Machine Learning: Part II: Combining Features, Kernels, and Algorithms

Ethem Alpaydın alpaydin@boun.edu.tr

Ref: E. Alpaydın (2010). Introduction to Machine Learning, 2e, The MIT Press.

Rationale

- No Free Lunch Theorem: There is no algorithm that is always the most accurate
- Generate a group of base-learners which when combined has higher accuracy
- The need to generate models that are complementary/uncorrelated/diverse

How to generate complementary learners?

- Algorithms
- Hyperparameters
- Representations/Modalities/Views
- Training sets
- Subproblems

Voting

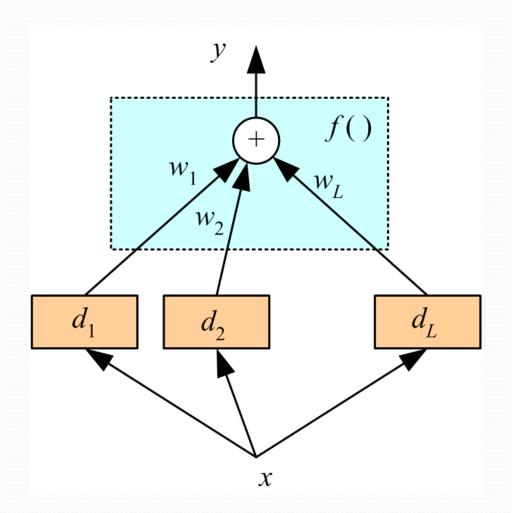
Linear combination

$$y = \sum_{j=1}^{L} w_j d_j$$

$$w_j \ge 0$$
 and $\sum_{j=1}^{L} w_j = 1$

Classification

$$\mathbf{y}_i = \sum_{j=1}^L \mathbf{w}_j \mathbf{d}_{ji}$$



Bayesian perspective:

$$P(C_i \mid x) = \sum_{\text{all models } \mathcal{M}_j} P(C_i \mid x, \mathcal{M}_j) P(\mathcal{M}_j)$$

If
$$d_j$$
 are iid
$$E[y] = E\left[\sum_j \frac{1}{L} d_j\right] = \frac{1}{L} L \cdot E[d_j] = E[d_j]$$

$$Var(y) = Var\left(\sum_j \frac{1}{L} d_j\right) = \frac{1}{L^2} Var\left(\sum_j d_j\right) = \frac{1}{L^2} L \cdot Var(d_j) = \frac{1}{L} Var(d_j)$$

Bias does not change, variance decreases by L

If dependent, error increases with positive correlation

$$\operatorname{Var}(y) = \frac{1}{L^2} \operatorname{Var}\left(\sum_{j} d_{j}\right) = \frac{1}{L^2} \left[\sum_{j} \operatorname{Var}(d_{j}) + 2\sum_{j} \sum_{i < j} \operatorname{Cov}(d_{i}, d_{j})\right]$$

Fixed Combination Rules

Rule	Fusion function $f(\cdot)$
Sum	$y_i = \frac{1}{L} \sum_{j=1}^{L} d_{ji}$
Weighted sum	$y_i = \sum_j w_j d_{ji}, w_j \ge 0, \sum_j w_j = 1$
Median	$y_i = \text{median}_j d_{ji}$
Minimum	$y_i = \min_j d_{ji}$
Maximum	$y_i = \max_j d_{ji}$

 $y_i = \prod_j d_{ji}$

Product

	C_1	C_2	C_3
d_1	0.2	0.5	0.3
d_2	0.0	0.6	0.4
d_3	0.4	0.4	0.2
Sum	0.2	0.5	0.3
Median	0.2	0.5	0.4
Minimum	0.0	0.4	0.2
Maximum	0.4	0.6	0.4
Product	0.0	0.12	0.032

Error-Correcting Output Codes

- K classes; L problems (Dietterich and Bakiri, 1995)
- Code matrix W codes classes in terms of learners
- One per classL=K

$$\mathbf{W} = \begin{bmatrix} +1 & -1 & -1 & -1 \\ -1 & +1 & -1 & -1 \\ -1 & -1 & +1 & -1 \\ -1 & -1 & -1 & +1 \end{bmatrix}$$

Pairwise
 L=K(K-1)/2

$$\mathbf{W} = \begin{bmatrix} +1 & +1 & +1 & 0 & 0 & 0 \\ -1 & 0 & 0 & +1 & +1 & 0 \\ 0 & -1 & 0 & -1 & 0 & +1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{bmatrix}$$

