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Morpholexical and Discriminative Language Models
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Hagim Sak, Member, IEEE, Murat Saraclar, Member, IEEE, and Tunga Giingér

Abstract—This paper introduces two complementary lan-
guage modeling approaches for morphologically rich languages
aiming to alleviate out-of-vocabulary (OOV) word problem and
to exploit morphology as a knowledge source. The first model,
morpholexical language model, is a generative n-gram model,
where modeling units are lexical-grammatical morphemes instead
of commonly used words or statistical sub-words. This paper also
proposes a novel approach for integrating the morphology into
an automatic speech recognition (ASR) system in the finite-state
transducer framework as a knowledge source. We accomplish
that by building a morpholexical search network obtained by the
composition of lexical transducer of a computational lexicon with
a morpholexical language model. The second model is a linear
reranking model trained discriminatively with a variant of the
perceptron algorithm using morpholexical features. This variant
of the perceptron algorithm, WER-sensitive perceptron, is shown
to perform better for reranking n-best candidates obtained with
the generative model. We apply the proposed models in Turkish
broadcast news transcription task and give experimental results.
The morpholexical model leads to an elegant morphology-in-
tegrated search network with unlimited vocabulary. Thus, it is
highly effective in alleviating OOV problem and improves the
word error rate (WER) over word and statistical sub-word models
by 1.8% and 0.4% absolute, respectively. The discriminatively
trained morpholexical model further improves the WER of the
system by 0.8% absolute.

Index Terms—Automatic speech recognition (ASR), disam-
biguation, discriminative model, morpholexical language model,
morphology, reranking.

I. INTRODUCTION

ANGUAGE modeling for morphologically rich lan-
guages such as Arabic, Czech, Finnish, and Turkish
has proven to be challenging. The out-of-vocabulary (OOV)
rate for a fixed vocabulary size is significantly higher in these
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languages due to large number of words in language vocab-
ulary. Having a large number of words contributes also to
high perplexity numbers for standard n-gram language models
due to data sparseness. Language modeling for Turkish as an
agglutinative language with a highly productive inflectional
and derivational morphology suffers from these problems. We
can reduce the OOV rate by increasing the vocabulary size if it
is not limited by the size of the text corpus available for ASR
systems. However, this also increases the computational and
memory requirements of the system. Besides, it may not lead
to significant performance improvement due to data sparseness
problem of insufficient data for robust estimation of language
model parameters.

To overcome the high growth rate of vocabulary and the OOV
problem in morphologically rich languages, using grammatical
or statistical sub-lexical units for language modeling has been
a common approach. The grammatical sub-lexical units can be
morphological units such as morphemes or some grouping of
them such as stems and endings (grouping of suffixes). The
statistical sub-lexical units can be obtained by splitting words
using statistical methods. The morphological information is also
useful for improving language modeling.

This paper presents a morphology oriented linguistic
approach for language modeling in morphologically rich lan-
guages as an alternative to word and sub-word based models.
This is motivated by the fact that in such languages, gram-
matical features and functions associated with the syntactic
structure of a sentence in morphologically poor languages are
often represented in the morphological structure of a word in
addition to the syntactic structure. Therefore, morphological
parsing of a word may reveal valuable information in its
constituent morphemes annotated with morphosyntactic and
morphosemantic features to exploit for language modeling.

Standard n-gram language models are difficult to beat if there
is enough data. They also lead to efficient dynamic program-
ming algorithms for decoding due to local statistics, and they
can be efficiently represented as deterministic weighted finite-
state automata [6]. First, this paper proposes a novel approach
for language modeling of morphologically rich languages. The
proposed model, called the morpholexical language model, can
be considered as a linguistic sub-lexical n-gram model in con-
trast to statistical sub-word models.

Second, this paper proposes a novel approach to build a
morphology-integrated search network for ASR with unlimited
vocabulary in the weighted finite-state transducer framework
(WFST). The proposed morpholexical search network is ob-
tained by the composition of the lexical transducer of the
morphological parser and the transducer of morpholexical
language model. This model has the advantage of having a
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dynamic vocabulary in contrast to word models and it only
generates valid word forms in contrast to sub-word models.

And finally, we further improve ASR performance by using
unigram morpholexical features in a discriminative n-best hy-
potheses reranking framework with a variant of the perceptron
algorithm. The discriminative model is complementary to the
generative model and uses the features from the generative
model. The perceptron algorithm is tailored for reranking
recognition hypotheses by introducing error rate dependent
loss function.

The next section gives a summary of previous work and
the rest of the paper is organized as follows: In Section III,
we describe the language resources that we built for mor-
phological language modeling of Turkish. In Section IV, we
present the generative language models that we experimented
with. In Section V, we describe the methodology to integrate
the morphology into the search network of ASR system. In
Section VI, we introduce the discriminative reranking method.
In Section VII, we give experimental results and conclude with
Section VIII.

II. RELATED WORK

The previous studies on language modeling for morphologi-
cally rich languages follow two orthogonal approaches. The first
approach uses decomposition of words into sub-lexical units
to alleviate the OOV problem and increase the robustness of
the language model. The second approach makes use of im-
proved modeling to incorporate other information sources into
language modeling.

The decomposition approach can be divided into two classes.
The first class of studies uses a linguistically motivated ap-
proach, where words are decomposed morphologically into
linguistic units. Morpheme-based language models have been
proposed for German [7], Czech [8], and Korean [9]. A statis-
tical language model based on morphological decomposition
of words into roots and inflectional groups which contain the
inflectional features for each derived form has been proposed
for morphological disambiguation of Turkish text [10]. Stems
and endings have been used for language modeling for Turkish
[11]-[13] and Slovenian [14]. Using linguistic information has
the advantage that speech recognition output can be processed
to filter invalid sequences of morphological units.

