
Generation of Sentence Parse Trees Using Parts of
Speech

Tunga Güngör1

1 ���������	��
������� �������� ��������� �"!# �$�%�'&(��)�� ���*�%�+� ��)-,.��!����$���/�����0�1����2��%3��
4 5�4156.7+8:90;�<�=�>�?�@1A'>BDCE�F

Gungort@boun.edu.tr

Abstract. This paper proposes a new corpus-based approach for deriving
syntactic structures and generating parse trees of natural language sentences.
The parts of speech (word categories) of words in the sentences play the key
role for this purpose. The grammar formalism used is more general than most of
the grammar induction methods proposed in the literature. The approach was
tested for Turkish language using a corpus of more than 5,000 sentences and
successful results were obtained.

1 Introduction

In this paper, we propose a corpus-based approach for deriving the syntactic
structures of sentences in a natural language and forming parse trees of these
sentences. The method is based on a concept which we name as proximity. The parts
of speech (word categories) of words in the sentences play the key role in determining
the syntactic relationships within sentences. The data about the order and frequency of
word categories are collected from a corpus and are converted to proximity measures
for word categories and sentences. Then these data are used to obtain probable parse
trees for a given sentence.

It is well-known that grammars of natural languages are highly complicated and
powerful. There have been several efforts for obtaining suitable grammars for
particular languages that can generate most (if not all) of the sentences in those
languages. The grammars defined manually for this purpose have limited success.
The difficulty lies in the resistance of natural languages against syntactic
formalizations. It is not known exactly what are the syntactic hierarchies inherent in
the sentences. In fact, it is very easy to define a grammar that can generate all
sentences in a language, but such a “general” grammar also generates non-sentences.
Thus, forming grammars that can include sentences and at the same time exclude non-
sentences is the difficult part of this task.

In order to overcome the difficulties posed by such rule-based approaches in
processing natural languages, corpus-based approaches (collected under the name
“statistical natural language processing”) have begun to emerge recently [1,2]. They
embody the assumption that human language comprehension and production works
with representations of concrete past language experiences, rather than with abstract

grammatical rules. There are several studies on statistical natural language processing.
A nice approach is data oriented parsing model [3,4,5]. This model necessitates
annotated corpora in which parse trees of sentences are explicit. The idea is building
new sentences by composing fragments of corpus sentences.

An interesting field where corpus-based approaches are used is grammar induction
(learning). This usually means in the literature learning probabilistic context-free
grammars (PCFGs). As stated in [1], the simplest method (and the basic idea) is
generating all possible rules, assigning them some initial probabilities, running a
training algorithm on a corpus to improve the probability estimates, and identifying
the rules with high probabilities as the grammar of the language. However, this
method is unrealistic as there is no bound on the number of possible rules, and even
with constraints on the number of rules, often the number is so large that it becomes
impractical in terms of computation time. The solution usually applied is restricting
the rule types. In [6,7,8,9], some methods which use dependency grammars or
Chomsky-normal-form grammars are presented.

2 Outline of the Method

Given a sentence, first the categories of the words in the sentence are determined. The
sentence is at first considered as a single unit, which is formed of the sequence of
these categories. It is then analyzed how this sequence can be divided into
subsequences. For nontrivial sentences, the number of possible subsequences is quite
large, and in general it grows exponentially with the length of the sentence. Among
the possible subsequences, the best one is found according to the data in the corpus.
The result is a set of smaller sentences. For each sentence in this set, the same process
is repeated until the original sentence is partitioned into single categories.

 [nanv] [nan] [an]

 [nan] v n [an] a n
 (a) (b) (c)

Fig. 1. G'H�I0J0K J0K�L1M�NPODL1IQJ�R�STN�S�M1J0S�M�U�S�V*H*W�H�XYN�K Z�H%R\[�H%]^H�Z_`�S�a�S�M�WKcb
The process is illustrated for the following simple Turkish sentence in Figure 1:

d efd	g h�icj'dlknm%dloqpQd	jsrut'v1wfv	xQefi
 (n) (a) (n) (v)
man black hat+acc like+pst+3sg
(the man liked the black hat)

(The word categories that appear in this work are: a for adjective, d for adverb, n
for noun, and v for verb.) We represent the sentence as [nanv] in the form of a
single sequence of word categories. Suppose that, after all alternative subsequences
are evaluated, dividing into two groups as [nan] and v yields the best result, as shown

in Figure 1.a. These two subsequences are considered as new (smaller) sentences. The
process is over for the second one since it is formed of a single category. The other
sentence ([nan]) is analyzed and divided into subsequences n and [an] (Figure 1.b).
Finally, the only subsequence left ([an]) is partitioned into a and n, as shown in Figure
1.c. (In fact, an analysis need not be performed for a subsequence of length two, since
there is only one way it can be partitioned.) The process ends up with all the
subsequences having a single category. By combining the phases of this process, we
can obtain a tree structure as the result of the analysis of the sentence. This is shown
in Figure 2.