Full code *L*=2^(K-1)-1

- With reasonable *L*, find **W** such that the Hamming distance btw rows and columns are maximized.
- Voting scheme

$$\mathbf{y}_i = \sum_{j=1}^L \mathbf{w}_j \mathbf{d}_{ji}$$

Subproblems may be more difficult than one-per-K

Bagging

- Use bootstrapping to generate L training sets and train one base-learner with each (Breiman, 1996)
- Use voting (Average or median with regression)
- Unstable algorithms profit from bagging

AdaBoost

Generate a sequence of base-learners each focusing on previous one's errors (Freund and Schapire, 1996)

Training:

For all $\{x^t, r^t\}_{t=1}^N \in \mathcal{X}$, initialize $p_1^t = 1/N$

For all base-learners $j = 1, \ldots, L$

Randomly draw \mathcal{X}_j from \mathcal{X} with probabilities p_j^t

Train d_j using \mathcal{X}_j

For each (x^t, r^t) , calculate $y_j^t \leftarrow d_j(x^t)$

Calculate error rate: $\epsilon_j \leftarrow \sum_t p_j^t \cdot 1(y_j^t \neq r^t)$

If $\epsilon_j > 1/2$, then $L \leftarrow j-1$; stop

$$\beta_j \leftarrow \epsilon_j/(1-\epsilon_j)$$

For each (x^t, r^t) , decrease probabilities if correct:

If
$$y_j^t = r^t \ p_{j+1}^t \leftarrow \beta_j p_j^t$$
 Else $p_{j+1}^t \leftarrow p_j^t$

Normalize probabilities:

$$Z_j \leftarrow \sum_t p_{j+1}^t; \quad p_{j+1}^t \leftarrow p_{j+1}^t / Z_j$$

Testing:

Given x, calculate $d_j(x), j = 1, \ldots, L$

Calculate class outputs, i = 1, ..., K:

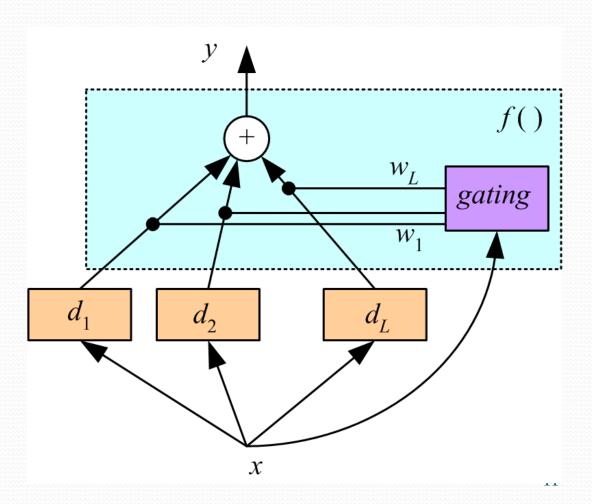
$$y_i = \sum_{j=1}^{L} \left(\log \frac{1}{\beta_j} \right) d_{ji}(x)$$

Mixture of Experts

Voting where weights are input-dependent (gating)

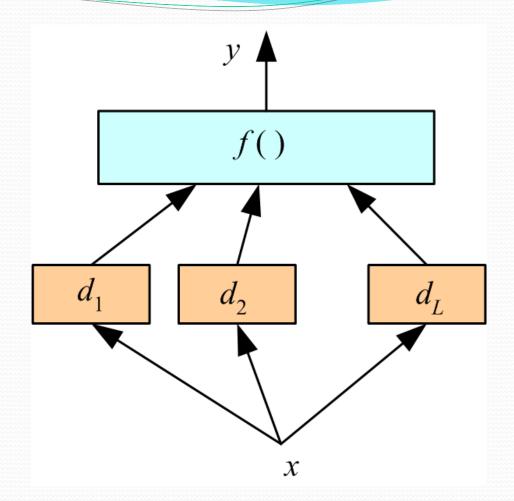
$$y = \sum_{j=1}^{L} w_j d_j$$

(Jacobs et al., 1991) Experts or gating can be nonlinear



Stacking

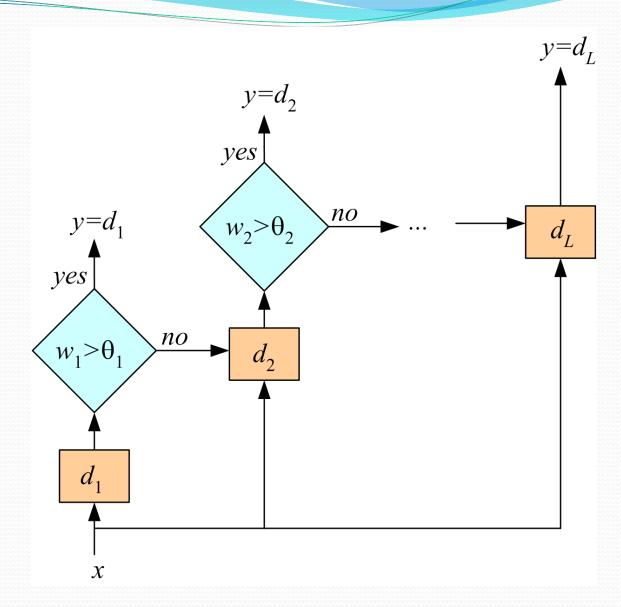
 Combiner f () is another learner (Wolpert, 1992)