The second class of studies on agglutinative languages uses a
purely statistical approach to decompose words into sub-word
units. Statistical sub-word units so-called morphs have been
used for language modeling of Finnish [15], Hungarian [16],
and Turkish [13]. Sub-word language models are effective in
alleviating the OOV problem, and they have the advantage that
they do not require any language specific linguistic processing,
which can be costly to build for all languages. However,
the speech decoder can generate ungrammatical sub-word
sequences and postprocessing of the sub-word lattices may be
required to correct the errors and increase the accuracy using
linguistic information [11], [17].

In addition to the decomposition approach, the language
models can be extended to use morphological information. For
instance, a morphology-based language modeling approach,
Factored Language Models (FLMs) have been shown to reduce
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TABLE I
STATISTICS FOR THE NEWSCOR CORPUS

# of word tokens 182,622,247
OOV rate of the parser (word token) 1.3
# of word types 1,819,157
OOV rate of the parser (word type) 38.8
average # of parses per word type 24
average # of morphemes per word type 3.7
root with max # of parses (3545) ¢ik[Verb]

word with max # of morphemes (9) ruhsatlandirilamamasindaki

language model perplexity and lead to WER reductions in
Arabic speech recognition systems [18]. FLMs decompose
words into a set of features (or factors) and estimate a language
model over these factors, smoothed with generalized parallel
backoff mechanism which improves the robustness of proba-
bility estimates for rarely observed n-grams. We previously
experimented with FLMs for Turkish [4] and observed that
FLMs are effective in reducing perplexity of language models
but only when the training data is limited. The computa-
tional cost and the inability to be represented efficiently and
compactly as finite-state models also limit their usefulness.
Morphological information has also been employed later in
the system as in [19], where a maximum entropy model has
been trained with morphological and lexical features to rescore
n-best hypotheses for Arabic speech recognition and machine
translation.

III. LANGUAGE RESOURCES

We have built and compiled some language resources and
tools for morphological processing of Turkish. These resources
were presented in a previous work [20], and we describe them
here briefly for completeness and introducing the methods for
extraction and representation of morphological information.
The resources and tools! are composed of a morphological
parser, a morphological disambiguator, and a text corpus.

A. Text Corpus

Statistical language models require large text corpora to
train accurate models. Productive morphology, morphological
parsing ambiguity, and free word order characteristics of a
language all make this requirement more pronounced. Due to
the lack of such a large text corpus for Turkish, we compiled
a text corpus by crawling and sampling from Turkish web
pages [20]. For this research, we use the NewsCor corpus
which contains news articles from three major news portals,
since we do the experiments on a broadcast news transcription
task. The statistics for the number of tokens (words and lexical
units such as punctuation marks), types (distinct tokens), and
morphological parsing are shown in Table I.

B. Finite-State Morphological Parser

The extraction of morphological information hidden in the
structure of words calls for morphological parsing, which is the

! Available at http://busim.ee.boun.edu.tr/~speech/langres.html.
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i:+[Nom)]

o I:€

Fig. 1. (a) Example transducer encoding Turkish vowel harmony rule: “@” symbol represents any feasible lexical or surface symbol absent in the . (b) Example
transducer for Turkish nominal inflection. (c) Part of the lexical transducer of the morphological parser showing ambiguous parses for the word kedileri. (a)

Morphographemics, (b) Lexicon and Morphotactics, (c) Lexical transducer.

decomposition of words into constituent morphemes and associ-
ated morphosyntactic and morphosemantic features. Finite-state
machines offer an elegant and unified framework for modeling
and computation in language and speech processing [21]. They
have also enough power to model morphological phenomena in
most languages including Turkish. This is especially important
for enabling seamless integration of morphology as a knowl-
edge source with other finite-state models by finite-state opera-
tions like composition.

The two-level morphology formalism of Koskenniemi [22]
provides the mechanism to describe the phonological alterna-
tions in a two-level rule specification. These two-level rule def-
initions can be compiled into finite-state transducers. The fol-
lowing rule is an example for vowel harmony phenomena in
Turkish which forces change of vowels in surface form of suf-
fixes to agree in backness with the preceding vowel:

A:e = Q:FV[:CONS| :0]x* _

This rule states that symbol “A” in lexical level may be con-
verted to /e/ vowel only if it is preceded with a surface front
vowel followed possibly by a number of symbols having con-
sonant or epsilon realizations in the surface level. Finite-state
transducer implementation of this rule in a compact form can
be seen in Fig. 1(a). The compilation and intersection of all the
rule transducers as finite-state automata is a morphographemics
transducer.

The morphotactics which encodes the morphosyntax—the or-
dering of morphemes—can also be represented as a finite-state
machine. Fig. 1(b) shows a small part of the lexicon and mor-
photactics for Turkish represented as a finite-state transducer.
We refer to this transducer as the morphotactics transducer. The
finite-state transducer of the morphological parser is obtained as
the composition of the morphographemics transducer and the
morphotactics transducer. Fig. 1(c) shows the part of this lex-
ical transducer corresponding to all the parses of the ambiguous

word kedileri. The two-level phonological rules and the mor-
photactics were adapted from the PC-KIMMO implementation
of Oflazer [23]. The rules were compiled using the twolc rule
compiler [24]. A new root lexicon of 89484 words based on
the Turkish Language Institution dictionary? and the analysis of
NewsCor corpus was compiled. For finite-state operations, we
use the AT&T FSM tools [21] and the OpenFST weighted fi-
nite-state transducer library [25].

