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CHAPTER 6: 

DIMENSIONALITY 

REDUCTION 



Why Reduce Dimensionality? 
3 

 Reduces time complexity: Less computation 

 Reduces space complexity: Fewer parameters 

 Saves the cost of observing the feature 

 Simpler models are more robust on small datasets 

 More interpretable; simpler explanation 

 Data visualization (structure, groups, outliers, etc) if 

plotted in 2 or 3 dimensions 



Feature Selection vs Extraction 
4 

 Feature selection: Choosing k<d important features, 

ignoring the remaining d – k 

  Subset selection algorithms 

 Feature extraction: Project the  

  original xi , i =1,...,d dimensions to  

  new k<d dimensions, zj , j =1,...,k 



Subset Selection 
5 

 There are 2d subsets of d features 

 Forward search: Add the best feature at each step 
 Set of features F initially Ø. 

 At each iteration, find the best new feature 
j = argmini E ( F  xi )  

 Add xj to F  if E ( F  xj ) < E ( F )  

 

 Hill-climbing O(d2) algorithm 

 Backward search: Start with all features and remove 
 one at a time, if possible. 

 Floating search (Add k, remove l) 
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Iris data: Single feature 

Chosen 
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Iris data: Add one more feature to F4 

Chosen 



Principal Components Analysis 
8 

 Find a low-dimensional space such that when x is 
projected there, information loss is minimized. 

 The projection of x on the direction of w is: z = wTx 

 Find w such that Var(z) is maximized 

  Var(z) = Var(wTx) = E[(wTx – wTμ)2]  

   = E[(wTx – wTμ)(wTx – wTμ)] 

   = E[wT(x – μ)(x – μ)Tw] 

   = wT E[(x – μ)(x –μ)T]w = wT ∑ w  

 where Var(x)= E[(x – μ)(x –μ)T] = ∑ 
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 Maximize Var(z) subject to ||w||=1 

 

 

∑w1 = αw1 that is, w1 is an eigenvector of ∑ 

Choose the one with the largest eigenvalue for Var(z) to be 
max 

 Second principal component: Max Var(z2), s.t., 
||w2||=1 and orthogonal to w1 

 

 

 

∑ w2 = α w2 that is, w2 is another eigenvector of ∑ 

 and so on. 
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What PCA does 
10 

   z = WT(x – m) 

 where the columns of W are the eigenvectors of ∑ 

and m is sample mean 

 Centers the data at the origin and rotates the axes 



How to choose k ? 
11 
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 Proportion of Variance (PoV) explained 

 

 

  

 when λi are sorted in descending order  

 Typically, stop at PoV>0.9 

 Scree graph plots of PoV vs k, stop at “elbow” 



12 
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Feature Embedding 
14 

 When X is the Nxd data matrix, 

XTX is the dxd matrix (covariance of features, if mean-
centered) 

XXT is the NxN matrix (pairwise similarities of instances) 

 PCA uses the eigenvectors of XTX which are d-dim and can 
be used for projection 

 Feature embedding uses the eigenvectors of XXT which are 
N-dim and which give directly the coordinates after 
projection 

 Sometimes, we can define pairwise similarities (or distances) 
between instances, then we can use feature embedding 
without needing to represent instances as vectors. 



Factor Analysis 
15 

 Find a small number of factors z, which when 
combined generate x : 

  xi – µi = vi1z1 + vi2z2 + ... + vikzk + εi  

 

 where zj, j =1,...,k are the latent factors with  

  E[ zj ]=0, Var(zj)=1, Cov(zi ,, zj)=0, i ≠ j ,  

 εi are the noise sources  

  E[ εi ]= ψi, Cov(εi , εj) =0, i ≠ j, Cov(εi , zj) =0 , 

 and vij are the factor loadings 

 



PCA vs FA 
16 

 PCA From x to z     z = WT(x – µ) 

 FA  From z to x   x – µ = Vz + ε  

 

 
x z 

z x 



Factor Analysis 
17 

 In FA, factors zj are stretched, rotated and 

translated to generate x 



Singular Value Decomposition and 

Matrix Factorization 
18 

 Singular value decomposition: X=VAWT 

 V is NxN and contains the eigenvectors of XXT 

 W is dxd and contains the eigenvectors of XTX 

 and A is Nxd and contains singular values on its first 

k diagonal 

 X=u1a1v1
T+...+ukakvk

T where k is the rank of X 



Matrix Factorization 
19 

 Matrix factorization: X=FG 

 F is Nxk and G is kxd 

 

 

Latent semantic indexing 



Multidimensional Scaling 
20 
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 Given pairwise distances between N points,  

  dij, i,j =1,...,N 

 place on a low-dim map s.t. distances are preserved 

(by feature embedding) 

 z = g (x | θ ) Find θ that min Sammon stress  



Map of Europe by MDS 
21 

Map from CIA – The World Factbook: http://www.cia.gov/ 



Linear Discriminant Analysis  

 Find a low-dimensional 

space such that when x 

is projected, classes are 

well-separated.  

 Find w that maximizes 
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 Between-class scatter: 

 

 

 

 

 Within-class scatter: 
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SS   where  



Fisher’s Linear Discriminant 
24 
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 LDA soln: 

 

 Parametric soln: 
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 Within-class scatter:  

 

 

 Between-class scatter: 

 

 

 Find W that max 

K>2 Classes 
25 
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PCA vs LDA 
27 



Canonical Correlation Analysis 
28 

 X={xt,yt}t ; two sets of variables x and y x 

 We want to find two projections w and v st when x 

is projected along w and y is projected along v, the 

correlation is maximized: 



CCA 
29 

 x and y may be two different views or modalities; 

e.g., image and word tags, and CCA does a joint 

mapping 



Isomap 
30 

 Geodesic distance is the distance along the 

manifold that the data lies in, as opposed to the 

Euclidean distance in the input space 

  



Isomap  
31 

 Instances r and s are connected in the graph if  

||xr-xs||<e or if xs is one of the k neighbors of xr  

The edge length is ||xr-xs|| 

 For two nodes r and s not connected, the distance is 

equal to the shortest path between them 

 Once the NxN distance matrix is thus formed, use 

MDS to find a lower-dimensional mapping 
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Matlab source from http://web.mit.edu/cocosci/isomap/isomap.html 



Locally Linear Embedding 
33 

1. Given xr find its neighbors xs
(r) 

2. Find Wrs that minimize 

 

 

 

3. Find the new coordinates zr that minimize 
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LLE on Optdigits 
35 
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Matlab source from http://www.cs.toronto.edu/~roweis/lle/code.html 



Laplacian Eigenmaps 
36 

 Let r and s be two instances and Brs is their similarity, we 
want to find zr and zs that  

 

 

  Brs can be defined in terms of similarity in an original 
space: 0 if xr and xs are too far, otherwise 

 

 

 Defines a graph Laplacian, and feature embedding 
returns zr  

 



Laplacian Eigenmaps on Iris 
37 

Spectral clustering (chapter 7) 


