
Morphological Disambiguation of Turkish Text
with Perceptron Algorithm

Haşim Sak1, Tunga Güngör1, and Murat Saraçlar2

1 Dept. of Computer Engineering,
Boğaziçi University, Bebek, 34342, Istanbul, Turkey,

{hasim.sak,gungort}@boun.edu.tr,
2 Dept. of Electrical and Electronic Engineering,

Boğaziçi University, Bebek, 34342, Istanbul, Turkey,
murat.saraclar@boun.edu.tr

Abstract. This paper describes the application of the perceptron algo-
rithm to the morphological disambiguation of Turkish text. Turkish has
a productive derivational morphology. Due to the ambiguity caused by
complex morphology, a word may have multiple morphological parses,
each with a different stem or sequence of morphemes. The methodol-
ogy employed is based on ranking with perceptron algorithm which has
been successful in some NLP tasks in English. We use a baseline statis-
tical trigram-based model of a previous work to enumerate an n-best list
of candidate morphological parse sequences for each sentence. We then
apply the perceptron algorithm to rerank the n-best list using a set of
23 features. The perceptron trained to do morphological disambiguation
improves the accuracy of the baseline model from 93.61% to 96.80%.
When we train the perceptron as a POS tagger, the accuracy is 98.27%.
Turkish morphological disambiguation and POS tagging results that we
obtained is the best reported so far.

1 Introduction

Morphological disambiguation problem can be stated as finding the correct mor-
phological parses of the words in a text given all the possible parses of the words.
The parses can be obtained by using a morphological parser such as [1]. The mor-
phological parsing of a word may result in multiple parses of that word due to
the ambiguity in the root words and the morphemes, and the complex mor-
phophonemic interaction between them ordered according to the morphotactics.
Even to decide the part-of-speech tagging of a word, we may need to disam-
biguate the parses if they have different part-of-speech tags for the final derived
word forms.

The agglutinative or inflective languages such as Turkish, Czech, Finnish,
and Hungarian impose some difficulties in language processing due to the more
complex morphology and relatively free word order in sentences when compared
with languages like English. The morphemes carry syntactic and semantic in-
formation that is called morphosyntactic and morphosemantic features, respec-

tively. Morphological disambiguation problem for these morphologically produc-
tive languages can also be considered as morphosyntactic tagging in analogy
to part-of-speech tagging in other languages. The morphological disambiguation
of text in these languages is required for further natural language processing
tasks such as syntax parsing, word sense disambiguation, semantic parsing and
analysis, language modeling for speech recogniton, etc. to be accomplished.

There have been generally two approaches to part-of-speech tagging. The
rule-based approaches employ a set of hand-crafted linguistic rules that use the
context information of a word to constrain the possible part-of-speech tags [2]
or to assign a part-of-speech tag to that word [3]. These disambiguation rules
can also be learned using transformation-based learning approach [4]. The sta-
tistical approaches select the most likely interpretation based on the estimation
of statistics from unambiguously tagged text using a Markov model [5] or a
maximum-entropy model [6] or ambiguously tagged text using a hidden Markov
model [7].

The morphosyntactic tagging of agglutinative or inflective languages is more
difficult due to the large number of tags. An exponential probabilistic model has
been employed to tagging of the inflective language Czech [8]. Several constraint-
based methods for morphological disambiguation in Turkish have been applied [9,
10]. A trigram-based statistical model has also been used in morphological dis-
ambiguation of Turkish text [11]. This model has also been used in this work as
a baseline and will be discussed in later sections. A recent work has employed
a decision list induction algorithm called Greedy Prepend Algorithm (GPA) to
learn morphological disambiguation rules for Turkish [12].

The voted or averaged perceptron algorithms that have been previously ap-
plied to classification problems [13] have also been adapted very successfully to
common NLP tasks such as syntax parsing of English text [14] and part-of-speech
tagging and noun phrase chunking [15].

In this paper we describe the application of ranking with perceptron al-
gorithm to morphological disambiguation of Turkish text. We use a baseline
trigram-based model of a previous work to enumerate n-best candidates of mor-
phological parse sequences of sentences. We then apply the perceptron algo-
rithm to rerank the n-best list using a set of features. In the following sections,
we first state the morphological disambiguation problem formally and describe
the baseline model. We then present the perceptron algorithm and the features
incorporated in the model. We conclude with the experiments and results.

