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Fig. 6. Performance comparison with respect to the number of users.
(Eb=No = 18 dB,L = 5).

Therefore, we can conclude from results presented in Fig. 5 that the pro-
posed receiver effectively utilizes the frequency diversity. BER com-
parisons between the proposed receiver and the MUD using an RBF
network under conditions of perfect channel estimation, confirm that
the channel estimation of the proposed receiver can be properly exe-
cuted at 15 dBEb=No.

Fig. 6 shows the BERs for the three receivers plotted against the
number of users, whereEb=No is fixed at 18dB and the number of
multipaths is fixed at five. This figure illustrates that the performance
improvement of the receiver using an RBF network turns out to be
greater than that of the MUD with PIC. The reason for this is that the
proposed receiver effectively utilizes the signal components of other
users, which are considered interference and are canceled in the case
of PIC.

VI. CONCLUSION

In this paper, we proposed a multiuser receiver with channel esti-
mation capability using an RBF network in an MC-CDMA system.
Simulations were performed over frequency-selective and multipath
Rayleigh fading channels. The RBF network structure showed itself
capable not only of permitting the effective utilization of the frequency
diversity but also of executing channel estimation under the conditions
of a frequency-selective multipath fading channel. Computer simula-
tions demonstrated that the proposed receiver outperforms a MUD with
PIC as well as conventional receivers. Furthermore, simulation results
showed that a multiuser receiver using an RBF network has the poten-
tial to be used for the purpose of increasing the number of active users.
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Omnivariate Decision Trees

Olcay Taner Yıldız and Ethem Alpaydın

Abstract—Univariate decision trees at each decision node consider the
value of only one feature leading to axis-aligned splits. In a linear multi-
variate decision tree, each decision node divides the input space into two
with a hyperplane. In a nonlinear multivariate tree, a multilayer perceptron
at each node divides the input space arbitrarily, at the expense of increased
complexity and higher risk of overfitting. We propose omnivariate trees
where the decision node may be univariate, linear, or nonlinear depending
on the outcome of comparative statistical tests on accuracy thus matching
automatically the complexity of the node with the subproblem defined by
the data reaching that node. Such an architecture frees the designer from
choosing the appropriate node type, doing model selection automatically
at each node. Our simulation results indicate that such a decision tree in-
duction method generalizes better than trees with the same types of nodes
everywhere and induces small trees.

Index Terms—Univariate decision trees, multivariate decision trees,
neural trees, statistical tests.

I. INTRODUCTION

A decision tree is made up of internal decision nodes and
terminal leaves. The input vector is composed ofd attributes,
xxx = [x1; . . . ; xd]

T , and the aim in classification is to assignxxx to
one of K mutually exclusive and exhaustive classes,C1; . . . ; CK .
Each internal nodem implements a decision function,fm(xxx), where
each branch of the node corresponds to one outcome of the decision.
Each leaf of the tree carries a class label. In this work, we use binary
decision nodes even whenK > 2, but the approach we advocate in
this paper holds also for trees withK-way splitting nodes.

Starting from the root, at each internal node,fm(xxx) is calculated and
depending on the outcome, the corresponding branch is taken and the
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process is continued recursively until a leaf node is met, at which point
the label of the leaf defines the class.

Geometrically, eachfm(xxx) defines a discriminant in thed-dimen-
sional input space dividing it into as many subspaces as there are
branches. As one takes a path from the root to a leaf, these subspaces
are further subdivided until we end up with a part of the input space
which contains the instances of one class only. Different decision tree
methods assume different models for the discriminantfm and the
model class defines the shape of the discriminant.

In univariatedecision trees, the decision at internal nodem uses only
one attribute, i.e., one dimension ofxxx; xj . If that attribute is numeric,
the decision is of the form

fm(xxx) : xj + wm0 > 0 (1)

wherewm0 is some constant number. This test has two outcomes, true
and false, labeling the two branches, left and right, and thus the node
is binary. This defines a discriminant which is orthogonal to axisxj ,
intersects it atxj = �wm0 and divides the input space into two.

If the attribute is discrete valued withL possible values,
fa1; a2; . . . ; aLg, the decision is of the form

fm(xxx) : xj = ai; i = 1; . . . ; L: (2)

This hasL outcomes, one for each possible value, and thus there are
L branches and the node isL-ary, dividing the input space intoL. In a
univariate tree, successive decision nodes on a path from the root to a
leaf further divide these into two, orL, with splits orthogonal to each
other and the leaf nodes define hyperrectangles in the input space.