 [nanv]

 [nan] v

 n [an]

 a n

Fig. 2. y{z |"}�~ ���%�0~�z1�/z��q�����$�0~ ��~�z1���P�Dz1�Q�����T����� �0���������*�*����|Y��~ ���%�\�����������}�����%���~c�
As can be seen, the tree formed after the analysis of a sentence is very similar to a

parse tree of the sentence. By denoting the root node with S and the intermediate
nodes with special symbols Xi, i≥1, and extending the leaf nodes with the words in the
sentence, it is converted to a parse tree. The symbols Xi denote syntactic constituents
like NP, VP. Since the parse tree of a sentence is built with respect to a grammar for
the language, it is possible to extract the grammatical rules inherent in the tree. This
grammar induction process is beyond the scope of this research. But, it can be solved
with a simple mechanism when the parse trees are already available. Our aim here is
limited to obtaining probable parses for sentences.

3 The Grammar Formalism

The grammar type underlying the parse trees in this research is a restricted context-
free grammar: Each rule is in the form N→α, where N is a nonterminal symbol, α is a
string of nonterminal and terminal symbols, and the number of symbols in α is greater
than one. The only restriction we impose on a context-free grammar comes from the
last part of this definition; a rule can not derive a single nonterminal or terminal
symbol. We call a rule N→A, where N is a nonterminal and A is a nonterminal or
terminal, a 1-1 rule and the corresponding derivation a 1-1 derivation. In our
grammar, 1-1 rules are not allowed. Note that the grammar type we employ is more
general than those in [6,8,9], which restrict themselves to dependency and Chomsky-
normal-form grammars.

The number of parse trees that can be generated by this grammar is exponential in
nature. For a sentence formed of n words (categories), there are 2n-1-1 alternative
derivations in the first level. If we continue enumerating the alternative derivations
until each category is a leaf node, we obtain a large number of parse trees.

A few words are in order about the restriction we impose on the grammar. The
reason of this restriction is to limit the number of parse trees that can be generated to a
finite (albeit, very large) number and also to decrease the computation time. If 1-1
derivations are allowed when enumerating all the parse trees of a sentence, there will
obviously be an infinite number of trees. However, in the case that 1-1 derivations are
not used, the number of categories in a node will always be less than that of its parent
node, and thus the depth of the tree will be finite.

4 Parse Tree Generation

The method makes use of a corpus containing individual sentences. For each
sentence, the categories of the words in the sentence are found first and then the
number of each consecutive two-category, three-category, etc. combinations are
stored. We call each such category combination a category string. In other words, for
a sentence of n categories [c1c2…cn], the category strings are as follows: [c1c2], [c2c3],
…, [cn-1cn], [c1c2c3], [c2c3c4], …, [cn-2cn-1cn], …, [c1c2…cn-1], [c2c3…cn], [c1c2…cn].
This calculation is performed for each sentence in the corpus and the numbers are
totalled. The result gives us an indication about the frequency of consecutive use of
word categories. As can be guessed, the frequencies of short category strings are
usually greater than those of long category strings, since short category strings already
appear within some long ones. We will denote the frequency of a category string
[cici+1…cj], i<j, with Freq(ci,ci+1,…,cj).

Definition: Given a sentence of n words [c1c2…ci…cj…cn], n>1, 1≤i,j≤n, i<j, the
category proximity of the category string [cici+1…cj], CP(ci,ci+1,…,cj), indicates the
closeness of the categories ci, ci+1, …, cj to each other and is defined as follows:

() ()
()jii

n
jii cccFreq

cccFreq
cccCP

,...,,
,...,,

,...,,
1

21
1

+
+ = . (1)

CP(ci,…,cj) is a measure of the strength of the connection between the categories
ci, …, cj when considered as a single group. Small value of CP indicates stronger
connection. If CP(ci,…,cj) is small, it is more likely that [ci…cj] forms a syntactic
constituent.

