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Rationale 
 No Free Lunch Theorem: There is no algorithm that is 

always the most accurate 

 Generate a group of base-learners which when combined 
has higher accuracy 

 The need to generate models that are 
complementary/uncorrelated/diverse 
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How to generate complementary 
learners? 
 

 Algorithms 

 Hyperparameters 

 Representations/Modalities/Views 

 Training sets 

 Subproblems 
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Voting 
 Linear combination 

 

 

 

 

 

 Classification 
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 Bayesian perspective: 

 

 

If dj are iid  

 

 

 

 Bias does not change, variance decreases by L 

 If dependent, error increases with positive correlation 
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Fixed Combination Rules 
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Error-Correcting Output Codes 
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 K classes; L problems (Dietterich and Bakiri, 1995) 

 Code matrix W codes classes in terms of learners 

 

 One per class 

  L=K 

 

 

 Pairwise 

 L=K(K-1)/2 
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 Full code L=2(K-1)-1 

 

 

 

 

 With reasonable L, find W such that the Hamming 
distance btw rows and columns are maximized. 

 Voting scheme 

 

 

 Subproblems may be more difficult than one-per-K 
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Bagging  
 Use bootstrapping to generate L training sets and train 

one base-learner with each (Breiman, 1996) 

 Use voting (Average or median with regression) 

 Unstable algorithms profit from bagging 
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AdaBoost 

Generate a 
sequence of 
base-learners 
each focusing 
on previous 
one’s errors 

(Freund and 
Schapire, 1996) 
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Voting where weights are input-dependent (gating) 

 

 

 

(Jacobs et al., 1991) 

Experts or gating  

can be nonlinear 

  

Mixture of Experts 
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Stacking 
 Combiner f () is 

another learner 
(Wolpert, 1992) 
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Cascading 
Use dj only if 
preceding ones are 
not confident 

 

Cascade learners in 
order of complexity 
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Combining Multiple Sources 
 Early integration: Concat all features and train a single 

learner 

 Late integration: With each feature set, train one learner, 
then train a combiner 

 Intermediate integration: With each feature set, calculate 
a kernel, then use a single SVM with multiple kernels 

 Combining features vs decisions vs kernels 
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Fine-Tuning an Ensemble 
 Given an ensemble of dependent classifiers, do not use it 

as is, try to get independence 

1. Subset selection: Forward (growing)/Backward 
(pruning) approaches to improve 
accuracy/diversity/independence 

2. Train metaclassifiers: From the output of correlated 
classifiers, extract new combinations that are 
uncorrelated. Using PCA, we get “eigenlearners.” 

 Similar to feature selection vs feature extraction 
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Incremental Construction of 
Ensembles 
 Ref: A. Ulaş, M. Semerci, O. T. Yıldız, E. Alpaydın (2009) 

"Incremental Construction of Classifier and Discriminant 
Ensembles," Information Sciences, 179, 1298-1318. 

 Given an ensemble of dependent classifiers, do not use it 
as is, try to get independence by 

 Classifier Ensembles by Subset selection: Forward 
(growing)/Backward (pruning) approaches to improve 
accuracy/diversity/independence 

 Discriminant Ensembles by Decision Tree: Learn the final 
output from the L k dimensional discriminant values 
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Incremental Construction by 
Forward Search 
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Decision Tree Combiner 
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Eigenclassifiers for Combining 
Classifiers 
 Ref: A. Ulaş, O. T. Yıldız, E. Alpaydın (2012) “Cost-

Conscious Comparison of Supervised Learning Algorithms 
over Multiple Data Sets,” Pattern Recognition, 45(4), 
1772-1781. 

 Train metaclassifiers: From the output of correlated 
classifiers, extract new combinations that are 
uncorrelated. Using PCA, we get “eigenlearners.” 
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Correlation due to hyperparameters 
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Correlation due to data 

23 



Correlation due to features 
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Pageblock data set 
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All datasets 
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How many eigenclassifiers? 
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 Fixed kernel combination 

 

 

 Adaptive kernel combination 

 

 

 

 

Multiple Kernel Learning 
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Localized Multiple Kernel Learning 
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Ref: M. Gönen, E. Alpaydin (2008)  "Localized Multiple Kernel 
Learning,“ ICML'08 , Helsinki, Finland, July, 352-359. 
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Combining Learners 
 Combining does not always improve accuracy; it always 

increases cost 

 Need to find learners that are complementary/diverse so 
that accuracy improves 

 Best to combine multiple sources of information 
(modalities) rather than algorithms, hyperparameters or 
data folds 

 Combining features, algorithms and kernels 
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