When the inputs are correlated, looking at one feature may be too re-
strictive. A linear multivariate tree, at each internal node, uses a linear
combination of all attributes.

fm(xxx) : wwwTmxxx + wm0 =

d

j=1

wmjxj + wm0 > 0: (3)

To be able to apply the weighted sum, all the attributes should be nu-
meric and discrete values need be represented numerically (usually by
one-of-L encoding) before. The weighted sum returns a number and
the node is binary. Note that the univariate numeric node is a special
case of the multivariate linear node, where all but one ofwmj is zero
and the other, one. In this linear case, each decision node divides the
input space into two with a hyperplane of arbitrary orientation and po-
sition where successive decision nodes on a path from the root to a leaf
further divide these into two and the leaf nodes define polyhedra in the
input space.

In the more general case, one can use a quadratic model as

fm(xxx) : xxxTWmxxx+www
T
mxxx+ wm0 =

i j

Wmijxixj

+
j

wmjxj + wm0 > 0: (4)

The linear model is a special case whereWij = 0; 8i; j = 1; . . . ; d.
Another possibility to get a nonlinear split at a node is to write the
decision as a weighted sum ofH nonlinear basis functions

fm(xxx) :

H

h=0

wmhgmh(xxx) + wm0 > 0 (5)

wheregmh(xxx) are the nonlinear basis functions. The multilayer percep-
tron (MLP) is such a model where the basis function is the soft-thresh-
olded weighted sum

gmh(xxx) =
1

1 + exp [�(vvvTmhxxx+ vmh0)] :
(6)

It is this model that we are going to take as thenonlinear multivariate
decision tree. Because MLP is a universal approximator and can ap-
proximate any function given sufficiently bigH , a decision tree need
not have any node more complex than such a node. Note, however, that
any other method can be used to train a linear or nonlinear node and
our approach is not limited to having neural networks in the decision
nodes. The difference between the univariate, linear multivariate and
nonlinear multivariate splits is shown on an example in Fig. 1.

II. TRAINING DECISION TREES

Training corresponds to constructing the tree given a training set.
Finding the smallest decision tree that classifies a training set correctly
is NP-hard [14]. For large training sets and input dimensions, even for
the univariate case, one cannot exhaustively search through the com-
plete space of possible decision trees. Decision tree algorithms are thus
greedy in that at each step, we decide on one decision node. Assuming
a model forfm (univariate, or linear, or nonlinear multivariate), we
look for the parameters (wm coefficients) that best split the data hitting
nodem, starting with the complete dataset in deciding on the root node.
Once we decide on a split, tree construction continues recursively for
each child with training instances taking that branch. Surveys about
constructing and simplifying decision trees can be found in [6] and
[15]. A recent survey comparing different decision tree methods with
other classification algorithms is given in [11].

The best split is when all the instances from a class lie on the same
side of the decision boundary, i.e., return the same truth value forfm.
There are various measures proposed for measuring the “impurity” of
a split; examples are entropy [17] and the Gini index [4]. Murthyet
al. [14] describe some other impurity indexes. Our results and those
of previous researchers indicate that there is no significant difference
between these impurity measures.

For constructing univariate decision trees with discrete attributes,
Quinlan proposed theID3 algorithm [17] and later generalized it for
numeric attributes with theC4.5 algorithm[18]. In this univariate case,
at each decision node, one can check for all possible splits for all at-
tributes and choose the best as measured by the purity index. For a dis-
crete attribute, there is only one possible split. For a numeric attribute,
there areNm � 1 possible splits, whereNm is the number of training
instances reaching nodem.

In the case of a linear multivariate tree, even the problem of finding
the optimal split at a node when optimality is measured in terms of
misclassification errors is NP-hard [14]. The problem of finding the
best split is then an optimization problem to find the best coefficients,
wmj ; j = 0; . . . ; d, that minimize impurity as defined by the entropy or
Gini index. An iterative local search algorithm is used for optimization
which does not guarantee optimality and may get stuck in local optima.

