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CHAPTER 6: 

DIMENSIONALITY 

REDUCTION 



Why Reduce Dimensionality? 
3 

 Reduces time complexity: Less computation 

 Reduces space complexity: Fewer parameters 

 Saves the cost of observing the feature 

 Simpler models are more robust on small datasets 

 More interpretable; simpler explanation 

 Data visualization (structure, groups, outliers, etc) if 

plotted in 2 or 3 dimensions 



Feature Selection vs Extraction 
4 

 Feature selection: Choosing k<d important features, 

ignoring the remaining d – k 

  Subset selection algorithms 

 Feature extraction: Project the  

  original xi , i =1,...,d dimensions to  

  new k<d dimensions, zj , j =1,...,k 



Subset Selection 
5 

 There are 2d subsets of d features 

 Forward search: Add the best feature at each step 
 Set of features F initially Ø. 

 At each iteration, find the best new feature 
j = argmini E ( F  xi )  

 Add xj to F  if E ( F  xj ) < E ( F )  

 

 Hill-climbing O(d2) algorithm 

 Backward search: Start with all features and remove 
 one at a time, if possible. 

 Floating search (Add k, remove l) 
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Iris data: Single feature 

Chosen 
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Iris data: Add one more feature to F4 

Chosen 



Principal Components Analysis 
8 

 Find a low-dimensional space such that when x is 
projected there, information loss is minimized. 

 The projection of x on the direction of w is: z = wTx 

 Find w such that Var(z) is maximized 

  Var(z) = Var(wTx) = E[(wTx – wTμ)2]  

   = E[(wTx – wTμ)(wTx – wTμ)] 

   = E[wT(x – μ)(x – μ)Tw] 

   = wT E[(x – μ)(x –μ)T]w = wT ∑ w  

 where Var(x)= E[(x – μ)(x –μ)T] = ∑ 
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 Maximize Var(z) subject to ||w||=1 

 

 

∑w1 = αw1 that is, w1 is an eigenvector of ∑ 

Choose the one with the largest eigenvalue for Var(z) to be 
max 

 Second principal component: Max Var(z2), s.t., 
||w2||=1 and orthogonal to w1 

 

 

 

∑ w2 = α w2 that is, w2 is another eigenvector of ∑ 

 and so on. 
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What PCA does 
10 

   z = WT(x – m) 

 where the columns of W are the eigenvectors of ∑ 

and m is sample mean 

 Centers the data at the origin and rotates the axes 



How to choose k ? 
11 
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 Proportion of Variance (PoV) explained 

 

 

  

 when λi are sorted in descending order  

 Typically, stop at PoV>0.9 

 Scree graph plots of PoV vs k, stop at “elbow” 
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Feature Embedding 
14 

 When X is the Nxd data matrix, 

XTX is the dxd matrix (covariance of features, if mean-
centered) 

XXT is the NxN matrix (pairwise similarities of instances) 

 PCA uses the eigenvectors of XTX which are d-dim and can 
be used for projection 

 Feature embedding uses the eigenvectors of XXT which are 
N-dim and which give directly the coordinates after 
projection 

 Sometimes, we can define pairwise similarities (or distances) 
between instances, then we can use feature embedding 
without needing to represent instances as vectors. 



Factor Analysis 
15 

 Find a small number of factors z, which when 
combined generate x : 

  xi – µi = vi1z1 + vi2z2 + ... + vikzk + εi  

 

 where zj, j =1,...,k are the latent factors with  

  E[ zj ]=0, Var(zj)=1, Cov(zi ,, zj)=0, i ≠ j ,  

 εi are the noise sources  

  E[ εi ]= ψi, Cov(εi , εj) =0, i ≠ j, Cov(εi , zj) =0 , 

 and vij are the factor loadings 

 



PCA vs FA 
16 

 PCA From x to z     z = WT(x – µ) 

 FA  From z to x   x – µ = Vz + ε  

 

 
x z 

z x 



Factor Analysis 
17 

 In FA, factors zj are stretched, rotated and 

translated to generate x 



Singular Value Decomposition and 

Matrix Factorization 
18 

 Singular value decomposition: X=VAWT 

 V is NxN and contains the eigenvectors of XXT 

 W is dxd and contains the eigenvectors of XTX 

 and A is Nxd and contains singular values on its first 

k diagonal 

 X=u1a1v1
T+...+ukakvk

T where k is the rank of X 



Matrix Factorization 
19 

 Matrix factorization: X=FG 

 F is Nxk and G is kxd 

 

 

Latent semantic indexing 



Multidimensional Scaling 
20 
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 Given pairwise distances between N points,  

  dij, i,j =1,...,N 

 place on a low-dim map s.t. distances are preserved 

(by feature embedding) 

 z = g (x | θ ) Find θ that min Sammon stress  



Map of Europe by MDS 
21 

Map from CIA – The World Factbook: http://www.cia.gov/ 



Linear Discriminant Analysis  

 Find a low-dimensional 

space such that when x 

is projected, classes are 

well-separated.  

 Find w that maximizes 
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 Between-class scatter: 

 

 

 

 

 Within-class scatter: 
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Fisher’s Linear Discriminant 
24 
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 Find w that max 

 

 

 LDA soln: 

 

 Parametric soln: 
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 Within-class scatter:  

 

 

 Between-class scatter: 

 

 

 Find W that max 

K>2 Classes 
25 
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PCA vs LDA 
27 



Canonical Correlation Analysis 
28 

 X={xt,yt}t ; two sets of variables x and y x 

 We want to find two projections w and v st when x 

is projected along w and y is projected along v, the 

correlation is maximized: 



CCA 
29 

 x and y may be two different views or modalities; 

e.g., image and word tags, and CCA does a joint 

mapping 



Isomap 
30 

 Geodesic distance is the distance along the 

manifold that the data lies in, as opposed to the 

Euclidean distance in the input space 

  



Isomap  
31 

 Instances r and s are connected in the graph if  

||xr-xs||<e or if xs is one of the k neighbors of xr  

The edge length is ||xr-xs|| 

 For two nodes r and s not connected, the distance is 

equal to the shortest path between them 

 Once the NxN distance matrix is thus formed, use 

MDS to find a lower-dimensional mapping 



32 

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150
Optdigits after Isomap (with neighborhood graph).

0

0

7

4

6

2

5
5

0
8

7
1

9 5

3

0

4

7

84

7

8
5

9

1

2

0

6

1

8

7

0

7

6

9

1

9
3

9
4

9

2

1

9
9

6

4
3

2

8

2

7

1

4

6

2

0

4

6

3
7 1

0

2

2

5

2

4

8
1

7
3

0

3 3
77

9

1
3

3

4

3

4

2

88
9 8

4

7
1

6

9

4

0

1 3

6

2
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Locally Linear Embedding 
33 

1. Given xr find its neighbors xs
(r) 

2. Find Wrs that minimize 

 

 

 

3. Find the new coordinates zr that minimize 
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LLE on Optdigits 
35 
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Laplacian Eigenmaps 
36 

 Let r and s be two instances and Brs is their similarity, we 
want to find zr and zs that  

 

 

  Brs can be defined in terms of similarity in an original 
space: 0 if xr and xs are too far, otherwise 

 

 

 Defines a graph Laplacian, and feature embedding 
returns zr  

 



Laplacian Eigenmaps on Iris 
37 

Spectral clustering (chapter 7) 


