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Abstract—In many bioinformatics applications, it is important to assess and compare the performances of algorithms trained from

data, to be able to draw conclusions unaffected by chance and are therefore significant. Both the design of such experiments and the

analysis of the resulting data using statistical tests should be done carefully for the results to carry significance. In this paper, we first

review the performance measures used in classification, the basics of experiment design and statistical tests. We then give the results

of our survey over 1,500 papers published in the last two years in three bioinformatics journals (including this one). Although the basics

of experiment design are well understood, such as resampling instead of using a single training set and the use of different

performance metrics instead of error, only 21 percent of the papers use any statistical test for comparison. In the third part, we analyze

four different scenarios which we encounter frequently in the bioinformatics literature, discussing the proper statistical methodology as

well as showing an example case study for each. With the supplementary software, we hope that the guidelines we discuss will play an

important role in future studies.

Index Terms—Statistical tests, classification, model selection

Ç

1 INTRODUCTION

IN many bioinformatics applications, there is an under-
lying process whose details we barely know, but we can

collect a sample of examples from the process by doing
experiments, and using machine learning techniques, we
can make statistical inference about the process from this
sample. In supervised learning, the sample is composed of
pairs of independent and dependent variables and the aim
is to learn a mapping from the independent variable to the
dependent. In classification, the dependent variable is a class
code and the aim is to devise a rule that can predict the class
labels of instances. For example, a biologist may want to
categorize a given protein as binding or nonbinding, and
this is a two-class problem. The independent variable is
represented by a feature set x composed of different
properties of a protein, such as the amino acid sequence,
the evolutionary information, structural information, and so
on. If the discriminant function that is used for predicting the
class label is denoted by fðxj�Þ, different models, e.g.,
decision trees, support vector machines (SVM), neural
networks, correspond to different fð�Þ and learning corre-
sponds to optimizing the model parameters � to minimize
some loss measure on a given training sample [1].

Typically, we have candidate fið�j�iÞ, where i ¼ 1; . . . ; L

are different learning algorithms, and we want to choose

the best according to some performance measure. The aim
is to find the algorithm that generalizes best to unseen
data and to measure that, we use a validation set on which
we test how well our trained fð�j�Þ performs. Because the
examples in the training and validation sets are random
variables drawn from some unknown joint probability
distribution, the discriminant we fit to the sample contains
some randomness. Although we use the same classifica-
tion algorithm, different training samples may induce
different classifiers and in making a decision among
algorithms, we need to make sure that our decision is
not affected by chance, for example, by how the data are
split between training and validation sets.

In the statistics literature, there is considerable body of
work done on the design and analysis of experiments [2]—the
aim of this paper is to discuss those principles in the context
of classification experiments in bioinformatics and show the
proper methodologies using case studies. In experiment
design, there is a process which takes an input and
generates an output; the output is affected by a number of
factors some of which are controllable and some are not. In
our case, the process is the classifier which after having
been trained on a training set gives the class as output for an
input from the validation set. Here, the major controllable
factor is the learning algorithm and the major uncontrol-
lable factor is the randomness in the data. The aim is to find
the configuration of controllable factors that maximize a
response variable measuring quality. In classification, there
are different performance metrics that can be calculated
from that data, such as, misclassification error, hit rate,
precision, and so on. In Section 2, we discuss such metrics in
detail and also point out how they differ, to be able to point
out which one to use in which type of experiment.

The three principles of experimental design are randomi-
zation, replication, and blocking—in machine learning, these
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imply the need for multiple paired runs using resampling.

Once a set of experiments are done and we have a set of

results, statistical hypothesis testing is used to check for

differences that are significant, that is, unlikely to have been

caused by chance. We discuss the resampling procedures in

Section 3, statistical tests in Section 4, and give pointers to

related work in Section 5.
We did a survey on the use of such procedures in the

recent bioinformatics literature to check how frequently

these different approaches to experiment design and

analysis have been employed; the results are given in

Section 6.
Then, in Section 7, we review four different scenarios we

encounter frequently in classification experiments and

show the proper methodology for each using a case study.

We conclude in Section 8.

2 ASSESSING PERFORMANCE

2.1 Confusion Matrix and the Measures of
Performance

In a two-class problem, we have positive and negative

instances, for example, binding versus nonbinding proteins.

Having trained our classifier fðxj�Þ on the training set,

typically we predict that x drawn from the validation set is

a positive example if fðxj�Þ � �, for some threshold �. We

can assume that fðxj�Þ 2 ½0; 1� estimates the posterior

probability that x is a positive example,1 that is, P̂ ðþjxÞ �
fðxj�Þ. We say that x is a negative example if fðxj�Þ < � and

P̂ ð�jxÞ � 1� fðxj�Þ. Then, depending on the true label of x,

there are four cases which make up the confusion matrix and

we count the number of their occurrences over the whole

validation set (Table 1):

. True positive (tp). The number of instances for which
both the class label and the predicted class are
positive.

. False negative (fn). The number of instances for
which the class label is positive but the predicted
class is negative.

. False positive (fp). The number of instances for
which the class label is negative but the predicted
class is positive.

. True negative (tn). The number of instances for
which both the class label and the predicted class are
negative.

Different performance measures used in the literature

are all calculated from these four values:

error rate ¼ fpþfn
N accuracy ¼ tpþtn

N

tp-rate ¼ tp
p fp-rate ¼ fp

n

recall ¼ tp
p precision ¼ tp

p0

sensitivity ¼ tp
p specificity ¼ tn

n

F -measure ¼ 2
precision:recall

precisionþ recall ¼ 2
tp

pþ p0

Balanced accuracy ¼ sensitivityþ specificity
2

ð1Þ

Tp-rate, also known as the hit rate, is the same as recall
and sensitivity. Fp-rate is sometimes called false alarm rate,
and is equal to 1� specificity. Different names for these
related measures are due to historical reasons where they
have been proposed in different domains, namely, signal
processing, information retrieval, or diagnostics, almost
independently.

2.2 Performance Curves and the Area under the
Curves (AUC)

The threshold � of decision depends on the relative costs of
a false positive and a false negative. We use � ¼ 0:5 when
they have equal cost and, for example, � needs to be larger
when a false positive has a higher cost than a false negative.
In some cases, we do not know the exact costs and we may
want to see how the performance measure varies as we vary
them, which corresponds to varying �. Then, we can plot
the performance as a function of � to see the overall
behavior. A receiver operating characteristics (ROC) curve is a
plot of tp-rate (hit rate) and fp-rate (false alarm rate);
similarly, one can plot a precision-recall (PR) curve or a
sensitivity-specificity curve [3]. Some people use a “partial
curve” when they are interested in the performance of the
classifier in a particular subrange for � (that corresponds to
a subrange for costs of misclassification); our discussion
holds also for this case where instead of the whole curve,
we use a subset of the curve.