Figure 3 compares a small CP value with a large CP value. For visualization, we
represent CPs as distances between relevant nodes on a tree; that is, CP(ci,…,cj) is the
distance between nodes ci and cj. In Figure 3.a, CP(ci,…,cj) is a small number (relative
to Figure 3.c), which means that the categories ci, …, cj are close to each other (i.e.
this category combination is a frequently occurring one). Thus they have a tendency
to form a syntactic constituent, as shown in Figure 3.b. (Note that the branches in
Figure 3.a do not indicate a derivation – this is emphasized by using dotted lines.
They are used only to visualize the CPs on a figure. Also note that, since the situation
is explained for one group of categories ci, …, cj, we do not take the other categories

(c1, …, c i-1, cj+1, …, c n) into account. The CP values of other categories will in fact
affect the partitioning in Figure 3.b.) On the other hand, Figure 3.c shows a case
where CP(ci,…,c j) is large. In this case, we say that the category combination ci, …, c j

does not occur frequently. They do not tend to form a syntactic constituent; rather
they tend to be partitioned as separate branches in the tree, as shown in Figure 3.d.

 [c1…c i…c j…c n] [c1…c i…c j…c n]

 … … …
 c1 ci cj cn [ci…c j]

 CP(ci,…,c j)
 (a) (b)

 [c1…c i…c j…c n] [c1…c i…c j…c n]

 … … … …
 c1 ci cj cn ci cj

 CP(ci,…,c j)
 (c) (d)

Fig. 3. Comparison of CP values

As an example, consider the following sentence:

birdenbire odaya girdi
 (d) (n) (v)
suddenly room+dat enter+pst+3sg
(he/she suddenly entered the room)

Suppose that Freq(d,n)=100, Freq(n,v)=1000, and Freq(d,n,v)=50. That is, the
adverb-noun combination is followed by a verb half of the time, and the noun-verb
combination occurs frequently but it is rarely preceded by an adverb. Then, the
category proximity measures are as follows: CP(d,n)=0.5, CP(n,v)=0.05. We see the
situation in Figure 4. The figure suggests that the noun and the verb can form a
syntactic constituent.

 [dnv]

 d n v

 0.5 0.05

Fig. 4. CP values for the sentence “birdenbire odaya girdi”

Definition: Given a sentence of n words [c1c2…c n], n>1, the sentence proximity of
the sentence, SP(c1,c2,…,c n), indicates the overall closeness of the categories in the
sentence and is defined in terms of category proximities:

() ()∑
−

=
+=

1

1
121 ,,...,,

n

i
iin ccCPcccSP . (2)

Similar to category proximity, SP(c1,…,c n) is a measure of the strength of the
connection between the categories in the sentence. The difference lies in the range of
categories it affects. Instead of determining how probable it is for a particular group
of categories ci, …, c j within the sentence to form a syntactic constituent, it increases
or decreases these probabilities for all category combinations in the sentence. Small
value of SP is a bias in favour of more syntactic constituents.

 [c1…c i…c j…c n] [c1…c i…c j…c n]
 … … …
 c1 ci cj cn [ci…c j]

 CP(ci,…,c j)

 SP(c1,…,c n)
 (a) (b)

 [c1…c i…c j…c n] [c1…c i…c j…c n]
 … … … …
 c1 ci cj cn ci cj

 CP(ci,…,c j)

 SP(c1,…,c n)
 (c) (d)

Fig. 5. Comparison of SP values

Figure 5 compares a small SP value with a large SP value. Assume that the

ratio
()
()n

ji

ccSP

ccCP

,...,

,...,

1
 (and the ratios for category strings other than [ci…c j]) are the same

in Figures 5.a and 5.c. In this case, the category proximity measure is not sufficient to
differentiate the different syntactic relationships among the categories (as will be clear
later) – it will force the same syntactic constituents to be built in both sentences.
However, in reality, the fact that category combinations occur more frequently is a
sign of more syntactic relationships (since they did not occur in that sentence “by
chance”). This effect is provided by the sentence proximity measure. Figure 5.b
shows that the categories ci, …, c j of Figure 5.a form a syntactic constituent, whereas
Figure 5.d shows that the categories ci, …, c j of Figure 5.c tend to be partitioned as
separate categories.

