting, X is a set of sentences and Y is a set of possible
morphological parse sequences. The algorithm makes multiple passes (denoted by T)
over the training examples. For each example, it finds the highest scoring candidate
among all candidates using the current parameter values. If the highest scoring candi-
date is not the correct one, it updates the parameter vector α by the difference of the
feature vector representation of the correct candidate and the highest scoring candi-
date. This way of parameter update increases the parameter values for features in the
correct candidate and decreases parameter values for features in the competitor.

This algorithm can be set up for the morphological disambiguation problem as
follows:

- The training examples are the sentence xi = w 1:ni[]
i and the morphological

parse sequence yi = t 1:ni[]
i pairs for i = 1,..,n , where n is the number of train-

ing sentences and ni is the length of the i 'th sentence.

Inputs: Training examples xi , yi()

Initialization: Set α = 0
Algorithm:

For t = 1,..,T , i = 1,..,n
Calculate zi = arg max z∈GEN (xi) Φ(xi ,z) ⋅α
If zi ≠ yi() then α = α + Φ(xi , yi) − Φ(xi ,zi)

Output: Parameters α
Fig. 3. A variant of the perceptron algorithm

 Turkish Language Resources 421

- The function GEN (xi) maps the input sentence to the candidate parse
sequences.

- The representation Φ(x, y) ∈ ℜd is a feature vector, the components of which

are defined as Φs w 1:n[], t 1:n[]()= φs ti−2 , ti−1, ti()i=1
n∑ , where φs ti−2, ti−1, ti() is

an indicator function for a feature that depends on the current morphosyntactic
tag (morphological parse) and the history of the previous two tags. Then the

feature vector components Φs w 1:ni[] , t 1:ni[]() are just the counts of the local

features φs ti−2, ti−1, ti(). For example one feature might be:

φ100 ti−2, ti−1, ti()=
1 if current parse t i is al + Verb + Pos + Imp + A2pl

and previous parse t i-1 is a pronoun

0 otherwise

⎧
⎨
⎪

⎩ ⎪

- The expression Φ(x, y) ⋅α is the inner product αsΦ s(x, y)
s∑ .

- The function arg max z∈GEN (xi) Φ(xi ,z) ⋅α can be efficiently calculated using

dynamic programming since the features that we use depend on only the cur-
rent tag and the previous two tags.

For the application of the model to the test examples, we use the “averaged pa-
rameters” since they are more robust to noisy or unseparable data [1]. The averaged
parameters γ are calculated by summing the parameter values for each feature after
each training example and dividing this sum by the total number of examples used to
update the parameters. With this setting, the perceptron algorithm learns an averaged
parameter vector γ that can be used to choose the most likely morphological parse
sequence of a test sentence x using the following function:

F (x) = arg max y∈GEN(x) Φ(x, y) ⋅γ

 = arg max y∈GEN (x) Φ s(x, y) ⋅γ s
s=1

d

∑

2.2 Experiments

We used a morphologically disambiguated Turkish corpus of about 950,000 tokens
(including markers such as begin and end of sentence markers). Alternative ambigu-
ous parses of the words are also available in the corpus as output from a morphologi-
cal analyzer. This data set was divided into a training, development, and test set. The
training set size is about 750,000 tokens or 45,000 sentences. The development set
size is about 40,000 tokens or 2,500 sentences. The test set size is also about 40,000
tokens or 2,500 sentences. The training set is used for parameter estimation and the
development set is used to tune some of the parameters in the perceptron algorithm.
The final tests were done on the test set.

The accuracy of the perceptron algorithm on the test set is 97.81%. For a compari-
son of accuracy of the Viterbi decoding with averaged perceptron with the trigram-
based model of [2] and trigram-based model plus perceptron re-ranking as described
in [10], see Table 1.

