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1 Department of Computer Engineering, Bog̃aziçi University, İstanbul, Türkiye
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Abstract. The task of syntactic pattern recognition has aroused the
interest of researchers for several decades. The power of the syntactic
approach comes from its capability in exploiting the sequential charac-
teristics of the data. In this work, we propose a new method for syn-
tactic recognition of handwritten characters. The main strengths of our
method are its low run-time and space complexity. In the lexical anal-
ysis phase, the lines of the presented sample are segmented into simple
strokes, which are matched to the primitives of the alphabet. The re-
constructed sample is passed to the syntactic analysis component in the
form of a graph where the edges are the primitives and the vertices are
the connection points of the original strokes. In the syntactic analysis
phase, the interconnections of the primitives extracted from the graph
are used as a source for the construction of a learning automaton. We
reached recognition rates of 72% for the best match and 94% for the top
five matches.
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1 Introduction

Pattern recognition receives increasing attention since longer than three decades.
While considerable progress have been made some challenging problems remain
unsolved [1, 5].

Syntactic Pattern Recognition (SPR), one of the four a subcategories of Pat-
tern Recognition consists of two parts: lexical analysis (segmentation) and syn-
tactic analysis (parsing).

In lexical analysis a pattern is reconstructed in terms of primitives[7], that
are obtained using deterministic [2] or adaptive [19] way. Syntactic analysis is re-
sponsible for grammatical inference in the training session or grammar checking
in the recognition session.



In our method we use structural representation technique. Presented data
samples are segmented into simple strokes (primitives) with three properties:
length, slope and shape (curvature). We use a graph to hold of a segmented char-
acter. Edges and vertices of the graph represent the strokes and the connection
points of these strokes, respectively.

For training and recognition we use the syntactic approach. Segmented and
digitally represented shape is converted to an automaton. Conversion process
is performed using an intermediate stage where the graph is converted to a
sequence of elements, each of which holds the smallest unit of the structure. In
the training session, the obtained automaton contributes to the grammar of the
specific class and, in the recognition session, is matched to the grammar of each
class to detect the best match.

Research for recognition based on curve representation has been reported in
the literature. In [12] (topological representation) the primitives of the presented
curve are encoded with the slope property and consecutive primitives having the
same slope form a part of the curve. The parts are converted into the string rep-
resentation of the curve (coding). The authors in [2] (coding representation with
syntactic recognition) used similar to our’s representation except the curvature
property. Primitives of a 2D ECG signal were adaptively created using ART2
ANN in [19] (coding representation with syntactic recognition). A series of fuzzy
automata, each with a different level of detail, participate in the classification
process.

A shape analysis model was reported in [17] (graph representation and tem-
plate matching recognition). The curves in skeletonized characters are approx-
imated to the sequence of straight line segments and converted into a graph
representation. Graphs and trees representation with a mixture of syntactic and
template matching recognition was used in [10] to recognize various elements on
architectural plans. Straight lines formed the primitive alphabet. Small patterns
(windows, doors, stairs, etc.) were represented using graphs and recognition was
performed by graph matching. The author in [13] (graphs and trees representa-
tion and natural recognition) used SPR to classify objects in medical images. The
method learns the structure of the wrist bones with all variations and recognizes
defects caused by bone joints or dislocations.

A new method for cursive word recognition was proposed in [18] (coding
representation with template matching recognition). Single characters are seg-
mented into straight lines, arcs, ascenders, descenders and loops. Primitives are
coded into 1D sequences and the system searches for common rules. Recognition
of the traffic signs, reported in [8] (coding representation and neural networks
recognition). The author used two types of primitives: lines with the slope prop-
erty and circles with the breaking point orientation property.

In most of the cases, authors used a small number of properties for segmented
curves with complex algorithms for training and recognition. Increasing the com-
plexity of the algorithm will result in an increase in the recognition rates to some
extent. Our aim was to develop an approach to handwritten character recogni-
tion the main strength of which will be the simplicity and high speed on the



expense of slightly less accurate recognition rates. All main parts of our method
are simple and can be implemented with O(n) running time. This method is
useful in cases where the computational power of the hardware is not very high
and the data to be recognized is not too distorted. As an example we may take
pocket computers with handwritten word recognition software plus cooperative
user with good handwriting.