Curves are complex and it is difficult to compare two
curves. One way to summarize a curve (full or partial) by a
single value is by calculating the area under the curve, which
can be estimated by summing the trapezoidal areas formed
by successive points on the performance curve [3]. The two
most popular are the ROC curve of tp-rate versus fp-rate
and the area under it (AUC-ROC) and the Precision-Recall
curve and the area under it (AUC-PR).

PR curve is mostly used in information retrieval [4] where
for a query, some of the stored items are relevant (the true
label is positive) and some are not (the true label is negative).
Given x that are the attributes associated with the item, we
retrieve some of them (the predicted label is positive) and
some we do not (the predicted label is negative). In this
context, precision is the proportion of the relevant and
retrieved documents to the total number of retrieved
documents, and recall is the proportion of the relevant and
retrieved documents to the total number of relevant
documents.

Note that ROC measures the performance of a two-class
classifier and checks for good performance on both
positives and negative instances, whereas in an information
retrieval application (whose performance is measured by
PR), we have basically a one-class problem where we care
for the positives more. In an application like medical
diagnosis, more than the true negatives, i.e., the large
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2� 2 Confusion Matrix
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proportion of healthy individuals, we care about detecting
the sick, and it is better to focus on PR. In an application
where we classify face images as male or female, we care
about the accuracy on both genders, and need ROC to
measure performance.

PR is sensitive to class skewness, whereas ROC is not [5].
When the ratio p=n changes, because precision uses values
from both rows of Table 1, it changes; however tp-rate and
fp-rate may not change since they use values from only one
row [3]. PR and ROC make different statistics apparent: In
PR, we are basically interested in how well we classify the
positive examples, whereas in ROC, in trying to minimize
fp-rate, we also want to increase the true negative rate. This
makes sense in information retrieval, for a given query,
adding a lot more irrelevant documents (which we will not
be retrieving anyway) has no effect on our performance
assessment for this query.

A one-to-one correspondence between a ROC curve and
a PR curve has been shown [5]. It has also been proven that
one ROC curve dominates the other ROC curve if and only
if the corresponding PR curve dominates the other [3].
Despite the dominance relationship between ROC and PR
curves, if AUC-ROC of the first curve is greater than the
second one, AUC-PR of the first curve can be less than the
second one, therefore optimizing for AUC-ROC does not
mean also optimizing for AUC-PR. The corresponding
points in curves can dominate each other in parallel in ROC
and PR curves; however, it is the magnitude of these
differences that determines the area differences and conse-
quently, since the metrics are different, the area between the
curves may be different.

3 RESAMPLING PROCEDURES

When we are comparing two or more algorithms trained
from data, the training algorithm may have some random-
ness (for example, gradient descent starts from a random
initial point), or the way the data are divided between
training and validation sets is random. If we do training
and validation only once, we cannot know if any difference
between two results is because of difference in algorithms
or because of the split of data.

The three basics of experimental design are randomization,
replication, and blocking. To be able to average out the effect
of randomness and hence arrive at conclusions deemed
statistically significant, we do the training and validation
multiple times randomly (randomization), run the algorithms
many times (replication), and compare the distributions of
results rather than single values. This requires that we be
able to generate multiple training and validation set pairs
from a single data set. Note that when we are comparing a
number of algorithms, they should all use the same training
and validation splits so that we make sure that any
difference is due to the algorithm (the controllable factor)
and not due to the split of data (uncontrollable factor); this is
the idea behind paired tests (blocking). We also require
stratification, that is, the proportion of positive to negative
instances is respected in all parts so that the prior class
probabilities do not change between folds.

There are various resampling algorithms [1]:

1. In k-fold cross validation (cv), we divide the data
randomly into k equal parts. At each fold, we leave

one of the k parts out as the validation set and use
the remaining k� 1 parts together as the training set.
By cycling over all the k parts, we get k training and
validation set pairs.

2. Leave-one-out is the extreme case of k-fold cv, where k
is taken to be equal to N , the number of instances in
the training set. That is, at each fold, we use N � 1
instances for training and one instance for valida-
tion, leaving out another one, in a total of N folds.
With very small data sets, leave-one-out is used.

3. In k1 � k2-fold cross validation, there is an outer loop
that replicates k2-fold cv k1 times and a statistic is
defined over the k1 � k2 results. Examples are 5� 2 cv
[6], [7] and 10� 10-fold cv.

4. In bootstrap, from a sample of N instances, we draw
N instances with replacement, so some instances may
be drawn more than once, and some never. Different
training folds hence partially overlap. The whole set
is used as the validation set in all folds [8].

We use the following notation: Let yij denote the
performance of classifier i ¼ 1; . . . ; L on validation fold
j ¼ 1; . . . ; k. The performance value can be the misclassifi-
cation error rate, precision, area under the ROC curve, and
so on. Then, for example, in comparing Algorithms 1 and 2,
we need to compare the distributions of y1j and y2j;
j ¼ 1; . . . ; k.

4 STATISTICAL TESTS

In hypothesis testing, we have a null hypothesis H0 that we
want to test on the sample, against an alternative hypothesis
H1. For example,

H0 : � ¼ 2 vs. H1 : � 6¼ 2:

What we do is we collect a sample and then calculate a
statistic on the sample and check the probability that this
statistic takes a particular value or higher under the
assumption that the null hypothesis is true. If that
probability—the so-called p value—is very small, i.e.,
smaller than a predefined significance value �, e.g., 0.05
we reject the null hypothesis in favor of the alternative
hypothesis; otherwise, we fail to reject it. Note that a failure
to reject does not imply the truth of the null hypothesis, nor
rejection implies that the alternative hypothesis is correct. If
we reject when the null hypothesis holds, this is a type I
error; the failure to reject when the null hypothesis is wrong
is a type II error.

Typically, there are four scenarios where hypothesis
testing is used in classification experiments (see Table 2):

1. We have two algorithms that we want to compare on
a single data set in terms of some performance
metric. This is typically the most frequently used
scenario. For example, we may want to compare two
algorithms in terms of error, or AUC-ROC. Or, we
may want to test two variants of the same algorithm;
for example, we may want to see if having feature
selection before our neural network leads to sig-
nificant improvement.