Cascading

Use d_j only if preceding ones are not confident

Cascade learners in order of complexity



Combining Multiple Sources

- Early integration: Concat all features and train a single learner
- Late integration: With each feature set, train one learner,
 then train a combiner
- Intermediate integration: With each feature set, calculate a kernel, then use a single SVM with multiple kernels
- Combining features vs decisions vs kernels

Fine-Tuning an Ensemble

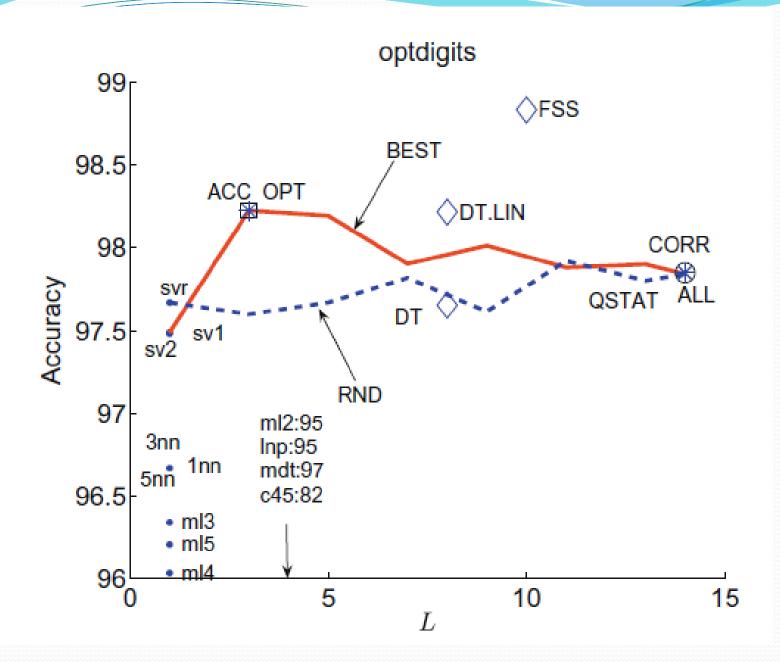
- Given an ensemble of dependent classifiers, do not use it as is, try to get independence
- Subset selection: Forward (growing)/Backward (pruning) approaches to improve accuracy/diversity/independence
- Train metaclassifiers: From the output of correlated classifiers, extract new combinations that are uncorrelated. Using PCA, we get "eigenlearners."
- Similar to feature selection vs feature extraction

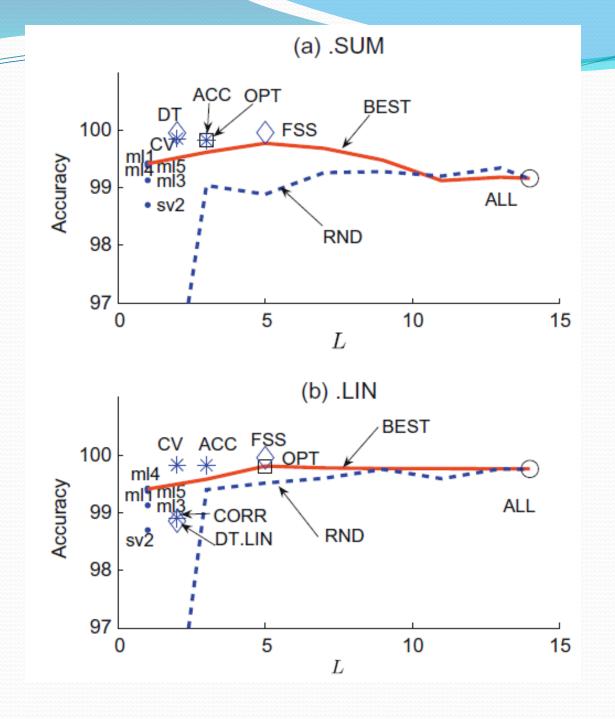
Incremental Construction of Ensembles

- Ref: A. Ulaş, M. Semerci, O. T. Yıldız, E. Alpaydın (2009)
 "Incremental Construction of Classifier and Discriminant Ensembles," *Information Sciences*, 179, 1298-1318.
- Given an ensemble of dependent classifiers, do not use it as is, try to get independence by
- Classifier Ensembles by Subset selection: Forward (growing)/Backward (pruning) approaches to improve accuracy/diversity/independence
- Discriminant Ensembles by Decision Tree: Learn the final output from the L k dimensional discriminant values

