
March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

International Journal of Pattern Recognition
and Artificial Intelligence
Vol. 23, No. 2 (2009) 159–190
c© World Scientific Publishing Company

AN INCREMENTAL FRAMEWORK BASED
ON CROSS-VALIDATION FOR ESTIMATING THE

ARCHITECTURE OF A MULTILAYER PERCEPTRON

OYA ARAN∗, OLCAY TANER YILDIZ†
and ETHEM ALPAYDIN‡

Department of Computer Engineering, Boğaziçi University
TR-34342, Istanbul, Turkey

∗aranoya@boun.edu.tr
†olcaytaner@isikuniv.edu.tr

‡alpaydin@boun.edu.tr

We define the problem of optimizing the architecture of a multilayer perceptron (MLP) as
a state space search and propose the MOST (Multiple Operators using Statistical Tests)
framework that incrementally modifies the structure and checks for improvement using
cross-validation. We consider five variants that implement forward/backward search,
using single/multiple operators and searching depth-first/breadth-first. On 44 classifi-
cation and 30 regression datasets, we exhaustively search for the optimal and evaluate
the goodness based on: (1) Order, the accuracy with respect to the optimal and (2)
Rank, the computational complexity. We check for the effect of two resampling meth-
ods (5 × 2, ten-fold cv), four statistical tests (5 × 2 cv t, ten-fold cv t, Wilcoxon, sign)
and two corrections for multiple comparisons (Bonferroni, Holm). We also compare with
Dynamic Node Creation (DNC) and Cascade Correlation (CC). Our results show that:
(1) On most datasets, networks with few hidden units are optimal, (2) forward searching
finds simpler architectures, (3) variants using single node additions (deletions) generally
stop early and get stuck in simple (complex) networks, (4) choosing the best of multiple
operators finds networks closer to the optimal, (5) MOST variants generally find simpler
networks having lower or comparable error rates than DNC and CC.

Keywords: Model selection; cross-validation; statistical testing; growing/pruning
methods.

1. Introduction

Every learning algorithm starts by assuming a certain model structure and once the
structure is fixed, the parameters are trained to optimize the fit to the training data.
Since the number of possible structures is large, the unsystematic way of trying a
number of arbitrary structures and selecting the best rarely finds an optimal or a
near optimal result and there is a need for a methodology to optimize the structure.

For a feed-forward multilayer perceptron (MLP), the model is defined by the
network structure such as the number of hidden layers, the number of units in
these layers and the connectivity between them and once a network structure is

159

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

160 O. Aran, O. T. Yıldız & E. Alpaydın

fixed, backpropagation trains the weights of the connections in the network. In this
paper, we use MLP with sigmoid hidden units and softmax/linear output units for
classification/regression problems respectively. We assume the general and most-
widely used connectivity pattern where each node feeds to all units in the next
layer, connections do not skip layers and there are no recurrent connections.

The increasing number of data mining applications in the industry increased
the number of end users, most of whom are not experts and lack the knowledge
of the algorithms and the models used. Specifically for the case of MLP, it is hard
to estimate the number of hidden units or layers even for an expert user. There is
therefore need for a methodology to optimize the network structure in a manner
invisible to the end user, which, though may not necessarily return the optimal,
returns a good enough structure in reasonable time. In this paper, we propose the
MOST framework to optimize the architecture without any user interference. A
rudimentary version of this work was presented at ICANN 2003.4

The optimal architecture is a network that is large enough to learn the under-
lying function and is small enough to generalize well. A network smaller than the
optimal architecture cannot learn the problem well; on the other hand, a large net-
work will overlearn the training data resulting in poor generalization. The trade-off
between bias and variance is the key19: a small network underfits and fails to learn
the data (bias is high and variance is low). A large network overfits; it learns the
data (bias is low) but also learns the noise (variance is high). The optimal archi-
tecture is the one with low bias and low variance so that the network learns the
function underlying the data and not the added noise.

Approaches that modify network structure are basically a variant or a combina-
tion of two greedy strategies, growing and pruning.2 If the initial model is a small
network and the network grows during learning, the algorithm is called a grow-
ing/constructive algorithm.35 If the initial network is large and the network shrinks
during learning, then the algorithm is called a pruning/destructive algorithm.55

There are also hybrid algorithms which can both add and remove. The construc-
tive approach is generally preferred over the destructive approach: specifying the
initial network is easier in constructive methods; in destructive methods, one has
to decide how big the initial network must be. Since constructive methods start
small, they train simpler networks at each iteration and the total computation time
is less. Constructive methods are also more likely to end up with smaller networks.

To check for improvement after a change in the network structure, one needs
an evaluation function to assess the goodness of a network. In early studies, this
used to be the training error. To check for overfitting, it is better to use the error
on a separate validation set. To average over randomness on small datasets, it is
nowadays customary to use cross-validation by resampling3, 56 and bootstrap.32, 41

A comparison of cross-validation and bootstrap techniques for model selection can
be found in Ref. 34.

Most work on incremental algorithms consider networks with a single hid-
den layer, reducing the problem to the estimation of the number of hidden

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 161

units.6, 17, 18, 56 In theory, networks with multiple hidden layers are not more pow-
erful than ones with a single hidden layer,29 but it is also known empirically
that networks with multiple hidden layers sometimes generalize better, with fewer
parameters.25

Among the constructive methods proposed, there are those that add hidden
nodes to a single hidden layer one by one; examples are dynamic node creation,6

upstart algorithm,17 and feedforward neural network construction using cross vali-
dation.56 Cascade correlation16 also adds hidden nodes but the added node becomes
a new hidden layer with a single hidden node. Modified versions of cascade corre-
lation are also proposed.37, 39, 40

Resource allocating network is a constructive method for RBF nodes.53 In
Ref. 59, an algorithm for incremental neural network construction that is capa-
ble of learning new information without forgetting the old knowledge is proposed.
This algorithm is based on the combination of RBF modules and fuzzy systems.
An incremental training method for the probabilistic RBF is presented in Ref. 12.
In Ref. 47, authors propose a growing network training strategy based on Hermite
polynomial activation functions instead of sigmoid activation functions.

Methods have been proposed to improve convergence while adding hidden units
one at a time by freezing previous weights or by training input or output layer
weights separately.27, 36, 46 In Ref. 30, authors propose the incremental extreme
learning machine, which randomly generates hidden nodes and analytically deter-
mines the output weights. In the enhanced version of their algorithm28 several hid-
den nodes are generated and only the hidden node leading to the highest improve-
ment is added to the network at each step. There are also algorithms that do not
fix the connectivity, such as group method of data handling,60 where the number
of incoming connections to a hidden unit is fixed but their sources may change.

In pruning methods,10, 38, 54 the effect of each weight to the error can be used to
determine whether it is necessary. After training a large network, weights are set to
zero one by one and the change in the error is observed. A weight can be removed
from the network if the change in error is small. However, evaluating the effect of
each weight is cumbersome and will be very slow for a large network. Weight decay
forces weights to decay to zero by adding a penalty term to the error function,
after which connections with too small weights can be pruned. A survey of pruning
methods can be found in Ref. 55.

Hybrid methods, such as generate and test procedure,49 allow both addition
and deletion of hidden units and layers. These methods generally apply a pruning
strategy following the constructive step as proposed in Refs. 11, 46 and 52. Hybrid
algorithms which uses dynamic decay adjustment together with pruning strategies
are proposed for RBF networks.50, 51 In Ref. 26, a growing and pruning strategy is
applied to RBF networks. Learning accuracy is linked to the significance of each
neuron, which is defined as the average information content of that neuron. In Ref. 5,
a hybrid algorithm that makes use of splitting, pruning and merging is proposed to
jointly determine the structure and the parameters.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

162 O. Aran, O. T. Yıldız & E. Alpaydın

Besides such greedy techniques, evolutionary programming1 and genetic
algorithms42, 43, 65 are also used for learning the network structure. A good survey
that covers both evolutionary algorithms and constructive/destructive methods can
be found in Ref. 48. Random search methods such as genetic algorithms are suc-
cessful in finding networks that may have any arbitrary topology. For these very
complex problems, the state space is not continuous and thus is not suitable for the
use of an incremental technique. However, for networks with a fixed domain in which
the solution space is continuous, it is possible to apply an incremental strategy and
perform a guided search. In problems with a continuous solution space, construc-
tive/destructive strategies that add/delete neurons or layers work well. Genetic
algorithms, on the other hand, require longer execution times without necessarily
outperforming incremental methods.48

In Ref. 62, the number of hidden neurons are estimated for three- and four-
layered MLPs using the geometrical interpretation of the weights, the biases and
the number of hidden neurons and layers. Regularization techniques and Bayesian
methods are also used for model selection for neural networks.44, 61, 63 Construc-
tive or destructive strategies are applied to a wide range of applications, such as
image compression,45 feature selection,21 robot control,9, 33 forecasting,20 incident
detection57 and online character recognition.31

In this paper, we propose a framework, named MOST, which intelligently
searches the space of all possible MLP networks. Following a search strategy, start-
ing from an initial state, we navigate through the state space with the help of
operators that change the architecture by adding/removing units/layers. The com-
parison and selection of visited states are done via cross-validation and statisti-
cal tests. We present different MOST instantiations with different initial states
and operators, leading to constructive or destructive MOST variants that imple-
ment depth or breadth-first search. We also discuss the effect of the statisti-
cal test used for architecture comparison on the actual and estimated optimal
architectures.

In the following section, we present and discuss our proposed MOST framework.
We present the experimental results in Sec. 3 where we compare in detail five
different variants of MOST on 44 classification and 30 regression datasets. Section 4
gives the conclusions and discusses possible future directions.