2 Morphological Disambiguation

Turkish is an agglutinative language with a productive inflectional and deriva-
tional morphology. The complex morphology of Turkish allows thousands of word
form to be constructed from a single root word using inflectional and derivational
suffixes. The morphological parsing of a word may result in multiple interpreta-
tions of that word due to this complex morphology. Morphological disambigua-

tion problem can be stated as finding the correct morphological parses of the
words in a text given all the possible parses of the words.

The example below shows the multiple interpretations for the Turkish word
alın with their parses as output from a Turkish morphological analyzer [1] and
their English gloss.
alın+Noun+A3sg+Pnon+Nom (forehead)
al+Adj^DB+Noun+Zero+A3sg+P2sg+Nom (your red)
al+Adj^DB+Noun+Zero+A3sg+Pnon+Gen (of red)
al+Verb+Pos+Imp+A2pl ((you) take)
al+Verb^DB+Verb+Pass+Pos+Imp+A2sg ((you) be taken)
alın+Verb+Pos+Imp+A2sg ((you) be offended)
As can be seen, some of the parses have different root words and have unre-
lated morphological features due to the complex morphology of Turkish. These
ambiguities mostly can be resolved using the contextual information, however
the relatively free word order of Turkish also poses some difficulties in the sense
that the limited context information cannot resolve the ambiguities. Some of the
ambiguities can only be solved using semantic or discourse knowledge.

2.1 Representation

Agglutinative or inflective languages encode more information than just part-of-
speech tag in a word thanks to the more complex morphology. The morphemes
that constitute a word carry syntactic and semantic information that is called
morphosyntactic and morphosemantic features, respectively. For morphological
disambiguation, we need to determine all the syntactic morphological features of
a word. Therefore morphological disambiguation can be called morphosyntactic
tagging in analogy to part-of-speech tagging. We will use the same representation
for the tags by Hakkani-Tür et al. in [11] where the full morphological parses of
the words including the root words and their morphological features are treated
as their morphosyntactic tags. An example that shows one of the morphological
parses of the word alın consisting of the root word and some morphological
features seperated using derivational boundary marker ˆDB is given below.
al+Adj^DB+Noun+Zero+A3sg+P2sg+Nom (your red)

Due to the productive inflectional and derivational morphology, the vocab-
ulary size of Turkish can be very large. The large vocabulary size causes data
sparseness problem and large number of out-of-vocabulary words when the word
forms are considered as the units in a statistical model. This large vocabulary
also prevents us from storing all the words and their possible tags in a lexi-
con. To alleviate the data sparseness problem and the inability of constructing a
word form lexicon, they split the morphological parse of a word to its root and
a sequence of inflectional groups (IGs) using derivational boundaries as shown
below.
root + IG1ˆDB + IG2ˆDB +ˆDB + IGn

In this way, instead of considering the morphological parse as a single unit, the
inflectional groups can be treated as distinct units. As an example, the above

morphological parse can be written as a sequence of the root al and two inflec-
tional groups.
al+[Adj]+[Noun+Zero+A3sg+P2sg+Nom]

2.2 Problem Definition

In this section, we formally define the morphological disambiguation problem
using the representation of morphological parses described in the previous sec-
tion. The problem can be stated as follows: given a sequence of words W =
wn

1 = w1, w2, . . . , wn, find the corresponding sequence of morphological parses
T = tn1 = t1, t2, . . . , tn of the words. Using the Bayesian approach, this can be
formulated as follows:

arg max
T

P (T |W) = arg max
T

P (T)P (W |T)
P (W)

= arg max
T

P (T)

We can get rid of the P (W) since it is constant for all morphological parses of
the word and we can take P (W |T) as equal to 1, since given the morphologi-
cal parses we can uniquely determine the sequence of word forms assuming no
morphological generation ambiguity. Therefore the problem has been reduced to
finding the most probable parse sequence given all the possible parse sequences
for a sentence.

2.3 Methodology

The problem of finding the most likely parse sequence given all the possible
parse sequences for a sentence can be solved by estimating some statistics over
the parts of the parses on a training set and choosing the most likely parse using
the estimated parameters. This approach has been applied in trigram-based
statistical model of Hakkani-Tür et al. in [11] using the root and inflectional
groups as the units of the model to alleviate the data sparseness problem as
described above. However this approach has not given competitive results for
Turkish when compared to the POS tagging of English. The performance of their
morphological disambiguation system is 93.95%. When their system is used as
a POS tagger by considering the last POS tag assigned to the word in its parse,
the performance is 96.07%.