The two proximity concepts are used together in order to produce a parse tree for a
sentence. Suppose that we have a sentence of n words [c1c2…c n], n>1. The category
proximity values for all category strings in the sentence (except CP(c1,…,c n)) are
calculated. These values may be in conflict with each other. For instance, CP(c1,c2)
and CP(c2,c3) may be small, forcing the corresponding categories to make a group, but

CP(c1,c2,c3) may be large, having an opposite effect. The idea is extracting the real
(or, best) proximity figures inherent in these data. This is accomplished by taking the
initial CP values of category strings of length two (i.e. CP(ci,ci+1), 1≤i<n) into
consideration, applying the effects of other CP values on these, and arriving at final
CP values of category strings of length two. These values denote the real proximities
for each pair of categories.

For this purpose, the following linear programming problem is formulated and
solved: (The equations have n-1 variables x1, x2, …, x n-1 whose values are sought. xi,
1≤i<n, corresponds to CP(ci,ci+1). pi,j and ni,j, 1≤i≤n-2, 1≤j≤n-1, i+j≤n, stand for
positive and negative slack variables, respectively. The goal is obtaining actual
CP(ci,ci+1) values (i.e. xi’s) such that the sum of the slack variables is minimum.)

min p1,1+…+p 1,n-1+p2,1+…+p 2,n-2+…+p n-2,1+pn-2,2+
 n1,1+…+n 1,n-1+n2,1+ …+n 2,n-2+…+n n-2,1+nn-2,2

subject to
x1+p1,1-n1,1 = CP(c1,c2)
x2+p1,2-n1,2 = CP(c2,c3) . . .
xn-1+p1,n-1-n1,n-1 = CP(cn-1,cn)
x1+x2+p2,1-n2,1 = CP(c1,c2,c3) . . .
xn-2+xn-1+p2,n-2-n2,n-2 = CP(cn-2,cn-1,cn) . . .
x1+…+x n-2+pn-2,1-nn-2,1 = CP(c1,…,c n-1)
x2+…+x n-1+pn-2,2-nn-2,2 = CP(c2,…,c n)

Let CP′(ci,ci+1), 1≤i<n, denote the actual category proximity values obtained and

SP′(c1,…,c n) (()∑
−

=
+′=

1

1
1,

n

i
ii ccPC) the actual sentence proximity value. The tree

structure formed with these actual values will be called the actual tree. As mentioned
in Section 3, the category string [c1…c n] can be partitioned in 2n-1-1 ways. We call
each such partition a partition tree. The task is finding the most probable partition
tree. To this effect, the actual tree is compared with each partition tree, a score is
calculated for each, and the one with the smallest score is chosen.

Definition: Given an actual tree and a partition tree P of n words [c1c2…c n], n>1,
the sentence proximity of the partition tree, SPP(c1,c2,…,c n), is equal to the sentence
proximity of the actual tree. That is,

SPP(c1,c2,…,c n) = SP′(c1,c2,…,c n) . (3)

Definition: Given a partition tree P of n words [c1c2…c n], n>1, let the m partitions,
1<m≤n, be (),,...,

11 icc (),...,,...,
21 1 ii cc + ()

mm ii cc ,...,11 +−
 (1≤i1<i2<…<i m=n). Then, the

category proximity of two consecutive categories, CPP(ci,ci+1), 1≤i<n, in the tree, is
defined as follows:

() ()

−
=

+
+ otherwise ,

1
,...,

partition same in the are c and c if , 0
, 1

1ii
1

m
ccSPccCP nPiiP . (4)

Intuitively, we consider the distance (proximity value) between the first and last
branches of a partition tree as equal to the same distance in the actual tree and then
divide this distance to the number of branches minus one to obtain an equal distance
between each pair of branches.

Having obtained the actual tree, it is compared with each possible partition tree in
order to find the most similar one. In fact, the actual tree is the most realistic tree in
terms of showing the syntactic relationships in the sentence. However, since such
“fuzzy” derivations can not take part in sentence parse trees, we must represent it with
a suitable partition tree.

Definition: Given an actual tree of n words [c1c2…c n], n>1, the cumulative
category proximity of a category ci, 1<i<n, CCP′(ci), is the total of the category
proximity values between the first and the ci

th categories. That is,

() ()∑
−

=
+′=′

1

1
1,

i

j
jji ccPCcPCC . (5)

The cumulative category proximity for a partition tree P, CCPP(ci), is defined
analogously. Note that CCP′(c1)=0 and CCP′(cn)=SP′(c1,…,c n); but these border
values will not be used in the following derivations.