The morphological feature representation is similar to the
one used in [26]. Each output of the morphotactics begins with
the root word and its part-of-speech tag in brackets. These
are followed by a set of lexical morphemes associated with
morphological features (nominal features such as case, person,
and number agreement; verbal features such as tense, aspect,
modality, and voice information). The inflectional morphemes
start with a + sign. The derivational morphemes start with
a — sign and the first feature of a derivational morpheme is
the part-of-speech of the derived word form. An example
morphological analysis for the word éliimsiizlestirilebilecegini
is shown below:

oliim[NounHHA3sgH{ PnonH{Nom]—s H z[ Adj+ Without]
—[ Ag[VerbHBecome]—D Hr[Verb+Caus]—H /[ Verb+Pass]
—YAbil[Verb+AbleHPos}YAcAk[NoumFutPart H A3sg]
+SH[P3sg]+N H[Acc]
This word can be translated as “... that s/he can be immortal-
ized”.

The (inverse of the) morphological parser can generate in-
finite number of words, due to iteration of some suffixes such
as causation and noun-verb-noun cycles in morphotactics of the
language. However, the words having more than six morphemes
are rarely used in practice with a frequency of about 0.7%. The
statistics for the morphological analysis of the NewsCor corpus
is given in Table I. The parser is highly efficient and can ana-
lyze about 8700 words per second on a 2.33-GHz Intel Xeon
processor.

http://www.tdk.gov.tr
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TABLE 11
STATISTICAL AND GRAMMATICAL WORD SPLITTING APPROACHES ON AN EXAMPLE SENTENCE
WITH THE GLOSS “HELLO YOU ARE GETTING THE NEWS FROM THE AGENCY”

Model Decomposition  Level Example

word grammatical surface  merhaba haberleri ajanstan aliyorsunuz

morpheme (lexical) grammatical lexical merhaba[Noun]+[A3sg]+[Pnon]+[Nom] haber[Noun] +lAr[A3pl] +SH[P3sg]+[Nom]
ajans[Noun]+[A3sg]+[Pnon] +DAn[Abl] al[Verb]+[Pos] +Hyor[Prog1] +sHnHz[A2pl]

stem+ending (lexical) grammatical lexical merhaba[Noun]+[A3sg]+[Pnon]+[Nom] haber[Noun] +lAr[A3pl]+SH[P3sg]+[Nom]
ajans[Noun]+[A3sg]+[Pnon] +DAn[Abl] al[Verb]+[Pos] +Hyor[Prog1]+sHnHz[A2pl]

stem+ending (surface) — grammatical surface  merhaba haber +leri ajans +tan al +1yorsunuz

morph statistical surface  merhaba haber +ler +i ajans +tan al +iyor +sun +uz

TABLE III 200 K vocabulary 3-gram language model which is also used as

STATISTICS FOR LANGUAGE MODELING UNITS OVER A BROADCAST NEWS
CORPUS OF 1.3 MILLION WORDS

Model units/word tokens types
word 1.00 | 1,342,597 | 106,789
morpheme (lexical) 1.90 | 2,555,427 42,057
stem+ending (surface) 1.46 | 1,954,665 40,182
morph 1.41 | 1,890,774 28,139
stem+ending (lexical) 1.52 | 2,046,437 46,118

C. Morphological Disambiguator

The morphological parser may return more than one possible
analysis for a word due to ambiguity. For example, the parser
outputs four different analyses for the word kedileri as shown
below. The English glosses are given in parentheses.

kedi[Noun]+!Ar[A3pl]+S H[P3sg]+[Nom]
cats)

kedi[Noun]+{Ar[A3pl]+[Pnon]+Y H[Acc] (the cats)
kedi[Noun]+{ Ar[A3pl]+SH[P3pl]+[Nom] (their cats)
kedi[Noun]+[A3sg]+!Ar H[P3pl]4[Nom] (their cat)

This parsing ambiguity needs to be resolved for further lan-
guage processing such as for language modeling using a mor-
phological disambiguator (morphosyntactic tagger). The aver-
aged perceptron algorithm previously applied to classification
problems [27] has also been adapted very successfully to nat-
ural language processing (NLP) tasks such as syntactic parsing
of English text [28] and part-of-speech tagging and noun phrase
chunking [29]. This methodology also proved to be quite suc-
cessful for morphological disambiguation of Turkish text [1],
[2]. The disambiguation system achieves about 97.05% disam-
biguation accuracy on the test set.

(his/her

IV. GENERATIVE LANGUAGE MODELS

In the following sections, we describe the word, sub-word and
morpholexical language models. The corresponding statistical
and grammatical splitting approaches are shown for an example
sentence in Table II and the unit statistics of average number
of units per word, number of unit tokens and types are given
in Table III for all the models over the broadcast news corpus
of 1.3 million words, which is used as in-domain data in the
experiments.

A. Word and Statistical Sub-Word Language Models

The conventional approach for language modeling is esti-
mating a statistical n-gram language model over a fixed vocab-
ulary of words. As a baseline word language model, we built

a baseline in [13].

For unlimited vocabulary speech recognition, splitting words
into morphs (morpheme-like sub-words) using an unsupervised
algorithm based on minimum description length principle has
been very effective by alleviating OOV problem and reducing
language model perplexity [15]. The baseline Morfessor algo-
rithm introduced in [30] is used to segment word types in the text
corpus. We used the best performing segmentations of the study
in [13]. Statistical morphs have the advantage that no linguistic
knowledge is required about the language. On the other hand,
since morphs do not generally correspond to grammatical mor-
phemes, we cannot easily employ linguistic information in later
stages of processing such as rescoring sub-word lattices. More-
over, speech decoder can generate ungrammatical sub-word se-
quences and postprocessing of the sub-word lattices are required
to correct the errors and increase the accuracy [11], [17].

B. Morpholexical Language Models

In this section, we introduce a linguistic approach to exploit
morphology and alleviate OOV problem in language modeling.
This can be considered as a grammatical sub-lexical language
modeling approach. The modeling units are lexical and gram-
matical morphemes annotated with morphosyntactic and mor-
phosemantic features. This is motivated by the fact that lex-
ical and grammatical morphemes (morpholexical units) consti-
tute natural sub-lexical units of a morphologically complex lan-
guage. For instance, the constituent morphemes are generally
the output symbols of a morphological parser when represented
as finite-state models.

