

Lecture Slides for

INTRODUCTION TO

Machine Learning

ETHEM ALPAYDIN © The MIT Press, 2004

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml

CHAPTER 15: Combining Multiple Learners

Rationale

- No Free Lunch thm: There is no algorithm that is always the most accurate
- Generate a group of base-learners which when combined has higher accuracy
- Different learners use different
 - □ Algorithms
 - □ Hyperparameters
 - □ Representations (Modalities)
 - □ Training sets
 - □ Subproblems

Voting

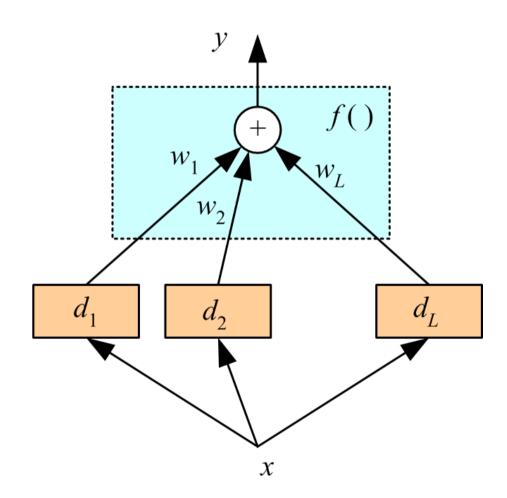
Linear combination

$$y = \sum_{j=1}^{L} w_j d_j$$

$$w_j \ge 0$$
 and $\sum_{j=1}^L w_j = 1$

Classification

$$y_i = \sum_{j=1}^L w_j d_{ji}$$



Bayesian perspective:

$$P(C_i \mid x) = \sum_{\text{all models } \mathcal{M}_j} P(C_i \mid x, \mathcal{M}_j) P(\mathcal{M}_j)$$

If d_j are iid

$$E[y] = E\left[\sum_{j} \frac{1}{L} d_{j}\right] = \frac{1}{L} L \cdot E[d_{j}] = E[d_{j}]$$

$$\operatorname{Var}(y) = \operatorname{Var}\left(\sum_{j} \frac{1}{L} d_{j}\right) = \frac{1}{L^{2}} \operatorname{Var}\left(\sum_{j} d_{j}\right) = \frac{1}{L^{2}} L \cdot \operatorname{Var}(d_{j}) = \frac{1}{L} \operatorname{Var}(d_{j})$$

Bias does not change, variance decreases by L

Average over randomness

Error-Correcting Output Codes

- K classes; L problems (Dietterich and Bakiri, 1995)
- Code matrix W codes classes in terms of learners
- One per class *L=K*

$$\mathbf{W} = \begin{bmatrix} +1 & -1 & -1 & -1 \\ -1 & +1 & -1 & -1 \\ -1 & -1 & +1 & -1 \\ -1 & -1 & -1 & +1 \end{bmatrix}$$

Pairwise L=K(K-1)/2

$$\mathbf{W} = \begin{bmatrix} +1 & +1 & +1 & 0 & 0 & 0 \\ -1 & 0 & 0 & +1 & +1 & 0 \\ 0 & -1 & 0 & -1 & 0 & +1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{bmatrix}$$

Full code $L=2^{(K-1)}-1$

- With reasonable L, find W such that the Hamming distance btw rows and columns are maximized.
- Voting scheme

$$y_i = \sum_{j=1}^L w_j d_{ji}$$

Subproblems may be more difficult than one-per-K

Bagging

- Use bootstrapping to generate *L* training sets and train one base-learner with each (Breiman, 1996)
- Use voting (Average or median with regression)
- Unstable algorithms profit from bagging

AdaBoost

Generate a
sequence of
base-learners
each focusing
on previous
one's errors
(Freund and
Schapire,
1996)

Training:

For all $\{x^t, r^t\}_{t=1}^N \in \mathcal{X}$, initialize $p_1^t = 1/N$

For all base-learners $j = 1, \ldots, L$

Randomly draw \mathcal{X}_j from \mathcal{X} with probabilities p_j^t

Train d_j using \mathcal{X}_j

For each (x^t, r^t) , calculate $y_i^t \leftarrow d_j(x^t)$

Calculate error rate: $\epsilon_j \leftarrow \sum_t^t p_j^t \cdot 1(y_i^t \neq r^t)$

If $\epsilon_i > 1/2$, then $L \leftarrow j-1$; stop

$$\beta_j \leftarrow \epsilon_j/(1-\epsilon_j)$$

For each (x^t, r^t) , decrease probabilities if correct:

If
$$y_j^t = r^t \ p_{j+1}^t \leftarrow \beta_j p_j^t$$
 Else $p_{j+1}^t \leftarrow p_j^t$

Normalize probabilities:

$$Z_j \leftarrow \sum_t p_{j+1}^t; \quad p_{j+1}^t \leftarrow p_{j+1}^t / Z_j$$

Testing:

Given x, calculate $d_j(x), j = 1, \ldots, L$

Calculate class outputs, i = 1, ..., K:

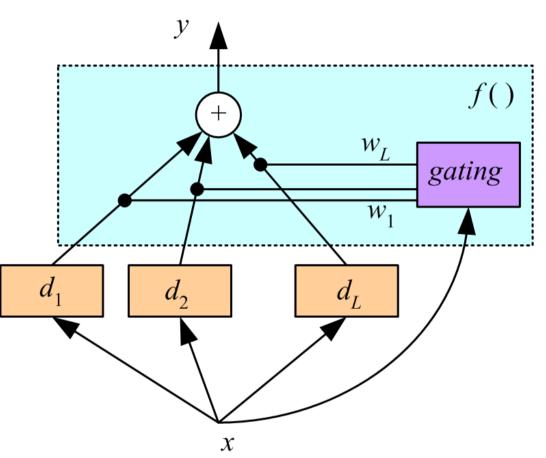
$$y_i = \sum_{j=1}^{L} \left(\log \frac{1}{\beta_j} \right) d_{ji}(x)$$

Mixture of Experts

Voting where weights

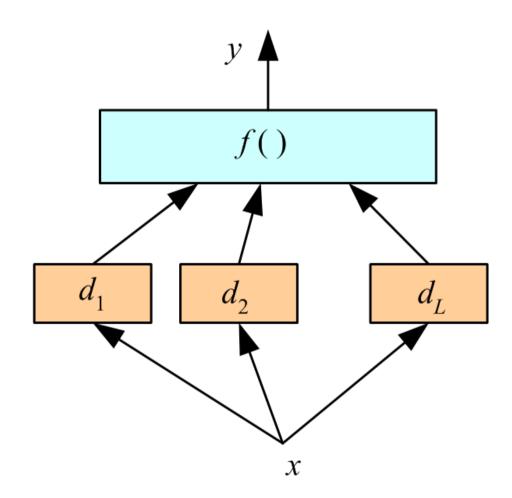
$$y = \sum_{j=1}^{L} w_j d_j$$

(Jacobs et al., 1991) Experts or gating can be nonlinear



Stacking

Combiner f() is another learner (Wolpert, 1992)



Cascading

Use d_j only if preceding ones are not confident

Cascade learners in order of complexity