2. We have L > 2 algorithms that we want to compare
on a single data set in terms of some metric. These
may be different algorithms or different variants of
the same algorithm; for example, we may be
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interested in comparing L > 2 different feature
extraction algorithms that precede the classifier.

3. We have two algorithms that we want to compare on
M > 1 data sets in terms of some performance
metric. For example, we may have M different
cancer data sets but because of different properties
of the data sets, we cannot combine them in a single
data set to train a single classifier. What we want is
to train and test both algorithms separately on these
data sets, compare performances on each separately
and then combine those comparisons to get an
overall result.

4. We have L > 2 algorithms that we want to compare
on M > 1 data sets in terms of some performance
metric. This is the most general case.

Now, let us see the tests for each scenario one by one.2

Later on, in Section 7, we will see how each one is used in a
real-world case study.

4.1 Comparing Two Algorithms on a Single Data Set

The number of errors (or true positives, precision, and even
AUC) is a count of 0/1 events and is hence binomially
distributed. Unless the validation set is very small, from the
central limit theorem, the binomial converges to the normal
distribution and we can use parametric tests based on the
normal distribution.

We want to compare the expected performance values of
the two algorithms:

H0 : �1 ¼ �2 vs. �1 6¼ �2 ð2Þ

and in a paired setting, we test if their paired difference has
zero mean:

H0 : �d � �1 � �2 ¼ 0 vs. �d 6¼ 0: ð3Þ

Dietterich [6] has compared various pairwise tests,
including McNemar’s test which uses a single training/
validation pair, and the t test used with k-fold cross
validation. He then proposed the 5� 2 cross-validation
sampling and an associated t test, which he has shown to
have lower Types I and II errors. The 5� 2 cross-validation
F test [7] is an improved version of this t test and it works
as follows.

In 5� 2 cross validation, we perform twofold cross

validation five times. Let us say p
ðjÞ
i is the difference

between the performance values of the two algorithms on

fold j ¼ 1; 2 of replication i ¼ 1; . . . ; 5. The average on

replication i is pi ¼ ðp
ð1Þ
i þ p

ð2Þ
i Þ=2 and the estimated

variance is s2
i ¼ ðp

ð1Þ
i � piÞ

2 þ ðpð2Þi � piÞ
2.

Under the null hypothesis that the two algorithms have
the same expected performance, p

ðjÞ
i is approximately

normal with mean 0 and its square divided by the variance
is chi-squared and hence

f ¼
P5

i¼1

P2
j¼1ðp

ðjÞ
i Þ

2

2
P5

i¼1 s
2
i

ð4Þ

is F -distributed with 10 and 5 degrees of freedom [7]. We
reject the null hypothesis that two algorithms have the same
expected performance if f > F�;10;5.

4.2 Comparing L > 2 Algorithms on a
Single Data Set

Analysis of Variance (ANOVA) tests if all populations have
the same mean:

H0 : �1 ¼ �2 ¼ � � � ¼ �L vs: �r 6¼ �s; for any r 6¼ s: ð5Þ

In our case, this corresponds to checking if all algorithms
have the same expected performance.

Let us say yij; i ¼ 1; . . . ; k; j ¼ 1; . . . ; L is the performance
value of algorithm j on fold i. The average performance of
algorithm j on all folds and the overall average are defined as

mj ¼
Pk

i¼1 yij
k

; m ¼
PL

j¼1 mj

L
:

ANOVA calculates the between- and within-algorithm
sums of squares

SSb ¼ k
X
j

ðmj �mÞ2; SSw ¼
X
j

X
i

ðyij �mjÞ2:

Both are chi-square distributed random variables. Under
the null assumption, their ratio after each is divided by its
degrees of freedom

f ¼ SSb=ðL� 1Þ
SSw=Lðk� 1Þ ð6Þ

is F distributed with L� 1; LðK � 1Þ degrees of freedom.
We reject the null hypothesis that all algorithms perform
equally well if f > F�;L�1;LðK�1Þ.

If the test fails to reject, all are equally good. If the test
rejects, we know that there is an inequality somewhere. To
find where, we do a set of pairwise posthoc tests to try to find
cliques, that is, subsets of algorithms in which there is no
significant difference between any two. To do this, we first
sort all L algorithms in terms of average performance and
then we compare the first and the last in a pairwise manner
for significant difference. If the test rejects, we take the first
L� 1 leaving out the last and compare the first and the
L� 1st; we also compare the second and the Lth leaving out
the first. As long as there is a reject, we keep on leaving out
the first and the last recursively and on both sides. At any
stage if the test fails to reject, we underline that group and
we do not examine it any further. This compares all
consecutive subsets of algorithms and the underlines
(which may partially overlap) indicate cliques of algorithms
whose performances are comparable in terms of the metric
we use. For example, with algorithms A;B;C;D;E, we may
have the result

B C A E D:
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Here, fB;C;Ag form one clique, and fA;Eg form
another clique; for example, there is significant difference
between B and E and also between E and D.

4.3 Comparing Two Algorithms on M > 1 Data Sets

When we have values calculated over different data sets, we
can no longer use any parametric test because the
performance over different data sets do not come from a

normal or any known distribution (That is why, it does not
make sense to calculate the average performance over

different data sets either). In this case, we can only use a
nonparametric test that compares which of the two
algorithms is better in how many of these different data

sets—if we do resampling and have results on multiple
folds, we compare the averages over the folds. On some of

these data sets, the first one wins, on some the second wins
(the first loses) and on the rest, they tie. We then need to
check if those number of wins and losses is likely under the

null hypothesis that the two algorithms perform equally
well, i.e., when the win probability is 1=2—ties are equally

split between wins and losses. This is called the sign test. If
the first algorithm wins in 12 data sets out of 20 and loses on
eight, the null hypothesis that they are equally good can be

claimed; if, however, the first wins in 19 out of 20 and loses
on one, that would be a very rare event if indeed they were

equally good, and it makes sense to reject.
The Wilcoxon’s signed rank test is an extension of the sign

test and uses the same idea except that it also takes into
account the difference in performance for wins and losses.
We calculate the difference at each fold as dj ¼ y1j � y2j and
then sort them in terms of jdjj and give them ranks between
1 and M. If ties occur, we give them the average of what
they would get if they differed slightly. We then calculate
wþ as the sum of all ranks whose signs of difference are
positive and w� as the sum of ranks whose signs of
differences are negative. The null hypothesis that �1 ¼ �2

can be rejected if either of wþ and wi, that is, minðwþ; w�Þ is
very small. The critical values for the Wilcoxon’s signed
rank test are tabulated and for M > 20, normal approxima-
tion can be used.