The rest of the paper is organized as follows. The lexical analysis and syntac-
tic analysis are explained in detail in Sections 2 and 3, respectively. In Section 4
we explain the practical application of the method proposed. Section 5 concludes
the paper.

2 Lexical Analysis

In the lexical analysis phase we prepare the presented data for the syntactic
analysis. In this section, we first explain the alphabet and then the segmentation.

2.1 Alphabet

In SPR the alphabet of primitives is obtained either adaptively or is known a
priori. In our method we decided to use a predefined alphabet of primitives.
When the type and format of the data are known, a human supervisor may
provide a sufficient alphabet. To represent the strokes of handwritten characters
we introduce the term arc. An arc is a small segment of a stroke for which the
set of property values can be calculated, and it may be completely represented
by length, slope and shape, each with a small set of discrete values.

The length of an arc is the number of pixels that form the arc. The assignment
of length values may depend on the expected height of the character’s body
(character without ascenders and descenders).

The slope of an arc is the second property that contains direction information.
To determine the slope of an arc, we use a line between the arc ends, called the
chord. The chord of a sample arc is shown in Fig. 1.

The shape property indicates the direction of the arc’s curvature. In calcu-
lation of this property we again use the cord. The value of this property may
change according to the number, distance and position of each pixel in an arc
according to the chord.

d

Fig. 1. The farthest point from the chord on the arc.



2.2 Segmentation

Segmentation module is responsible for breaking a given figure into a set of arcs
in such a way that all strokes in the figure are encoded by the arcs. In our
method, an entire figure is expressed in terms of arcs. In order not to lose the
syntactic properties in the figure, arcs have to be connected to each other in the
same manner as in the original figure. A good way to represent such a structure
is to base the representation on a graph. The edges of the graph are the arcs
with the properties converted to numerical values. The vertices of the graph are
the common points of the arcs on the original figure.

3 Syntactic Analysis

In the training session, the task of the syntactic component is to generate a
grammar for each presented class of data. A grammar is a set of rules that help
us distinguish patterns. In the recognition session, the grammar is used as part
of input along with the reconstructed signal. Here the task is to determine a
degree of match with which a new signal matches the grammar presented.

3.1 Conversion from Graph to Sequence of Code Pairs

The graph produced by lexical analysis holds a character in terms of arcs and
their interconnections. In the training and recognition sessions we use automata.
The structure of the pattern that we use in automata differs from the one pro-
duced by the lexical analysis. In order to convert the graph representation of the
signal to an automaton we use an intermediate step. In this step, to preserve the
2D topology, a sequence of connected edge pairs, called code pairs, is extracted
from the initial graph. Each element of the sequence contains two edges of a
graph with one common vertex. The length of the sequence obtained from a
graph will depend on the number of edges of each vertex. A vertex that connects
n edges will produce Cn

2 = n!
(n−2)!2! different pairs.

3.2 Grammatical Inference

In the training session, sequences obtained from characters belonging to the same
class have to be merged into one learning structure. Knowing that a sequence
consists only of primitives and the primitives are unique, we employ automata.
An automaton is an appropriate structure for storing syntactic data, assumes
that all states are unique, has an ability to learn, and may be trained by infinitely
long input sequences.

During the insertion of each code pair to automaton, the state and transition
probabilities are updated. In order to always maintain a normalized automaton,
we use linear reward-inaction (LR−I) probability update method used in learning
automata [11]. After the insertion of an arc pair into an automaton, both states
(corresponding to codes) are rewarded. To reward more than one state at once
we changed the reward and punishment formulae as follows:
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where n, 0 < λ < 1, Pi, Pk, PI and t denote the number of the states to
be rewarded, learning rate, probability of the rewarded state, the probability
of the punished state, the probability sum of the rewarded states, and time,
respectively. The last (added) factor in the reward formula distributes total
reward according to the prior probabilities of the rewarded states: the higher
the probability, the lesser the reward. Transition probabilities are updated using
the same formulae where n = 1, which neutralizes the last factor.