The classification and regression trees (CART) algorithm of
Breiman et al. [4] uses an iterative backfitting algorithm where
cycling over coefficients, at each iteration, one coefficient is optimized
keeping the other coefficients fixed. In the OC1 algorithm(Oblique
trees) proposed by Murthyet al. [14], an extension is made to CART
to get out of local optima: A small random vector is added towwwm

after convergence through backfitting. This perturbs all coefficients
together and causes a conjugate jump in the coefficient space. In
the linear machine decision trees (LMDT) algorithm, proposed by
Brodley and Utgoff [7], withK classes, a node is allowed to have
K children. For each child, a separate coefficient vector is used to
separate the instances of that class from the other classes. There is an
iterative algorithm that adjusts the coefficients to minimize the number
of misclassifications, rather than an impurity measure as the entropy
or the Gini index. The fast algorithm for classification trees (FACT)
of Loh and Vanichsetakul [13] uses parametric discriminant analysis
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(Gaussian classes with shared covariance matrix) to implement
K-way splits. Loh and Shih’s quick unbiased efficient statistical tree
(Quest) algorithm [12] also uses parametric discriminant analysis but
with binary splits and uses 2-means algorithm to partitionK classes
to two at each node. Linear discriminant trees, proposed by Yıldız and
Alpaydın [23], uses Fisher’s linear discriminant to find the coefficients
in a binary tree and uses Guo and Gelfand’s [10] exchange heuristic
to groupK classes into two.

III. N EURAL TREES

Neural trees were introduced to combine neural networks and deci-
sion trees. In literature, neural trees can be classified into two groups.

The first group uses decision trees to form the structure of the neural
network. The key idea is to construct a decision tree and then con-
vert the tree into a neural network. Sethi [21] produces a three-layered
neural network from decision trees, extracting the hidden nodes of the
neural network from the decision tree. Brent [5] gives the details, com-
plexity analysis and some practical refinements on this subject. An ex-
tension to this idea, which uses linear decision trees as building blocks,
can be found in [16]. Cios [8] proposes the CID3 algorithm as a modi-
fication of the ID3 algorithm. CID3 creates a hidden layer in a manner
similar to the ID3 generation of a decision tree. In the learning process,
new hidden layers are added by the CID3 algorithm to the network until
a learning task becomes linearly separable at the output layer. Cauchy
training is used to train the resulting hybrid structure. Golea and Marc-
hand [9] propose a linearly separable neural-network decision tree ar-
chitecture to learn a given but arbitrary Boolean function.

The second group uses neural networks as building blocks in de-
cision trees. The nonlinear multivariate decision tree with multilayer
perceptrons at the internal nodes was proposed by Guo and Gelfand
[10]. They also proposed a heuristic to groupK > 2 classes into two,
which is necessary as the nodes in the tree are binary. Thus they use
a nested optimization problem where in the inner optimization, gra-
dient-descent is used to find the weights that minimize the mean-square
error as usual in training neural networks and so find a good split for the
given two distinct groups of classes. In the outer optimization problem,
exchange heuristic is used to find the best split ofK classes into two
groups through a local search with backtracking, with time complexity
O(K2). This same algorithm can also be used with single layer per-
ceptrons instead of multilayer perceptrons thereby generatinglinear
multivariate decision nodes. This was first introduced as neural tree
networks by Sankar and Mammone [20]. They also introduced a new
pruning algorithm which uses a Langrangian cost function [19]. The
comparison of this latter method with other linear multivariate decision
tree construction methods is given in [23]. Behnke and Karayiannis use
competitive learning to form a competitive decision tree architecture
named CNET [2]. A hybrid form which contains neural networks at
the leaves of the tree and univariate nodes in the nonleaf nodes of the
tree was proposed by Utgoff [22].

IV. PRUNING

A greedy algorithm is a local search method where at each step,
one tries to make the best decision and proceeds to the next decision,
never backtracking and reevaluating a decision after it has been made.
Similarly in decision tree induction, once a decision node is fixed, it
cannot be changed after its children have been created. This may cause
suboptimal trees where for example subtrees are replicated. The only
exception is thepruningof the tree.

In pruning, we consider replacing a subtree with a leaf node labeled
with the class most heavily represented among the instances that are
covered by the subtree. If there is overfitting, we expect the more com-
plex subtree to learn the noise and perform worse than the simple leaf. If

Fig. 1. Example univariate (continuous line), linear multivariate (dashed line),
and nonlinear multivariate (dotted line) splits that separate instances of two
classes.

this is indeed the case on a validation set different from the training set,
then the subtree is replaced by the leaf. Otherwise it is kept. It makes
sense to start with the smaller subtrees closer to leaves and proceed up
toward the root.