The morpholexical language modeling can be considered as
replacing a static lexicon of words or sub-words with a dynamic
computational lexicon. The dynamic lexicon over grammatical
and lexical morphemes greatly solves the OOV problem by pro-
viding a root lexicon with a good coverage and makes it un-
necessary to list all word forms that can be generated from a
root word, which may not be even possible for languages like
Turkish. For instance, the OOV rate of the morphological parser
is 1.3% on the test set. This model also provides better proba-
bility estimates for rarely seen or unseen word n-grams by mor-
phological decomposition of words.

We can train the morpholexical language models as standard
n-gram language models over morpholexical units. For this, we
need to parse a text corpus to get the morpholexical units using a
morphological parser. Since the morphological parser can give
multiple analyses due to morphological ambiguity, we need to
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use a morphological disambiguator to choose the correct parse
of the words using the contextual information. We then split
the morphological analyses of words at morpheme boundaries
and use standard n-gram estimation methods to train a language
model over morpholexical units.

We also experimented with combining grammatical mor-
phemes to build a lexical stem+-ending model to alleviate the
problem of large number of morphemes preventing n-grams to
have a proper coverage of context. Using lexical units rather
than surface forms as in statistical morphs is also beneficial in
terms of decreasing data sparsity since a lexical morpheme may
be realized in multiple surface forms due to phonological alter-
nations [12]. Such an example for Turkish is the lexical plural
morpheme +/ Ar which can have the surface form of ler or lar
depending on the previous vowel this morpheme is suffixed.
In this study, we use the lexical stem+ending decompositions
to obtain the surface form stem+-ending decompositions of
words which can be considered as grammatical sub-words in
contrast to statistical sub-words. The different modeling units
for morpholexical language models can be seen in Table II.

The morpholexical language models have the advantage that
when combined with the lexical transducer of the morpholog-
ical parser, they give probability estimates for only valid word
sequences. This is not possible with statistical sub-word model
or surface form stem+ending model, but this is possible with
morpholexical language models since the morphotactics effec-
tively constrains the language model over valid morpheme se-
quences. In this paper, we show the effect of morphotactics in
language modeling by giving experimental results where we
relax the morphotactics to allow any morpheme sequences in
the lexical transducer. We also study the effect of morphological
disambiguation in language modeling by comparing the proper
morphological disambiguation of training corpus and choosing
the morphological parse with the least number of morphemes.

V. MORPHOLEXICAL SEARCH NETWORK FOR ASR

In this section, we explain how a morpholexical language
model can be integrated into speech recognition in the finite-
state transducer framework.

The weighted finite-state transducers (WFSTs) provide a uni-
fied framework for representing different knowledge sources in
ASR systems [31]. In this framework, the speech recognition
problem is treated as a transduction from input speech signal to
a word sequence. A typical set of knowledge sources consists of
a hidden Markov model I mapping HMM state ID sequences
to context-dependent phones, a context-dependency network C'
transducing context-dependent phones to context-independent
phones, a lexicon L mapping context-independent phone se-
quences to words, and a language model G assigning proba-
bilities to word sequences. The composition of these models
HoColLoG results in an all-in-one search network that directly
maps HMM state ID sequences to weighted word sequences.

The morphology as another knowledge source can be repre-
sented as a WFST and can be integrated into the WFST frame-
work of an ASR system. The lexical transducer of the morpho-
logical parser maps the letter sequences to lexical and gram-
matical morphemes annotated with morphological features. The
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lexical transducer can be considered as a computational dy-
namic lexicon in ASR in contrast to a static lexicon. The compu-
tational lexicon has some advantages over a fixed-size word lex-
icon. It can generate many more words using a relatively smaller
number of root words in its lexicon. So it achieves lower OOV
rates. Different than the static lexicon, even if we have never
seen a specific word in the training corpus, the speech decoder
has the chance to recognize that word. Another benefit of the
computational lexicon is that it outputs the morphological anal-
ysis of the word generated. We can exploit this morphological
information in a language model.

Since most of the words in Turkish have almost one-to-one
mapping between graphemics and pronunciation, we use the
Turkish letters as our phone set in Turkish ASR.3 In the WFST
framework, the lexical transducer of the morphological parser
can be considered as a computational lexicon M replacing the
static lexicon L. The transducer M outputs some symbols repre-
senting morphological features not corresponding to any lexical
form in addition to lexical and grammatical morphemes. The
morpholexical language model is estimated over some combi-
nation of these features and morphemes. Therefore, we need an
intermediate transducer 7" to do the symbol mapping between
these models. Then the search network with the morpholexical
language G'1,10x model can be built as HoCoMoT oG yjex.

The WFST offers finite-state operations such as composition,
determinization and minimization to combine all the knowledge
sources used in speech recognition and optimize into a single
compact search network [32]. This approach works well for cer-
tain types of transducers, but presents some problems related
to the applicability of determinization and weight-pushing with
more general transducers [33]. In this respect, Turkish mor-
phology presents a problem, since the number of ambiguities
is infinite and the cycle-ambiguous finite-state transducer of
the morphological parser is not determinizable. Still, we can
apply the local determinization algorithm for locally optimizing
the search network using the grmlocaldeterminize utility from
AT&T Grammar Library [34]. The experimental results show
that this approach works well.

VI. DISCRIMINATIVE RERANKING WITH PERCEPTRON

The introduction of arbitrary and global features into the gen-
erative models results in difficulty due to the finite-state nature
of these models. Therefore, the common approach in NLP re-
search has been to use a baseline generative model to generate
ranked n-best candidates, which are then reranked by a rich set
of local and global features [35], [36].