3.3 Pattern Matching

In the training session we obtain a trained automaton for each class presented.
In the recognition session we follow the algorithm explained above and stop
after the generation of the sequence of code pairs is completed. Then, instead of
generating an automaton, we match the sequence to all trained automata and
choose the best match.

When the training session completes, the system ends up with the normalized
automata. For the matching operation we still need a few more values.

Matching Parameters During matching, when a sequence of code pairs is
presented to a trained automaton, a score (τ) is calculated that denotes the
presence of the specific arcs and their connections to each other. To calculate
the score we search the trained automaton for the states and transitions that
represent each pair in the matched sequence:

τ =
∑
i,j≤n

P (si)P (tij) + P (sj)P (tji) (2)

where n is the number of states, si, sj ∈ S are the present states and tij , tji ∈ T
are the transitions between si and sj . In other words, the score shows the extent
to which the sequence is present in the automaton.

The automaton of each class produces a score for the sequence of the test
character. The scores produced cannot be directly compared. To be able to
compare those scores, they have to be converted into a common scale. For this
purpose, we use the expected value of the scores that each trained automaton
produces for the characters it represents. To determine this value, for each au-
tomaton, we use a second pass over the training data to calculate the scores
of training characters and the expected values from the collection of obtained
scores.

E(τ) = 1
n

n∑
i=1

τi (3)



We use this value as a reference point to show that the closer a character’s
score to the expected value, the higher is the degree of match. The degree of
match is calculated by the formula:

Dm = 1− |E−τ |
E2 α (4)

where Dm is the degree of match, E is the expected value (or the average) of the
scores, E2 is a second central moment (or variance), and α ∈ (0; 1) is a constant.
To quantify the asymmetry of the distribution of the scores we use the third
central moment [15, 16].

Matching In the recognition session, an unknown character passes the lexical
analysis phase and is converted to a sequence of code pairs. Next, the sequence
obtained is matched against all automata and degrees of match are computed.
Finally, the character is assumed to belong to the class whose automaton pro-
duced the highest degree of match.

4 Practical Application

In our application we used the Turkish alphabet which contains 29 letters and
is similar to the English alphabet. The Turkish alphabet does not use the three
letters q, w, and x; instead it includes six new letters ç, g̃, ı, ö, ş, and ü.

4.1 Preprocessing

Before presenting the handwritten character images to the lexical analysis com-
ponent they have to be preprocessed. The lexical analysis component works with
one-pixel thin foreground strokes, so our preprocessing consists of two operations:
binarization [4] and skeletonization [9, 14, 6].

4.2 Segmentation

The first step in segmentation locates the special pixels, called reference points,
on the skeletonized character. There are two types of such pixels: cross points
and ends of the lines.

Fig. 2. Cross and end points located on a shape.



A cross point denotes a pixel that has more than two foreground pixels in
its 8-pixel neighborhood. An end point is a pixel with only one foreground pixel
in its 8-pixel neighborhood. In Fig. 2, the cross points and ends of the lines are
determined.

Initially, a stroke between each pair of reference points is assumed to be an
arc. The next step is to calculate the values of the properties for each arc. In our
application we used a predefined number of values for each property.

The length property may take three values: short (s), medium (m) and long
(l).

The slope may take four values: horizontal (h), vertical (v), positive (p) and
negative (n). If the chord encloses an angle of less than a threshold value (about
15o) with the x-axis or with the y-axis, it is assumed to be horizontal or vertical,
respectively. A positive value is assigned in cases when the chord lies in the first
and third (positive) quarters of the circle drawn around. The chord locating in
the second and fourth (negative) quarters is assigned a negative slope value. For
example, the chord of the arc in Fig. 1 is not close to any of the axes and lies
in the positive quarters of the circle, so the slope property value of that arc is
positive.