422 H. Sak, T. Güngör, and M. Saraçlar

Table 1. Comparative Results on Test Set (40K tokens)

Method Accuracy (%)
Trigram-based model [2] 93.61
Trigram-based + Perceptron [10] 96.76
Perceptron (this study) 97.81

3 Web Corpus

In the domain of language processing, we need large corpora for the application and
evaluation of statistical methods. Such corpora are also important for empirical meth-
ods that the linguists and lexicographers use to infer information about language.
There have been very few efforts to build a Turkish text corpus [11,12] and they were
quite limited in terms of size and coverage to be successfully used in statistical natural
language applications.

In this research, a large corpus for Turkish was built and cleaned using some heu-
ristics and the morphological parser. The corpus is composed of four sub corpora.
Three of these corpora (referred as NewsCor) are from three major newspapers in
Turkish. The other corpus (referred as GenCor) is a general sampling of Turkish web
pages. The combined corpus of these two corpora will be referred as BOUN Corpus.

For data collection from the web, we implemented a web crawler - an automated
script to browse the web as used by the search engines. Since the collected data from
the web is very noisy, we employed some automatic normalization and filtering
methods to clean the corpus. We followed a multi step process to clean the corpus as
described below:

1. Decode HTML entities
2. Trim white spaces at the start and end of the lines
3. Estimate letter sequence counts from a Turkish text and use these counts to fil-

ter documents
4. Remove duplicate lines to get rid of repetitions in web pages, such as text in

navigation menus
5. Remove documents with less than 1,000 characters
6. Parse the documents using the morphological parser and remove those for

which more than 25% of the words cannot be parsed

The normalization and filtering step removes about 60% of the text collected for
NewsCor and 90% of the text collected for GenCor. This difference is expected since
the web corpus data is very noisy when compared to the newspaper data.

The tokenization and segmentation of the corpus is often needed in language appli-
cations. Since the corpus is very large for manual operation, we employed automatic
methods to tokenize and segment the corpus to sentences. The morphological parser
that we have developed was very useful in this process. We used the parser as a com-
putational lexicon to look for the words in the corpus.

For the encoding of the web corpus, we used the XML Corpus Encoding Standard,
XCES (see http://xces.org) as used in [12]. We encode the corpus in paragraph and sen-
tence level. We also plan to annotate the corpus linguistically in morphosyntactic level.

 Turkish Language Resources 423

3.1 Contents of the Corpus

As stated before, Turkish web corpus is formed of four sub corpora. Three of these
are from three major newspapers in Turkish and the other one is a general sampling of
Turkish web pages. The statistics about the number of words (all words in the cor-
pus), number of tokens (words and lexical units such as punctuation marks), and types
(distinct tokens) are shown in Table 2. The percentages of tokens and types that can
be successfully parsed by the morphological parser are also indicated. We can inter-
pret the figures on the table from different points of view.

First, we observe that, due to the agglutinative nature of the language, the number
of types is quite large. Turkish dictionaries on general domain have a typical size of
50,000-100,000 words. The number of types in the corpus being about 50-60 times
larger than the typical number of (mostly) stems indicates that derived words are used
commonly in written language.

Table 2. Web Corpus Size

Corpus Words Tokens Types
Tokens
parsed (%)

Types
parsed (%)

Milliyet 59M 68M 1.1M 96.7 63.5
Ntvmsbnc 75M 86M 1.2M 96.4 55.8
Radikal 50M 58M 1.0M 97.0 65.7
NewsCor 184M 212M 2.2M 96.7 52.2
GenCor 239M 279M 3.0M 94.6 39.5
BOUN Corpus 423M 491M 4.1M 95.5 38.4

Second, a significant difference exists between the percentages of tokens and types

successfully parsed. This is an expected result, since most of the tokens in the corpus
are grammatical words and there is a relatively small amount of other kinds of tokens
(punctuation symbols, proper nouns, etc.) that cannot be parsed. On the other hand,
each distinct token is treated equally in the last column of the table, without taking
frequencies into consideration. We see that the parser can return an analysis only for
38.4% of the types; the rest cannot be parsed. However, this percentage of types in
fact constitutes 95.5% of the corpus. The main reasons for the unparsed types are the
proper nouns that do not exist in the lexicon and the spelling errors in the corpus.