2. MOST: A Meta Learning Algorithm for Architecture Selection

2.1. Structure learning as state space search

We view optimizing the architecture of the MLP as a search in the state space
of all possible architectures.4 In our case where the connectivity graph and the
activation function is fixed, the search space contains all possible combinations of
hidden layers and hidden nodes. The search space is infinite and it is not possible
to train/validate all architectures and select the best one. There is hence need for

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 163

a heuristic strategy which finds a good solution visiting only a small part of the
search space.

We define operators that modify the MLP structure and allow moving from one
state to another. For example, there is the operator Add-1 which adds one hidden
unit and applying this operator takes us from state MLP4 to MLP5, that is from
an MLP with four hidden units to one with five hidden units. Constructive/growing
algorithms therefore can be considered as implementing forward search which start
from a simple initial state and use Add operators. Destructive/pruning algorithms
implement backward search by starting from a complex state and using Remove

operators to prune unit(s)/layer. If both Add and Remove operators are allowed,
the algorithm implements a floating search. The MOST operators and their appli-
cation details are given in Sec. 2.2.

After an operator application, the state evaluation function compares the good-
ness value of the next state with that of the current state and accepts/rejects the
operator depending on whether the goodness value is improved or not. This state
evaluation function trains and validates the network corresponding to the next state
and uses a model selection criterion, which takes into account the generalization
accuracy together with a measure of complexity, so that we favor architectures that
are accurate and simple. The details of the model selection criterion is given in
Sec. 2.3.

When we define the problem of finding the optimal architecture as a state space
search, there are five choices to be made:

(1) Initial state. If we select the linear perceptron (LP) or another simple architec-
ture as the initial state, the algorithm is mainly constructive and adds hidden
nodes and/or layers to the architecture. If we start from a MLP with N hid-
den units (MLPN), with large N , the algorithm is destructive and removes
hidden nodes.

(2) State transition operators. Operators add unit/layer or remove unit/layer. To
allow for faster convergence, there are also operators that make longer jumps in
the state space by adding/removing multiple units, e.g. Add-5 adds five hidden
units whereas Add-1 adds only a single hidden unit.

(3) Search beam. We can have a single operator which gives us a single candidate
architecture or we can apply multiple operators to get multiple candidates. In
the case of multiple operators, breadth-first, depth-first, best-first search, or
any variant thereof can be used.

(4) State evaluation function. One can use cross-validation and an associated sta-
tistical test, or some other model selection criterion, such as Akaike’s informa-
tion criterion (AIC), minimum description length (MDL), Bayesian information
criterion (BIC),8 or structural risk minimization (SRM).22

(5) Termination condition. A trivial condition is to stop the search when no can-
didate improves on the current best. Another possibility is to stop when the
error falls below a certain level, or when a fixed number of iterations are made.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

164 O. Aran, O. T. Yıldız & E. Alpaydın

2.2. MOST operators

MOST supports the following operators (ordered by their effect on the complexity):

(1) Remove-n: Remove n hidden units from a layer.
(2) Remove-1: Remove a single hidden unit from a layer.
(3) Add-1: Add a hidden unit to a layer.
(4) Add-n: Add n hidden units to a layer.
(5) Add-L: Add a new layer before the output layer and set the number of units

in this new layer as:

H1: Number of nodes in the upper layer.
H2: Number of nodes in the upper layer × 2.
H3: Average of the number of nodes in the upper and lower layers.
H4: Average of the number of nodes in the upper and lower layers / 2.

The operators above are selected to enable MOST to search widely in the search
space. Applying Remove-n, Add-n, or Add-L results in large jumps in the search
space whereas operators Remove-1 and Add-1 are used for finetuning in a small
neighborhood. The value of n in ADD-n or REMOVE-n can be determined as any
percentage of the number of hidden units in that layer. To create large jumps in the
search space, we set n as half of the hidden units in that layer. With Add-L, when
a new layer is to be added to the network, the challenging point is to determine
the number of hidden units in each layer. A popular heuristic uses the average of
the number of nodes in the upper and the lower layers (H3). However this can lead
to misleading results if the number of units in one of the layers (e.g. input) is very
large or very small. We use four heuristics: H1 and H3 are the base heuristics. H2
and H4 are useful when H1 and H3 return either too small or too large values.
Again depending on their complexity, the candidates are tried ordered by their
complexities and simpler ones are favored.

2.3. The role of accuracy and complexity: the MultiTest algorithm

We define the complexity of a network by the number of hidden layers and nodes.
The number of layers is the first criterion and complexity increases as the number of
layers increase. Given two networks having the same number of layers, the number of
hidden nodes is considered and complexity increases as the number of hidden nodes
increase. Other complexity measures, such as the number of connections, can also
be used; note however that if the number of connections is used as the complexity
measure, MLP with a few hidden nodes can be simpler than a LP depending on
the number of inputs and outputs.

The pseudocode of MOST is given in Fig. 1. It starts by selecting an initial
network as current Best (Line 2). To generate candidate models, Ci, operators are
applied (Lines 4–5) ordered by their complexities and that is why candidate models
are sorted (Line 6). Once generated, a candidate model is first trained and validated

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 165

1 BestModel MOST
2 Best = initial network
3 while Best changed
4 for each applicable operator Operi

5 Ci ← Operi(Best)
6 Sort candidates Ci in the order of complexity
7 for i = 1 to number of candidates
8 Train and validate Ci on k folds
9 if Ci is more complex than Best

10 Test H0 : µBest ≤ µCi

11 if H0 is rejected
12 Best ← Ci

13 break
14 else
15 Test H0 : µCi

≤ µBest
16 if H0 is accepted
17 Best ← Ci

18 break
19 return Best;

Fig. 1. The pseudocode of MOST.

over cross-validation folds (Line 8) and its expected validation error is compared
with that of the current best using a one-sided statistical test.

The idea is to keep the network simple, unless we know that the additional
complexity decreases the error significantly and in applying the test, we take com-
plexity into account as follows64: when comparing two models i and j where i is
simpler than j, we test if model i has an expected error rate less than or equal to
the expected error of model j:

H0 : µi ≤ µj vs. H1 : µi > µj .

We set a prior preference of i over j because it is simpler. By assuming a prior
ordering, we would like to test whether it is supported by the data, the hypothesis
follows the prior and is one-sided. If the test accepts, we favor i: either µi < µj ,
that is, the simpler model indeed has less error and we choose it because it is more
accurate; or, µi = µj and we prefer the simpler model. We favor model j only if the
test rejects, i.e. when the additional complexity is justified by a significant decrease
in error and the test (data) overrides our prior preference. That is, accuracy is
checked first and given equal accuracies, the simpler model is favored.

Hence, in the case of MOST, if candidate Ci is more complex than the cur-
rent best, it must have significantly less error in order to replace the best model
(Lines 9–13). Similarly, if Ci is simpler than the current best, it replaces the best

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

166 O. Aran, O. T. Yıldız & E. Alpaydın

unless it has significantly larger error (Lines 14–18). If the best model is changed,
the algorithm continues by generating new candidates (Line 3). If none of the can-
didates replace the best, the algorithm stops and returns the current best (Line 19).

If at any state we have multiple operators to apply and want to do breadth-
first search, we generate all the next states and need to choose the best among all
new candidates and the current best. Choosing the best of two models taking into
account expected error and complexity by using a statistical test can be general-
ized to choosing the best of an arbitrary number of models using the MultiTest
algorithm.64

To order K > 2 models, MultiTest uses a K(K − 1)/2 pairwise tests and repre-
sents the results of these tests as a directed graph which it then sorts topologically.
The graph has K vertices corresponding to K models (Fig. 2). Assume that the
models are sorted such that i < j if model i is simpler than j. For all i < j where
i, j = 1, . . . , K, we test H0 : µi ≤ µj and if the test rejects, we place a directed
edge from i to j to indicate that we are overriding the prior order. This corresponds
to a binary relation R defined on the set of models where jRi implies that j > i

(more complex) and j has significantly less expected error than i. If we have j �Ri,
this means that the test is accepted and our prior choice of i over j due to sim-
plicity stands. The resulting directed graph has thus directed edges where the test
is rejected for its incident vertices. The number of incoming edges to a node j is

LP MLP5

MLP20

LP

MLP20MLP10

MLP5

LPLP

MLP20

Fig. 2. Sample execution of MultiTest on four networks after the application of six pairwise tests.
Nodes with thick lines indicate candidates at each step and among them, the simplest one (the
most preferred) is taken (shown shaded). The best one is MLP10 and if we continue iterating the
ordering found is MLP10 < MLP5 < MLP20 < LP .

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 167

the number of models that are preferred over j but have higher expected error.
The number of outgoing edges from a node i is the number of models that are less
preferred (more complex) than i but have less expected error. The resulting graph
need not be connected.

Once the directed graph is formed by the use of the pairwise tests, we choose
the “best”:

(i) We find the nodes with no outgoing edges to produce the set Lk. If there is
no outgoing edge from a node, there is no other model that has less expected
error.

(ii) From the elements of Lk, we select the simplest node to report. This selected
model is the one that is the most preferred among all with the least expected
error.

This calculates the “best” node; if we want to order in terms of “goodness,”
we iterate steps (i) and (ii) removing the best and the edges incident to it at each
iteration to get a topological sort (Fig. 2).

To find the best of K models, MultiTest makes K(K−1)/2 tests and in order to
have a confidence level of (1−α) for the final best model, the confidence level of each
one-sided test should be corrected. The two correction methods are Bonferroni13

and Holm.23

2.4. Five MOST variants

Different search algorithms can be obtained by changing the choices in the MOST
framework. One can produce a constructive or a destructive algorithm by changing
the initial state, operator set and the order of trying the operators. Changing the
search variant affects the performance of the solution network as well as the com-
plexity of search until a solution is found. We investigate the following five MOST
variants (Fig. 3):

(1) One-step forward (1-Fwd): Starts with LP and uses Add-1 until there is no
improvement.