The perceptron algorithm has been successfully applied
to various NLP tasks for ranking or reranking hypotheses
[271-129], [35], [36]. The perceptron has shown significant im-
provements for discriminative language modeling for Turkish
using linguistic and statistically derived features [37]. It also
gives the best performance for morphological disambigua-
tion of Turkish text using morpholexical features [1]. The
characteristics like simplicity, fast convergence, and easy

3We built a finite-state transducer based pronunciation lexicon similar to [26]
and extended the phone set, however it did not lead to performance improvement
possibly due to a small number of Turkish words with exceptional pronuncia-
tion.
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input set of training examples {(x;,y;) : 1 <i <n}
input number of iterations 7’
o =0, Qsym =0
fort=1...T,i=1...ndo
Z; = argMax,cGEN(z;) 2(i: 2) - @
a=a+ Ay 2) (2 yi) — B(i,2:))
Qsym = Qgym + Q
end for
return Qqyg = Qsum/(nT)

Fig. 2. WER-sensitive perceptron algorithm.

incorporation of arbitrary local and global features make the
perceptron algorithm very attractive for discriminative training
of linear models. In this section, we introduce a variant of the
perceptron, WER-sensitive perceptron, which is better suited
to rerank n-best speech recognition hypotheses.

A. Perceptron Algorithm

The perceptron is a linear classifier [38]. The perceptron algo-
rithm tries to learn a weight vector that minimizes the number
of misclassifications. Fig. 2 shows a variant of the perceptron
algorithm, WER-sensitive perceptron, formulated as a multi-
class classifier which is very similar to the the averaged per-
ceptron [27], [29]. The algorithm estimates a parameter vector
@ € R? using a set of training examples (z;,7;) : 1 < i <
n. The function GEN enumerates a finite set of candidates
GEN(z) C Y for each possible input 2. The representation
& maps each (z,y) € X x Y to a feature vector ®(xz,7) € R,
The learned parameter vector & can be used for mapping unseen
inputs z € X to outputs y € Y by searching for the best scoring
output, i.e., arg max.cggN () ®(z, 2) - @. The given algorithm
can also be used to rank the possible outputs for an input z by
their scores, ®(z, 2) - .

The algorithm makes multiple passes (denoted by 7') over
the training examples. For each example, it finds the highest
scoring candidate among all candidates using the current pa-
rameter values. If the highest scoring candidate is not the cor-
rect one, it updates the parameter vector @ by the difference of
the feature vector representation of the correct candidate and
the highest scoring candidate. This way of parameter update in-
creases the parameter values for features in the correct candi-
date and downweights the parameter values for features in the
competitor. For the application of the model to the test exam-
ples, the algorithm calculates the “averaged parameters” since
they are more robust to noisy or inseparable data [29]. The aver-
aged parameters &ayg are calculated by summing the parameter
values for each feature after each training example and dividing
this sum by the total number of updates. We define X, Y, z;, y;,
GEN, and ® of the perceptron algorithm in a reranking setting
of ASR hypotheses as follows:

* X is the set of all possible acoustic inputs.

+ Y is the set of all possible strings, >_", for a vocabulary >
which can be a set of words, sub-words, or morpholexical
units of the generative language model.

* Each z; is an utterance—a sequence of acoustic feature
vectors. The training set contains n such utterances.

« GEN(x;) is the set of alternate transcriptions of z; as
output from the speech decoder. Although the speech de-
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coders can generate lattices which encode alternate recog-
nition results compactly, we prefer to work on n-best lists
for efficiency reasons and very small performance gains
with the lattices.

* y; is the member of the GEN(z;) with the lowest word
error rate with respect to the reference transcription of x;.
Since there can be multiple transcriptions with the lowest
error rate, we take y; to be the one with the best score
among them.

+ Each component @ ;(, y) of the feature vector representa-
tion ®(z,y) € R holds the number of occurrences of a
feature or indicates the existence of a feature. For instance
one of the features can be defined on part of speech tags of
the words as follows:
®;(x,y) = number of times an adjective is followed by a
noun in y.

« The expression ®(x,y) - & denotes the inner product
Z(j:l ®,;(x, y)or;, where a5 is the jth component of the
parameter vector .

+ The zeroth component ®((x,y) represents the log-prob-
ability of y (weighted sum of the baseline language and
acoustic model scores) in the lattice output from the base-
line recognizer for utterance x:. We experimented with the
perceptron algorithm where this baseline score can be in-
cluded or omitted in training. During testing, the baseline
score as the zeroth feature is always included. The corre-
sponding weight cy for $o(z, ) is fixed and optimized on
a held-out set.

With this setting, the perceptron algorithm learns an averaged
parameter vector &aye that can be used to choose the transcrip-
tion y having hopefully the least number of errors for an utter-
ance « using the following function:

F(r) =

argmax ®(x,y) - Tuve.
y€GEN(x)

The WER-sensitive perceptron algorithm is obtained by
defining a better loss function tailored for reranking ASR
hypotheses. The loss function of the averaged perceptron [29]
algorithm can be written as follows:

Lia) = Z [ ®(wi.2:) — @ Rz, y5)]

i=1

where [z] = 0 if z <0 and 1 otherwise. We can define a better
loss function which is based on the total number of extra errors
we do by selecting the candidates with higher WER rather than
the best candidates. Then minimizing the loss function corre-
sponds to minimizing the WER of the reranker. We define the
word error rate sensitive loss function as follows:
T
L(a) =) Alyi,z)la - @(ws,2) — 6 - B(ai,y5)]

=1

where the loss function A(y;, z;) for each example z; is defined
as the difference of edit distances of z; and y; with the reference
transcription of z;.

The gradient of the loss function is A(y;, 2 )(®(x;, v;) —
P(x;, ;) which yields a simple modification to the perceptron
update rule. We provide a proof of convergence for the WER-



SAK et al.: MORPHOLEXICAL AND DISCRIMINATIVE LANGUAGE MODELS FOR TURKISH ASR

sensitive perceptron algorithm for linearly separable training se-
quences in the Appendix.