Another observation is about the cleanness of the corpus. When we compare Gen-
Cor with NewsCor, we notice a decrease in the number of words that can be parsed.
The difference is about 2% in the case of tokens while it is much higher (12.7%) in
the case of types. These figures indicate that NewsCor is much cleaner than GenCor,
as might be expected. Also the analysis of the number of words, tokens, and types in
the two subcorpora shows that GenCor includes more types that are not actually
words and there are also some unparsed tokens with high frequencies on this subcor-
pus. These observations signal that the words used by general web users are more
diverse than those used in news portals and some of these words seem to be accepted
(due to their high frequencies) by the web community.

424 H. Sak, T. Güngör, and M. Saraçlar

Finally, the performance ratios for the morphological parser are quite satisfactory.
The success is 96.7% on NewsCor and it is slightly lower for GenCor due to special
characteristics of the written text on the web.

3.2 Corpus Statistics

In this section, we will present statistical results about the corpus in order to get an
idea about the coverage of a corpus of this size for an agglutinative language and also
to observe the morphological characteristics of Turkish language. Figure 4 shows
statistics about the types relative to the corpus size (number of tokens). As can be
seen, the number of types is increasing continuously for both corpora and for the
combined corpus. It seems that if corpus size is increased beyond the current size of
491M tokens, new types will still continue to emerge. This is supported by the evi-
dence that when the corpus size was increased from 490M to 491M, 5,539 new types
(of which 1,009 can be parsed successfully) have been added to the corpus. This is
partly due to the productive morphological structure of Turkish and partly to the rich
web environment. These facts indicate that the size of the current corpus does not
cover all language usage. It should be extended until at least the number of types that
can be parsed becomes stable, corresponding to the situation that nearly all possible
derived forms are represented in the corpus. Adding more data beyond this limit will
just cause an increase in the number of special tokens (e.g. proper nouns) and mis-
spelled words.

Figure 5 shows coverage statistics with respect to the vocabulary size (number of
types). The figure was obtained by first sorting the types in decreasing order of fre-
quencies and then summing up the frequencies beginning from the topmost entry for
the indicated vocabulary sizes. 50% of the corpus is formed of only about 1,000 dis-
tinct words. We observe that about 300K types are necessary in order to attain an ac-
ceptable coverage ratio (97-98%). The agglutinative nature of the language and the
diversity of the web contents are the basic reasons of this result. The analysis of a
similar statistic for the percentages of infrequent types shows that almost half of the
types (about 2.0M) occur only once in the corpus. The number of types occurring less
than 10 times is 3.4M and they represent 7.5M tokens in the corpus. Thus, the major-
ity of types in the corpus are very infrequent and 98.4% of the corpus is formed of
only 15.9% of the types.

To understand the source of the large number of types in the corpus, we give statis-
tics for the stems and lexical endings (tokens stripped of their stems in lexical form
such as +lAr+Hn) of the tokens that can be parsed in Figure 6. As the number of
tokens considered reaches to the size of the corpus, the number of unique stems ap-
proaches to the size of our lexicon (54,267 root words). However, as can be expected,
all the words in the lexicon do not appear in the corpus and even a corpus of this size
does not contain any occurrence of 5,630 words. On the other hand, the number of
unique endings increases steadily as new data are added. Note that the figure consid-
ers only the tokens that can be successfully parsed. Hence, this increase means that
people freely derive new word forms by making use of suffix combinations not used
before. This is an interesting result. Although we know that theoretically there is no
limit on the number of derivations in Turkish, we might expect that in practice a
(large) subset of all possible derived forms will cover the daily use of the language.

 Turkish Language Resources 425

However, this expectation does not hold even for a set of nearly 500M tokens and
about 9,000 new words, 40 stems, and 60 lexical endings emerge per 10M tokens at
this size. When the whole corpus is considered, about 30 different words can be ob-
tained from a single root form, which is an indication of the productive morphological
structure of the language.