(2) One-step backward (1-Bwd): Starts with MLP50 and uses Remove-1 until no
improvement.

(3) Forward MOST (Fwd): Starts with LP and applies all operators above in
increasing order of complexity in a depth-first manner, starting with the sim-
plest one.

(4) Backward MOST (Bwd): Starts with MLP50 and applies all operators plus
an operator for layer removal in decreasing order of complexity in a depth-first
manner, starting with the most complex.

(5) Forward MOST with MultiTest (MultiFwd): Starts with LP and instead of
applying one by one, in a breadth-first manner, applies all operators at once
and chooses the best among these new candidates and the current best using

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

168 O. Aran, O. T. Yıldız & E. Alpaydın

LP

MLPn

MLP1

MLP2

MLP3

... ...

MLP50

MLP49

MLP48

MLP47

MLPn

LP

MLPc1MLPa1 MLPb1

MLPc2MLPa2 MLPb2 MLPd2

MLPb3MLPa3

MLPc4MLPa4MLPb4 MLPe4MLPd4

a5

MLP50

MLPe1

MLPc2MLPe2MLPd2 MLPb2

MLPd3MLPe3

MLPc4MLPe4MLPd4 MLPa4MLPb4

MLPc5MLPe5 MLPd5 MLPMLPb5 LP

LP

MLPc1MLPa1 MLPb1

MLPc2MLPa2 MLPb2 MLPd2 MLPe2

MLPc3MLPa3 MLPb3 MLPd3 MLPe3

MLPe1MLPd1

Fig. 3. Example search paths of the five MOST variants. For Fwd, MultiFwd and Bwd, at step
i, five candidate networks (MLPai, MLPbi, MLPci, MLPdi, MLPei) are produced by applying
operators. The complexity of these candidate networks increase from MLPai to MLPei. Note
that in Fwd, candidate networks are processed from simple to complex whereas the order is from
complex to simple in Bwd. The difference between MultiFwd and Fwd is that in MultiFwd,
instead of using an order and processing one by one, all candidate networks are processed at once
and the best is selected. The circled states are the final optimal states selected by the algorithm.

MultiTest. (That is, if there are m operators, MultiTest chooses the best of
m + 1, that is, m new candidates and the current best.)

1-Fwd and 1-Bwd are the basic constructive and destructive algorithms. Fwd

and Bwd allow multiple operators and use floating search, that is, allow both
additions and removals. MultiFwd does breadth-first search evaluating all candi-
dates at any intermediate state. Fwd, MultiFwd and 1-Fwd can be defined as
constructive and Bwd, 1-Bwd as destructive. It is important to note that MOST
framework is general and by using different initial states and operator sets, one can
achieve a spectrum of MOST variants.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 169

3. Experiments

3.1. Experimental factors and evaluation criteria

In the following experiments, we investigate the effect of the following factors:

• MOST variant used in search. These are 1-Fwd, 1-Bwd, Fwd, Bwd and Multi-

Fwd, implementing forward versus backward search, using single versus multiple
operators and searching depth-first versus breadth-first.
• Type of application. It can be classification or regression. We use 44 classifi-

cation datasets and 30 regression datasets mainly from UCI Machine Learning
repository,7 Delve,14 Statlib58 and Statlog24 datasets archives (Table 1). Dis-
crete attributes with n possible values are converted to numeric using 1-of-n
encoding.
• Resampling done in cross-validation. We use 5×2 and ten-fold cross-validation.

Although cross-validation is very time consuming, it generalizes better than infor-
mation criteria such as AIC, BIC or SRM, because it makes no a priori assump-
tions, though is better to use such criteria when time complexity is crucial and
lower execution times can be traded for a lower generalization error. The problem
of neural network model selection is generally a one-time process. Hence, higher
accuracy should be preferred.
• Statistical test used in comparison. We use two parametric tests, 5×2 cv paired

t test, 10-fold paired t test and two nonparametric tests, Wilcoxon test and sign
test.15

• Confidence level (1− α) of the test. We use 0.95, 0.99, 0.995 and 0.999.
• Correction used when applying multiple tests. We use Bonferroni and Holm cor-

rections and compare with no correction.

Networks are trained using backpropagation based on stochastic gradient-
descent with adaptive learning rate and momentum. The retraining of the network,
when an operator is applied, is done by completely re-initializing all the weights
and retrain from scratch. No weights are kept or frozen. The learning rate and the
number of epochs are determined by cross-validation for each dataset separately, to
maximize accuracy on the validation set. For each dataset, we determine learning
rate-epoch pairs for LP and MLP networks and also for each resampling method,
ten-fold and 5×2 cross validation, resulting in four different learning rate — epoch
pairs per dataset. We determine the number of epochs by choosing among five
different values (50–100 150–200–250) and the learning rate by choosing among
(0.001–0.005–0.01–0.05–0.1). On each setup, the learning rate — epoch pair that
gives the highest accuracy on the validation set is selected. Parameter selection for
the MLP networks is performed on a network of ten hidden units.

The architectures found by MOST variants are compared with the optimal
architecture. The optimal architecture of each dataset is found by applying an
exhaustive search over LP, all MLPs with a single hidden layer up to 50 hidden
nodes and MLP with two hidden layers up to 50 hidden nodes on both layers. Hence,

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

170 O. Aran, O. T. Yıldız & E. Alpaydın

Table 1. d: Inputs, C: Classes, N : Sample size. (U)CI, (D)elve, (S)tatlib, Stat(L)og,
(A)T&T labs, s(Y)nthetic.

Classification d C N Source

artificial 10 2 320 U
australian 42 2 690 L
balance 20 3 625 U
breast 9 2 699 U
bupa 6 2 345 U
car 21 4 1728 U
cmc 24 3 1473 U
credit 46 2 690 U
cylinder 69 2 540 U
dermatology 34 6 366 U
ecoli 7 8 336 U
flags 118 8 194 U
flare (sonar) 23 3 323 U
glass 9 6 214 U
haberman 3 2 306 U
heart 13 2 270 U
hepatitis 19 2 155 U
horse 97 2 368 U
iris 4 3 150 U
ionosphere 34 2 351 U
letter 16 26 20000 U
monks 6 2 432 U
mushroom 116 2 8124 U
nursery 27 5 12960 U

ocr 256 10 600 U
optdigits 64 10 3823 U
pageblock 10 5 5473 U
pendigits 16 10 7494 U
pima 8 2 768 U
postoperative 23 3 90 U
ringnorm 20 2 7400 D
segment 19 7 2310 U
spambase 57 2 4601 U
tae 56 3 151 U
thyroid 47 4 2800 U
tictactoe 27 2 958 U
titanic 8 2 2201 D
twonorm 20 2 7400 D
vote 32 2 435 U
wave 21 3 5000 U
wine 13 3 178 U
yeast 8 10 1484 U
zipcodes 256 10 7291 A
zoo 16 7 101 U

Regression d N Source

abalone 7 4177 U
add10 10 9792 D
bank32fh 32 8192 D
bank32fm 32 8192 D
bank32nh 32 8192 D
bank32nm 32 8192 D
bank8fh 8 8192 D
bank8fm 8 8192 D
bank8nh 8 8192 D
bank8nm 8 8192 D
boston 13 506 U
california 8 20640 S
comp 21 8192 D
kin32fh 32 8192 D
kin32fm 32 8192 D
kin32nh 32 8192 D
kin32nm 32 8192 D
kin8fh 8 8192 D
kin8fm 8 8192 D
kin8nh 8 8192 D
kin8nm 8 8192 D
puma32fh 32 8192 D
puma32fm 32 8192 D
puma32nh 32 8192 D
puma32nm 32 8192 D
puma8fh 8 8192 D
puma8fm 8 8192 D
puma8nh 8 8192 D
puma8nm 8 8192 D
sine 1 8000 Y

there are 1 + 50 + 50× 50 = 2551 different architectures to choose from. Then by
using a statistical test, we compare each of these 2551 architectures with the other
2550 architectures and find the optimal architecture using MultiTest64 (MultiTest
also gives an ordering of these models and we use this ordering to calculate the
“distance” between an architecture found by MOST and the optimal architecture,

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 171

as we see below. Also see Sec. 2.3). We see that a two-hidden layer MLP is selected
as the best model in only a single dataset out of 74. Therefore throughout the rest
of this paper, we restrict the search space to LP and MLP with a single hidden
layer where the number of hidden units range from 1 to 50, hence having a search
space of 51 states.

We compare the architectures found by the five MOST variants in terms of three
criteria:

(1) The accuracy of the estimated architecture.
(2) The complexity of the estimated architecture.
(3) Computational complexity of the search until an architecture is found.

To measure the goodness of an architecture found, we define the measure of
order, which, found by MultiTest (specific for a dataset), has the optimal archi-
tecture in position one, second best architecture in position two and the worst
architecture in the last position. Both accuracy and complexity are used for finding
this order by MultiTest: a low order indicates that we either find an architecture
that is close to the optimal architecture in terms of accuracy, or if the accuracies
are comparable, we find an architecture that is simpler than an architecture with
higher order.

Additional to the goodness of the final state found, we are also interested in
how fast we get there and for this, we define an additional measure of rank, which
uses the number of states visited as a measure of the complexity of search. It is
important to keep this low because this corresponds to the number of architectures
that should be trained and validated (over multiple folds). The architectures found
by the algorithms are ordered first using MultiTest to determine their orders and
then ranked by their proximity to the optimal architecture. The search complexity
is then taken into account if two or more MOST variants find the same architecture.
In that case, ranks replace the order and the one which visits less number of states
takes a lower rank. If the number of states visited is also equal, the average of
the ranks is taken. An example for calculating the ranks is given in Table 2. A
MOST variant with a low rank indicates that it finds an architecture that is close
to the optimal architecture and in doing this, visits few states, when compared with
another MOST variant with higher rank.