Using their trigram-based model to assign probabilities to trigram parse se-
quences, we decoded an n-best list of candidate parses for a sentence using the
Viterbi algorithm. Then we applied the perceptron algorithm to rank the can-
didates. The averaged or voted perceptron that we used for ranking has been
applied successfully to a range of NLP tasks by Collins and Duffy in [14, 15].
We chose the perceptron method since it is very flexible in features that can be
incorporated in the model and the parameter estimation method is very easy

and just requires additive updates to a weight vector. This is also the first ap-
plication of the perceptron algorithm to morphological disambiguation as far as
we know. In the next sections we describe the baseline model and perceptron
algorithm.

3 Baseline Trigram-based Model

Trigram-based probabilistic model of Hakkani-Tür et al. in [11] has been used
as a baseline to enumerate n-best candidate parses with the Viterbi algorithm.
Their method breaks up the morphosyntactic tags at each derivation boundary
into groups of morphosyntactic features consisting of POS tag of the derived
form and a sequence of inflectional features as described above. A simple tri-
gram model is estimated from the statistics over the groups of morphosyntactic
features (called inflectional groups).

Using a trigram tagging model and representing morphosyntatic tag ti as
a sequence of root form plus inflectional groups (ri, IGi,1, . . . , IGi,ni), we can
write P (T) as follows:

P (T) =
n∏

i=1

P (ti|ti−2, ti−1)

=
n∏

i=1

P ((ri, IGi,1, . . . , IGi,ni
)|

(ri−2, IGi−2,1, . . . , IGi−2,ni−2),
(ri−1, IGi−1,1, . . . , IGi−1,ni−1))

To estimate P (T), they have made some assumptions: The first assumption
is that a root word depends only on the roots of the previous two words. The
second assumption is that the presence of IGs in a word only depends on the
final IGs of the two previous words. These two assumptions lead to their first
model which they report as giving the best results. This is the model that we
used for the baseline model in this work.

Using these assumptions, P (T) can be written as:

P (T) =
n∏

i=1

(P (ri|ri−2, ri−1)

ni∏
k=1

P (IGi,k|IGi−2,ni−2 , IGi−1,ni−1))

We estimated the individual probabilities using the standard n-gram probability
estimation methods from a morphologically disambiguated training set. Then we
constructed a second order Markov model of the candidate morphological parses
using the estimated morphosyntactic tag trigram probabilities for a sentence,
and finally we used the Viterbi algorithm to decode the n-best candidates with
their likelihoods.

4 Perceptron Algorithm

Inputs: Training examples (xi, yi)
Initialization: Set ᾱ = 0
Algorithm:
For t = 1 . . . T, i = 1 . . . n

Calculate zi = arg maxz∈GEN(xi) Φ(xi, z) · ᾱ
If (zi 6= yi) then ᾱ = ᾱ + Φ(xi, yi) −Φ(xi, zi)

Output: Parameters ᾱ

Fig. 1. A variant of the perceptron algorithm from Collins (see [15])

We have replicated the perceptron algorithm from Collins (see [15]) in Fig-
ure 1. This algorithm estimates the parameter vector ᾱ using a set of training
examples. The algorithm makes multiple passes (denoted by T) over the train-
ing examples. For each example, it finds the highest scoring candidate among
all candidates using the current parameter values. If the highest scoring candi-
date is not the correct one, it updates the parameter vector ᾱ by the difference
of the feature vector representation of the correct candidate and the highest
scoring candidate. This way of parameter update increases the parameter val-
ues for features in the correct candidate and downweights the parameter values
for features in the competitor. The morphological disambiguation problem as
formulated above can be used with this algorithm as follows:

– The training examples are the sentence xi = wi
[1:ni]

and the morphological
parse sequence yi = ti[1:ni]

pairs for i = 1 . . . n, where n is the number of
training sentences and ni is the length of the i’th sentence.

– The function GEN(xi) maps the input sentence to the n-best candidate
parse sequences using the baseline trigram-based model.