4.4 Comparing L > 2 Algorithms on
M > 1 Data Sets

When we have more than two algorithms, on each data set

we do not have a win/loss/tie; instead, each algorithm
assumes a rank between 1 and L in terms of its performance
(averaged over different folds). We then use nonparametric

tests to check for significant difference in average ranks
over the M data sets.

Friedman’s test is the nonparametric version of ANOVA
and uses ranks instead of the absolute performances [9]. On
each data set j, the performance values of the algorithms are

sorted from the best to the worst so that the best one gets
the rank of 1, the second 2, and so on, until we get to L. Let

rij denote the rank of algorithm i ¼ 1; . . . ; L on data set
j ¼ 1; . . . ;M. The average rank of algorithm i over the
M data sets is

Ri ¼
1

M

X
j

rij:

The test statistic of Friedman’s test is

�2
F ¼

12M

LðLþ 1Þ
X
i

R2
i �

LðLþ 1Þ2

4

" #
: ð7Þ

which, under the null hypothesis that all algorithms are
equally good, is chi-square distributed with L� 1 degrees
of freedom. An improved statistic

F 2
F ¼

ðM � 1Þ�2
F

MðL� 1Þ � �2
F

ð8Þ

is F distributed with L� 1 and ðL� 1ÞðM � 1Þ degrees of
freedom.

If Friedman’s test rejects, we use Nemenyi’s test as the
posthoc test to compare neighboring algorithms for sig-
nificant difference in rank [9]. Two algorithms lead to
classifiers with significantly different performance ranks at
significance level � if the difference of their average ranks is
greater than or equal to the critical difference

CD ¼ q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þ

6M

r
; ð9Þ

where q� is the Studentized range statistic divided by
ffiffiffi
2
p

.
This again allows us to find cliques of equally good subsets
which we can represent by underlining them.

5 RELATED WORK

The importance of good experimental design and the use of
resampling algorithms and hypothesis testing in learning
algorithms was discussed by Cohen [10]. In the first
textbook on machine learning, Mitchell dedicates a chapter
to hypothesis testing for the assessment and comparison of
learning algorithms [11]. In another early work, Salzberg
draws attention to the risk of the use of the same, small
number of data sets repeatedly by many researchers [12]
which may result in algorithms too much fine tuned to and
hence overfitting those particular data; this risk holds for
the domain of bioinformatics where experimentation to
collect new data are expensive.

In a seminal study, Dietterich [6] reviews four statistical
tests and proposes the 5� 2 cross-validation method and an
associated paired t test for comparing the error rates of two
classification algorithms. Resampling has the risk of high
type I error, and this issue has been theoretically investi-
gated by Nadeau and Bengio [13]; they propose variance
correction to take into account not only the variability due
to test sets, but also the variability due to training examples.
Bouckeart [14] shows that the widely used t test has
superior performance compared to the Sign test in terms of
replicability. On the other hand, he found the 5� 2 cv t test
dissatisfactory and suggested the corrected resampled t test.
Hastie et al. [15] discuss the wrong and right ways of doing
k-fold cross validation.

The use of measures alternative to error/accuracy is old.
AUC-ROC has been related to the Wilcoxon statistic and it
is possible to calculate the required number of positive and
negative examples for comparing two AUC-ROC values for
given Types I and II probabilities [16]. Both AUC-ROC and
AUC-PR use a single training and testing pair [17], [18],

_IRSOY ET AL.: DESIGN AND ANALYSIS OF CLASSIFIER LEARNING EXPERIMENTS IN BIOINFORMATICS: SURVEY AND CASE STUDIES 1667



[19]; Hanley and McNeil [20] argue that comparing
different ROC curves with a single data set limits their
usefulness. One can use a resampling algorithm, such as
k-fold cross validation, to generate k ROC or PR curves
hence k AUC-ROC or AUC-PR values. After fitting
distributions to AUC-ROC or AUC-PR values, one can test
hypotheses on them, as we discuss here.

More recently, Cortes and Mohri [21] have proposed to
calculate confidence intervals for AUC-ROC from the
confidence interval of error without any parametric
assumptions. First, they define the expectation and variance
of AUC-ROC in terms of the expected error, the number of
negative instances and the number of positive instances by
using the Wilcoxon-Mann-Whitney statistic. Using these
values, the confidence intervals are constructed without any
assumption on the distribution for AUC-ROC. For large
values of the sample size, they make a normal distribution
assumption for error. Fitting distribution to AUC-ROC
values has also been used by Bravo et al. [22], though they
do not compare it with the error and just use it to evaluate
their results. The effect of class distribution on error and
AUC-ROC is experimented in [23].

Hanczar et al. [24] discuss small sample estimation of
ROC-related samples and the difference of the estimated and
true values of the AUC, tp-rate, and fp-rate. Through a
simulation study and analysis of real microarray data, they
show that the difference is considerable. Swamidass et al.
[25] propose the concentrated ROC framework in which any
relevant portion of the ROC curve is magnified smoothly by
an appropriate continuous transformation. The area under
the ROC curve assesses retrieval performance of the relevant
portion. Similar to ROC curves, PR curves are also used for
performance evaluation [26], mostly in information retrieval
applications [27] and they are preferred to ROC curves when
the class distribution is skewed [4], [5], [28], [29].

Bengio et al. [30] argue that reporting statistics from ROC
curve such as a break-even point may be misleading, and
propose the expected performance curve to provide unbiased
estimates at various operating points. Drummond and
Holte [31] introduce cost curves for visualizing the error rate
or expected cost of two-class classifiers over all possible
class distributions and misclassification costs. They argue
that cost curves are better than ROC curves for visualiza-
tion, for example in showing confidence intervals and
visualizing the statistical significance of the difference
between two classifiers.

When we compare L > 2 algorithms, after we apply the
pairwise posthoc tests on all pairs, we may find pairs where
the test does not reject, and in such a case, we underline
such cliques. To break ties and get a full ordering, MultiTest
[32] combines the results of the pairwise tests with a cost
measure that specify a prior preference on algorithms.
Various types of cost can be used [33], e.g., the space and/or
time complexity during training and/or testing, interpret-
ability, ease of programming, etc. In a bioinformatics
application where different algorithms use results of
different experimental procedures as inputs, some more
costly than others, the cost of extracting the input may be
another cost measure. Multi2Test uses the same methodol-
ogy to order algorithms on multiple data sets [34].