3.2. Initial results

Before reporting the full set of results, we first give results using 5 × 2 cv t test
with 1−α = 0.95, 0.99, 0.995, 0.999 using Bonferroni correction, to get a quick, first

Table 2. An example for calculation of ranks.

Fwd Bwd MultiFwd 1-Fwd 1-Bwd

Order 3 2 1 1 2
Number of states visited 10 5 3 4 5
Rank 5 3.5 1 2 3.5

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

172 O. Aran, O. T. Yıldız & E. Alpaydın

idea. 5 × 2 cv t test has low type I error and reasonable power15 and Bonferroni
correction is the most frequent approach used in corrections. We discuss how results
vary using other choices for resampling, test and correction in the next subsection.

The effect of the confidence level on the average complexity of the architectures
found by the five MOST variants, compared with the optimal architecture is shown
in Fig. 4. We see that on most datasets, LP or MLP with few hidden units tend to be
considered optimal. Our experiments show that as the confidence level increases, the
complexity of the optimal architecture as well as the complexity of the architectures
found by MOST variants decrease. This is because when the confidence value is high,
confidence intervals get larger and the differences between expected errors should
be larger for two models to be considered significantly different; hence tests tend to
accept equality of error rates more as (1 − α) increases, in which case the simpler
one is preferred. As we see in the experiments, 5× 2 cv t is a conservative test and
Bonferroni correction has the effect of further increasing the confidence level.

The destructive variants, Bwd and 1-Bwd, are more sensitive to changes in the
confidence level (note the steep decrease, e.g. from 0.95 to 0.99). Regardless of the
confidence level, Fwd and MultiFwd get closest to the optimal architecture where
MultiFwd is slightly better. 1-Fwd finds the simplest and the two destructive
variants, Bwd and 1-Bwd, find the most complex architectures. The behavior of
MOST variants on classification and regression datasets are similar.

Figure 5 shows the histograms of the number of datasets according to the dis-
tance of the models found by MOST variants to the optimal architecture. The
distance between two architectures is taken as the difference of the number of hid-
den nodes. Bin 0 of the histogram contains the number of datasets where the models
are correctly found (distance to the optimal architecture is zero). Bins on the right
contains the number of found models which are more complex and bins on the

 0.95 0.99 0.995 0.999

0

5

10

15

20

25

Confidence Level

A
ve

ra
ge

 #
 o

f h
id

de
n

un
its

5x2 cv t test – Bonferroni

Optimal
FWD
BWD
MULTIFWD
1FWD
1BWD

 0.95 0.99 0.995 0.999

0

5

10

15

20

25

Confidence Level

A
ve

ra
ge

 #
 o

f h
id

de
n

un
its

5x2 cv t test – Bonferroni

Optimal
FWD
BWD
MULTIFWD
1FWD
1BWD

(a) Classification (b) Regression

Fig. 4. The average number of hidden units of the found architectures with 5×2 cv paired t test
using Bonferroni correction.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 173

<10 >=−10 >=−5 0 <=5 <=10 >10
0

5

10

15

20

25

30

35

Distance to the optimal model

of

 d
at

as
et

s

Histograms for 1–FWD and 1–BWD

1FWD
1BWD

<10 >=−10 >=−5 0 <=5 <=10 >10
0

5

10

15

20

25

30

35

Distance to the optimal model

of

 d
at

as
et

s

Histograms for FWD, BWD & MULTIFWD

FWD
BWD
MULTIFWD

<10 >=−10 >=−5 0 <=5 <=10 >10
0

5

10

15

20

25

30

35

Distance to the optimal model

of

 d
at

as
et

s

Histograms for 1–FWD, 1–BWD

1FWD
1BWD

<10 >=−10 >=−5 0 <=5 <=10 >10
0

5

10

15

20

25

30

35

Distance to the optimal model

of

 d
at

as
et

s

Histograms for FWD, BWD & MULTIFWD

FWD
BWD
MULTIFWD

(a) Classification (b) Regression

Fig. 5. Histogram of number of hidden units found by 1-Fwd, 1-Bwd (top row) and Fwd, Bwd,
MultiFwd (bottom row). These results are obtained with 5×2 cv t test, Bonferroni correction
and 0.95 confidence.

left contains models which are simpler than the optimal architecture. The models
found by the constructive variants (1-Fwd, Fwd, MultiFwd) are generally sim-
pler than the optimal architecture and for the destructive variants (1-Bwd, Bwd),
models are more complex. The exact, optimal architecture is found more frequently
by 1-Fwd than 1-Bwd. Fwd and MultiFwd find the optimal architecture more
frequently than Bwd.

The performances of the MOST variants, as a function of confidence level, on
two sample classification datasets, letter and ringnorm, are given in Fig. 6(a). The
optimal architecture for the letter is the most complex one among the 44 classi-
fication datasets used in this work. 1-Fwd find very simple architectures, which
is an expected result due to its limited constructive nature. 1-Bwd has an unex-
pected behavior and finds simpler architectures than Fwd and MultiFwd. For
this dataset, 1-Bwd finds the closest architectures to the optimal for each confi-
dence level. Fwd and MultiFwd find simpler architectures as the confidence level
increases. Bwd gets stuck in the initial architecture and finds the most complex

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

174 O. Aran, O. T. Yıldız & E. Alpaydın

architecture for this dataset. The optimal architecture of ringnorm has a moderate
complexity. For many of the datasets and for the average values, as confidence level
increases, the complexity decreases, however in ringnorm, the confidence level on
Bwd has an unusual effect. The complexity of the model found by Bwd is higher
for 0.999 than lower confidence levels. MultiFwd finds the closest architecture to
the optimal architecture.

The performances of the MOST variants on three sample regression datasets,
kin8nm and puma8nh, are given in Fig. 6(b). For kin8nh dataset, although the
architectures found by MultiFwd and Fwd are very close to the optimal, none of
the variants is successful at finding the exact architecture. The architecture found by
Bwd is more complex than the optimal and is not affected by the confidence level.
For puma8nh dataset, exact architecture is not found by any variant. Constructive
variants, 1-Fwd, Fwd and MultiFwd, find close results for all confidence levels.
Destructive variants, 1-Bwd and Bwd, find closer results as the confidence level
increases.

 0.95 0.99 0.995 0.999

0

5

10

15

20

25

30

35

40

45

50

Confidence Level

of

 h
id

de
n

un
its

 letter dataset – – 5x2 cv t test – Bonferroni correction

Optimal
FWD
BWD
MULTIFWD
1FWD
1BWD

 0.95 0.99 0.995 0.999

0

5

10

15

20

25

30

35

40

45

50

Confidence Level

of

 h
id

de
n

un
its

 ringnorm dataset – – 5x2 cv t test – Bonferroni correction

Optimal
FWD
BWD
MULTIFWD
1FWD
1BWD

 0.95 0.99 0.995 0.999

0

5

10

15

20

25

30

35

40

45

Confidence Level

of

 h
id

de
n

un
its

kin8nm dataset – – 5x2 cv t test – Bonferroni correction

Optimal
FWD
BWD
MULTIFWD
1FWD
1BWD

 0.95 0.99 0.995 0.999

0

5

10

15

20

25

30

35

40

Confidence Level

of

 h
id

de
n

un
its

puma8nh dataset – – 5x2 cv t test – Bonferroni correction

Optimal
FWD
BWD
MULTIFWD
1FWD
1BWD

(a) Classification (b) Regression

Fig. 6. Results on two sample (a) classification and (b) regression datasets: the architectures
found by the MOST variants are compared with the optimal architecture.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 175

0.95 0.99 0.995 0.999

5

10

15

20

25

30

Confidence Level

A
ve

ra
ge

 O
rd

er

5x2 cv t test – Bonferonni

FWD
BWD
MULTIFWD
1FWD
1BWD

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

Confidence Level

A
ve

ra
ge

 O
rd

er

5x2 cv t test – Bonferonni

FWD
BWD
MULTIFWD
1FWD
1BWD

(a) Classification (b) Regression

Fig. 7. The average order of the MOST variants with 5 × 2 cv paired t test using Bonferroni
correction.

Figure 7 shows the average order of the five MOST variants on all datasets,
where, order, as we discuss above corresponds to the distance to the optimal archi-
tecture. It can be seen that for classification problems, Fwd and MultiFwd have
smaller order whereas Bwd and 1-Bwd have higher order and 1-Fwd is in the mid-
dle. For regression problems, the same behavior can be seen at 0.95 confidence. For
both classification and regression problems, the differences between MOST variants
tend to disappear for high confidence levels, when confidence intervals get so large
that the differences between error rates are considered insignificant.