– The representation Φ(x, y) ∈ <d is a feature vector, the components of which
are defined as Φs(w[1:n], t[1:n]) =

∑n
i=1 φs(ti−2, ti−1, ti), where φs(ti−2, ti−1, ti)

is an indicator function for a feature that depends on the current morphosyn-
tactic tag (morphological parse) and the history of the previous two tags.
Then the feature vector components Φs(w[1:ni], t[1:ni]) are just the counts of
the local features φs(ti−2, ti−1, ti). For example one feature might be:

φ100(ti−2, ti−1, ti) =

1 if current parse ti
is al+Verb+Pos
+Imp+A2pl and
previous parse ti−1

interpretation
is a pronoun

0 otherwise

– The expression Φ(x, y)·ᾱ in the algorithm is the inner product
∑

s αsΦs(x, y).

We used the “averaged parameters” to apply the method to the test examples
since the averaged parameters are more robust to noisy or unseperable data [15].
The estimation of parameter values from training examples using the algorithm
in Figure 1 is the same. The only difference is that we make a simple modification
to the algorithm to sum the parameter values for each feature in a vector after
each training example and the algorithm returns the averaged parameters γ by
dividing this sum vector by the total number of examples used to update the
vector. With this setting, the perceptron algorithm learns an averaged parameter
vector γ that can be used to choose the most likely candidate morphological parse
sequence of a sentence using the following function:

F (x) = arg max
y∈GEN(x)

Φ(x, y) · γ

= arg max
y∈GEN(x)

γ0Φ0(x, y) +
d∑

s=1

Φs(x, y)γs

where γ0 is a weighting factor for the log probability Φ0(x, y) assigned to the
parse sequence by the baseline model. This parameter is found emprically as
explained in the later sections.

Convergence theorems for the perceptron algorithm applied to tagging and
parsing problems are given in [15].

5 Experiments

5.1 Data Set

We used a morphologically disambiguated Turkish corpus of about 950,000 to-
kens (including markers such as begin and end of sentence markers). Alternative
ambiguous parses of the words are also available in the corpus as output from a
morphological analyzer. This data set was divided into a training, development,
and test set. The training set size is about 750,000 tokens or 45,000 sentences.
The development set size is about 40,000 tokens or 2,500 sentences. The test set
size is also about 40,000 tokens or 2,500 sentences. The training set was used to
train the baseline trigram-based model and for the parameter estimation in per-
ceptron algorithm. The development set was used to tune some of the parameters
in the perceptron algorithm. The final tests were done on the test set.

5.2 Features

In the perceptron algorithm for morphological disambiguation we used a feature
set that takes into account the current morphosyntactic tag (parse) and the
history of the previous two tags. The set of features that we included in the model
is shown in Table 1. In this table IGi is the sequence of the inflection groups of
the i’th morphosyntactic tag in the sentence. IGi,j is the j’th inflection group
of the i’th morphosyntactic tag in the sentence. ni is the number of inflection
groups in the i’th morphosyntactic tag in the sentence.

Table 1. Features used for morphological disambiguation

Gloss Feature

Trigram (1) ri−2IGi−2, ri−1IGi−1, riIGi

Bigram (2) ri−2IGi−2, riIGi

(3) ri−1IGi−1, riIGi

Current parse (4) riIGi

Previous parse and current IGs (5) ri−1IGi−1, IGi

Two previous parse and current IGs (6) ri−2IGi−2, IGi

Root trigram (7) ri−2, ri−1, ri

Root bigram (8) ri−2, ri

(9) ri−1, ri

Root unigram (10) ri

IGs Trigram (11) IGi−2, IGi−1, IGi

IGs Bigram (12) IGi−2, IGi

(13) IGi−1, IGi

IGs Unigram (14) IGi

for j = 1 . . . ni (15) IGi−2,ni−2 , IGi−1,ni−1 , IGi,j

n-grams using last IG of two previous (16) IGi−2,ni−2 , IGi,j

parse and IG of current parse (17) IGi−1,ni−1 , IGi,j

(18) IGi,j

for j = 1 . . . ni − 1 (19) IGi,jIGi,j+1

bigrams of IGs in current parse
(local morphotactics)

for j = 1 . . . ni (20) j, IGi,j

IG and its position from the begining

Current parse is a proper noun and (21) PROPER
it starts with capital letter

Number of IGs in current parse (22) #IGi

Current parse is a verb and (23) ENDSINV ERB
it ends sentence

5.3 Optimal Parameter and Feature Selection

The free parameters in the perceptron algorithm are the number of iterations T
and the weighting factor for the log probability Φ0(x, y) assigned to the parse
sequence by the baseline model. To optimize these parameters we ran the per-
ceptron algorithm over the training set with varied parameters and tested on
the development data to compare the results with different parameter values.
We found that T = 5 iterations with γ0 = 0.0 gives the best configuration for
the parameters. The optimal weighting factor found to be 0.0 can be reasoned
that the baseline model performance is comparatively very low and discarding
the baseline log probability is better in this case.