This process is calledpostpruning to differentiate it from
prepruning. In postpruning, the tree is constructed until there is no
misclassification error and then pruned simpler. In prepruning, the
tree is not fully constructed until zero training error but is kept simple
by early termination. At any node, if the dataset reaching that node
is small, even if it is not pure, it is not further split and a leaf node is
created instead of growing a subtree. Prepruning is faster. Postpruning
may be more accurate but is slower and requires a separate validation
set.

V. TUNING THE NODE COMPLEXITY AUTOMATICALLY : OMNIVARIATE

DECISION TREES

In approximating the real (unknown) discriminant, with univariate
nodes we are limited to a piecewise approximation using axis-aligned
hyperplanes. With multivariate linear nodes, we can use arbitrary hy-
perplanes and thus approximate the discriminant better. In Fig. 1 for
example, one linear multivariate node is used instead of three univariate
nodes. It is clear that if the underlying discriminant is curved, a non-
linear approximation through a nonlinear multivariate node allows a
better approximation using a smaller number of nodes and leaves. Thus
there is a dependency between the complexity of a node and the size of
the tree. With complex nodes the tree may be quite small; with simple
nodes one may grow large trees.

However we should keep in mind that an MLP node hasO(d�H)
parameters, compared to linear’sO(d) and univariate’sO(1). A com-
plex model with a larger number of parameters requires a larger training
dataset and risks overfitting on small amount of data. For example in
Fig. 1, the nonlinear split has less error than the linear split but is too
wiggly. Thus one should be careful in tuning the complexity of a node
with the properties of the data reaching that node.

Each node type has a certain bias; using multivariate linear nodes
for example, we are assuming that the input space can be divided using
hyperplanes into localized regions (volumes) where classes, or groups
of classes are linearly separable. Using a decision tree with the same
type of nodes everywhere, we assume that the same bias is appropriate
at all levels.

This paper advocates the view that this assumption is not always cor-
rect and that at each node of the tree, which corresponds to a different
subproblem defined by the subset of the training data reaching that
node, a different model may be appropriate, and that the right model
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TABLE I
DETERMINATION OF THE WINNER NODE TYPE AS A RESULT OF THE

STATISTICAL TEST RESULTS OF THECOMPARISON OFTHREE NODE TYPES.
IF LIN>UNI IS TRUE, THEN THE TEST DETECTSTHAT THE LINEAR

MULTIVARIATE SPLIT IS BETTER THAN THE UNIVARIATE SPLIT. NONLIN

IS THE NONLINEAR MULTIVARIATE SPLIT

should be found and used. For example, we expect that though closer to
the root a nonlinear model may be used, as we get closer to the leaves,
we have easier problems in effectively smaller dimensional subspaces
and at the same time, we have smaller training data and simple, e.g.,
univariate, splits may suffice and generalize better. Our results given
in the next section support our intuition. We name this hybrid structure
anomnivariate decision treeas this type of decision tree embraces all
variants.

In our proposed omnivariate decision tree, at each node, we train
and compare all three possible nodes; univariate, linear multivariate,
and nonlinear multivariate, and using a statistical test, we choose the
best and continue tree induction recursively. Each node implements a
binary split to induce simple and interpretable trees. To groupK > 2
classes into two, we use Guo and Gelfand’s [10] exchange heuristic
which uses class information and thus is better than the unsupervised
2-means algorithm used by Loh and Shih in Quest [12]. Postpruning is
used to simplify the tree after induction for better generalization.

In the OC1 algorithm [14], at each decision node, both a univariate
and a multivariate linear split is found and the latter is used if its impu-
rity is less than that of the former. However, this compares the two on
the training set whereas one should make the decision using cross-val-
idation through a statistical test, as we propose here.

VI. CHOOSING THEBEST OFTHREE MODELS

Statistical tests in the literature, and the 5� 2cvF test we use [1],
compares two models and to be able to choose the best of more than
two models, we need a methodology. Given three modelsMi;Mj , and
Mk, we may not have a full order and a clear winner asMi is better
than bothMj andMk , andMj better thanMk : Mi > Mj ;Mi >
Mk;Mj > Mk. In the absence of a clear winner among the three due
to no statistically significant difference between the methods, we use
our prior information and prefer the simpler model.