Figure 8 shows the average rank of MOST variants for different confidence lev-
els, where rank, as we discuss above, corresponds to the time complexity of the
search. The two destructive variants, Bwd and 1-Bwd, have high rank, whereas

0.95 0.99 0.995 0.999
1

1.5

2

2.5

3

3.5

4

4.5

5

Confidence Level

A
ve

ra
ge

 R
an

k

5x2 cv t test – Bonferonni

FWD
BWD
MULTIFWD
1FWD
1BWD

0.95 0.99 0.995 0.999
1

1.5

2

2.5

3

3.5

4

4.5

5

Confidence Level

A
ve

ra
ge

 R
an

k

5x2 cv t test – Bonferonni

FWD
BWD
MULTIFWD
1FWD
1BWD

(a) Classification (b) Regression

Fig. 8. The average rank of the MOST variants with 5 × 2 cv paired t test using Bonferroni
correction.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

176 O. Aran, O. T. Yıldız & E. Alpaydın

the constructive variants, Fwd, MultiFwd and 1-Fwd, have low ranks, with 1-

Fwd having the lowest rank.
Both the order and the rank of destructive variants, Bwd and 1-Bwd, are the

highest. This shows that the architectures found by these are far from optimal and
that their computational complexities are high. However for constructive variants,
the orders of Fwd and MultiFwd are lower than 1-Fwd whereas their ranks are
higher. This implies that Fwd and MultiFwd can find architectures that are closer
to the optimal but need to visit more intermediate states for this. Unlike Fwd and
MultiFwd, variants that perform one hidden node additions (1-Fwd and 1-Bwd)
perform well only if the optimal architecture is close to the initial architecture (too
small or too large, respectively).

3.3. The effect of the confidence level, the statistical test and the

correction methodology

The optimal architecture found and the performances of the MOST variants change
when a different correction methodology or a different statistical test is used. We
use four tests; two parametric tests, 5×2 cv t and ten-fold cv t tests and two non-
parametric tests, Wilcoxon and sign tests. For these tests, we check for the effect
of varying the confidence at four levels, 0.95, 0.99, 0.995, 0.999. For comparison
purposes, we also show the results when no statistical test is used; in this case,
when two architectures are compared, the one with the higher average validation
fold accuracy (doing ten-fold cv) is selected, without any regard for statistical sig-
nificance. To observe the effect of the correction methodology, we also compare
the results with no correction against applying Bonferroni or Holm correction. In
this section, we will only report results on classification datasets as very similar
behaviors are observed on the regression datasets.

Figure 9 shows the change of the average number of hidden units of the optimal
architectures according to the confidence level 1−α and the correction method. The
average complexity drops down as the confidence level increases. This is expected
because as the confidence level increases, the differences between the errors of some
of the complex models and some of the simple models become insignificant. In that
case, since complex models are not significantly better than the simple models, the
simple models will be selected as optimal.

Statistical tests have a similar drop down effect on the complexity according
to how conservative they are. We see that 5×2 cv t and Wilcoxon tests are more
conservative (define larger confidence intervals) than ten-fold cv t and sign tests,
since the complexity (the number of hidden units) of the optimal architecture is
always higher in the two latter. When we use no statistical test and select the
architecture with highest accuracy, the average complexity increases, justifying the
need for model selection, e.g. through a statistical test.

The sign test accepts or rejects the null hypothesis by counting how many
times the first model is more accurate than the second model in k folds, where the

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 177

 0.95 0.99 0.995 0.999
0

2

4

6

8

10

12

14

16

18

20
A

ve
ra

ge
 #

 o
f h

id
de

n
un

its

Confidence Level

No

 0.95 0.99 0.995 0.999
0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 #
 o

f h
id

de
n

un
its

Confidence Level

Bonferroni

 0.95 0.99 0.995 0.999
0

2

4

6

8

10

12

14

16

18

20

Confidence Level

A
ve

ra
ge

 #
 o

f h
id

de
n

un
its

Holm

5x2 cv t
1x10 cv t
Wilcoxon
Sign
No test

Fig. 9. Effect of confidence level, statistical test and correction method on the average number
of hidden units of the optimal network architecture on classification datasets.

minimum is 0 and the probability of this case is 1/2k. Because of this, the sign test
cannot accept or reject null hypotheses for confidence levels higher than 1− 1/2k.
In our case where k = 10, we have 1 − 1/210 = 0.999. For both Bonferroni and
Holm corrections, the minimum confidence level is 1 − 0.05/(50 · 51/2) = 0.99996,
which is higher than the maximum confidence level we can reject. Therefore for
both correction types, we can never reject the null hypothesis and the simplest
model, LP, is always selected. To prevent this effect, in sign test, when the second
model wins against the first in all folds, we reject the hypothesis. This procedure
cancels the effect of confidence when there is an absolute win in all folds. In Fig. 9,
we see that the results of the sign test are more or less the same when different
correction methodologies are applied.

Similar results occur also with the Wilcoxon test, which orders the validation
errors of both models and assigns rank one to the minimum result, rank two to the
second minimum result, etc. After assigning the ranks, Wilcoxon test defines a test
statistic based on the sum of the ranks of the first model. The best/worst case occurs
when all of the error rates of the first model are smaller/larger than the error rates
of the second model. For our problem (k = 10), this case has a probability of 0.0001
(confidence level of 0.9999). As explained before, the minimum confidence level for
Bonferroni and Holm corrections is higher than this confidence level. Therefore for
both correction types, we can never reject the null hypothesis and the simplest
model, LP, is always selected.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

178 O. Aran, O. T. Yıldız & E. Alpaydın

0

5

10

15

20

Average Order
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Average Rank

No test – Highest Accuracy selected

FWD
BWD
MULTIFWD
1–FWD
1–BWD

0

5

10

15

20

25

30

35

40

45

50

Average # of hidden units

Fig. 10. Average order, rank and the number of hidden units of architectures found by MOST
variants on classification datasets when no statistical test is used and simply the model with the
highest average validation accuracy is selected. The bold line shows the average optimal number
of hidden units for this case.

Figure 10 shows the average order, rank and the number of hidden units of the
models found by MOST variants without applying any statistical test but by just
selecting the model with the highest average validation set accuracy. On the clas-
sification datasets, Bwd finds the closest architecture to the optimal in terms of
accuracy and model complexity (order) and 1-Fwd is the worst. When computa-
tional complexity is also taken into account (rank), MultiFwd is the best whereas
Bwd has a high rank, meaning that although it finds the closest architecture to
the optimal on the average, its computational complexity is very high. The average
number of hidden units found by MOST variants are also compared to that of the
optimal model. It can be seen that the results of 1-Fwd and 1-Bwd are lower and
upper bounds respectively, as expected. The average model found by Bwd is the
closest to the average optimal model. As shown in Fig. 9, the optimal models in
this case, compared to when a statistical test is used, are very complex. Therefore,
the performance of Bwd is expected to be good since when the optimal model is
complex, backward search algorithms perform better.

The reason of obtaining architectures with high complexity when no statistical
tests are used is that, whenever candidate architecture produces error rates less than
the current one, it is automatically accepted. However, by using statistical tests to
compare the error rates of the architectures, even when the average error of some
architecture is less than the other, the statistical test may indicate that there is no
significant difference between them. When there is no significant difference, MOST
gives the priority to the simpler architecture. This makes it hard to accept candidate
architectures with large number of hidden units when we apply statistical tests.

Figure 11 shows the average number of hidden units found by MOST variants
as the statistical test, the confidence level and the correction method are varied on

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 179

 0.95 0.99 0.995 0.999
0

5

10

15

20

A
vg

. #
 o

f h
id

. u
ni

ts
 (

5x
2

cv
 t

te
st

)
No

 0.95 0.99 0.995 0.999
0

5

10

15

20

Bonferroni

 0.95 0.99 0.995 0.999
0

5

10

15

20

Holm

Optimal
FWD
BWD
MULTIFWD
1–FWD
1–BWD

 0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

35

A
vg

. #
 o

f h
id

. u
ni

ts
 (

10
 fo

ld
 c

v
t t

es
t)

 0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

35

 0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

35

 0.95 0.99 0.995 0.999

0

2

4

6

8

A
vg

. #
 o

f h
id

. u
ni

ts
 (

W
ilc

ox
on

 te
st

)

 0.95 0.99 0.995 0.999

0

2

4

6

8

 0.95 0.99 0.995 0.999

0

2

4

6

8

 0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

35

A
vg

. #
 o

f h
id

. u
ni

ts
 (

S
ig

n
te

st
)

 0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

35

Confidence Level
 0.95 0.99 0.995 0.999

0

5

10

15

20

25

30

35

Fig. 11. Effect of confidence level, test and correction on the number of hidden units for classi-
fication datasets.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

180 O. Aran, O. T. Yıldız & E. Alpaydın

classification datasets. In all cases except when Wilcoxon test is used with correc-
tion, Fwd and MultiFwd find architectures closest to the optimal. The confidence
level of Wilcoxon test with correction is very high and it selects LP as the optimal
architecture for all datasets. Bwd and 1-Bwd find simpler architectures as the
confidence level increases.

Figure 12 shows the effect of statistical test and correction methodology on the
order of MOST variants on classification datasets as a function of the confidence
level. When a correction method is applied (either Bonferroni or Holm), the average
order of the constructive algorithms, Fwd, MultiFwd, 1-Fwd, decrease and get
closer to the optimal, whereas for destructive algorithms, Bwd and 1-Bwd, the
behavior is variable. For the sign test, the correction method has no effect as a result
of the slight modification in the test procedure in which we reject the hypothesis
when the second model wins against the first in all folds. In general, Fwd and
MultiFwd have the smallest order and they find architectures that are close to
the optimal in terms of accuracy and also less complex than architectures with
comparable accuracy.

When algorithm ranks are considered (see Fig. 13), we see that the effect of the
type of statistical test or correction on the rank is very small. In all cases, destructive
algorithms, Bwd and 1-Bwd, have the highest rank. Although they have small
order especially when the confidence level is high, they have the disadvantage of
starting from a complex architecture. This shows that when the computational
complexity of the search is also taken into account, destructive algorithms have
poor performance. Among the constructive algorithms, 1-Fwd has the lowest rank
and Fwd and MultiFwd have slightly higher ranks. Again, the lowest rank of
1-Fwd follows from the fact that most datasets have LP or MLP with few hidden
units as the optimal architecture and 1-Fwd start from very close to the goal.
With less conservative tests and smaller confidence levels, the optimal model starts
to move further away from LP and the ranks of constructive variants start to
increase.