Definition: Given an actual tree and a partition tree P of n words [c1c2…c n], n>2,
the similarity score between the two trees, SSP, is defined as follows:

() ()[] ()i

n

i
iPiP ccgcCCPcPCCabsSS *

1

2
∑

−

=

−′= . (6)

where abs is the absolute value function and cg(ci) is the category grouping value:

() ()

′
=

otherwise, ,...,
itselfby partition a forms c if, 1

1

i

n
i ccPS

ccg . (7)

Intuitively, the similarity score between an actual tree and a partition tree indicates
the total of the amount of the distances traversed when “moving” the branches of the
actual tree in order to make the actual tree identical to the partition tree. Small value
of SSP means more similarity between the trees, as the distance traversed will be less.

The category grouping value serves for the effect of sentence proximity mentioned
before (Figure 5). Suppose that a category ci is included within a partition of length
greater than one, as in Figure 5.b, so cg(ci)=SP′(c1,…,c n). Then, an actual tree with a
smaller SP′ value (Figure 5.a) than another actual tree with a larger SP′ value (Figure
5.c) will be more similar to that partition tree, since cg(ci) is a multiplicative factor in
equation (6). In other words, the former one will bias in favour of those partition trees
in which ci appears within a group among all the possible partition trees, whereas the
latter one will bias in favour of partition trees in which ci forms a separate partition.

After the most similar partition tree is chosen, each partition with length greater
than two is considered as a new sentence and the whole process is repeated. As
explained in Section 2, the collection of all the most similar partition trees then forms
the parse tree of the sentence.

5 Implementation of the Method

The proposed approach was implemented for Turkish. A corpus of general text
containing about 5,700 sentences was compiled. The average length (number of
words) of the sentences is 18.6. The corpus includes long sentences having as many
as 50 words. Word categories are derived by using the spelling checker program
explained in [10]. The frequencies of all category strings in the corpus are collected
and stored in a database.

The method was applied to several sentences and parse trees were generated.
Below we present the details of a short sentence only due to lack of space. The
sentence was taken from a newspaper:

�Q���Q� �f�l�Q� �f�	�������%�	�:��� �q�����D¡¢����0�	�¤£'�1�:�	��¥%��¦��q���
 (n) (a) (n) (v)
country+loc democratic progress+pl adequate+neg+cop
(democratic progresses in the country are not adequate)

Table 1. Calculations for the example sentence (first iteration)

Freq(n,a) = 5,992
Freq(a,n) = 6,973
Freq(n,v) = 6,639
Freq(n,a,n) = 3,036
Freq(a,n,v) = 865
Freq(n,a,n,v) = 367

(a)

CP(n,a) = 0.061
CP(a,n) = 0.053
CP(n,v) = 0.055
CP(n,a,n) = 0.121
CP(a,n,v) = 0.424

SP(n,a,n,v) = 0.169
(b)

min p1+n1+p2+n2+p3+n3+p4+n4+p5+n5
subject to
x1+p1-n1=0.061
x2+p2-n2=0.053
x3+p3-n3=0.055
x1+x2+p4-n4=0.121
x2+x3+p5-n5=0.424

(c)
CP′(n,a) = 0.061
CP′(a,n) = 0.060
CP′(n,v) = 0.365

SP′(n,a,n,v) = 0.486

(d)

CPP(n,a) = 0
CPP(a,n) = 0
CPP(n,v) = 0.486

SPP(n,a,n,v) = 0.486

(e)

CCP′(a) = 0.061
CCP′(n) = 0.121
CCPP(a) = 0
CCPP(n) = 0
SSP = 0.088

(f)

Table 2. Calculations for the example sentence (second iteration)

Freq(n,a) = 5,992
Freq(a,n) = 6,973
Freq(n,a,n) = 3,036

(a)

CP(n,a) = 0.507
CP(a,n) = 0.435

SP(n,a,n) = 0.942
(b)

min p1+n1+p2+n2
subject to
x1+p1-n1=0.507
x2+p2-n2=0.435

(c)
CP′(n,a) = 0.507
CP′(a,n) = 0.435

SP′(n,a,n) = 0.942
(d)

CPP(n,a) = 0.471
CPP(a,n) = 0.471

SPP(n,a,n) = 0.942

(e)

CCP′(a) = 0.507

CCPP(a) = 0.471

SSP = 0.036
(f)

For each iteration of the process, we give the calculations in a table. The
calculations involve the actual tree and the most probable partition tree P.
Calculations for other partition trees are not shown due to the large number of
possible trees. Each table consists of the following data: category string frequencies
(part a), initial category proximities and sentence proximity (part b), linear
programming problem (part c), actual category proximities and sentence proximity
(part d), category proximities and sentence proximity for the partition tree P (part e),
and cumulative category proximities and the similarity score between the actual tree
and the partition tree P (part f).

