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Fig. 6 shows the BERs for the three receivers plotted against the Omnivariate Decision Trees
number of users, wherEb/No is fixed at 18dB and the number of
multipaths is fixed at five. This figure illustrates that the performance Olcay Taner Yildiz and Ethem Alpaydin

improvement of the receiver using an RBF network turns out to be
greater than that of the MUD with PIC. The reason for this is that the o o o ]
proposed receiver effectively utilizes the signal components of OtherAbstract—Umvanate decision trees at each decision node consider the

hich idered i f d led in th value of only one feature leading to axis-aligned splits. In a linear multi-
users, which are considered interference and are canceled In the ¢aggte decision tree, each decision node divides the input space into two

of PIC. with a hyperplane. In a nonlinear multivariate tree, a multilayer perceptron

at each node divides the input space arbitrarily, at the expense of increased
complexity and higher risk of overfitting. We propose omnivariate trees
where the decision node may be univariate, linear, or nonlinear depending
on the outcome of comparative statistical tests on accuracy thus matching

. . . . Jjtomatically the complexity of the node with the subproblem defined by
In this paper, we proposed a multiuser receiver with channel esmje data reaching that node. Such an architecture frees the designer from

mation capability using an RBF network in an MC-CDMA systeéMmgnqosing the appropriate node type, doing model selection automatically
Simulations were performed over frequency-selective and multipatheach node. Our simulation results indicate that such a decision tree in-
Rayleigh fading channels. The RBF network structure showed itsélfction method generalizes better than trees with the same types of nodes
capable not only of permitting the effective utilization of the frequenc§/€"ywhere and induces small trees.
diversity but also of executing channel estimation under the conditiongndex Terms—Univariate decision trees, multivariate decision trees,
of a frequency-selective multipath fading channel. Computer simulaeural trees, statistical tests.
tions demonstrated that the proposed receiver outperforms a MUD with
PIC as well as conventional receivers. Furthermore, simulation results
showed that a multiuser receiver using an RBF network has the poten-
tial to be used for the purpose of increasing the number of active usersA decision tree is made up of internal decision nodes and
terminal leaves. The input vector is composed dfattributes,
£ = [z1,...,24]", and the aim in classification is to assignto
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process is continued recursively until a leaf node is met, at which pointltis this model that we are going to take as tioalinear multivariate
the label of the leaf defines the class. decision treeBecause MLP is a universal approximator and can ap-
Geometrically, eaclf,,(z) defines a discriminant in thé-dimen- proximate any function given sufficiently biff, a decision tree need
sional input space dividing it into as many subspaces as there aoghave any node more complex than such a node. Note, however, that
branches. As one takes a path from the root to a leaf, these subspaogsother method can be used to train a linear or nonlinear node and
are further subdivided until we end up with a part of the input spacair approach is not limited to having neural networks in the decision
which contains the instances of one class only. Different decision tneedes. The difference between the univariate, linear multivariate and
methods assume different models for the discriminfntand the nonlinear multivariate splits is shown on an example in Fig. 1.
model class defines the shape of the discriminant.
In univariatedecision trees, the decision at internal nedases only

one attribute, i.e., one dimensiona®fz;. If that attribute is numeric, IIl. TRAINING DECISION TREES

the decision is of the form Training corresponds to constructing the tree given a training set.

Fonl®) 2+ Wm0 > 0 N Finding the smallestdecision_tr_ee that class_ifies at_raining set correctly

is NP-hard [14]. For large training sets and input dimensions, even for
wherew,,,o is some constant number. This test has two outcomes, i@ univariate case, one cannot exhaustively search through the com-
and false, labeling the two branches, left and right, and thus the nddete space of possible decision trees. Decision tree algorithms are thus
is binary. This defines a discriminant which is orthogonal to axis greedy in that at each step, we decide on one decision node. Assuming

intersects it at:; = —w,.o and divides the input space into two. a model forf,, (univariate, or linear, or nonlinear multivariate), we
If the attribute is discrete valued withl possible values, look forthe parametersi(.. coefficients)that best splitthe data hitting
{a1,as,...,ar}, the decision is of the form nodem, starting with the complete dataset in deciding on the root node.
Once we decide on a split, tree construction continues recursively for
fml(x) iz =a;, 1=1,...,L. (2) each child with training instances taking that branch. Surveys about

constructing and simplifying decision trees can be found in [6] and

This hasL outcomes, one for each possible value, and thus there §{8) A recent survey comparing different decision tree methods with
L branches and the nodeiisary, dividing the input space intb. Ina  jier classification algorithms is given in [11].