3.4. Comparison with other incremental methods

We compare MOST with two well-known incremental methods, namely Dynamic
Node Creation and Cascade Correlation.

Dynamic Node Creation (DNC)6 builds MLP networks with a single hidden
layer. It starts with small number of hidden units and incrementally adds hidden
nodes to the network until a satisfactory solution is found. Hidden nodes are added
one at a time and to the same hidden layer. The weights of the newly added hidden
node are initialized randomly to a small number. The whole network (both the old
hidden nodes and the new one) is re-trained after each addition. The decision of
adding a new hidden node is made by considering the flatness of the average error
curve. Although both DNC and 1-Fwd variant of MOST construct MLP networks
in a very similar way, they differ in the details. The main difference is the decision of

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 181

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

No
A

ve
ra

ge
 O

rd
er

 (
5x

2
cv

 t)

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

Bonferroni

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

Holm

FWD
BWD
MULTIFWD
1–FWD
1–BWD

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

A
ve

ra
ge

 O
rd

er
 (

10
 fo

ld
 c

v
t)

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

A
ve

ra
ge

 O
rd

er
 (

W
ilc

ox
on

)

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

A
ve

ra
ge

 O
rd

er
 (

S
ig

n)

0.95 0.99 0.995 0.999
0

5

10

15

20

25

30

Confidence Level
0.95 0.99 0.995 0.999

0

5

10

15

20

25

30

Fig. 12. The average order of MOST variants for classification datasets.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

182 O. Aran, O. T. Yıldız & E. Alpaydın

0.95 0.99 0.995 0.999
1

2

3

4

5
No

A
ve

ra
ge

 R
an

k
(5

x2
 c

v
t)

0.95 0.99 0.995 0.999
1

2

3

4

5
Bonferroni

0.95 0.99 0.995 0.999
1

2

3

4

5
Holm

0.95 0.99 0.995 0.999
1

2

3

4

5

A
ve

ra
ge

 R
an

k
(1

0
fo

ld
 c

v
t)

0.95 0.99 0.995 0.999
1

2

3

4

5

0.95 0.99 0.995 0.999
1

2

3

4

5

0.95 0.99 0.995 0.999
1

2

3

4

5

A
ve

ra
ge

 R
an

k
(W

ilc
ox

on
)

0.95 0.99 0.995 0.999
1

2

3

4

5

0.95 0.99 0.995 0.999
1

2

3

4

5

0.95 0.99 0.995 0.999
1

2

3

4

5

A
ve

ra
ge

 R
an

k
(S

ig
n)

0.95 0.99 0.995 0.999
1

2

3

4

5

Confidence Level
0.95 0.99 0.995 0.999

1

2

3

4

5

Fig. 13. The average rank of MOST variants for classification datasets.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 183

adding a new node: 1-Fwd uses a statistical test whereas DNC checks the flattening
of the error curve.

Cascade Correlation (CC)16 constructs a network with multiple hidden lay-
ers, each layer containing a single hidden unit. This method uses the constructive
approach and starts with an initial network and incrementally adds hidden nodes
to the network until a satisfying solution is found. In cascade correlation, the new
nodes are added as a one-unit hidden layer. The network formed is different in that
the inputs are directly connected both to the outputs and to the hidden units. A
hidden unit is connected to the inputs, to the outputs and to all the hidden units
in the preceding layers. When a hidden unit is added, first its input weights are
calculated until its contribution to the network error is minimum and then is added
to the network. The calculated input side weights are frozen in training the output
weights.

We compare the average error rate and the complexity of the architecture
found by DNC and CC with two MOST variants, 1-Fwd and MultiFwd.
Table 3 shows the complexities (in terms of the number of hidden units) and
the error rates of the architectures found by DNC, CC, 1-Fwd and Multi-

Fwd on classification datasets. The error rates are averaged over ten fold vali-
dation sets. The models found by DNC and CC differ from one fold to the other,
thus for these methods we report the average number of hidden units over all
folds.

The last column in Table 3, denotes the number of architectures visited/trained
during the search of MultiFwd. For DNC, CC and 1-Fwd, the number of architec-
tures visited during the search is the same as the complexity of the architecture
found since these methods start with an MLP with a single hidden unit and adds
units/layers one by one. The time complexity of a method is directly related
to the number of architectures visited and the model complexity of each visited
architecture.

We present a summary of these results via pairwise comparisons of these four
methods. In Table 4(a), we give a pairwise comparison in terms of accuracies on
classification datasets. We see that on the classification datasets DNC and CC lose
to MOST variants more than they win against them, with MultiFwd being more
accurate than 1-Fwd.

In Table 4(b), we give a pairwise comparison in terms of the complexities
(number of hidden units). We see that both DNC and CC find more complex
networks than 1-Fwd and MultiFwd. 1-Fwd and MultiFwd find the same
architectures in general, with MultiFwd finding more complex ones. We see
that the more complex architectures that MultiFwd finds also have less error
rates, as in classification datasets such as ringnorm, pendigits, spambase, nursery,
letter.

The results indicate that MOST variants find architectures that are both simple
and accurate with 1-Fwd running fast and MultiFwd running slow but leading
to more accurate networks.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

184 O. Aran, O. T. Yıldız & E. Alpaydın

Table 3. Error rates of DNC, CC, 1-Fwd and MultiFwd on classification datasets. C denotes

the architecture complexity in terms of the number of hidden nodes. S denotes the number of
architectures visited during the search of MultiFwd.

DNC CC 1-Fwd MultiFwd

Dataset C Err± std C Err± std C Err± std C Err± std S

artificial 2.0 0.00± 0.00 0.0 0.00± 0.00 0 0.00± 0.00 0 0.00± 0.00 5
australian 7.4 14.49± 2.04 12.4 21.59± 5.28 0 13.20± 3.94 0 13.20± 3.94 5
balance 1.0 0.00± 0.00 2.4 1.168± 1.24 0 1.76± 2.54 0 1.76± 2.54 4
breast 1.9 3.85± 2.58 6.9 5.50± 1.60 0 2.85± 1.63 0 2.85± 1.63 5
bupa 2.2 36.23± 8.52 12.8 30.83± 4.31 0 29.54± 5.86 0 29.54± 5.86 3
car 4.4 1.91± 0.99 8.0 0.98± 0.41 0 6.42± 1.55 5 2.84± 2.27 10
cmc 3.0 46.78± 5.90 4.5 39.51± 2.54 0 48.54± 4.73 3 45.01± 5.03 8
credit 7.3 15.79± 2.79 16.9 25.41± 9.95 0 13.46± 3.14 0 13.46± 3.14 5
cylinder 3.0 24.29± 7.66 12.4 38.24± 3.29 0 25.22± 6.64 0 25.22± 6.64 5
dermatology 3.1 5.20± 3.574 0.0 1.09± 0.47 0 1.68± 2.69 0 1.68± 2.69 5
ecoli 24.4 18.28± 5.32 4.3 22.63± 40.79 0 12.29± 5.67 0 12.29± 5.67 4
flags 6.4 43.40± 12.10 0.0 9.77± 2.35 0 32.54± 10.15 0 32.54± 10.15 5
flare 1.6 11.39± 2.25 13.4 17.14± 29.15 0 10.78± 1.92 0 10.78± 1.92 4
glass 1.9 46.87± 8.24 24.2 13.85± 2.36 0 35.93± 12.23 0 35.93± 12.23 5
haberman 8.9 25.48± 4.26 7.4 24.33± 3.45 0 24.20± 5.69 0 24.20± 5.69 5
heart 2.8 18.15± 9.31 10.6 19.44± 7.16 0 14.07± 9.85 0 14.07± 9.85 4
hepatitis 1.8 18.23± 9.48 8.9 22.57± 28.16 0 15.41± 9.14 0 15.41± 9.14 5
horse 2.0 11.46± 4.57 10.9 18.10± 6.71 0 11.15± 4.60 0 11.15± 4.60 5
iris 1.9 4.67± 6.33 4.1 3.78± 4.45 0 3.33± 4.71 0 3.33± 4.71 5
ironosphere 4.3 7.70± 3.33 3.5 11.02± 5.79 0 11.06± 4.90 0 11.06± 4.90 5
letter 19.1 15.40± 1.17 30.0 1.56± 0.07 0 22.60± 0.96 46 8.05± 1.17 13
monks 3.8 0.00± 0.00 2.0 0.11± 0.36 3 3.92± 4.16 3 3.92± 4.16 5
mushroom 1.2 0.10± 0.14 0.0 0.03± 0.04 0 0.00± 0.00 0 0.00± 0.00 5
nursery 5.3 0.60± 0.29 11.3 0.05± 0.03 0 7.18± 0.49 5 1.10± 0.85 12
ocr 5.6 7.50± 2.97 0.0 2.17± 0.61 0 3.00± 3.12 0 3.00± 3.12 4
optdigits 8.0 4.79± 0.77 22.0 1.32± 0.17 0 3.11± 0.95 0 3.11± 0.95 5
pageblock 9.1 2.98± 0.62 13.9 21.64± 41.30 0 3.58± 0.51 4 3.45± 0.33 8
pendigits 14.1 1.74± 0.32 28.6 2.65± 2.79 0 3.35± 0.64 13 1.64± 0.50 8
pima 1.4 23.56± 5.27 13.8 34.82± 8.36 0 22.12± 5.46 0 22.12± 5.46 4
postoperative 5.5 40.09± 15.93 4.5 68.75± 40.65 1 28.27± 4.73 1 28.27± 4.73 7
ringnorm 17.0 7.68± 0.89 30.0 6.71± 0.62 0 23.38± 1.77 10 7.99± 1.21 10
segment 4.0 14.11± 3.30 20.5 7.37± 3.89 0 4.68± 1.08 0 4.68± 1.08 5
spambase 5.5 6.61± 1.24 14.9 11.73± 4.54 0 7.13± 1.16 1 6.89± 1.53 9
tae 13.6 34.35± 11.85 15.1 42.16± 40.58 0 40.50± 8.17 0 40.50± 8.17 5
thyroid 2.8 1.57± 0.56 12.5 0.97± 0.26 0 1.68± 0.74 0 1.68± 0.74 5
tictactoe 2.1 2.72± 1.34 4.2 3.40± 1.91 0 1.67± 0.74 0 1.67± 0.74 5
titanic 9.3 21.31± 2.07 3.5 25.72± 2.12 0 21.17± 2.18 0 21.17± 2.18 4
twonorm 4.0 2.19± 0.38 0.3 80.47± 41.17 0 2.15± 0.40 0 2.15± 0.40 5
vote 3.9 4.57± 3.53 21.5 4.00± 3.22 0 3.20± 2.87 0 3.20± 2.87 5