When doing multiple comparisons, there are various

methods to adjust the value of � for each comparison. The

simple method is Bonferroni correction [35]. If we compare

L algorithms, there are LðL� 1Þ=2 comparisons, and the

Bonferroni correction sets the significance level of each

comparison to �=ðLðL� 1Þ=2Þ. Nemenyi’s test is based on

this correction, and that is why it has low power for large L.

Garcı́a and Herrera [36] explain and compare the use of

various correction algorithms, such as, Holm correction

[37], Shaffer’s static procedure [38] and Bergmann-Hom-

mel’s dynamic procedure [39]. They show that although it

requires intensive computation, Bergmann-Hommel has the

highest power.

6 SURVEY OF CLASSIFICATION EXPERIMENTS IN

BIOINFORMATICS LITERATURE

To observe the practice of researchers in bioinformatics

applications of machine learning for scenarios related to

those discussed in this paper, we did a survey by examining

the published papers in three journals (one of which is this

one) in the years 2010 and 2011. Table 3 shows the number

of papers surveyed in our work.3 We include all the papers

except software, application notes and proceedings. Among

all the papers, we look at the ones related to machine

learning and among those, we focus on those that use

classification, which is our topic of study in this paper.
The results show that during these two years, 606=

1;532 ¼ 40% of the papers are machine learning related,
and 246=606 ¼ 41% of these are related to classification
tasks; the percentages do not change much from year to
year. These high percentages indicate that there is a fair
amount of classification done in the bioinformatics com-
munity, and these tasks require measures to evaluate the
performances of different classifiers in different settings
and domains—what we discuss in this paper relates to
approximately 16 percent of the papers published in the
last two years in these three journals.

From these papers that use classification, we collect data

related to

1. the attributes of the problem (the number of classes
and the number of input dimensions),

2. the attributes of the learning method (whether input
dimensionality reduction is done or not, and the
classification algorithm), and
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3. statistical methodology used (resampling strategy,
performance metrics, and the statistical test, if any
is used).

Table 4 shows the attributes we are interested in and

their percentages in the years 2010, 2011, and in total.

These percentage values are not mutually exclusive, e.g., if

there are both two-class and multiclass data sets in a paper,

that paper is included in both of the statistics; hence, these

values do not always sum up to 100. Based on this data

and our observations of these papers, we reach the

following conclusions:

. We observe that most of the classification tasks are
two-class classification tasks. This shows that the
measures based on the confusion matrix (as given
in (1)), such as precision, recall, and so on, are
applicable in most situations.

. As expected, accuracy/error rate is the most

frequently used metric. In cases where one needs

to focus on the positives, precision and recall are also
used. The use of the area under the ROC curve

seems to be established in the community, but of the

papers which give AUC values, only 51 percent

show the actual ROC curves. Precision-recall curves

are also used though less frequently.
We check for dependency between the type of

classification problem and the performance measure
used. Table 5 shows the percentages with which
various performance metrics are used in two-class
and multiclass classification problems. As expected,
accuracy/error rate is used in multiclass problems
more than in two-class problems and in two-class
problems, the percentages of the use of precision/
recall, sensitivity/specificity, or ROC curve or AUC-
ROC are higher.

. Data set sizes indicate that in nearly half of the
problems, the data set size is less than 1,000 and in
such cases, the variance of any statistic calculated
from the data can be high. The use of suitable
resampling strategies and hypothesis testing is
hence apparent.

. Bioinformatics applications generally have high
dimensional inputs—almost one-fifth of papers use
data that have more than 10,000 inputs!—indicating
a higher propensity for overfitting with small data.
In some papers, input dimensionality is not speci-
fied, in some, sequences of different lengths are
processed, e.g., using hidden Markov models, and in
some (with support vector machines), rather than in
a vectorial form, a pairwise kernel matrix is used for
inputs. Because many applications have high-di-
mensional data, it is not surprising that some sort of
dimensionality reduction is done before classifica-
tion. As expected, we see in Table 6 that the
percentage of the use of dimensionality reduction
increases as the input dimensionality increases.

. Support vector machines and decision trees (mostly
random forests) are currently the best known off-
the-shelf learning algorithms and they are also
those most frequently used in bioinformatics
applications. It has also been noted in a recent
editorial [40] that the use of neural networks and
hidden Markov models are decreasing whereas
support vector machines and random forests are
becoming more popular. Since support vector
machine works well in small sample settings due
to its inherent regularization and random forest

_IRSOY ET AL.: DESIGN AND ANALYSIS OF CLASSIFIER LEARNING EXPERIMENTS IN BIOINFORMATICS: SURVEY AND CASE STUDIES 1669

TABLE 4
Percentages of Attributes of Classification Problems, Statistical
Methodologies, and Their Percentages in the Surveyed Papers

TABLE 5
Percentages of Performance Metrics for Two-Class

and Multiclass Problems



works well in high dimensional, noisy data due to
its averaging behavior, the use of these algorithms
is justified.

We check if there is a correlation between the
algorithms used and data set size, input dimen-
sionality, and whether or not dimensionality reduc-
tion is done before. As we see in Table 7, there does
not seem to be any strong interaction. We would
expect to see k-NN more with smaller data sets
(because it needs to store the whole set) and naive
Bayes more when input dimensionality is high
(because it assumes independent inputs) or less
dimensionality reduction with artificial neural net-
works (because it does its own feature extraction in
its hidden units) and to a certain extent the data
reflect these, but we do not see a strong domination
of one algorithm over another one for a given data
set size or input dimensionality.

. With small samples, leave-one-out is used; k-fold or
k1 � k2-fold cross validation is used in almost 70 per
cent of the cases. This shows that the need for
multiple replications is well understood by the
community.

We check for dependency between data set size
and resampling strategy. As we see in Table 8, k-fold
cross validation is the most popular method. As we
would expect, k1 � k2-fold cv, leave-one-out and
bootstrapping are used more frequently with smaller
data sets. If the sample size is large, putting aside an
independent test set unused for training is the
cheapest way, but surprisingly it is used even with
smaller data sets.

. Even though k-fold cross validation or other types of
resampling strategies are used frequently, the use of
statistical tests to compare the performance of

different classifiers is rare (in only about 21 percent).
Some papers show standard deviations of the
performance metrics without applying any test,
and some use only a single performance value to
conclude that one algorithm is better than the other.
This shows that the use of statistical tests is not well
established in the bioinformatics community indicat-
ing the need for the approaches we discuss here.