univariate tree, successive decision nodes on a path from the root to ¢4 pest split is when all the instances from a class lie on the same
leaf further divide these |nto.two, dr, with splits orthogqnal to each side of the decision boundary, i.e., return the same truth valug,for
other and th(_e leaf nodes define hyperr_ectangles in the input SPaCe.There are various measures proposed for measuring the “impurity” of
When the inputs are correlated, looking at one feature may be toogeépm; examples are entropy [17] and the Gini index [4]. Murghy
strictive. Alinear multivariate treeat each internal node, uses a Iinea(ral [14] describe some other impurity indexes. Our results and those
combination of all attributes. of previous researchers indicate that there is no significant difference

. d between these impurity measures.
Jm(Z) t W + Wi = Zwm] Tj 4+ Wmo > 0. (3) For constructing univariate decision trees with discrete attributes,
J=1 Quinlan proposed th#D3 algorithm[17] and later generalized it for

To be able to apply the weighted sum, all the attributes should be Aymeric attri_b_utes with th€4.5 algorithm18]. In this gnivariqte case,
meric and discrete values need be represented numerically (usually*b§@ch decision node, one can check for all possible splits for all at-
one-ofL, encoding) before. The weighted sum returns a number affiPutes and choose the best as measured by the purity index. For a dis-
the node is binary. Note that the univariate numeric node is a spe§&fte attribute, there is only one possible split. For a numeric attribute,
case of the multivariate linear node, where all but onegf; is zero there areV,, — 1 possible splits, wherd',,, is the number of training

and the other, one. In this linear case, each decision node divides fiigances reaching node. o
input space into two with a hyperplane of arbitrary orientation and po- N the case of a linear multivariate tree, even the problem of finding
sition where successive decision nodes on a path from the root to a 84 OPtimal split at a node when optimality is measured in terms of

further divide these into two and the leaf nodes define polyhedra in tRisclassification errors is NP-hard [14]. The problem of finding the
input space. best split is then an optimization problem to find the best coefficients,

In the more general case, one can use a quadratic model as ~ ©mi»J = 0,... ., d, thatminimize impurity as defined by the entropy or
Gini index. An iterative local search algorithm is used for optimization
fru(@) i &' Wt + @+ wio = 3> Winijwia; which does not guarantee optimality and may get stuck in local optima.
i g The classification and regression trees (CART) algorithm of

+ Zwmﬂj Tt > 0. (4) Brei_man et al. [4_]_uses an itergtive_backﬁtting a_lgorithm vv_he_re
- cycling over coefficients, at each iteration, one coefficient is optimized

! keeping the other coefficients fixed. In the OCL1 algorithm(Oblique

The linear model is a special case whBrg, = 0,Vi.j = 1,....d.  trees) proposed by Murthst al. [14], an extension is made to CART
Another possibility to get a nonlinear split at a node is to write thg get out of local optima: A small random vector is addedutq
decision as a weighted sum ff nonlinear basis functions after convergence through backfitting. This perturbs all coefficients

T together and causes a conjugate jump in the coefficient space. In
fml2) Zwmhgmh () + wmo >0 (5) the linear machine decisi.on trees (LMDT) algolrithm, proposed by
=0 Brodley and Utgoff [7], withK™ classes, a node is allowed to have

K children. For each child, a separate coefficient vector is used to
eparate the instances of that class from the other classes. There is an
Srative algorithm that adjusts the coefficients to minimize the number
of misclassifications, rather than an impurity measure as the entropy
1 or the Gini index. The fast algorithm for classification trees (FACT)
1+exp[—(v] 2 + vmno)] - ®) of Loh and Vanichsetakul [13] uses parametric discriminant analysis

whereg,,,», () are the nonlinear basis functions. The multilayer perce
tron (MLP) is such a model where the basis function is the soft-’[hresi
olded weighted sum

Jmh (.’E) =
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(Gaussian classes with shared covariance matrix) to implement \
K -way splits. Loh and Shih’s quick unbiased efficient statistical tree

(Quest) algorithm [12] also uses parametric discriminant analysis but O
with binary splits and uses 2-means algorithm to partitforclasses

to two at each node. Linear discriminant trees, proposed by Yildiz and 'SR
Alpaydin [23], uses Fisher’s linear discriminant to find the coefficients

in a binary tree and uses Guo and Gelfand’s [10] exchange heuristic . O
to group Kk’ classes into two. O

‘o
[

h
i
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I1l. NEURAL TREES o)

Neural trees were introduced to combine neural networks and deci-
sion trees. In literature, neural trees can be classified into two groups.