Table I shows the eight possible results of the statistical tests between
the three node types; univariate, linear multivariate, and nonlinear mul-
tivariate. The winner node type is chosen to satisfy two criteria: 1) re-
sults of the tests and 2) Our prior preferrence to choose the simpler
model unless the test, based on the data, chooses the more complex
model. We apply three tests to see at each test if the more complex
model is better than the simpler model or not. If the test returns false,
this may be either because 1) there is no difference between the models
or 2) it may be because the simpler model is better. In both cases, we
choose the simpler model; in 1) due to its simplicity and in 2) due to
its being more accurate.

We choose the best after three such pairwise tests are made. For
example, if the linear multivariate model is better than the univariate

TABLE II
DESCRIPTION OF THEDATASETS.K IS THE NUMBER OF CLASSES,N IS THE

DATASET SIZE, AND d IS THE NUMBER OF INPUTS

model and if the nonlinear multivariate model is better than the uni-
variate model, but if the nonlinear model is not better than the linear
model (case 7 of Table I), we select the linear model in that node.

VII. EVALUATION

To compare our proposed omnivariate decision tree architecture with
pure univariate, linear multivariate, and nonlinear multivariate trees,
we tested all four methods on 30 datasets from the UCI repository [3].
Table II describes the properties of the data sets.

The pure univariate tree is constructed using C4.5 algorithm. The
linear multivariate tree is constructed with a single-layer perceptron at
each decision node. The nonlinear multivariate tree is constructed with
a multilayer perceptron at each node havingd inputs, one output, and
(d+1)=2 hidden units.(Number of inputs+ number of outputs)=2 is
a common heuristic in determining the number of hidden units in an
MLP. We have also made tests withd+1 and3(d+1)=2 hidden units
and noticed no significant difference in accuracy and tree size.

Both of the multivariate trees use binary nodes and use Guo and
Gelfand’s [10] exchange heuristic to groupK > 2 classes into
two groups. Discrete attributes are 1-of-L encoded numerically
before using these two methods. The omnivariate tree, if it chooses a
univariate node, uses a discrete attribute as it is. Postpruning is used
for tree simplification in all four architectures.

The test we use is the combined 5� 2cvF Test [1] which performs
five two-fold cross-validation runs on each data set. The results of the
ten runs are then averaged and we report the mean and standard devia-
tion of accuracy (Table III), tree size in terms of the number of nodes
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TABLE III
THE FIRST TABLE GIVES THE ACCURACY RESULTS. VALUES ARE AVERAGE

AND STANDARD DEVIATIONS OF TEN INDEPENDENTRUNS. THE SECOND

TABLE CONTAINS PAIRWISE COMPARISONSWHERE (i; j) VALUES ARE

THE NUMBER OF DATASETS ON WHICH MODEL i IS STATISTICALLY

SIGNIFICANTLY BETTER THAN MODEL j

(Table IV) and the number of parameters (Table V), and learning time
in seconds on a Pentium III-600 (Table VI).

For each comparison, there are two tables where in the first table the
raw results are shown and the second table contains pairwise compar-
isons; the entry(i; j) in this second table gives the number of datasets
on which methodi is statistically significantly better than methodj
with 95% confidence. In the second table, row and column sums are
also given. The row sum gives the number of datasets out of 30 where
the algorithm on the row outperforms at least one of the other algo-
rithms. The column sum gives the number of datasets where the algo-
rithm on the column is outperformed by at least one of the other algo-
rithms.

A. Accuracy

Comparing univariate, linear, and nonlinear multivariate trees among
themselves, we see that on 22 datasets out of 30, the univariate tree is

TABLE IV
THE FIRST TABLE GIVES THE TREESIZE IN TERMS OF THENUMBER OFNODES

IN THE TREE. VALUES ARE AVERAGE AND STANDARD DEVIATIONS OF TEN

INDEPENDENTRUNS. THE SECONDTABLE CONTAINS PAIRWISE COMPARISONS

WHERE(i; j) VALUES ARE THENUMBER OFDATASETS ONWHICH MODEL i IS
STATISTICALLY SIGNIFICANTLY BETTER THAN MODEL j

as accurate as the others (Table III), showing that a univariate split
is good enough in most cases. On six datasets (CAR, OCR, WIN,
BAL, TIC, WAV ), the linear multivariate tree is more accurate than
the univariate tree and on six datasets (CAR, OCR, PEN, WIN,
BAL, TIC ), the nonlinear multivariate tree is more accurate than the
univariate tree. The nonlinear one is better than the linear only on three
datasets (CAR, OCR, PIM). These indicate that a multivariate split
is sometimes better. But onWAV, although the linear tree is more ac-
curate than the univariate tree, the nonlinear tree is not more accurate
than the univariate tree; as can be seen by the high standard deviation
value of 8.0, the nonlinear multivariate tree overfits here.