We check for dependency between the use of a
test (and its type) and the data set size. With small
data sets, statistics have large variance and are more
affected by chance and there is more need for a test to
make sure that differences are significant. Indeed as
we see in Table 9, as expected, we see tests used more
with smaller data sets. Statistical tests should always
be used while expecting a small power when the
sample size is small. We would have expected to see
nonparametric tests more with smaller data sets
where central limit theorem may not hold, but the
two types of tests seem to be used equally frequently.

In Table 10, we show the percentages of the
number of models used in the studies. We see that
93 percent of the studies use more than a single
model, which indicates the need for statistical
comparison. Note that we use the word “model”
here rather than “algorithm” because when we
compare k-NN with SVM, we count them as two
models, and also when we compare k-NN with and
without dimensionality reduction, we count them as
two models too; when we compare 1-NN and 3-NN,
we do not count them as two models but one model
with different settings of the hyperparameter. We
see that the number of models used and hence needs
to be compared may be as high as tens in some
studies, which points out again the need for rigorous
experimentation and analysis.

We also check the measures that the tests use. In
Table 11, we show the number of papers that use the
tests (divided into two as parametric and nonpara-
metric) and the measures used. We see that tests
mostly use either error or AUC-ROC and for these,
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either the parametric t test or nonparametric Wilcox-
on’s signed rank test are used most frequently; in
very few cases, both are used. This supports well our
recommendations in this paper.

7 CASE STUDIES

We use six well-known learning algorithms [1]:

. Knn: k-nearest neighbor with k between 1 and 10.

. Svm: Support vector machine with a linear kernel;
we use the LIBSVM 2.82 library [41].

. Rip: Rule learning algorithm Ripper where a rule
contains a conjunction of univariate propositions [42].

. Mlp: Multilayer perceptron with 10 hidden units.

. Mdt: Multivariate decision tree algorithm where the
decision at a node is a linear combination of all
inputs [43].

. RnF: Random forest is an ensemble of decision trees.

In single data set case studies, we use the acceptors and
donors data sets [44]. These are splice site detection data sets
and the trained models should distinguish “GT” and “AG”
sites occurring in the DNA sequence that function as splice
sites and those that do not. A positive example for a donor
site is a window of 13 residues of DNA around the “GT” in
an actual human donor splice site, while a negative example
is a window of the same size around a “GT” which is not
itself a real splice site. The examples for the acceptor site are
similar except that the window size is larger, i.e., a positive
example for an acceptor site is a window of 88 residues of
DNA around the “AG” in an actual human acceptor splice
site. There are 3,889 (708 positive, 3,181 negative) and 6,246

(1,324 positive, 4,922 negative) examples in acceptors and
donors, respectively.

For multiple data set comparisons, we use the 11 cancer-
related gene expression data sets [45]; details are given in
Table 12. Nine are multiclass and two are two class. The
data were produced by oligonucleotide-based technology.
In all data sets except srbct, RNA was hybridized to high-
density oligonucleotide Affymetrix arrays and gene ex-
pression values were computed with Affymetrix software.
In srbct, the experimenters used two-color cDNA platform
with consecutive image analysis and filtered for a mini-
mum level of gene expression. The genes or oligonucleo-
tides with absent calls in all samples were removed from
the analysis to reduce noise.

Our methodology is as follows: A data set is first divided
into two parts, with 1=3 as the test set, and 2=3 as the
training set. The training set is then resampled using 5� 2
cross validation where twofold cv is done five times (with
stratification) and the roles swapped at each fold to generate
10 training and validation folds. The validation folds are
used to tune the hyperparameters of the algorithms, e.g., k
of the k-nearest neighbor, C of the SVM, pruning thresholds
for rules and trees, and so on. For the best setting, the
10 classifiers trained on the 10 training folds are tested on
the left-out test set and these 10 test results are reported and
used in the statistical tests.

7.1 Comparing Two Algorithms on a Single Data Set

We compare the k-nearest neighbors (Knn) and the multi-
variate decision tree (Mdt) on the acceptors data set. We use
the 5� 2 cv F test for pairwise comparison as per our
discussion in Section 4.1.
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Because we do 5� 2 cross validation, we have 10 test
results per algorithm. Fig. 1 shows the (a) error histo-
grams, (b) ROC curves, (c) histograms of areas under the
ROC curves, (d) precision-recall curves, and (e) histograms
of areas under the precision-recall curves. In Figs. 1b and
1d, we mark the points that correspond to the threshold of
0.5; these are the values used in error comparison (shown
in Fig. 1a).

This case is a good example illustrating that different
measures make different things explicit. With the 5� 2 cv
F test in terms of error, the null hypothesis that the
algorithms have equal expected error is rejected Mdt leads
to smaller expected error. As we see in the ROC curves,
though the two have similar tp values at the threshold of
0.5, Knn has higher fp and hence higher error. When we

compare the two over the whole ROC curves, we see that
the two algorithms excel in different parts but if we
average over all possible losses, in terms of AUC-ROC, the
5� 2 cv F test finds no significant difference. In terms of
PR curves, the difference seems even less slight and again
5� 2 cv F test on AUC-PR fails to reject.

Even though insignificant, ROC curve favors Knn
whereas PR curve favors Mdt. We understand why if we
compare Figs. 1b and 1d: To the left of the curve (for high �),
Knn is to the left of Mdt implying less fp and hence overall,
Knn seems to be better (In this case, for Knn, k ¼ 10 and we
have meaningful intermediate thresholds whereas the
leaves of Mdt contain examples that highly favor one or
the other class and the only meaningful intermediate
threshold is at 0.5). AUC-PR does not make use of the fp
(or tn) and hence this has no effect; since Mdt has slightly
higher precision than Knn overall, it seems to be slightly
better overall, though not significantly.

7.2 Comparing L > 2 Algorithms on a
Single Data Set

The first case study can easily be generalized to more than
two algorithms. We may be 1) proposing a novel learning
algorithm and want to compare it against L� 1 previous
approaches, or 2) run L off-the-shelf learning algorithms via
a data mining tool and decide which algorithm suits best to
our data set. We find examples of this during our survey of
the literature: Song et al. [46] propose an approach,
Casclave, to predict caspase cleavage sites; they use
different sequence encodings in their method and compare
them over a single data set that they have constructed from
multiple sources. Jeong et al. [47] test various classification
algorithms on various feature sets to predict protein
functions; the performance of the methods are compared
over Yeast protein sequences.