The first group uses decision trees to form the structure of the neural
network. The key idea is to construct a decision tree and then con- o . . . o .
vert the tree into a neural network. Sethi [21] produces a three-layer 1h ln‘on:izr)](:;?prfull’t?\;\gg?ée(gg?égtf%ﬁ "sne-) (linear multivariate (dashed line),

. . ; plits that separate instances of two

neural network from decision trees, extracting the hidden nodes of figsses.
neural network from the decision tree. Brent [5] gives the details, com-
plexity analysis and some practical refinements on this subject. An ex-
tension to this idea, which uses linear decision trees as building blocls is indeed the case on a validation set different from the training set,
can be found in [16]. Cios [8] proposes the CID3 algorithm as a modhen the subtree is replaced by the leaf. Otherwise it is kept. It makes
fication of the ID3 algorithm. CID3 creates a hidden layer in a mann&gnse to start with the smaller subtrees closer to leaves and proceed up
similar to the ID3 generation of a decision tree. In the learning proce$gward the root.
new hidden layers are added by the CID3 algorithm to the network until This  process is calledpostpruning to differentiate it from
a learning task becomes linearly separable at the output layer. Caugrgpruning In postpruning, the tree is constructed until there is no
training is used to train the resulting hybrid structure. Golea and Mar@isclassification error and then pruned simpler. In prepruning, the
hand [9] propose a linearly separable neural-network decision tree t@e is not fully constructed until zero training error but is kept simple
chitecture to learn a given but arbitrary Boolean function. by early termination. At any node, if the dataset reaching that node

The second group uses neural networks as building blocks in d&@small, even if it is not pure, it is not further split and a leaf node is
cision trees. The nonlinear multivariate decision tree with multilay@reated instead of growing a subtree. Prepruning is faster. Postpruning
perceptrons at the internal nodes was proposed by Guo and Gelffiiey be more accurate but is slower and requires a separate validation
[10]. They also proposed a heuristic to gralip> 2 classes into two, Set.
which is necessary as the nodes in the tree are binary. Thus they use
a nested optimization problem where in the inner optimization, grg. TunING THE NODE COMPLEXITY AUTOMATICALLY : OMNIVARIATE
dient-descent is used to find the weights that minimize the mean-square DECISION TREES
error as usual in training neural networks and so find a good split for the o o ) o
given two distinct groups of classes. In the outer optimization problem,ln apprOX|m§1t|r_19 the rea_l (unk_nown) dlsc_rlmlr_want, W|th ur.1|var.|ate
exchange heuristic is used to find the best spliiotiasses into two N0Jes we are limited to a piecewise approximation using axis-aligned
groups through a local search with backtracking, with time complexifjyPerplanes. With multivariate linear nodes, we can use arbitrary hy-
O(K?). This same algorithm can also be used with single layer pé}erplanes and_ thus app_rOX|_rnate the _dlscrlm_lnant better. In Flg. 1 _for
ceptrons instead of multilayer perceptrons thereby generéitingr example,pne linear ml_JItlvarlate nod_e is qsed_ |n_stead_ ofthree univariate
multivariate decision nodes. This was first introduced as neural tr8des. Itis clear that if the underlying discriminant is curved, a non-
networks by Sankar and Mammone [20]. They also introduced a nlpgar approx_lmat_lon th_rough a nonlinear multivariate node allows a
pruning algorithm which uses a Langrangian cost function [19]. Tr%etter.approxmatlon using asmallernumber_of nodes and Ieaves.Thus
comparison of this latter method with other linear multivariate decisidfere is & dependency between the complexity of a node and the size of
tree construction methods is given in [23]. Behnke and Karayiannis U8 tree. With complex nodes the tree may be quite small; with simple
competitive learning to form a competitive decision tree architectuP@des one may grow large trees.

named CNET [2]. A hybrid form which contains neural networks at However we should keep in mind that an MLP node 8 x H)

the leaves of the tree and univariate nodes in the nonleaf nodes of RREaMeters, compared to linea®d) and univariate’s)(1). A com-
tree was proposed by Utgoff [22]. plex model with a larger number of parameters requires a larger training

dataset and risks overfitting on small amount of data. For example in
Fig. 1, the nonlinear split has less error than the linear split but is too
wiggly. Thus one should be careful in tuning the complexity of a node

A greedy algorithm is a local search method where at each stegth the properties of the data reaching that node.
one tries to make the best decision and proceeds to the next decisiofzach node type has a certain bias; using multivariate linear nodes
never backtracking and reevaluating a decision after it has been mddeexample, we are assuming that the input space can be divided using
Similarly in decision tree induction, once a decision node is fixed, ityperplanes into localized regions (volumes) where classes, or groups
cannot be changed after its children have been created. This may caiisgasses are linearly separable. Using a decision tree with the same
suboptimal trees where for example subtrees are replicated. The dglye of nodes everywhere, we assume that the same bias is appropriate
exception is the@runing of the tree. at all levels.