Note that a loss-sensitive perceptron algorithm has been pro-
posed for reranking speech recognition output in [39]. Although
this work is similar in using edit distance as a loss function,
they use it for scaling the margin to ensure that hypotheses with
a large number of errors are more strongly separated from the
members of the set of lowest error (optimal) hypotheses. They
also update the weight vector using features from optimal and
non-optimal set of hypotheses that violate the scaled margin.

VII. EXPERIMENTS

This section gives experimental results for the application of
proposed generative and discriminative language models to a
Turkish broadcast news transcription task.

A. Broadcast News Transcription System

The automatic transcription system uses hidden Markov
models (HMMs) for acoustic modeling and WFSTs for model
representation and decoding. The HMMs are decision-tree state
clustered cross-word triphone models with 10 843 HMM states
and each state is a Gaussian mixture model (GMM) having
11 mixture Gaussian densities with the exception of silence
model having 23 mixtures. The model has been trained on 188
hours of acoustic data from the Bogazi¢i broadcast news (BN)
database [13], [40]. Separate from the training data, disjoint
held-out (3.1 hours) and test (3.3 hours) data sets are used
for parameter optimization and final performance evaluation,
respectively.

The language models are trained using two text corpora. The
larger corpus is the NewsCor corpus (184 million words) de-
scribed in Section III-A and acts as a generic corpus collected
from news portals. The other one is the BN corpus (1.3 mil-
lion words) and it contains the reference transcriptions of BN
database and acts as in-domain data. The generative language
models are built by linearly interpolating the language models
trained on these corpora. The interpolation constant is chosen
to optimize the perplexity of held-out transcriptions. The base-
line n-gram language models are estimated with interpolated
Kneser—Ney smoothing and entropy-based pruning using the
SRILM toolkit [41]. It was observed that aggressive entropy
pruning of Kneser—Ney models leads to severe degradation in
modeling accuracy [42]. However, our model sizes are rela-
tively small and we employ mild pruning. The discriminative
models are trained using only the BN corpus. The speech recog-
nition experiments are performed by using the AT&T DCD li-
brary. This library is also used for the composition and opti-
mization of the finite-state models to build the search network
for decoding.

B. Generative Language Models

We evaluate the performance of the proposed morpholex-
ical language model against the word and morph models on the
broadcast news transcription task. We experiment with two dif-
ferent morpholexical language models with modeling units of
lexical-grammatical morpheme and lexical stem+ending.
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TABLE 1V
SIZE OF FINITE-STATE MODELS

Model states arcs
word 8,717,593 | 16,386,105
stem+ending (surface) 8,555,347 | 17,459,319
morpheme (lexical) 10,768,226 | 24,266,655
morph 8,862,922 | 22,390,876
stem+ending (lexical) 7,115,253 | 19,783,696

All model parameter settings including the vocabulary size
and n-gram order are optimized for each model individually
to get the best recognition accuracy given the memory limit of
64 GB during the construction of the static decoder network.
For the experimental setup of the word and morph based
models, we use the same settings as in the previous studies
of [13], [40]. For the word based model, the vocabulary size
of 200 K and n-gram order of 3 are chosen. The OOV rate
of the test set with the 200 K word vocabulary is 2%. For the
morph based model, we employ the best performing method
of marking non-initial morphs with “—”, which is used to
locate the word boundaries for the purpose of conversion from
morph sequences of recognition results to word sequences. This
method increases the vocabulary size from 50 K to 76 K. The
OOV rate of the test set with the 76 K morph vocabulary is 0%,
since the letters are also included in the morph lexicon. The
morph based experiments are conducted with 4-gram language
models. To build the morpholexical language models, the text
corpora are morphologically parsed and disambiguated to get
the lexical-grammatical morpheme and lexical stem+ending
representations of corpora. The lexicon of the morphological
parser contains about 88 K symbols. The OOV rate of the
morphological parser on the test set is about 1.3%. The lex-
ical-grammatical morpheme representation results in about
175 K symbols. The lexical stem+ending representation yields
about 200 K symbols. For both morpholexical units, the n-gram
order of 4 is chosen. The morpholexical search networks are
built using the lexical transducer of the morphological parser
and the weighted finite-state automata representation of the
morpholexical language models as explained in Section V. The
search network is optimized using local determinization from
GRM library [34]. The size of search network is given for all
the models in Table I'V.

Fig. 3 shows the word error rate versus real-time factor
for the word, morph, morpheme, lexical stem+ending, and
surface form stem+ending models for the first-pass. Note that
since the morpholexical models output recognition results in
morphological representation, we use the inverse of lexical
transducer of morphological parser as a word generator to con-
vert them to words to calculate the WERs. Since the language
models are pruned for computational reasons to about one
tenth of their size when building the optimized search networks
of first-pass recognition, we rescore the output lattices with
unpruned language models as a second-pass. Table V shows
the second-pass and the 1000-best oracle WERs for all the
models with the largest beam width in Fig. 3. As can be seen
from the second-pass results, the sub-word and sub-lexical
models perform significantly better than the word-based model.
This is mostly due to the reduction in the OOV rate. As a
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Fig. 3. Word error rate for the first-pass versus real-time factor obtained by
changing the pruning beam width.

TABLE V
RESULTS FOR TWO-PASS RECOGNITION SETUP

Model Oracle WER | Second-pass WER
word 10.2 23.1
stem+ending (surface) 9.6 21.9
morpheme (lexical) 12.1 21.8
morph 9.7 21.7
stem+ending (lexical) 10.5 21.3

morpholexical language model, the lexical stem+ending model
has the best performance. This is partly due to the correction of
invalid words. An analysis shows that out of 23 303 words in
the test set, the surface stem+-ending model yields 90 invalid
words (0.4%) and the morph model yields 86 invalid words. We
also did WER analysis on the stems by parsing the recognition
results and removing the suffixes leaving only the stems. The
stem error rates for word, surface stem+ending, morpheme,
morph and lexical stem+ending models are 20.7, 20.1, 19.9,
19.8, and 19.5, respectively. These results are consistent with
the word error rates. This analysis confirms that the lexical
stem-+ending model also improves the recognition of stems.