As our second case study, we compare Rip, Mdt, Mlp,
Svm, and Knn on donors data set in terms of error, AUC-
ROC, and AUC-PR. The histograms are given in Fig. 2. We
see that though the five algorithm seem very different in
terms of error and AUC-ROC, they seem more similar
in terms of AUC-PR, again indicating that the difference in
behavior is due to the negative instances.

For all three measures, ANOVA rejects the null hypoth-
esis that all algorithms have the same performance. We
apply 5� 2 cv F test as a pairwise posthoc test as per our
discussion in Section 4.2 and find the following orderings
and cliques:

1672 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2012
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Fig. 2. Comparison of Rip, Mdt, Mlp, Svm, and Knn on donors data set.



. Error: Mdt Svm Mlp Rip Knn

. AUC-ROC: Svm Mlp Knn Mdt Rip

. AUC-PR: Svm Mlp Knn Rip Mdt

In terms of error, since Rip is significantly different from
Mdt but not from Svm nor Mlp, (Mdt, Svm, Mlp) and (Svm,
Mlp, Rip) form a clique. On the other hand, as seen in the
figure, Knn is significantly worse than all other algorithms.
In terms of AUC-ROC, Mdt and Rip have similar perfor-
mance, they form a single group and perform worse than
the other algorithms. There is no significant difference
between Mlp and Svm or Knn, but since the last two
are significantly different from each other, two cliques are
formed: (Svm, Mlp) and (Mlp, Knn).

In terms of AUC-PR, Mdt is not significantly different
from Svm using 5� 2 cv F test, so although ANOVA rejects
the null hypothesis that all algorithms have the same AUC-
PR, we say that all five algorithms form a single clique. This
may happen in real life, tests for the same purpose may
decide differently due to different properties (ANOVA is
not a paired test) or assumptions.

We can use MultiTest [32] to get rid of the underlines and
get a full ordering. For example, when we apply MultiTest
with error as the performance measure and average space
complexity as the cost measure, the ordering we get is (from
best to worst: ‘< ’ means “preferred to”): Mdt < Rip < Mlp <
Svm < Knn; if we use average training time to prefer faster
algorithms, we get Mlp < Mdt < Rip < Svm < Knn.

7.3 Comparing Two Algorithms on M > 1 Data Sets

Some examples of this scenario can be found: MacDonald
and Beiko [48] propose a rule mining method named CPAR
to extract microbial genotype-phenotype association rules
and compare it against the existing NETCAR algorithm
over multiple data sets. In converting multiclass problems
to a set of two-class problems, Taipa et al. [49] compare one-
against-all and error-correcting output codes over various
data sets.

As a case study, we compare Mlp and RnF on the 11 tumor
data sets. Because nine of the 11 data sets are multiclass, we
cannot use AUC-ROC and AUC-PR directly, so we use error

only. We calculate the average error of each algorithm on the

10-folds of each data set and use Wilcoxon’s signed-rank test
as per our discussion in Section 4.3.

Error differences (Mlp�RnF) are shown in Table 13. We
see that the negative differences occur a lot more than the

positive differences and are also bigger in magnitude and
that is why Wilcoxon’s signed-rank test rejects the null

hypothesis that the average ranks of the two algorithms are
the same. Overall, Mlp performs better than RnF on these

11 tumor data sets.

7.4 Comparing L > 2 Algorithms on
M > 1 Data Sets

Examples of this scenario are found in the literature: Zhu

et al. [50] propose a novel feature selection method before
SVM and compare their method against various other

dimensionality reduction techniques over multiple data
sets. Liu et al. [51] propose a sparse SVM method for

biomarker identification and compare their method with
three other methods over three data sets, including a

synthetic data set.
As a case study, we compare Rip, Mlp, RnF, Svm, and Knn

on the 11 tumor data sets in terms of error. Table 14 shows
the error rates of Rip, Mlp, RnF, Svm, and Knn. First, we
apply Friedman’s test which rejects that the algorithms have
equal expected error. The result of the posthoc Nemenyi’s
test can be seen in Fig. 3, which can be rewritten as

Svm Mlp RnF Knn Rip

We see that there are three cliques: (Svm, Mlp), (Mlp, RnF,
Knn), and (RnF, Knn, Rip). We can not directly conclude that
Svm is the best because there is no significant difference
between Svm and Mlp; we can not choose Mlp either because
RnF and Knn are as good (but worse than Svm).

We can use Multi2Test [34] here to get a full ordering. If we
use space complexity as the cost measure and Nemenyi’s test
as the pairwise test on error, we get Rip < Mlp < RnF <
Svm < Knn, whereas with training time as the cost measure, we
get Knn < Rip < RnF < Svm < Mlp.
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8 CONCLUSIONS

As in all machine learning applications, in bioinformatics

too, the correct use of experiment design and analysis is of

paramount importance for results to be considered sig-

nificant. Our contributions here are as follows:

. We review the basics of the design and analysis of
experiments discussing the correct use of resam-
pling methods and hypothesis testing in the
comparison of machine learning methods.

. We give the results of a survey of over 1,500 papers
published in the last two years in three major
bioinformatics journals to check for the current
practice, good and bad. To summarize, our principal
findings are

- Most applications are two-class problems.
- Not only accuracy/misclassification error, but

measures such as precision/recall, ROC/AUC-
ROC are relevant and indeed are widely used.

- Most bioinformatics data are not large. Nearly
half has fewer than 1,000 instances.

- Most bioinformatics data are high dimensional.
Nearly half has more than 1,000 dimensions.

- Dimensionality reduction hence is an important
research topic and such methods are heavily
used.

- There does not seem to be any learning method
heavily favored. The use of decision trees and
support vector machines seem to be slightly
more frequent.

- The need for resampling seems to be accepted
by the community. Around 70 percent of the
papers use some sort of cross validation.

- Though resampling is popular, statistical tests to
check for significant difference is rare, only in
21 percent. Some papers show only mean and
standard deviations without any test, and some
use only a single value. This is probably our
most significant finding and indicates the
relevance of this paper.

. We define four scenarios which we observe fre-
quently in the machine learning applications in
bioinformatics and for those, we discuss the proper
statistical methodology.

. For each of these scenario, we include a case study
where we show an example use of the proposed
methodology on a real-world bioinformatics appli-
cation with state-of-the-art learning algorithms.

. A section on related work shows the evolution of
statistical methodology and contains pointers to
related papers.

Our discussion in this paper is for classification; though

regression algorithms are used less frequently in bioinfor-

matics, a similar study can also be carried out for regression.
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and Bo�gaziçi University Research Funds BAP 5701.

REFERENCES

[1] E. Alpaydin, Introduction to Machine Learning, second ed. The MIT
Press, 2010.