Table 1 contains the data and the results for the category string [nanv] and Table 2
for the category string [nan]. The final parse tree is shown in Figure 6.

An observation about the computational complexity of the method is worth
mentioning here. The program was executed on a Pentium 4 1.3 Ghz machine. The
execution time is very low for sentences containing at most 15-20 words. It takes
about 4-5 seconds parsing such sentences. The computation time seems very
promising when we consider the size of the search space – that is, we are working
with a nearly unrestricted context-free grammar formalism. The reason is pruning the
search space at each iteration and taking only the best partitioning into account.

6 Conclusions

In this paper, we proposed a new method for generating parse trees of natural
language sentences. Due to the limitations of rule-based techniques in formalizing
natural languages, statistical techniques are gaining popularity. This was the direction
pursued in this research. The method is based on the information inherent in the word
categories (parts of speech) of words within the sentences. By using the frequency
and order of these categories, a method was formulated to make the syntactic
relationships in sentences explicit.

 S

 X1 v

 n a n

Fig. 6. Parse tree for the example sentence

The parse trees that the method produces are equivalent to those that can be
generated by a little restricted context-free grammar. The grammar formalism used is
more general than those used by other similar approaches.

The approach was tested for Turkish using a corpus of about 5,700 sentences.
Although an exact evaluation is not possible since there does not exist a complete
grammar for the language, the results are successful. The parse trees produced by the
program for about half of the sentences seem correct. One strength of the method is
its ability to generate plausible parses for complex sentences. But parses which can
not capture the syntactic relationships inside the sentences or that result in slightly
misplaced constituents were also produced. As the size of the corpus increases, we
may expect better results.

An attractive area for future research is extracting a grammar using these parse
trees. This will be an important contribution if it becomes possible to obtain a robust
grammar, since no comprehensive grammars have been written yet. It may also
provide feedback to rule-based grammar studies.

Acknowledgement
§{¨Q©$ª¬«®�¯�°±«³²ª´ª¶µ�·f·'�¯�¸:¹ º¼»�½±¸0¨Q¹¿¾/�Àq² Á�©0Â ©ÄÃ³ÅQ©�Æf¹	¯�ª%©�¸�½ÈÇ"¹ª�¹ ²	¯%É	¨ËÊPµqÅQºQÌÄÍÎ¯¶²lÅ�¸ÏÅ'sÐ
02A107.

References

1. Charniak, E.: Statistical Language Learning. MIT, Cambridge MA (1997)
2. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT,

Cambridge MA (2002)
3. Bod, R.: Data Oriented Parsing. In: Computational Linguistics in the Netherlands.

Amsterdam The Netherlands (1991) 26-39
4. Bod, R.: Beyond Grammar: An Experience-Based Theory of Language. CSLI Publications,

Stanford (1998)
5. Kaplan, R.: A Probabilistic Approach to Lexical-Functional Analysis. In: Conference and

Workshop on Lexical Functional Grammar. CSLI Publications, Stanford (1996)
6. Carroll, G.: Learning Probabilistic Grammars for Language Modelling. Ph.D. Thesis. Brown

University, Providence RI (1995)
7. Carroll, G., Charniak, E.: Learning Probabilistic Dependency Grammars from Labelled Text.

AAAI Fall Symposium on Probabilistic Approaches to Natural Language. Cambridge MA
(1992) 25-32

8. Pereira, F., Schabes, Y.: Inside-Outside Reestimation from Partially Bracketed Corpora. In:
Annual Meeting of the Association for Computational Linguistics. Newark Deleware (1992)
128-135

9. Briscoe, T., Waegner, N.: Robust Stochastic Parsing Using the Inside-Outside Algorithm.
AAAI Workshop on Statistically-Based NLP Techniques. San Jose California (1992) 30-53

10.Güngör, T.: Computer Processing of Turkish: Morphological and Lexical Investigation.ÑqÒqÓ Ô"Ó1Õ'Ò�Ö*×�Ø�×¶ÓlÙ�Ú ÛÜ�Ý	Ø�Þ*Øßáà�Ø â�Ö%ã�×�Ø ä�å�æ ç+×:ä0Ü�à�èé�ê�Õ'é�ãDë�Ö¶åÎì%í�î�î�ï ð

