
An Investigation of Artificial Neural Network Architectures in Artificial Life
Implementations

Serkan Erdur, Tunga Güngör

Department of Computer Engineering���������
	��
	�
���	���������	����
���� ���!�"$#&%('*)�+� �,�-."�/�0�/�0�1�"$243�576�8:9

Abstract. In this paper, an artificially created world is defined and simulation results
are presented. The proposed world is a complex system consisting of three types of
agent: carnivorous, herbivorous, and plants. Agents live on a two-dimensional
hypothetical world and have artificial neural network brains, which can learn over a
life span and evolve over generations by genetic algorithms. Three senses, vision,
smell, and hearing are implemented. A new version of Hebbian rule for short-term
learning is defined. Each parameter was tested with numerous simulations and
important guidelines were obtained that can direct the design of such artificial worlds.

1 Introduction

Living systems have always attracted the scientific studies on them. These studies have
generally dealt with real biological systems. But recently, investigations of biological
systems started to be done with artificial systems.

These studies include both the investigations of the real biological systems and also the
creation of new artificial life forms which resemble the real living things. These two
purposes are both very important. Better understanding of real living systems can increase
our ability to overcome the problems that may arise from these systems. And creating life
artificially may have many philosophical and psychological consequences. This can lead us
to the answer of the question “what is life?”

A good example of an artificial life system is AntFarm [1]. AntFarm is a tool to
investigate the evolution of complex behaviours in complex environments. It is used to
examine how different designs for the ants’ Artificial Neural Network (ANN) brains and
different ways of mating them affect foraging ability. Another system is PolyWorld [2],
which attempts to bring together all the principle components of real living systems into a
single artificial living system. Some of the other studies that use ANN as the decision
mechanism of the agents with supervised or unsupervised learning techniques are [3,4,5].

In this study, an artificial world (a computer program) in which an artificial life can
emerge was designed and built. Although there is not a consensus on the meaning of life, in
this study it is accepted that an artificial life is achieved when the world reaches a stable state
that agents keep continuing their existence for approximately infinitely. This artificial world
resembles real ecological systems by many aspects. Sensing, learning, moving, mating,
eating, fighting and evolving are all included in this world.

A series of experiments were done on this artificial world. One of the biggest aspects of
the simulations was to test different artificial neural network structures as the controlling
structures of the agents. These experiments have showed the effects of the parameters of the
artificial neural networks to the learning process. After giving an overview of the world and
describing its internal operation, we will present the results of these experiments and
comment on these results.

2 Overview of the Artificial Life World

The Artificial Life World (ALW) designed in this research is a complex system consisting of
agents (carnivorous, herbivorous) and plants. Agents and plants live on a two-dimensional
hypothetical world. Plants are randomly scattered around the world and emerge at a random
point on the world when they are eaten or died because of decay. Agents try to continue their
life by eating and mating. They use vision, smell and sound as input to their artificial neural
network brains, which utilize Hebbian learning [6] at its connection weights. The output of
the brain determines the behavior of the agent. Vision information is produced by
constructing a pixel map of the world from the agent’s point of view by considering the
direction and the view angle of that organism.

Agents have energy levels. This energy decreases with each action they perform (even
when doing nothing). They increase their energy level by eating. Carnivorous (from now on
they will be called predators) can eat herbivorous (from now on they will be called preys)
and also dead predators. Preys eat only plants. When agents are died, they turn into food for
predators. So, predators can kill and eat other agents for replenishing their energies.

Each agent has a chromosome and this chromosome determines the structure of that
agent’s artificial neural network brain. Several distinct ANN encoding schemes are
developed and used in this study and some of them store the weights of the ANN in the
chromosome and some not. But all of them fully specify the architecture of the neural
network.

Agents, which have more than a certain energy level, can mate. If two agents have this
ability and they are close enough to each other and also if both of them want to mate, they
mate. Reproduction occurs by taking the genetic material from the two parent agents,
subjecting them to crossover and mutation, and then expressing the new chromosome
(genes) as a child agent.