wave 17.3 14.76± 1.23 7.0 12.27± 0.99 0 12.90± 1.27 0 12.90± 1.27 4
wine 2.0 3.44± 3.96 10.9 14.29± 6.00 0 1.14± 2.41 0 1.14± 2.41 5
yeast 13.4 41.85± 5.36 6.7 10.57± 0.76 0 40.78± 3.39 0 40.78± 3.39 5
zipcodes 6.3 8.86± 1.09 7.9 21.41± 41.42 0 5.07± 0.98 15 4.83± 0.93 10
zoo 4.1 8.17± 8.12 0.0 1.96± 2.13 0 4.97± 7.45 0 4.97± 7.45 5

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 185

Table 4. Pairwise comparison of (a) algorithm accuracies in
terms of the number of wins-losses-ties and (b) complexities
of networks found by algorithms in terms of the number of
hidden units, less-higher-equal, over 44 classification datasets.

(a) Accuracy

DNC CC 1-Fwd MultiFwd

DNC 23-20-1 14-29-1 9-34-1

CC 18-25-1 17-26-1

1-Fwd 2-7-35

MultiFwd

(b) Complexity

DNC CC 1-Fwd MultiFwd

DNC 29-15-0 0-44-0 2-41-1

CC 1-38-5 3-36-5

1-Fwd 9-0-35

MultiFwd

4. Conclusions

We propose the MOST framework which considers the optimization of the number
of hidden units of a MLP as a search problem in the space of all possible networks.
Starting from an initial state, operators allow addition/removal of units/layer and
we use cross-validation and a statistical test to compare the goodness of states
to accept/reject operators. Depending on the initial state and operators, different
MOST instantiations are possible leading to constructive or destructive variants,
implementing depth- versus breadth-first search.

Of the five variants we compare, MultiFwd and Fwd are the best performing
algorithms where MultiFwd is slightly better. Although they both use the same
operators, the difference comes from the fact that MultiFwd compares all candi-
date models with the current best model simultaneously whereas Fwd compares
them one by one. Hence MultiFwd selects architectures that are as accurate as or
more accurate than ones that Fwd selects. The MOST variants which add (1-Fwd)
or remove (1-Bwd) one hidden node at a time usually stop early. One exception is
when the optimal architecture is LP; in that case, since 1-Fwd starts with LP and
there are no other architectures better than LP, 1-Fwd finds the optimal archi-
tecture immediately. The performances of the destructive variants (1-Bwd and
Bwd) are highly affected by the confidence level; as the confidence level increases,
the architectures found by 1-Bwd and Bwd tend to get closer to the optimal.
As expected, the constructive versions (Fwd, MultiFwd, 1-Fwd) find simpler
architectures and destructive versions (Bwd, 1-Bwd) find more complex ones.

Regardless of the search strategy, as the confidence level of the statistical test
increases, the complexities of the optimal architecture and the architectures that
MOST variants find decrease. A similar effect is observed when Bonferroni and
Holm corrections are used, which has the same effect of increasing the overall

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

186 O. Aran, O. T. Yıldız & E. Alpaydın

confidence level. Although the number of models used is large (51), the results
for Bonferroni and Holm correction are quite similar, if not the same, leading us to
conclude that for our case, Bonferroni is not more conservative than Holm. Among
the four statistical tests used in our experiments, 5×2 cv t and Wilcoxon tests are
more conservative than ten-fold cv t and sign tests and because of this, tend to find
simpler architectures.

The computational complexities of destructive variants are higher than those of
constructive variants. This is expected because the computational complexity of a
search problem depends on the distance between the initial state and the final state
and the optimal architectures of the datasets in this study tend to be simple.

Our proposed MOST variants 1-Fwd and MultiFwd, both on classification
and regression datasets generate networks that use simpler and on the average more
accurate than those generated by well-known incremental algorithms, dynamic node
creation and cascade correlation.

Here we use cross-validation and a statistical test but other model selection
methods can also be used and one can propose MOST variants using AIC, BIC,
MDL or SRM. Though our discussion in this paper focuses on optimizing the com-
plexity of feed-forward MLP, a similar approach can be applied to structure learning
in a wide range of learning architectures, e.g. recurrent networks, Bayesian networks,
hidden Markov models, etc. These are possible future research directions.

Acknowledgments

All the software used for the simulations, except cascade correlation, is developed
by the authors. For cascade correlation, we have used the code of Matt White from
Carnegie Mellon University, which is a re-engineered version of the C port, by Scott
Crowder, of the original Lisp code by Scott Fahlman.16

This work has been supported by the Turkish Academy of Sciences in the
framework of the Young Scientist Award Program (EA-TÜBA-GEBİP/2001-1-1),
Boğaziçi University Scientific Research Project 05HA101 and Turkish Scientific
Technical Research Council TÜBİTAK EEEAG 104E079.

References

1. A. Abraham, Meta learning evolutionary artificial neural networks, Neurocomputing
56 (2004) 1–38.

2. E. Alpaydın, GAL: networks that grow when they learn and shrink when they forget,
Technical Report TR-91-032, ICSI, Berkeley, CA (1991).

3. U. Anders and O. Korn, Model selection in neural networks, Neural Networks 12(2)
(1999) 309–323.

4. O. Aran and E. Alpaydın, Incremental neural network construction algorithms for
training multilayer perceptrons, Artificial Neural Networks and Neural Information
Processing — ICANN/ICONIP’03, Istanbul, Turkey (2003).

5. J. I. Arribas and J. Cid-Sueiro, A model selection algorithm for a posteriori probability
estimation with neural networks, IEEE Trans. Neural. Networks 16(4) (2005) 799–
809.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 187

6. T. Ash, Dynamic node creation in backpropogation networks, Connection Sci. 1(4)
(1989) 365–375.

7. C. L. Blake and C. J. Merz, UCI repository of machine learning databases.
8. H. Borchani, N. B. Amor and F. Khalfallah, Learning and evaluating Bayesian network

equivalence classes from incomplete data, Int. J. Patt. Recogn. Artif. Intell. (IJPRAI)
22 (2008) 253–278.

9. A. Carlevarino, R. Martinotti, G. Metta and G. Sandini, An incremental growing
neural network and its application to robot control, Int. Joint Conf. Neural Networks
(IJCNN’00) 5 (2000) 5323.

10. G. Castellano and A. M. Fanelli, An iterative pruning algorithm for feedforward neural
networks, IEEE Trans. Neural. Networks 8(3) (1997) 519–531.

11. S. Cohen and N. Intrator, On different model selection criteria in a forward and
backward regression hybrid network, Int. J. Patt. Recog. Artif. Intell. (IJPRAI) 18(5)
(2004) 847–865.

12. C. Constantinopoulos and A. Likas, An incremental training method for the proba-
bilistic RBF network, IEEE Trans. Neural. Networks 17(4) (2006) 966–974.

13. A. Dean and D. Voss, Design and Analysis of Experiments (Springer, New York,
1999).

14. Delve datasets, http://www.cs.toronto.edu/ delve/data/datasets.html.
15. T. G. Dietterich, Approximate statistical tests for comparing supervised classification

learning algorithms, Neural Comput. 10(7) (1998) 1895–1923.
16. S. E. Fahlman and C. Leibiere, The cascade-correlation learning architecture, Adv.

Neural Inform. Process. Syst. 2 (1990) 524–532.
17. M. R. Frean, The upstart algorithm: a method for constructing and training feedfor-

ward neural networks, Neural Comput. 2(2) (1990) 198–209.
18. J. H. Friedman and W. Stuetzle, Projection pursuit regression, J. Amer. Statistics

Association 76(376) (1981) 817–823.
19. S. Geman, E. Bienenstock and R. Doursat, Neural networks and the bias/variance

dilemma, Neural Comput. 4(1) (1992) 1–58.
20. M. Ghiassi and H. Saidane, A dynamic architecture for artificial neural networks,

Neurocomputing 63 (2005) 397–413.
21. A. K. Ghosh and S. Bose, Feature extraction for classification using statistical net-

works, Int. J. Patt. Recogn. Artif. Intell. (IJPRAI) 21(7) (2007) 1103–1126.
22. T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning

(Springer, New York, 2001).
23. S. Holm, A simple sequentially rejective multiple test procedure, Scandinavian J. Stat.