The shape property may take three values: straight (s), convex (x) and con-
cave (v). To determine the shape property value we draw a chord and calculate
the average distance davg of the pixels in the arc to the chord and the number of
pixels, pa and pb, vertically above and below the chord, respectively. The average
distance will show us the degree of the arc’s concavity and the number of points
will help us distinguish between convex and concave values. The arc is assumed
to be straight if the degree of concavity is less than a specific threshold value.
If the arc is not straight, we check the number of pixels above and below the
chord. If pa > pb the shape property of the arc is set to convex, and in the case
of pa < pb, to concave.

There are 3 × 4 × 3 = 36 different value combinations for an arc. Each
combination is called the code. Codes are generated as follows: each property
value is given a number that is unique for each property (length: s = 1, m = 2,
l = 3; slope: h = 1, v = 2, p = 3, n = 4; shape: s = 1, x = 2, v = 3).
The code is a number that contains all properties in the same order: code =
100× length+10× slope+1× shape. For example, an arc with property values
as medium, positive and convex is encoded to 100× 2 + 10× 3 + 1× 2 = 232.

The properties of these arcs may fail to be calculated: an arc may be too
long or short, or may be a too complex curve to be clearly defined as convex or
concave. Such arcs are broken up into several simpler arcs by locating additional
reference points. The leftmost and the rightmost arcs in Fig. 2 are examples
of complex arcs. To locate additional reference points we use the bounding box
operation, where an arc is surrounded by a tight (bounding) box. The pixels that
touch the sides of the box become new reference points. In Fig. 3 two points for
the leftmost and the rightmost arcs were located using this operation.

In the case that the bounding box operation does not produce any new
reference point, we apply the farthest point operation, where the pixel that has



the highest distance from the chord, as shown in Fig. 1, is the additional reference
point. In Fig. 3 one point for the middle arcs were located using the farthest point
operation.

The segmentation process continues until all arcs are assigned valid values
for their three properties.

The representation of the segmented character is based on the reconstruc-
tion of the original figure in terms of primitives (arc codes) instead of arcs and
presenting it as a graph. For instance, the graph corresponding to the symbol
in Fig. 3 consists of 10 vertices and edges, as shown in Fig. 4. We assume that
the code of the arc contains sufficient information about the arc and we do not
have to keep the pixel details.

mpx:232 mnx:242

mpv:233

lns:341

mpv:233

lnx:342mpx:232
lns:341

lnv:343mnv:243

Fig. 3. Property values’ abbreviations and codes of the all arcs in the shape.
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Fig. 4. Graph representation of the shape in Fig. 3.

4.3 Code Pairs

To convert graph obtained from the lexical analysis to the sequence of code
pairs we extract all possible combinations of connected edges from each vertex.
As states earlier the number of pairs from a vertex that connects n edges will be
Cn

2 = n!
(n−2)!2! . The only exception is the vertex that contains one edge, which

produces the pair with 0 on one side. For instance, the graph in Fig. 4 produces
the following sequence: 0-243, 243-232, 232-341, 341-232, 341-343, 232-343, 232-
342, 343-233, 342-233, 342-341, 233-341, 341-233, 233-242 and 242-0. The order
of the pairs is irrelevant since each pair is a part of the graph topology and the
order of the codes in a pair is also irrelevant since the edges in a graph are not
directed.



4.4 Automaton

Presenting one element of a sequence, a code pair, to an automaton consists of
a few simple and straightforward operations. First, each code in a code pair is
assumed to represent a state of an automaton. New states are created if the au-
tomaton does not contain a newly presented code. Second, a connection between
the codes in the pair represents a transition between states. We create two tran-
sitions with opposite directions for each code pair [20], because transitions in an
automaton are directed. The automaton corresponding to the graph in Fig. 4 is
shown in Fig. 5.

242 243

232

341

343

342

233

0

Fig. 5. Automaton representation of the graph in Fig. 4.