C. Effectiveness of Morphotactics and Morphological
Disambiguation

In this section, we give experimental results showing the
effect of morphotactics and morphological disambiguation on
speech recognition performance using the lexical stem+ending
model. Fig. 4 shows the word error rate of the first-pass
speech recognition at various real-time factors using four
different language models. The baseline model is the lexical
stem+ending model with the correct morphotactics and mor-
phological disambiguation (97.05% disambiguation accuracy
on the disambiguation test set). First, we experimented with
the morphotactics. The stem-+ending:no-mt model represents
the experiment where the morphotactics component of the
lexical transducer allows any ordering of the morphemes.
Second, we tested the effectiveness of doing morpholog-
ical disambiguation on the language model text corpus. The
stem+ending:no-disamb model represents the case where the
morphological disambiguation is replaced with choosing the
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Fig. 4. Effects of morphotactics and morphological disambiguation for the lex-
ical stem+ending model.

morphological parse with the least number of morphemes
(89.93% disambiguation accuracy on the disambiguation test
set). The final model stem-+ending:no-mt-no-disamb shows
the cumulative effect for the absence of morphotactics and
morphological disambiguation. It is clear that morphotactics
is effective in reducing the error rate. This result shows that
morphotactics is successful in constraining the search space to
valid morpheme sequences. Besides, this figure shows that mor-
phological disambiguation also improves speech recognition
performance. We can conclude that morphological disambigua-
tion improves the prediction power of morpholexical language
model. The absence of morphotactics and disambiguation
together has a larger impact on recognition performance.

D. Discriminative Reranking of ASR Hypotheses

The speech decoder generates word, sub-word or morpheme
lattices depending on the units of the language model used in
the first pass. Then, we extract an n-best list of hypotheses from
these lattices which are ranked by the combined score obtained
from the language and acoustic model. The resulting n-best hy-
potheses are reranked with a discriminative linear model trained
with the perceptron algorithm using the features extracted from
the hypotheses.

In the reranking experiments, we used the experimental setup
of [40]. The n-best hypotheses for all systems are generated
by decoding the acoustic training data with the corresponding
generative model. The acoustic model trained on all the ut-
terances in the training data is used to decode all the utter-
ances. However, in language modeling, 12-fold cross valida-
tion is employed to prevent over-training of the discriminative
model. This is done by decoding utterances in each fold with
a fold-specific language model which is built by interpolating
the generic language model trained on NewsCor corpus with
the in-domain language model trained with the reference tran-
scriptions of the utterances in the other 11 folds. The same in-
terpolation constant —0.5 is used for building fold-specific lan-
guage models of all systems. 200 K word, 76 K morph and
200 K lexical stem+ending units of vocabulary were employed
while building 3-gram word, 4-gram morph, and 4-gram lexical
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TABLE VI
DISCRIMINATIVE RERANKING RESULTS WITH THE
PERCEPTRON USING UNIGRAM FEATURES

WER sensitive - - v v
Baseline score in training — v v -
Model oracle | 1-best reranking
word 15.0 234 232 | 23.0 | 229 | 23.0
morph 13.9 224 219 | 218 | 21.7 | 21.5
stem+ending (lexical) | 13.7 21.6 21.1 | 209 | 209 | 20.8

stem+ending models, respectively. Since the n-gram language
models are pruned for computational reasons, the lattices gen-
erated in the first-pass at ~1.5 real-time factor are rescored with
unpruned language models.

We used the unigram counts of corresponding generative
modeling units as features in the discriminative reranking
experiments as these features give the most significant im-
provements in [40]. The word, morph, and lexical stem and
ending unigram counts are our features respectively for word,
morph and lexical stem+ending models. This results in 156 081
features for word, 46 251 features for morph and 63 887 features
for lexical stem+ending model. The discriminative reranking
using morphological features presents a complementary ap-
proach to the generative morpholexical language model in the
sense that the recognition output from the generative model
explicitly contains the reranking features. This prevents the
necessity for any complicated feature extraction process after
the first pass and it enables possibly to rerank the hypotheses
on-the-fly during decoding alleviating rescoring latency using
an algorithm similar to [43]. For word and statistically derived
sub-word models, it was shown that using richer linguistic and
statistically derived features further improves the reranking
performance [37]. Note that this required to use linguistic
processing steps like morphological parsing to extract the
linguistic features. We have also recently experimented with
more complex morpholexical and n-best list features [5].

The reranking models are trained both with the WER-sensi-
tive perceptron algorithm of Fig. 2 and the original averaged
perceptron algorithm. We also carried out experiments to see
the effect of using baseline score in discriminative training.
The 50-best hypotheses extracted for each utterance from the
rescored lattices are used for the training and reranking. The
number of iterations of the algorithm and the weight g used for
scaling the hypothesis score from the first-pass are optimized
on a held-out set.

The final reranking results are given on the test set in
Table VI. The WER-sensitive perceptron algorithm shows
consistent improvements for all the models on the test set.
Dismissing the first-pass score in the training of the standard
perceptron degrades reranking performance on the test set. In
contrast, it seems generally better to dismiss the first-pass score
for the WER-sensitive perceptron. This is important since we
might not have these scores if we want to train the discrimina-
tive model in an unsupervised manner where we don’t have the
transcribed acoustic data.