We also did some experiments to select a subset of features that is optimal
in terms of the accuracy of morphological disambiguation. The greedy algorithm

that we used starts with no feature selected. Then it chooses the feature that
improves the accuracy on the development set most. It continues in this manner
with the remaining features until no feature increases the accuracy. Figure 2
shows the selected 9 features (4, 17, 3, 15, 20, 22, 9, 10, 2 - in this order)
(see Table 1 for features referenced by these numbers) and the performance
improvement when features are added.

4 17 3 15 20 22 9 10 2

95.2

95.4

95.6

95.8

96

96.2

96.4

96.6

96.8

Fig. 2. Accuracy with respect to features added

5.4 Results

We first used the baseline trigram-based model to decode 50-best parses of each
sentence in the data set. The training set was split to 5 portions and for each
portion the baseline model was trained on the other 4 portions and that portion
was decoded using the learned model. The development and test set was decoded
using the baseline model trained with all the data in the training set. The baseline
model also returns the log probability for each 50-best parses.

The baseline model performed with an accuracy of 93.61% on the test set.
The perceptron algorithm was trained using the 50-best parse decodings of the
training set. The parameter tuning was done using the 50-best parse decodings
of the development set. The final test was done on the test set. Table 2 gives
the accuracy results for the perceptron algorithm. The accuracy of the percep-
tron algorithm on the test set is 96.76% when all the 23 features are used and
it is 96.80% when the 9 features (4, 17, 3, 15, 20, 22, 9, 10, 2) selected by the
greedy method that we described above are used. The greedy method is effective
in eliminating the non-discriminative features and hence increasing the runtime

Table 2. Ranking with Perceptron Results

Data set Accuracy(%)

Perceptron (23 features) 96.76
Perceptron (9 features) 96.80

Table 3. Comparative Results on Test Set

Method Error(%)

Baseline model 6.39
Perceptron (23 features) 3.24
Perceptron (9 features) 3.20

performance of the algorithm by reducing feature vector dimensions. For a com-
parision of the perceptron performance over the baseline model, see Table 3.
The perceptron algorithm provides about 50% error reduction over the baseline
model.

Error analysis for the morphological disambiguation experiment with 9 fea-
tures shows that in 35% of errors (about 1.1% of all words) the root of the word
is incorrectly decided. In 40% of errors the root is correct but its part of speech
is incorrectly decided. In 17% of this case, the POS tag of the root is incorrectly
decided as a noun in place of adjective. In 11%, noun should be pronoun, in 9%
adjective should be noun, in 7% noun should be postposition, in 7% adjective
should be determiner, in 5% noun should be adverb, in 5% adjective should be
adverb and in 4% adverb should be adjective. In 25% of errors, root and its part
of speech are correct but some inflection group is incorrect. In 16% of this case,
a noun such as kitabı meaning in accusative case ”the book” is incorrectly de-
cided as a noun in nominative case meaning ”his/her book”. In 12%, the reverse
is true. In 9%, the words that are derived from a verb using past participle suffix
like sevdiği (beloved) is incorrectly labeled as adjective or noun.

We also ran the perceptron algorithm on a manually disambiguated small
test set of 958 tokens to compare our results with Yüret and Türe in [12]. They
have used the same train set in our experiments and tested on this small set. The
comparative results can be seen in Table 4. The relatively inferior performance
of the perceptron algorithm on this set can be explained by the small size of the
test set and limited accuracy of the semi-automatically disambiguated train set.