The genes pass to the further generations by reproduction. And this is done in a similar
way to the nature. Agents have to find their mates themselves. And for an agent to find a
mate successfully, it must travel and search for a mate. To do this, it must have energy and to
gain energy, it must eat something. To eat something, it must search for food. And if that
agent performs these actions, then it can be considered as an enough fit agent to be selected
as a parent. This also describes the nature’s way of selecting the parents to produce children.
No fitness function is used to manually mate the fittest agents. But only for some specified
period of time, a minimum number of agents are preserved according to a fitness function.
Until this period ends, if the number of agents decreases too much that a lower limit is
exceeded, a new agent is selected from living agents of the world and a clone of it is inserted
to the world at a random location. This is because when a world starts, all of its agents are

created from scratch with random neural network architectures and random weights. And
most of these agents are not capable of surviving and even approximately half of them
cannot move until they die. So choosing agents, which are more capable of surviving, at the
beginning of the simulation increases the chance of reaching successful breeds. This fitness
function rewards agents for eating, mating and moving, with more points to eating and
mating.

3 Genetics

The brains of the agents are feed-forward artificial neural networks. The architecture uses an
encoding schema that encodes both the existence and the weights of the connections between
neurons. Weights are stored as real numbers. If a connection exists between two neurons,
then its weight is different than zero. A zero value in the matrix and chromosome means that
a connection does not exist between two neurons.

The construction of a chromosome is done by taking the columns of the connection
matrix and appending them one after another. The reason of adding columns together instead
of rows is to keep all the connections to a neuron intact. This gives us an advantage when
new chromosomes are produced from this chromosome by using crossover. With this
structure, we can group these connections as functional units and can preserve their structure
while performing crossover operation on them. Crossover operator does not divide the
chromosome at these units, so the connections of a neuron stay intact after a crossover.

With this structure, successful parents can transfer their connection weights as well as
connection architecture to their children. An example ANN and its corresponding matrix
representation are given in Figures 1 and 2, respectively.

4 Neural Systems and Learning

Each agent has a neural network brain that gets its main inputs from the agent’s vision, smell
and hearing information. Another input is a normalized value of agent’s current energy level.
This input may help the agent to plan its movements. If it has plenty of energy, it may move
to far points or mate with another agent. Some simulations used the outputs of the network at
the previous step as the inputs at the current step to utilize short-term memory.

Figure 1. A sample feed-forward ANN with real valued weights

1

2

3

6

5

4

8

7
-2.2

2.0

-1.4

3.1
0.7

2.2

-3.0

4.3

1.9

1.1
-1.2

-1.6

Neurons 3 4 5 6 7 8

1 2.2 3.1 0 0.7 0 0

In
pu

t

2 0 -1.4 2.0 0 0 0

3 0 0 0 -2.2 0 0

4 0 0 -1.6 1.1 0 0

5 0 0 0 1.9 0 -3.0

6 0 0 0 0 4.3 1.2

Figure 2. Connection matrix representing the ANN of Figure 1

There are five outputs of the brain that determine the primitive behaviors of the agent.
These behaviors are eating, mating, fighting, moving and waiting. The outputs are real
numbers changing between zero and one.

There are 32 input neurons; 15 of them are the visual information, 12 are smell
information, 4 of them are hearing information and 1 is the current energy level of the agent
as stated before. Optionally, there can be six more inputs that come from the outputs of the
brain calculated at one step before the current step. The connections of the internal and
output neurons to the input neurons are determined at the genes of the agent as specified in
Section 3. The connections and their weights are determined randomly when the agent is
created. There is no predefined functionality of internal neurons and connections. Their
functionality is determined by the evolution.

Bias values of each neuron change during the simulation with the change of weights.
Biases are connected to the neuron as if they are a synaptic connection from another neuron.
This way, bias values can be updated using the same learning technique of updating the
weights.