To evaluate the effectiveness of the WER-sensitive percep-
tron algorithm, we carried out significance tests using the NIST
MAPSSWE test for the morph model where the algorithm
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seems to make significant difference. The WER-sensitive
perceptron without the baseline score in training gives the
best word error rate of 21.5% for the morph model as can
be seen in Table VI. The performance improvement of this
model over three other configurations is significant at the
levels of p = 0.048, p = 0.004, and p < 0.001 with respect
to the increasing word error rates of the configurations. The
stem+ending model performs significantly better than the word
and morph model for all the configurations (p < 0.001).

VIII. DISCUSSION AND CONCLUSION

In this paper, we first introduced the morpholexical language
model which is a morphological sub-lexical n-gram language
model. Second, we showed that we can build a morphology-in-
tegrated search network for ASR using a morpholexical lan-
guage model and the lexical transducer of the morphological
parser in the finite-state transducer framework. This proposed
approach is superior to word n-gram models in the following
aspects:

* The vocabulary is unlimited since the modeling units are

sub-lexical units.

+ [Italleviates the OOV and vocabulary growth problem. The

OOV rate is effectively reduced to about 1.3% on the test
set. For comparison, the 200 K word model has about 2%
OOV rate.
+ Using lexical units alleviates data sparsity problem.
+ Lexical stem+ending model gives the best results, and it
improves the WER over word model by 1.8% absolute.
Besides, it is superior to statistical sub-word (morph) models in
some other aspects:

* The modeling units as being lexical and grammatical mor-

phemes provide a linguistic approach.

+ The linguistic approach enables integration with other fi-

nite-state models like pronunciation lexicon.

* The morphology-integrated search network only allows

valid word sequences thanks to the morphotactics.

* The morphological features can be further exploited in a

rescoring or reranking model.

* Lexical stem+ending model improves the WER over

morph model by 0.4% absolute.

The experimental results show that lexical stem+-ending
model as a morpholexical language model outperforms all the
other models significantly. We also show that morphotactics
and morphological disambiguation are effective for better
language modeling.

Third, we presented a variant of the perceptron algorithm,
WER-sensitive perceptron, for discriminative training of
reranking models. The experimental results show that this algo-
rithm is better for reranking speech recognition hypotheses. The
reranking WER for the lexical stem+ending model is lower
by 2.2% and 0.7% absolute than word and morph models,
respectively.

The proposed methods present an elegant approach for lan-
guage modeling for morphologically complex languages. How-
ever, it should be noted that these approaches increases the lan-
guage modeling complexity and requires to have a finite-state
morphological parser for a language to apply these methods.



2350

Although, the language models and techniques in this work
have been developed and applied for Turkish speech recogni-
tion, they can be applied for other morphologically rich lan-
guages such as Arabic, Finnish, and Czech and in other language
processing applications. We believe that using grammatical sub-
lexical units in language modeling can be even more beneficial
for other applications especially for machine translation.

APPENDIX

We give a proof of the convergence of the WER-sensitive per-
ceptron algorithm for a separable training sequence following a
similar proof given for the averaged perceptron in [29].

Definition 1: Let the set of incorrect candidates for an ex-
ample z; be GEN(z;) = GEN(z;) —); where ) is the set of
all candidates with the lowest error rate. The training sequence
(z;,y; € V) fori = 1...n is separable with margin § > 0 if
there exists some vector U with ||U|| = 1 such that

Vi, Vz; € GEN(2;), U - ®(x;,4:) — U - ®(ay,2;) > 6 (1)

Theorem 1: For any training sequence (x;, y;) which is sep-
arable with margin §, for the perceptron algorithm in Fig. 2:
2,.2
Number of mistakes < 5 2)
where R is a constant such that Vi,Vz;, € GEN(z;),
@ (zi,4:) — ®(x:,2)|| £ R and r is an upper bound on loss
for any candidate, that is Vi, Vz; € GEN(x;), Ai(zi,y:) < r
where A;(z;,y;) is the difference in the edit distances of z;
and y; with the reference transcription of z;, and y; € JV; is a
candidate with the lowest error rate.

Proof: Suppose that k'th mistake is made at the i'th ex-
ample and let @ be the weights before that mistake is made
and hence @' = (. Take z; as the output proposed at this
example, z; = argmax.cGeEN(s,) (v, 2) - a®. It follows
from the algorithm updates that @**! = a* + (®(z;,y;) —
®(z,, 2:))Ai(2:,y;). First we derive a lower bound for ||@*+1]|
as follows:

U-a"t' =U.af +U- (‘I’(TL yi) — ‘P(’I’L ZZ))AL(Z“ yi)
>U. ak + (SA,L‘(Zi, ?/i)

where the inequality follows from the definition of U. Since
U - al = 0, it follows by induction on % that for all &, U -
aktt > 6>, Az, y;) where >, Ai(z;, ;) is the sum of
losses made at each mistake up to k’th mistake. Because U -
a*tl < ||U|||la®*tY|| and ||U|| = 1, it follows that ||a"*+1| >
8 >4 Ai(2i, y;). Because the loss is at least one for each mistake
by definition, it follows that ||a**1|| > &k

Now we derive an upper bound for ||@**1(|? as follows:

15112 = [6H1P + [ ge) — Bl 2P Acler, )’
+ 20" - (®(wi,yi) — Bz, 20)) Az, i)
< 1@F]17 + R2A: (24, 4:)?
where the inequality follows because | ®(z;,y;) —

®(x;,2)||> < R? by assumption, and @* - (®(z, 1) —
®(x;,2)) < 0 because z; is the highest scoring candidate
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for #;; under the parameters @*. It follows by induction that
|a* 2 < R®S, Ai(zi, i)’ Because the loss for any
candidate has an upper bound r by assumption, it follows that
||d’k+1||2 < R2k7‘2.

Combining the bounds ||@**+1|| > ¢k and ||@**1(|? < RZkr?
gives the result for all % that
R2T2
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R < |la" TP < RPkr? = k <

Because the upper bound on the number of mistakes the algo-
rithm makes is constant, the algorithm must converge within a
finite number of iterations. [ |
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