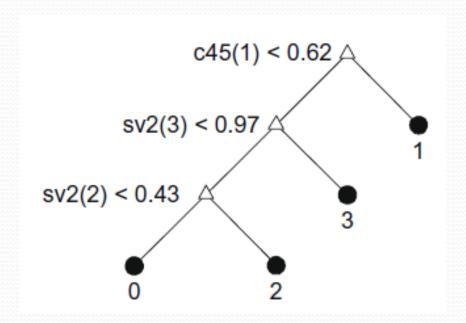
Incremental Construction by Forward Search

```
function icon(P)
2 \quad E^0 \leftarrow \emptyset
\beta for t = 0 to L - 1
            S_k^{(t+1)} \leftarrow E^{(t)} \cup M_k \, \forall M_k \in P \text{ where } M_k \not\in E^{(t)}
            if \exists S_j^{(t+1)} such that S_i^{(t+1)} \prec S_k^{(t+1)} \ \forall k \neq j
                     and S_i^{(t+1)} \prec E^{(t)}
                 then E^{(t+1)} \leftarrow S_i^{(t+1)}, t \leftarrow t+1
                 else break
      end for
      return E^{(t)}
```





Decision Tree Combiner



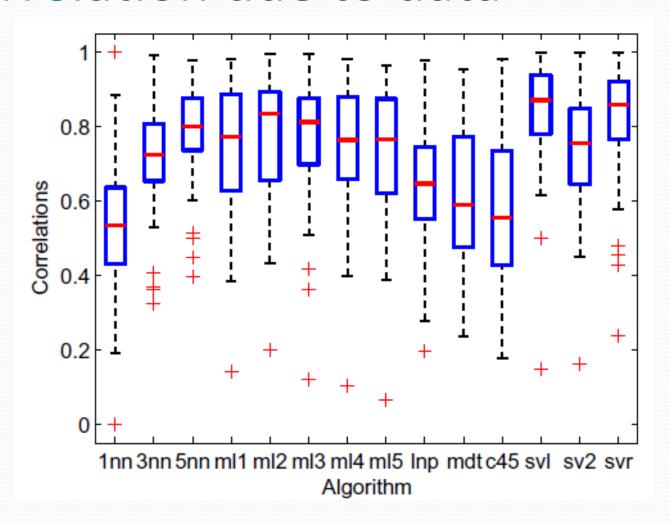
Eigenclassifiers for Combining Classifiers

- Ref: A. Ulaş, O. T. Yıldız, E. Alpaydın (2012) "Cost-Conscious Comparison of Supervised Learning Algorithms over Multiple Data Sets," *Pattern Recognition*, 45(4), 1772-1781.
- Train metaclassifiers: From the output of correlated classifiers, extract new combinations that are uncorrelated. Using PCA, we get "eigenlearners."