When simulation runs, at each time step, input neurons are set to the values of the sensing
information and agent’s current energy level. Activation values of the neurons are calculated
according to the following formula:

∑=
j

ji
t

j waiy *)((4.1)

())(*1 1/1 iyt
i ea β−+ += (4.2)

where aj
t is the activation value of neuron j at time t, wji is the weight of the connection from

neuron j to neuron i at time t, ai
 t+1 is the activation value of neuron i at time t+1, and β is the

logistic slope. The second formula is the well-known sigmoid function.

Brain can learn in two forms: short-term learning and long-term learning. Long-term
learning is the learning by evolution. It is developed by natural selection as the genes of
more fit agents are carried to the next generations. Short-term learning is the learning of an

individual agent for the duration of its life. Hebbian learning [6] is adopted for short-term
learning in this work. Weights (and bias) are updated by a Hebbian learning rule as in the
PolyWorld [2] and Linsker’s work [7,8,9]. Linsker in his work demonstrated that Hebbian
learning can self-organize important types of neural response patterns observed in early
visual systems of real organisms. Hebbian learning is an unsupervised learning technique.
This means that no external judgment is done for the outputs of the ANN and no external
help is provided to the ANN to change its outputs. In this work, it must be in this way
because in real life most of the times organisms must learn without a supervisor.

Hebbian learning adjusts the network's weights (synaptic efficacies) such that its output
reflects its familiarity with an input. The more probable an input, the larger the output will
become (on the average). It makes the network respond to the same inputs with the same
outputs. And this makes the network more stable.

We can define the Hebbian learning rule as follows: If aj is the output of the presynaptic
neuron, ai the output of the postsynaptic neuron, and wij the strength of the connection
between them, and LR learning rate, then according to the Hebbian learning rule:

ijijij aaLRtwtw **)()1(+=+ (4.3)

This weight update occurs for each neuron at each time step that network calculates its
outputs. Here ai and aj can be positive or negative. If they carry different multiplicative signs
then weight will be decreased so that the effect of presynaptic neuron on the postsynaptic
neuron will be decreased. If they carry the same multiplicative sign, then the weight of the
connection will be increased so that the effect of presynaptic neuron on the postsynaptic
neuron will be increased.

In this paper, we define a new version of Hebbian rule:

)(* 11 t
i

t
j

t
ij

t
ij aaLRww −+= ++ (4.4)

where wij
t+1 stands for the weight of the connection from neuron i to neuron j at time step

t+1. aj
t+1 is the activation value of the neuron j at time step t+1 and ai

t is the activation value
of the neuron i at time step t. LR is the learning rate constant defined globally for the
simulation. Weights of the network are updated according to this rule at every step.

When an agent is born, its chromosome is constructed by using its parent’s chromosomes.
If the connection weights, which are updated during the parent’s lifetime, are used to
construct the child’s weights, then the child can learn what its parents have learnt up to that
time. This kind of learning is called Lamarckian learning and it is used as long-term learning
in this work.

5 Results

The simulations first run for a definite number of steps (time steps) in a controlled period of
time. During this controlled period, when a type of agent population size decreases below a
predetermined value, a new agent of that type is inserted into the world. This agent is a
mutated copy of another agent chosen among the living agents of the world. An elitist
strategy is used here such that the fittest agent according to the fitness function is chosen.

But that agent’s genes are changed slightly with the mutation operator. The mutation
operator is the one used for the reproduction process. This controlled period is usually set as
4,000 time steps. It is experimented that generally this much time is sufficient for a
simulation to produce fit enough agents to continue the simulation successfully. Successfully
here means that agents are able to sustain the population’s existence. After that controlled
period, the agents are expected to keep the population size at a certain level by sustaining
their lifes and producing new agents by mating for the place of dead agents.