Fig. 4. Type statistics for subcorpora and combined corpus

Fig. 5. Coverage statistics for subcorpora and combined corpus

426 H. Sak, T. Güngör, and M. Saraçlar

Fig. 6. Stem and ending statistics for subcorpora and combined corpus

4 Conclusions

In this paper, we presented some language resources and tools for Turkish that can be
used to build Turkish NLP applications. We already used the morphological parser as
a computational lexicon to implement a spell checker for Mac OS X. Our primary
motivation in compiling these resources is to develop a large vocabulary speech rec-
ognition system for Turkish.

The language resources obtained as output of this research are: (i) A highly efficient
finite-state morphological parser that does not depend on any other environment to run.
It is one of the most complete parsers in terms of lexicon coverage, morphotactics, and
morphophonemics; (ii) An efficient averaged perceptron-based morphological disam-
biguator that uses Viterbi decoding. The disambiguation accuracy of 97.81% is the
highest accuracy reported so far for Turkish; (iii) A web corpus containing about 500
million tokens. The corpus has been cleaned using some heuristics and the morpho-
logical parser developed in this work and then converted to XCES XML format.

We believe that the methodologies described here for Turkish can be applied to
other languages with complex morphology to build high-quality language resources.
The resources obtained have the potential of being used as building blocks in large-
scale language applications. As a future work, we plan to use the morphological
parser and the disambiguator for linguistic annotation of the web corpus.

Acknowledgements

This work was supported by Boğaziçi University Research Fund under the grant
numbers 06A102 and 08M103, and by TÜBİTAK under the grant number 107E261.

 Turkish Language Resources 427

References

1. Collins, M.: Discriminative Training Methods for Hidden Markov Models: Theory and
Experiments with Perceptron Algorithms. In: EMNLP (2002)

2. Dilek, Z.H.T., Oflazer, K., Tür, G.: Statistical Morphological Disambiguation for Aggluti-
native Languages. Computers and the Humanities 36(4) (2002)

3. Ezeiza, N., Alegria, I., Arriola, J.M., Urizar, R., Aduriz, I.: Combining Stochastic and
Rule-based Methods for Disambiguation in Agglutinative Languages. In: COLING-ACL
(1998)

4. Hajic, J., Hladka, B.: Tagging Inflective Languages: Prediction of Morphological Catego-
ries for a Rich, Structured Tagset. In: COLING-ACL, pp. 483–490 (1998)

5. Koskenniemi, K.: A General Computational Model for Word-form Recognition and Pro-
duction. In: 22nd Annual Meeting on Association for Computational Linguistics, pp. 178–
181 (1984)

6. Lewis, G.: Turkish Grammar. Oxford University Press, Oxford (2001)
7. Megyesi, B.: Improving Brill’s PoS Tagger for an Agglutinative Language. In: Joint Sigdat

Conference on Empirical Methods in Natural Language Processing and Very Large Cor-
pora (1999)

8. Mohri, M.: Finite-state Transducers in Language and Speech Processing. Computational
Linguistics 23(2), 269–311 (1997)

9. Oflazer, K., Tür, G.: Morphological Disambiguation by Voting Constraints. In: ACL, pp.
222–229 (1997)

10. Sak, H., Güngör, T., Saraçlar, M.: Morphological Disambiguation of Turkish Text with
Perceptron Algorithm. In: Gelbukh, A. (ed.) CICLing 2007. LNCS, vol. 4394, pp. 107–
118. Springer, Heidelberg (2007)

11. Salor, Ö., Pellom, B.L., Çiloğlu, T., Hacıoğlu, K., Demirekler, M.: On Developing New
Text and Audio Corpora and Speech Recognition Tools for the Turkish Language. In:
ICSLP (2002)

12. Say, B., Zeyrek, D., Oflazer, K., Özge, U.: Development of a Corpus and a Treebank for
Present-day Written Turkish. In: 11th International Conference of Turkish Linguistics
(2002)

13. Yüret, D., Türe, F.: Learning Morphological Disambiguation Rules for Turkish. In: HLT-
NAACL (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