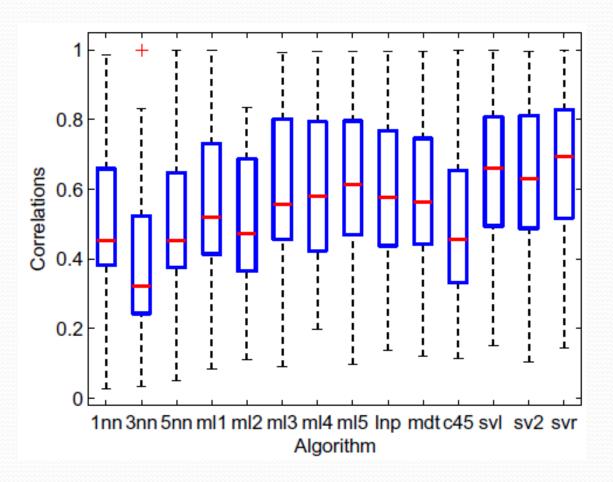
Correlation due to hyperparameters

	kn1	kn3	kn5	ml1	ml2	ml3	ml4	ml5	lnp	mdt	c45	svl	sv2	svr
kn1	1.00	0.71	0.64	0.37	0.37	0.37	0.38	0.37	0.38	0.35	0.30	0.39	0.34	0.44
kn3	0.71	1.00	0.88	0.51	0.50	0.51	0.51	0.51	0.51	0.45	0.41	0.53	0.45	0.58
kn5	0.64	0.88	1.00	0.57	0.56	0.57	0.57	0.57	0.55	0.49	0.45	0.59	0.49	0.64
ml1	0.37	0.51	0.57	1.00	0.79	0.81	0.81	0.79	0.67	0.59	0.52	0.75	0.53	0.69
ml2	0.37	0.50	0.56	0.79	1.00	0.81	0.79	0.77	0.66	0.62	0.54	0.76	0.52	0.69
ml3	0.37	0.51	0.57	0.81	0.81	1.00	0.81	0.81	0.67	0.61	0.53	0.75	0.53	0.70
ml4	0.38	0.51	0.57	0.81	0.79	0.81	1.00	0.80	0.67	0.61	0.53	0.75	0.52	0.69
ml5	0.37	0.51	0.57	0.79	0.77	0.81	0.80	1.00	0.67	0.60	0.52	0.75	0.53	0.69
lnp	0.38	0.51	0.55	0.67	0.66	0.67	0.67	0.67	1.00	0.57	0.48	0.71	0.45	0.63
mdt	0.35	0.45	0.49	0.59	0.62	0.61	0.61	0.60	0.57	1.00	0.50	0.64	0.45	0.60
c45	0.30	0.41	0.45	0.52	0.54	0.53	0.53	0.52	0.48	0.50	1.00	0.54	0.43	0.54
svl	0.39	0.53	0.59	0.75	0.76	0.75	0.75	0.75	0.71	0.64	0.54	1.00	0.57	0.74
sv2	0.34	0.45	0.49	0.53	0.52	0.53	0.52	0.53	0.45	0.45	0.43	0.57	1.00	0.65
svr	0.44	0.58	0.64	0.69	0.69	0.70	0.69	0.69	0.63	0.60	0.54	0.74	0.65	1.00