The fitness function mentioned above is a function that rates the agents for their actions.
In each step of the simulation, agents are assigned their fitness scores. This score is updated
at each step according to the action done by the agent.

For observing the effects of ANN parameters to the success of the simulations, we
performed a series of simulations for each parameter. At each simulation series, all the
parameters were kept constant except the one, which is being observed. A range of values
was selected for each parameter. These ranges were chosen to span all the possible values
that the parameter can take. Each parameter value was tested at least 10 times. This number
was increased over 40 for successful series to observe the effects more accurately.
Simulations were allowed to run a maximum of 20,000 time steps. As stated above, 4,000
steps of this 20,000 time steps formed the controlled simulation time. In the following
sections, graphs are presented for showing the effects of the parameters to the success of the
simulation. A simulation is accepted as successful if the agents are able to sustain the
population’s size at a constant level.

5.1. Number of Neurons

When the number of neurons is too low, the ANN will be incapable of learning patterns that
make it survive. If the number is too high, ANN will be able to memorize all the examples
by forming a large database, but will not generalize well to inputs that have not been seen
before. The results that we have obtained from the simulations are fully complying with this
knowledge. Figure 3 shows the results of the experiments on the number of neurons. It
presents the success percentage of the simulations with the change of number of neurons.

Figure 3. “Number of neurons” vs. Figure 4. “Connection probability
“Success” between neurons” vs. “Success”

%0

%20

%40

%60

%80

%100

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Connection Probability Between Neurons

Su
cc

es
s

%0
%10
%20
%30
%40
%50
%60

; <&= <&> ?A@ ?AB CED FAG
Number of Neurons

Su
cc

es
s

5.2. Connection Probability Between Neurons

This parameter is used when the ANN brains of the agents are constructed. With the
probability dictated by this parameter, existence of a connection between two neurons is
determined. If the probability is defined high, then the neurons of the ANN will be more
connected.

Results of the experiments on this parameter are shown in Figure 4. This parameter’s
effect is like the effect of the number of internal neurons. When connection probability is too
low, then ANN cannot learn the patterns; if it is too high, then it may memorize the input-
output pairs instead of learning patterns.

5.3. Hebbian Learning Rate

Learning rate parameter is used in the learning function as described in Section 4. Learning
function is used to strengthen the weights of the connections in the appropriate direction. If
the learning rate is high, then the network learns the input pattern faster. If the rate is too
high, the weights may be updated beyond the optimal value. If it is too small, the network
cannot learn input patterns because of the differentiation of the input at each time step.

Results of experiments on this parameter are shown in Figure 5.

Figure 5. “Hebbian learning rate” vs. Figure 6. “Sigmoid function slope
“Success” modifier” vs. “Success”

5.4. Sigmoid Function Slope Modifier

This parameter directly affects the output of the activation functions and consecutively the
output of the ANN. The activation function used in the ANN is sigmoid function as stated
before and the output of this function is between zero and one. If the slope modifier is small,
then the slope of the sigmoid function becomes small. If the slope is small, then activation
values of the neurons come closer to 0.5.

Figure 6 depicts the results of the experiments. As the results show, simulations with
slope modifier values smaller than 0.2 have given worst results. Reason of this is, at such

%0

%20

%40

%60

%80

%100

0 0.1 0.2 0.3 0,4 0,5 0,6 0,7 0,8 0,9 1

Hebbian Learning Rate

Su
cc

es
s

%0

%20

%40

%60

%80

%100

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,9

Sigmoid Function Slope Modifier

Su
cc

es
s

small values, outputs of the neurons come close to 0.5 regardless of the inputs. This situation
directly affects the outputs of the ANN and its behaviors become very restricted.

Figure 7. “Crossover rate” vs. “Success” Figure 8. “Crossover points” vs. “Success”

5.5. Crossover Rate and Points

Crossover rate defines the probability of a crossover happening during a reproduction.
Crossover points defines the maximum number of crossovers that can happen during a
reproduction. Use of crossover can sometimes destruct the functional blocks of the ANNs.