6 (1979) 65–70.
24. E. Horwood, Machine Learning, Neural and Statistical Classification, 1994, see also

http://www.ncc.up.pt/liacc/ML/statlog/datasets.html.
25. G.-B. Huang, Learning capability and storage capacity of two-hidden-layer feedfor-

ward networks, IEEE Trans. Neural. Networks 14(2) (2003) 274–281.
26. G.-B. Huang, A generalized growing and pruning RBF (GGAP-RBF) neural network

for function approximation, IEEE Trans. Neural. Networks 16(1) (2005) 57–67.
27. G.-B. Huang and L. Chen, Convex incremental extreme learning machine, Neurocom-

puting 70 (2007) 3056–3062.
28. G.-B. Huang and L. Chen, Enhanced random search based incremental extreme learn-

ing machine, Neurocomputing 17(16–18) (2008) 3460–3468.
29. G.-B. Huang, Y.-Q. Chen and H. A. Babri, Classification ability of single hidden layer

feedforward neural networks, IEEE Trans. Neural. Networks 11(3) (2000) 799–801.
30. G.-B. Huang, L. Chen and C.-K. Siew, Universal approximation using incremental

networks with random hidden nodes, IEEE Trans. Neural. Networks 17(4) (2006)
879–892.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

188 O. Aran, O. T. Yıldız & E. Alpaydın

31. C.-A. Hung and S.-F. Lin, An incremental learning neural network for pattern classi-
fication, Int. J. Patt. Recogn. Artif. Intel. (IJPRAI) 13(6) (1999) 913–928.

32. R. Kallel, M. Cottrell and V. Vigneron, Bootstrap for neural model selection, Neuro-
computing 48(1–4) (2002) 175–183.

33. K.-J. Kim and S.-B. Cho, Evolved neural networks based on cellular automata for
sensory-motor controller, Neurocomputing 69(16–18) (2006) 2193–2207.

34. R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and
model selection, Fourteenth Int. Joint Conf. Artificial Intelligence (IJCAI), San
Mateo, CA (1995), pp. 1137–1145.

35. T. Kwok and D. Yeung, Constructive algorithms for structure learning in feedforward
neural networks for regression problems, IEEE Trans. Neural. Networks 8(3) (1997)
630–645.

36. T. Kwok and D. Yeung, Objective functions for training new hidden units in con-
structive neural networks, IEEE Trans. Neural. Networks 8(5) (1997) 1131–1148.

37. J. J. T. Lahnajarvi, M. I. Lehtokangas and J. P. P. Saarinen, Evaluation of construc-
tive neural networks with cascaded architectures, Neurocomputing 48(1–4) (2002)
573–607.

38. P. Lauret, E. Fock and T. A. Mara, A node pruning algorithm based on a fourier
amplitude sensitivity test method, IEEE Trans. Neural. Networks 17(2) (2006) 273–
293.

39. M. Lehtokangas, Fast initialization for cascade-correlation learning, IEEE Trans. Neu-
ral. Networks 10(2) (1999) 410–414.

40. M. Lehtokangas, Modified cascade-correlation learning for classification, IEEE Trans.
Neural. Networks 11(3) (2000) 795–798.

41. A. Lendasse, G. Simon, V. Wertz and M. Verleysen, Fast bootstrap methodology for
regression model selection, Neurocomputing 64 (2005) 161–181.

42. F. H. F. Leung, H. K. Lam, S. H. Ling and P. K. S. Tam, Tuning of the structure and
parameters of a neural network using an improved genetic algorithm, IEEE Trans.
Neural. Networks 14(1) (2003) 79–88.

43. K. Li and J.-X. Peng, System oriented neural networks — problem formulation,
methodology and application, Int. J. Patt. Recogn. Artif. Intell. (IJPRAI) 20(2)
(2006) 143–158.

44. J. Ma, T. Wanga and L. Xu, A gradient BYY harmony learning rule on Gaussian
mixture with automated model selection, Neurocomputing 56 (2004) 481–487.

45. L. Ma and K. Khorasani, Application of adaptive constructive neural networks to
image compression, IEEE Trans. Neural. Networks 13(5) (2002) 1112–1126.

46. L. Ma and K. Khorasani, New training strategies for constructive neural networks
with application to regression problems, Neural Networks 17(4) (2004) 589–609.

47. L. Ma and K. Khorasani, Constructive feedforward neural networks using her-
mite polynomial activation functions, IEEE Trans. Neural. Networks 16(4) (2005)
821–833.

48. C. Macleod and G. M. Maxwell, Incremental evolution in ANNs: neural nets which
grow, Artif. Intell. Rev. 16(3) (2001) 201–224.

49. T. M. Nabhan and A. Y. Zomaya, Toward generating neural network structures for
function approximation, Neural Networks 7(1) (1994) 89–99.

50. A. L. I. Oliveira, B. J. M. Melo and S. R. L. Meira, Improving constructive training
of RBF networks through selective pruning and model selection, Neurocomputing 64
(2005) 537–541.

51. J. Paetz, Reducing the number of neurons in radial basis function networks with
dynamic decay adjustment, Neurocomputing 62 (2004) 79–91.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

An Incremental Framework Based on CV for Estimating the Architecture of a MLP 189

52. R. Parekh, J. Yang and V. Honavar, Constructive neural-network learning algorithms
for pattern classification, IEEE Trans. Neural. Networks. 11(2) (2000) 436–451.

53. J. Platt, A resource allocating network for function interpolation, Neural Comput.
3(2) (1990) 213–225.

54. P. V. S. Ponnapalli, K. C. Ho and M. Thomson, A formal selection and pruning
algorithm for feedforward artificial neural network optimization, IEEE Trans. Neural.
Networks 10(4) (1999) 964–968.

55. R. Reed, Pruning algorithms — a survey, IEEE Trans. Neural. Networks 4(5) (1993)
740–747.

56. R. Setiono, Feedforward neural network construction using cross validation, Neural
Comput. 13(12) (2001) 2865–2877.

57. D. Srinivasan, X. Jin and R. L. Cheu, Adaptive neural network models for automatic
incident detection on freeways, Neurocomputing 64 (2005) 473–496.

58. Statlib datasets, http://lib.stat.cmu.edu/.
59. M.-C. Su, J. Lee and K.-L. Hsieh, A new ARTMAP-based neural network for incre-

mental learning, Neurocomputing 69(16–18) (2006) 2284–2300.
60. M. F. Tenorio and W. T. Lee, Self-organizing network for optimum supervised learn-

ing, IEEE Trans. Neural. Networks 1(1) (1990) 100–110.
61. J. P. Vila, V. Wagner and P. Neveu, Bayesian nonlinear model selection and neural

networks: A conjugate prior approach, IEEE Trans. Neural. Networks 11(2) (2000)
265–278.

62. C. Xiang, S. Q. Ding and T. H. Lee, Geometrical interpretation and architecture
selection of MLP, IEEE Trans. Neural. Networks 16(1) (2005) 84–96.

63. L. Xu, BYY learning, regularized implementation and model selection on modular
networks with one hidden layer of binary units, Neurocomputing 51 (2003) 277–301.

64. O. T. Yıldız and E. Alpaydın, Ordering and finding the best of K > 2 supervised
learning algorithms, IEEE Trans. Patt. Anal. 28(3) (2006) 392–402.

65. Q.-Y. Zhu, A. K. Qin, P. N. Suganthan and G.-B. Huang, Evolutionary extreme
learning machine, Patt. Recogn. 38(10) (2005) 1759–1763.

Oya Aran received the
B.S.,M.S. and PhD deg-
rees in computer engi-
neering from Bogazici
University, Istanbul,
Turkey in 2000, 2002
and 2008, respectively.
She was awarded a
Marie Curie Interna-
tional European fellow-

ship in 2009. Her research interests include
pattern recognition, machine learning, com-
puter vision and human-computer interac-
tion. She is a member of the IEEE.

Olcay Taner Yıldız
received the B.S., M.S.,
and PhD degrees in
computer science from
Bogazici University,
Istanbul, Turkey in 1997,
2000, and 2005 respec-
tively. He was awarded
a post doctoral fellow-
ship from the Turkish

Scientific and Technical Research Council
and he did his postdoctoral study at the
University of Minnesota in 2005. He was
then appointed as assistant professor in the
Department of Computer Engineering of Isik
University.

His research interests include model selec-
tion, neural networks, bioinformatics and
robotics.

March 5, 2009 9:32 WSPC/115-IJPRAI SPI-J068 00713

190 O. Aran, O. T. Yıldız & E. Alpaydın

Ethem Alpaydin rec-
eived his B.Sc. from the
Department of Com-
puter Engineering of
Bogazici University in
1987 and the degree
of Docteur es Sciences
from Ecole Polytech-
nique Fédérale de Lau-
sanne in 1990. He did

his postdoctoral work at the International
Computer Science Institute, Berkeley in 1991
and afterwards was appointed as Assistant
Professor in the Department of Computer
Engineering of Bogazici University. He was
promoted to Associate Professor in 1996
and Professor in 2002 in the same depart-
ment. As visiting researcher, he worked at
the Department of Brain and Cognitive Sci-
ences of MIT in 1994, the International Com-
puter Science Institute, Berkeley in 1997 and
IDIAP, Switzerland in 1998. He was awarded
a Fulbright Senior scholarship in 1997 and
received the Research Excellence Award from
the Bogazici University Foundation in 1998,
the Young Scientist Award from the Turkish
Academy of Sciences in 2001 and the Scien-
tific Encouragement Award from the Turk-
ish Scientific and Technical Research Council
in 2002. His book Introduction to Machine
Learning was published by MIT Press in
October 2004 and its German edition was
published by Oldenbourg Verlag in May 2008.
Its Chinese and Turkish editions are in prepa-
ration. He is a senior member of the IEEE,
an editorial board member of The Com-
puter Journal (Oxford University Press) and
an associate editor of Pattern Recognition
(Elsevier).