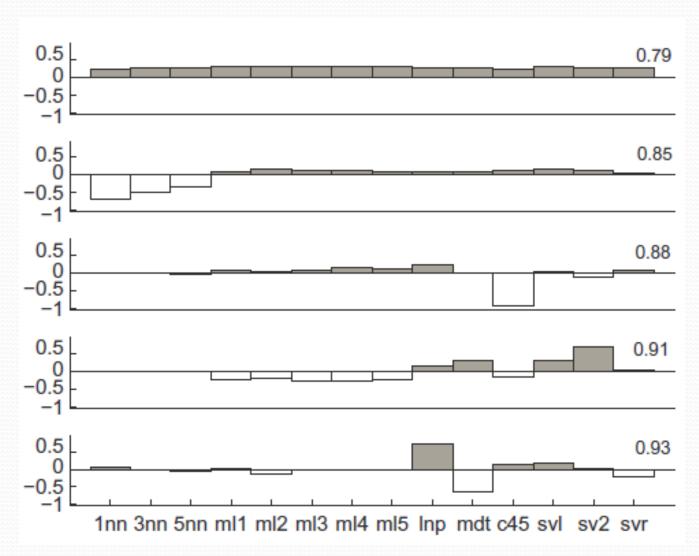
Correlation due to data

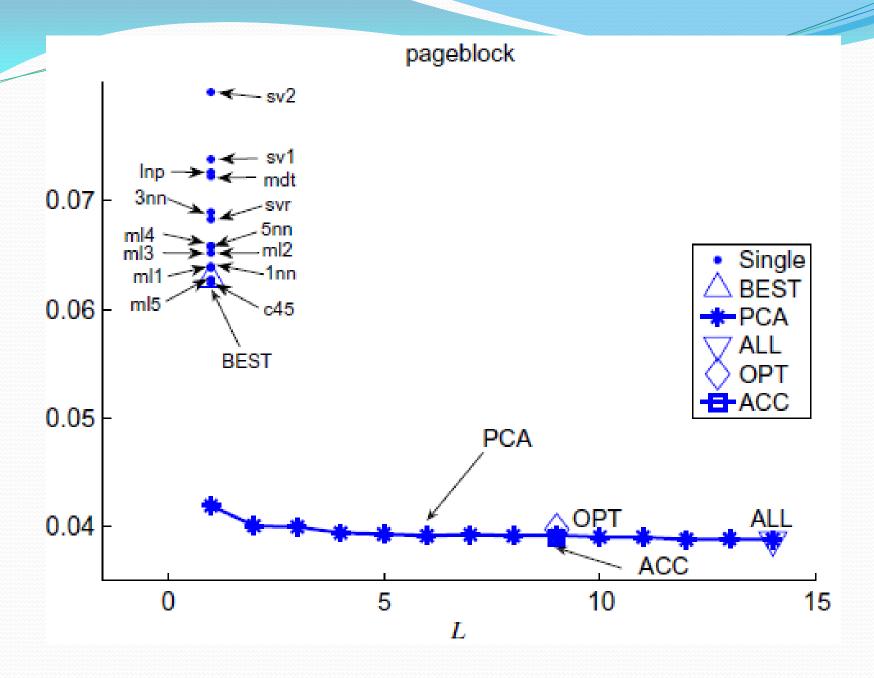


Correlation due to features

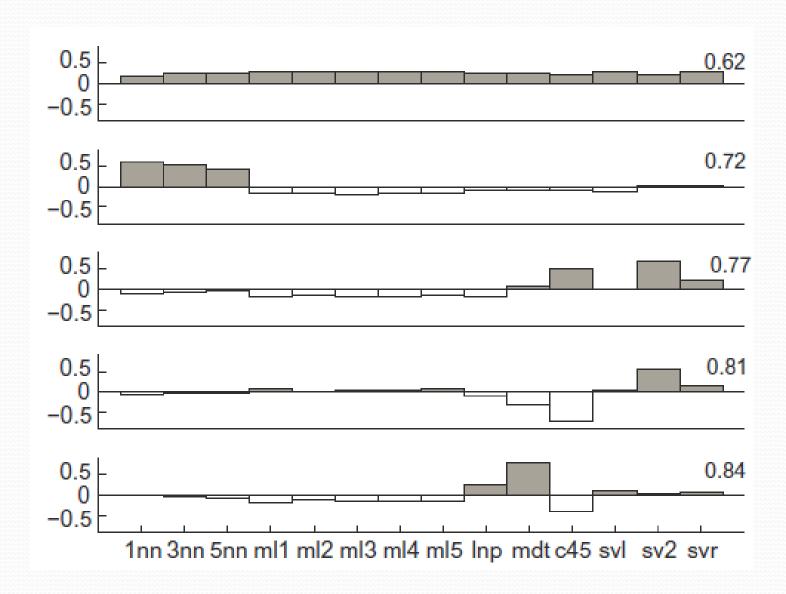


Pageblock data set

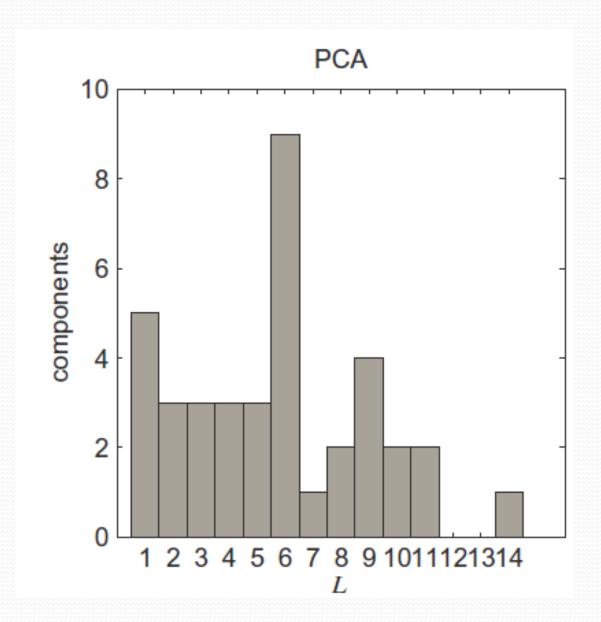




All datasets



How many eigenclassifiers?



Multiple Kernel Learning

Fixed kernel combination

$$K(\mathbf{x}, \mathbf{y}) = \begin{cases} cK(\mathbf{x}, \mathbf{y}) \\ K_1(\mathbf{x}, \mathbf{y}) + K_2(\mathbf{x}, \mathbf{y}) \\ K_1(\mathbf{x}, \mathbf{y})K_2(\mathbf{x}, \mathbf{y}) \end{cases}$$

Adaptive kernel combination

$$K(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{m} \eta_{i} K_{i}(\mathbf{x}, \mathbf{y})$$

$$L_{d} = \sum_{t} \alpha^{t} - \frac{1}{2} \sum_{t} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s} \sum_{i} \eta_{i} K_{i}(\mathbf{x}^{t}, \mathbf{x}^{s})$$

$$g(\mathbf{x}) = \sum_{t} \alpha^{t} r^{t} \sum_{i} \eta_{i} K_{i}(\mathbf{x}^{t}, \mathbf{x})$$