[2] D.C. Montgomery, Design and Analysis of Experiments, seventh ed.
Wiley, 2009.

[3] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recogni-
tion Letters, vol. 27, pp. 861-874, 2006.

[4] V.V. Raghavan, G.S. Jung, and P. Bollmann, “A Critical
Investigation of Recall and Precision as Measures of Retrieval
System Performance,” ACM Trans. Information Systems, vol. 7,
pp. 205-229, 1989.

[5] J. Davis and M. Goadrich, “The Relationship between Precision-
Recall and ROC Curves,” Proc. Int’l Conf. Machine Learning,
pp. 233-240, 2006.

[6] T.G. Dietterich, “Approximate Statistical Tests for Comparing
Supervised Classification Learning Classifiers,” Neural Computa-
tion, vol. 10, pp. 1895-1923, 1998.

[7] E. Alpaydin, “Combined 5� 2 CV F test for Comparing
Supervised Classification Learning Classifiers,” Neural Computa-
tion, vol. 11, pp. 1975-1982, 1999.

[8] B. Efron and R. Tibshirani, “Improvements on Cross-Validation:
The .632+ Bootstrap Method,” J. Am. Statistical Assoc., vol. 92,
pp. 548-560, 1997.

[9] J. Demsar, “Statistical Comparisons of Classifiers over Multiple
Data Sets,” J. Machine Learning Research, vol. 7, pp. 1-30, 2006.

[10] P.R. Cohen, Empirical Methods for Artificial Intelligence. MIT Press,
1995.

[11] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
[12] S.L. Salzberg, “On Comparing Classifiers: Pitfalls to Avoid and a

Recommended Approach,” Data Mining and Knowledge Discovery,
vol. 1, pp. 317-328, 1997.

[13] C. Nadeau and Y. Bengio, “Inference for the Generalization
Error,” Machine Learning, vol. 52, pp. 239-281, 2003.

[14] R.R. Bouckaert, “Estimating Replicability of Classifier Learning
Experiments,” Proc. Int’l Conf. Machine Learning, pp. 15-22, 2004.

[15] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, third ed. Springer Verlag, 2011.

[16] J.A. Hanley and B.J. McNeil, “The Meaning and Use of the Area
under a Receiver Operating Characteristic (ROC) Curve,” Radi-
ology, vol. 143, pp. 29-36, 1982.

[17] C.X. Ling, J. Huang, and H. Zhang, “AUC: A Better Measure than
Accuracy in Comparing Learning Algorithms,” Proc. Int’l Joint
Conf. Artificial Intelligence, pp. 329-341, 2004.

[18] J. Huang, J. Lu, and C. Ling, “Comparing Naive Bayes, Decision
Trees, and SVM with AUC and Accuracy,” Proc. IEEE Int’l Conf.
Data Mining, pp. 553-556, 2003.

[19] A.P. Bradley, “The Use of the Area under the ROC Curve in the
Evaluation of Machine Learning Algorithms,” Pattern Recognition,
vol. 30, pp. 1145-1159, 1997.

[20] J.A. Hanley and B.J. McNeil, “A Method of Comparing the Areas
under Receiver Operating Characteristic Curves Derived from the
Same Cases,” Radiology, vol. 148, pp. 839-843, 1983.

[21] C. Cortes and M. Mohri, “Confidence Intervals for the Area Under
the ROC Curve,” Proc. Neural Information Processing Systems,
pp. 305-312, 2004.

[22] H.C. Bravo, G. Wahba, K.E. Lee, B.E.K. Klein, R. Klein, and S.K.
Iyengar, “Examining the Relative Influence of Familial, Genetic,
and Environmental Covariate Information in Flexible Risk
Models,” Proc. Nat’l Academy of Sciences USA, vol. 106, pp. 8128-
8133, 2004.

[23] G.M. Weiss and F. Provost, “Learning when Training Data
Are Costly: The Effect of Class Distribution on Tree Induc-
tion,” J. Artificial Intelligence Research, vol. 19, pp. 315-354,
2003.

[24] B. Hanczar, J. Hua, C. Sima, J. Weinstein, M. Bittner, and E.R.
Dougherty, “Small-Sample Precision of Roc-Related Estimates,”
Bioinformatics, vol. 26, no. 6, pp. 822-830, 2010.

1674 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2012



[25] S.J. Swamidass, C.-A. Azencott, K. Daily, and P. Baldi, “A Croc
Stronger than Roc: Measuring, Visualizing, and Optimizing Early
Retrieval,” Bioinformatics, vol. 26, no. 10, pp. 1348-1356, 2010.

[26] A. Folleco, T.M. Khoshgoftaar, and A. Napolitano, “Comparison
of Four Performance Metrics for Evaluating Sampling Techniques
for Low Quality Class-Imbalanced Data,” Proc. Int’l Conf. Machine
Learning and Applications, pp. 153-158, 2008.

[27] E. Bloedorn, I. Mani, and T.R. Macmillan, “Machine Learning of
User Profiles: Representational Issues,” Proc. Nat’l Conf. Artificial
Intelligence, pp. 433-438, 1996.

[28] T.C.W. Landgrebe, P. Paclik, and R.P.W. Duin, “Precision-Recall
Operating Characteristic (P-ROC) Curves in Imprecise Environ-
ments,” Proc. Int’l Conf. Pattern Recognition, pp. 123-127, 2006.

[29] S. Clemencon and N. Vayatis, “Nonparametric Estimation of the
Precision-Recall Curve,” Proc. 26th Ann. Int’l Conf. Machine
Learning, vol. 382, pp. 185-192, 2009.

[30] S.B. Bengio, J. Marithoz, and M. Keller, “The Expected Perfor-
mance Curve,” Proc. Int’l Conf. Machine Learning, pp. 9-16, 2005.

[31] C. Drummond and R.C. Holte, “Cost Curves: An Improved
Method for Visualizing Classifier Performance,” Machine Learning,
vol. 65, no. 1, pp. 95-130, Oct. 2006.

[32] O.T. Yildiz and E. Alpaydin, “Ordering and Finding the Best
of K > 2 Supervised Learning Algorithms,” IEEE Trans. Pattern
Analysis Machine Intelligence, vol. 28, no. 3, pp. 392-402, Mar.
2006.

[33] P.D. Turney, “Types of Cost in Inductive Concept Learning,” Proc.
Workshop Cost-Sensitive Learning in 17th Int’l Conf. Machine
Learning, pp. 15-21, 2000.
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