The omnivariate model outperforms the univariate tree on six
datasets (CAR, OCR, BAL, NUR, TIC, WAV ) which is almost
the union of the datasets on which the linear and nonlinear multivariate
trees outperform the univariate tree, indicating that the omnivariate
tree includes as its special cases all three possibilities, using whichever
is more accurate at each node. The omnivariate tree outperforms the
linear multivariate on one dataset (NUR), and the nonlinear multivariate
one on one dataset (CMC); this latter is also the dataset where the
univariate is better than the nonlinear multivariate.
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TABLE V
THE FIRST TABLE GIVES THE TREE SIZE IN TERMS OF THENUMBER OF FREE

PARAMETERS IN THE TREE. VALUES ARE AVERAGE AND STANDARD

DEVIATIONS OF TEN INDEPENDENTRUNS. THE SECOND TABLE CONTAINS

PAIRWISE COMPARISONSWHERE (i; j) VALUES ARE THE NUMBER

OF DATASETS ON WHICH MODEL i IS STATISTICALLY SIGNIFICANTLY

BETTER THAN MODEL j

The omnivariate tree is never outperformed by any of the pure trees
on any dataset, showing that when it is not more accurate, it is as accu-
rate. This justifies our claim that it is not good to assume the same bias
on all levels of the tree and it is best to match the model complexity
at each level with each subproblem, i.e., the data arriving to that node.
Thus the model takes the best of the three models; the simplicity of uni-
variate nodes when additional complexity is not justified and the power
of linear or nonlinear multivariate nodes when it is.

B. Tree Size

In Table IV, we compare the sizes of the trees induced by the four
methods in terms of the number of nodes in the tree. We also give the
tree sizes in terms of free parameters because the nodes have different
complexities (Table V). A univariate node has one or two parameters
(the attribute index and the threshold for a numeric attribute), a linear
multivariate node hasd + 1 parameters and a nonlinear multivariate
node has(d2+3d+4)=2 parameters. We see that in terms of the number
of nodes, the ordering is Uni>Omni>Lin>Nonlin but in terms of the
number of parameters, the ordering is exactly the opposite: The

TABLE VI
THE FIRST TABLE GIVES THE LEARNING TIME IN SECONDS ON APENTIUM

III-600. VALUES ARE AVERAGE AND STANDARD DEVIATIONS OF TEN

INDEPENDENTRUNS. THE SECONDTABLE CONTAINS PAIRWISE COMPARISONS

WHERE(i; j) VALUES ARE THENUMBER OFDATASETS ONWHICH MODEL i IS
STATISTICALLY SIGNIFICANTLY BETTER THAN MODEL j

univariate tree has a large number of simple nodes and in the other ex-
treme, the nonlinear multivariate tree has a small number of very com-
plex nodes. The omnivariate tree uses univariate nodes unless the addi-
tional complexity is justified and heavily uses simple univariate nodes.

Looking at Table V, the 19 datasets on which the univariate trees
are smaller than the nonlinear trees include the 16 datasets on which
the linear trees are smaller than the nonlinear trees. Similarly, the four
datasets (DER, IRI, ZOO, NUR ) on which the omnivariate trees
are smaller than the linear trees are among the 11 datasets on which
the univariate trees are smaller than the linear trees and the 14 datasets
on which the omnivariate trees are smaller than the nonlinear trees are
among the 19 datasets on which the univariate trees are smaller than the
nonlinear trees. These 14 datasets are the union of the datasets on which
either the univariate tree or linear tree is smaller than the nonlinear
tree. This fact indicates again that the omnivariate tree sticks to simple
nodes, mostly univariate and sometimes linear, rarely resorting to a
complex nonlinear node.