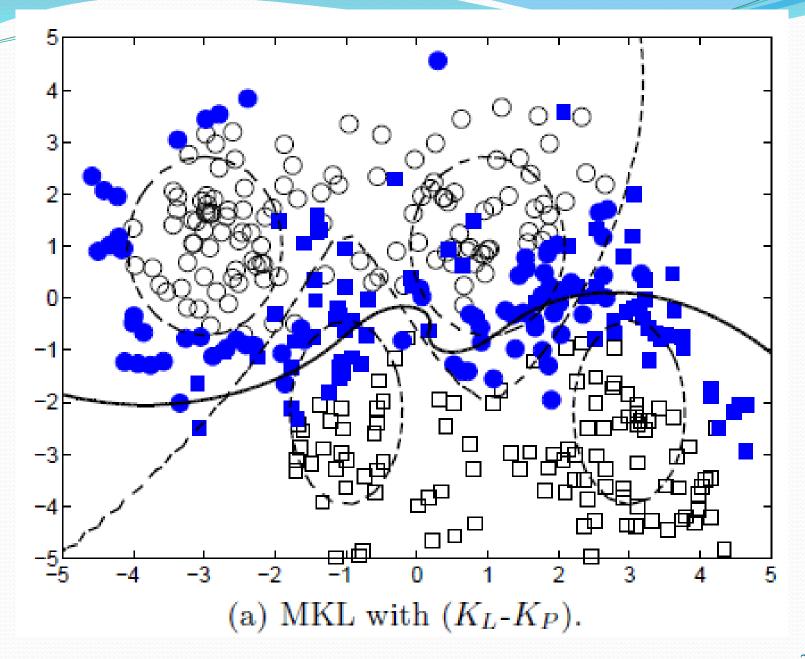
Localized Multiple Kernel Learning

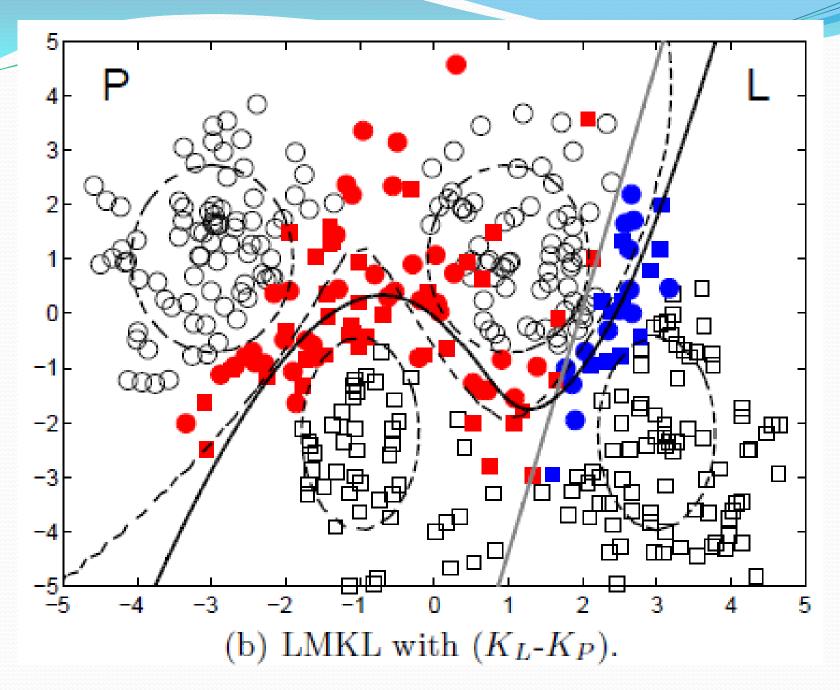
Ref: M. Gönen, E. Alpaydin (2008) "Localized Multiple Kernel Learning," *ICML'08*, Helsinki, Finland, July, 352-359.