Although in this work neurons with their input connections are considered as functional
units and not destructed by the crossover operator, exact functional units of the ANN cannot
be known. ANNs are a kind of black box and the internal workings of them are not known so
it is best to keep crossover rate and crossover points low. Figures 7 and 8 show the results of
the experiments done on crossover rate and crossover points.

Figure 9. “Mutation rate” vs. “Success”

5.6. Mutation Rate

Mutation rate parameter is used when reproduction takes place and during the controlled
simulation period when a copy of the fittest agent is inserted to the world as stated before. It
determines the probability of mutating a gene. If this parameter is too high, then the child’s

%0

%20

%40

%60

%80

%100

0 0,1 0,2 0,3 0,4 0,5 0,6

Crossover Rate

Su
cc

es
s

%0

%20

%40

%60

%80

%100

1 2 3 4 5 6

Crossover Points

Su
cc

es
s

%0

%20

%40

%60

%80

%100

0 0,1 0,2 0,3 0,4 0,5

Mutation Rate

Su
cc

es
s

genes are mutated so much that it loses the characteristics of its parents. This may lead to the
loss of valuable information, which has been gathered for generations. If mutation rate is so
small, then the genetic discrepancy will be minimum among the individuals of the
population and evolution will be too slow. Figure 9 shows the results of the experiments
done on mutation rate.

6 Conclusion

In this paper, we have presented the design of an artificial life world and the results of the
simulations on this world. The particular simulation results presented here show the effects
of some important artificial neural network parameters on the success of the artificial life
simulations. These results will hopefully aid to the researchers who work with artificial
neural networks, particularly on the artificial life field.

An important extension to the work in this paper may be encoding more than just the
neural architecture into the genes of the agents. For example, physical attributes of the agents
can be encoded into the genes and they may evolve with the current evolution mechanism.
Another important information that can be encoded into the genes is the parameters of the
ANN brains. Some learning algorithms may be encoded into the genes and allow the agents
evolve the most effective learning algorithm rather than assuming it to be Hebbian.

References

1. L. Yaeger, Computational Genetics, Physiology, Metabolism, Neural Systems, Learning,
Vision, and Behavior or PolyWorld: Life in a New Context, In Artificial Life III, Ed. C.
Langton, Addison-Wesley. (1994)

2. R. Linsker, An Application of the Principle of Maximum Information Preservation to
Linear Systems, In Advances in Neural Information Processing Systems 1, Ed. D.S.
Touretzky, Morgan Kaufmann Pub., CA. (1989)

3. R.J. Collins and D.R. Jefferson, AntFarm: Towards Simulated Evolution, In Artificial
Life II, Eds. C. Langton, C. Taylor, J. Farmer and S. Rasmussen, Vol. X, Addison-
Wesley, CA. (1992)

4. R. Linsker, Towards an Organizing Principle for a Layered Perceptual Network, In
Neural Information Processing Systems, Ed. D.Z. Anderson, American Institute of
Physics, New York. (1988)

5. R. Linsker, Self-Organization in a Perceptual Network, Computer 21(3), pp. 105-117.
(1988)

6. S. Nolfi, J.L. Elman and D. Parisi, Learning and Evolution in Neural Networks, CRL
Tech. Rep. 9019, Center for Research in Language, UCSD, CA. (1990)

7. D. Parisi, S. Nolfi and F. Cecconi, Learning, Behavior, and Evolution, Tech. Rep. PCIA-
91-14, Dept. of Cognitive Processes and Artificial Intelligence, Institute of Psychology,
C.N.R.–Rome. (1991)

8. D. Chalmers, The evolution of learning: an experiment in genetic connectionism, In
Connectionist Models, Proceedings of the 1990 Summer School, San Mateo, CA. (1991)

9. D.O. Hebb, The Organization of Behavior, John Wiley and Sons Inc., New York. (1949)