The Turkish morphological disambigution performance using the perceptron
algorithm (96.80%) is very close to the English part-of-speech tagging perfor-
mance using the perceptron algorithm (97.11%) and maximum-entropy model
(96.72%) as given in [15]. For a better comparison, when we consider the part-

Table 4. Comparative Results on Manually Tagged Test Set of 958 tokens

Method Accuracy(%)

Baseline model 95.48
GPA (Yüret and Türe, 2006) 95.82
Perceptron (23 features) 96.28
Perceptron (9 features) 95.93

Table 5. Turkish POS tagging performance

POS tagger Accuracy(%)

Baseline model 95.67%
Baseline model as reported in
(Hakkani-Tür et al., 2002) 96.07%
MD perceptron (9 features) 98.19%
POS perceptron (9 features) 98.27%

of-speech tag of the word as given in the morphological parse of the word as the
part-of-speech tag of the last derived form, the performance goes up to 98.19%.
When we trained the perceptron to do POS tagging using the same 9 features
used in the morphological disambiguation, the accuracy increased to 98.27%.
The POS tagger performance for Turkish using perceptron algorithm is com-
pared with the Turkish POS tagger performance as reported by Hakkani-Tür et
al. in [11] in Table 5. We also presented our test result for the baseline model of
Hakkani-Tür et al. on our test set in this table to make the comparison fair.

6 Conclusions

We presented an application of the perceptron algorithm to the morphological
disambiguation of Turkish text. We used the Viterbi algorithm and a baseline
trigram model to enumerate 50-best parses of a sentence. Then we ranked the
candidates using the averaged perceptron algorithm. The perceptron algorithm
provided about 50% error reduction over the baseline model. We found that
a small set of features seems to be effective in morphological disambiguation
of Turkish text. We also trained a perceptron for Turkish POS tagging which
gives 98.27% accuracy. Turkish morphological disambiguation and POS tagging
accuracy that we obtained is the best reported so far.

Acknowledgements

This work was supported by the Boğaziçi University Research Fund under the
grant number 06A102 and partially supported by TUBITAK BIDEB 2211. The
authors would like to thank Kemal Oflazer and Deniz Yüret for providing us the
data set to conduct morphological disambiguation experiments.

References

1. Oflazer, K.: Two-level Description of Turkish Morphology. Literary and Linguistic
Computing 9(2) (1994) 137–148

2. Karlsson, F., Voutilainen, A., Heikkila, J., Anttila A.: Constraint Grammar-A
Language-Independent System for Parsing Unrestricted Text (1995)

3. Brill, E.: A Simple Rule-Based Part-of-Speech Tagger. Proceedings of Third Con-
ference on Applied Natural Language Processing, Trento, Italy (1992)

4. Brill, E.: Transformation-Based Error-Driven Learning and Natural Language Pro-
cessing: A Case Study in Part-of-Speech Tagging. Computational Linguistics (1995)

5. Church, K. W.: A stochastic parts program and noun phrase parser for unrestricted
text. Proceedings of Second Conference on Applied Natural Language Processing,
Austin, Texas (1988)

6. Ratnaparkhi, A.: A Maximum-Entropy Model for Part-of-Speech Tagging. Pro-
ceedings of the emprical methods in natural language processing conference (1996)

7. Cutting, D., Kupiec, J., Pealersen, J., Sibun, P.: A practical part-of-speech tagger.
Proceedings of Third Conference on Applied Natural Language Processing, Trento,
Italy (1992)

8. Hajič, J., Hladká, B.: Tagging inflective languages: prediction of morphological
categories for a rich, structured tagset. Proceedings of COLING-ACL Conference
(1998)

9. Oflazer, K., Tür, G.: Combining Hand-crafted Rules and Unsupervised Learn-
ing in Constraint-based Morphological Disambiguation. Proceedings of the ACL-
SIGDAT Conference on Empirical Methods in Natural Language Processing,
Philadelphia, PA, USA (1996)

10. Oflazer, K., Tür, G.: Morphological Disambiguation by Voting Constraints. Pro-
ceedings of ACL/EACL, The 35th Annual Meeting of the Association for Compu-
tational Linguistics, Madrid, Spain (1997)

11. Hakkani-Tür, D. Z., Oflazer, K., Tür, G.: Statistical Morphological Disambiguation
for Agglutinative Languages. Computers and the Humanities 36(4) (2002)

12. Yüret, D., Türe, F.: Learning Morphological Disambiguation Rules for Turkish.
Proceedings of HLT-NAACL (2006)

13. Freund, Y., Schapire, R. E.: Large Margin Classification using the Perceptron
Algorithm. Machine Learning 37(3) (1999) 277–296

14. Collins, M., Duffy, N.: New Ranking Algorithms for Parsing and Tagging: Kernels
over Discrete Structures, and the Voted Perceptron. Proceedings of ACL (2002)

15. Collins, M.: Discriminative Training Methods for Hidden Markov Models: Theory
and Experiments with Perceptron Algorithms. Proceedings of EMNLP (2002)