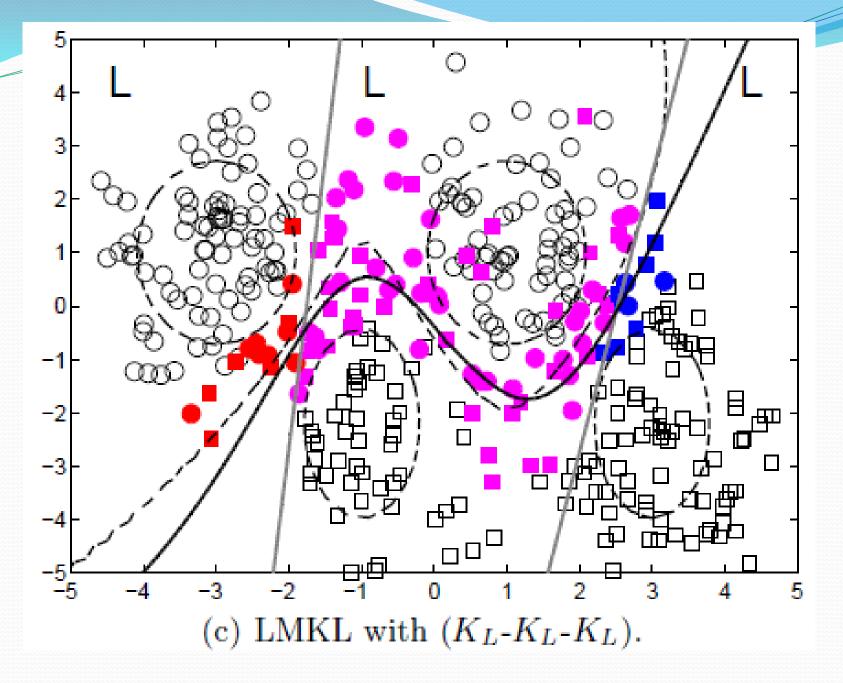
$$\min \frac{1}{2} \sum_{m=1}^{p} \|\boldsymbol{w}_{m}\|^{2} + C \sum_{i=1}^{n} \xi_{i}$$
w.r.t. $\boldsymbol{w}_{m}, b, \boldsymbol{\xi}, \eta_{m}(\boldsymbol{x})$
s.t. $y_{i} \left(\sum_{m=1}^{p} \eta_{m}(\boldsymbol{x}_{i}) \langle \boldsymbol{w}_{m}, \Phi_{m}(\boldsymbol{x}_{i}) \rangle + b \right) \geq 1 - \xi_{i} \quad \forall i$

$$\xi_{i} \geq 0 \quad \forall i$$
(5)

$$\eta_m(\boldsymbol{x}) = \frac{\exp(\langle \boldsymbol{v}_m, \boldsymbol{x} \rangle + v_{m0})}{\sum_{k=1}^{p} \exp(\langle \boldsymbol{v}_k, \boldsymbol{x} \rangle + v_{k0})}$$







		SV	7M		M	MKL LMKL			S	VM	LMKL	
	K_P		K_G		$(K_P \text{-} K_G)$		$(K_P \text{-} K_G)$		K_L		$(K_L-K$	$(L-K_L)$
Data Set	Acc.	SV	Acc.	SV	Acc.	SV	Acc.	SV	Acc.	SV	Acc.	SV
Banana	56.51	75.99	83.57	92.67	81.99	93.39	83.84	83.97	59.18	93.99	81.39	54.03
GERMANNUMERIC	71.80	54.17	68.65	58.44	73.32	84.89	73.92	80.90	74.58	97.09	75.09	57.21
Heart	72.78	73.89	77.67	79.11	75.78	87.89	79.44	81.44	78.33	67.00	77.00	58.44
IONOSPHERE	91.54	38.55	94.36	61.71	93.68	64.10	93.33	53.33	86.15	36.58	87.86	49.06
Liverdisorder	60.35	69.83	64.26	74.43	63.39	93.57	64.87	92.52	64.78	85.65	64.78	78.35
Pima	66.95	24.26	71.91	74.26	72.62	80.39	72.89	73.63	70.04	100.00	73.98	53.09
Ringnorm	70.66	53.91	98.82	40.68	98.86	57.68	98.69	56.69	76.91	78.68	78.92	52.53
Sonar	65.29	67.54	72.71	73.48	80.29	89.57	79.57	90.00	73.86	68.41	77.14	60.43
Spambase	84.18	47.92	79.80	49.50	90.46	57.47	91.41	58.24	85.98	77.43	91.18	34.93
Wdbc	88.73	27.11	94.44	54.74	95.50	58.11	95.98	42.95	95.08	13.11	94.34	21.89
5 ×	(2 cv P	aired F	Test (V		0-10-0	3-7-0			3-7-0	6-4-0		
		Compa			7 - 0 - 3	8-0-2			7 - 1 - 2	8-0-2		
Wilcoxon'	s Signed	l Rank	Test (W		${ m T}$	W			W	${ m T}$		

	SVM					MKL LMKL			SV	M	LMKL	
	K	P	K_G		$(K_P \text{-} K_G)$		$(K_P - K_G)$		K_L		$(K_L - K_L - K_L)$	
Data Set	Acc.	SV	Acc.	SV	Acc.	SV	Acc.	SV	Acc.	SV	Àcc.	SV
Arabidopsis	74.30	68.08	77.41	42.36	80.10	89.96	80.82	65.41	74.30	99.64	81.29	68.66
Vertebrates	75.50	68.54	75.72	41.64	78.67	90.46	77.67	68.14	75.50	99.02	78.69	67.41

Combining Learners

- Combining does not always improve accuracy; it always increases cost
- Need to find learners that are complementary/diverse so that accuracy improves
- Best to combine multiple sources of information (modalities) rather than algorithms, hyperparameters or data folds
- Combining features, algorithms and kernels