C. Learning Time

When� is the number of nodes andN is the number of instances,
training a univariate tree takesO(� �N �d) time. When training takese
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TABLE VII
NUMBER OF UNIVARIATE , LINEAR AND NONLINEAR NODES IN

THE OMNIVARIATE TREES

epochs, training a linear multivariate tree isO(� �N �d�e�K2) time and
training a nonlinear multivariate tree isO(��N �d2�e�K2) time. However,
because the univariate tree has more nodes, the overall training time
may be less with multivariate trees. Postprunining also has more effect
on univariate trees; the multivariate trees are almost not affected by
pruning. The nonlinear multivariate tree thus are induced fastest and
then it is the linear multivariate and then the univariate tree (Table VI).

Because, to be able to choose the best, all three nodes should be
trained and because the test uses 5� 2 cross-validation, the only draw-
back of omnivariate tree induction is learning time, with complexity
O(10 � � �N=2 � (d+ deK2+ d2eK2)). Note, however, that the 5� 2
validations, as well as the training of univariate, linear, and nonlinear
nodes, are independent and can effectively be parallelized on a multi-
processor system.

The number of univariate, linear, and nonlinear nodes in the om-
nivariate trees are shown in Table VII. We see that a large majority
(77.7%) of the nodes are univariate, which, our analyzes of the induced
trees indicate, are closer to the leaves. 18.6% of the nodes are linear
and only 3.7% are nonlinear. The linear and nonlinear nodes are closer
to the root, indicating that an early complex discriminant is helpful
(Fig. 2). But as we go down the tree and work on subproblems con-
fined to a small subspace of the input space, simple univariate splits
generalize the best.

This can also be seen in Table VIII where we see that in 77.4% of
the cases, linear or nonlinear multivariate splits are not statistically sig-
nificantly superior to the univariate split (row 1 of Table I) and thus
the univariate split is chosen due to its simplicity. In 17.3% of the

Fig. 2. The number of nonlinear, linear, and univariate nodes in all trees as a
function of level in the tree.+: univariate, : linear, : nonlinear. We see that
complex nodes are used early in the tree.

TABLE VIII
NUMBER OF TIMES STATISTICAL TEST CASES OFTABLE I ARE SEEN

IN THE DATASETS DURING THE INDUCTION OF OMNIVARIATE TREES.
1–8 CORRESPOND TOROWS OFTABLE I

cases, we have both the linear and nonlinear splits better than the uni-
variate and no significant difference between the linear and nonlinear
and we choose the linear split (row 7 of Table I). We also see that case
6 (Lin>Uni, Nonlin6>Uni, Nonlin>Lin) never occurs; this indicates
that we have a good test. Case 3, which is another problematic case
(Lin 6>Uni, Nonlin>Uni, Nonlin6> Lin), is met in 1.5% of the cases,
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which shows our prior belief of Uni>Lin>Nonlin is true for 98.4% of
the cases. Though in Table I in four cases out of eight, the nonlinear
split is chosen, these four cases happen very rarely in data and thus the
nonlinear split is chosen in only 3.7% of the cases.

In terms of computation during test, a univariate node isO(1), a
linear multivariate node isO(d), and a nonlinear multivariate node
(when implemented as an MLP withO(d) hidden units) isO(d2).
Thus an omnivariate tree with a large percentage of univariate nodes
takes much less time to give an output than pure linear or nonlinear
multivariate trees.

VIII. C ONCLUSION

We propose a novel decision tree architecture, the omnivariate deci-
sion tree, which is a hybrid tree that contains both univariate, linear mul-
tivariate, and nonlinear multivariate nodes. Though we have used neural
networks in the decision nodes for the linear and nonlinear nodes, some
other method can also be used to train a linear or nonlinear node and our
approach is not limited to having neural networks in the decision nodes.
The ideal node type is determined by taking into account our preference
due to simplicity and the results of statistical tests comparing accuracy.
Such a tree, instead of assuming the same bias at each node, matches
the complexity of a node with the data reaching that node. Our simu-
lation results indicate that such an architecture generalizes better than
trees with the same types of nodes everywhere and generates smaller
trees. The only handicap is the longer training time, but the test runs can
be parallelized very easily on a parallel processor system. We believe
that with processors getting faster and cheaper, omnivariate architec-
tures with built-in automatic model selection will become more popular
as they free the designer from choosing the appropriate structure.
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