4.5 Results And Discussion

The main strength of our method is its simplicity and time complexity. All main
parts of our method are simple and can be implemented with O(n) running
time. In the training session, the algorithm requires two passes over the training
data. The runtime of the second pass can be made negligible by using only a
small portion of the training data. For example, if an automaton was built using
10000 samples, then the second pass may be completed with only 100 samples
chosen randomly. Segmentation is performed by a single pass over all pixels of a
sample image and all arcs extracted are used once in an automaton generation.
All structures used in our method are simple and require limited amount of
memory. Each trained automaton consists of 36 states and 36 × 36 transitions
at most.

Since there is no database available for Turkish handwritten character recog-
nition, we compiled a new database. The data set of 12000 handwritten char-
acters was collected from 10 writers. After testing our system on the Turkish
handwritten characters, we obtained promising results in the area of character
recognition. Each character in the test set was presented to all automata and
degrees of match provided by each automaton were sorted in descending order.
In 71.94% of the cases the score of the correct automaton was the highest (po-
sitioned on the top of the order) and in 93.79% of the cases was among the top



five results. Distribution of the recognition rates from the top result to the top
five results is shown in Fig. 6.
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Fig. 6. Average positions of the correct automata in the recognition order.

The major part of the correct recognitions is concentrated on a first position.
The positions not shown in figure have the average values less than one percent.
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Fig. 7. Distribution of the top five results for each letter.

In our system, the simpler the topology of a character, the higher the recog-
nition performance. The distribution of the recognition results for each character
is shown in Fig. 7. The top result is marked with the darkest portion of the bars.
The top second and third results are combined and marked with the gray color.
The fourth with fifth results are also combined and shown with the white colored
portions of the bars. As we expected, the simplest letters such as ı, i, j, l, o, ö
and t have top recognition rates of more than 80%, while the lowest rates were
calculated for the letters c, ç, f, g̃ and s with many curved portions.

We also studied the recognition errors for some of the most frequent letters in
Turkish: a, e, i, l, n and r (Table 1). Most frequently a is erroneously recognized



Table 1. Misclassifications of some of the most frequent letters in Turkish. The tables
show the erroneous choices and their percentages among all misclassifications of the
letter in the header of a relevant table.

a

o 35.96%
ü 15.79%
e 15.35%
c 7.02%
u 5.70%

e

v 23,95%
r 20,96%
o 11,38%
i 10,78%
c 10,18%

i

l 26,53%
r 22,45%
ü 12,24%
ş 10,20%
v 8,16%

l

i 57,14%
r 19,05%
v 7,14%
ç 4,76%
ş 4,76%

n

i 21,85%
ş 17,65%
r 16,81%
e 12,61%
ü 11,76%

r

i 39,80%
ş 18,37%
l 13,27%
c 5,10%
e 5,10%

as o, ü, e, c and u. The potential reason is that those letters have a similar
topology with a. Misclassifications for the same reason may be observed for i,
l and r. The letter e is mostly misclassified with v and r, because they have a
similar handwritten topology. The misclassifications of n do not display a proper
pattern, because n can be easily distorted during handwriting, and hence, may
have a similar topology with many letters.

5 Conclusion

In this paper we proposed a constructive learning automaton approach to the
recognition of handwritten characters. Promising results were obtained after
testing our system. Recognition rates reached vary between 71.94% for the best
and 93.79% for the top five results. For unconstrained characters segmented
from words, performance of our approach is similar to those reported in [21, 22].
A similar approach was used in [3]. The authors reached an average top five
recognition rate of 93.78% for online English handwritten character recognition.

As can be concluded from the results the weakest point in our application is
the representation technique of smooth curves that are usually encountered in
letters c, ç, g, g̃, s and ş. The direction of possible future work is the revision of the
representation technique for smooth curves. A new technique for placement of
reference points may be focused on the sharp changes of the degree of curvature
along the presented curve. This will lead to robustness against slant variation
and increase the performance.
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