In pruning, we consider replacing a subtree with a leaf node labeledThis paper advocates the view that this assumption is not always cor-
with the class most heavily represented among the instances thatract and that at each node of the tree, which corresponds to a different
covered by the subtree. If there is overfitting, we expect the more cosubproblem defined by the subset of the training data reaching that
plex subtree to learn the noise and perform worse than the simple leahdtle, a different model may be appropriate, and that the right model

O
O
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IV. PRUNING
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TABLE | TABLE 1l
DETERMINATION OF THE WINNER NODE TYPE AS A RESULT OF THE DESCRIPTION OF THEDATASETS. K IS THE NUMBER OF CLASSES N IS THE
STATISTICAL TEST RESULTS OF THECOMPARISON OFTHREE NODE TYPES DATASET SIZE, AND d IS THE NUMBER OF INPUTS
IF LIN>UNI IS TRUE, THEN THE TEST DETECTS THAT THE LINEAR
MULTIVARIATE SPLIT IS BETTER THAN THE UNIVARIATE SPLIT. NONLIN Set | K N| d Missing|Attr Type
IS THE NONLINEAR MULTIVARIATE SPLIT BALI 3| 6351 & No symbolic
Lin>Uni|Nonlin>Uni|Nonlin>Lin||Winner BRE|| 2/ 699/10) Yes | numeric
False False False Uni BUP || 2 345 7 No numerlic
False False True Uni CAR| 4| 1728/ 7 No symbolic
False True False Nonlin CMC| 3| 147310 No mixed
False True True Nonlin CRE| 2 69016 No mixed
True False False Lin CYL| 2 54136 Yes mixed
True False True Nonlin DER| 6 36635 Yes numeric
True True False Lin ECO| 8 336| 8 No numeric
True True True Nonlin FLA|l 3 323111 No mixed
GLA|| 7 214110 No numeric
HAB|| 2 3086| 4 No numeric
should be found and used. For example, we expect that though closer to Eg; g ;22 39, zes nux.nerlc
. es mixed
the root a nonlinear model may be used, as we get closer to the leaves, il 3| 150! 5 No numeric
we have easier problems in effectively smaller dimensional subspaces roll 2| 35138 No numeric
anq at. the same time, we have smaller trglnlng data and S|mple,.e.g., vonll 2| as32| 7 No numeric
univariate, splits may suffice and generalize better. Our results given sl 2| 8124|23| Yes symbolic
in the next section support our intuition. We name this hybrid structure vurll 5|12060!| 9 No symbolic
anomnivariate decision treas this type of decision tree embraces all ocrll10| 3823|684 No numeric
variants. PEN|10| 7494|16| No numeric
In our proposed omnivariate decision tree, at each node, we train piM| 2| 768| 9| No numeric
and compare all three possible nodes; univariate, linear multivariate, sec!l 7| 2310/19! No numeric
and nonlinear multivariate, and using a statistical test, we choose the SPA|l 2| 460158 No numeric
best and continue tree induction recursively. Each node implements a TIC| 2| 95810 No symbolic
binary split to induce simple and interpretable trees. To gtRup 2 VOT| 2| 435|17| Yes symbolic
classes into two, we use Guo and Gelfand’s [10] exchange heuristic WAV| 3| 5000(22 No numeric
which uses class information and thus is better than the unsupervised WIN| 3| 17814 No numeric
2-means algorithm used by Loh and Shih in Quest [12]. Postpruning is YEA| 10| 1484| 9 No numeric
used to simplify the tree after induction for better generalization. Zoo| 7| 10117 No numeric

In the OC1 algorithm [14], at each decision node, both a univariate
and a multivariate linear split is found and the latter is used if its impu-
rity is less than that of the former. However, this compares the two omodel and if the nonlinear multivariate model is better than the uni-
the training set whereas one should make the decision using cross-vatiate model, but if the nonlinear model is not better than the linear
idation through a statistical test, as we propose here. model (case 7 of Table I), we select the linear model in that node.

VII. EVALUATION
VI. CHOOSING THEBEST OFTHREE MODELS o . ) .
To compare our proposed omnivariate decision tree architecture with

Statistical tests in the literature, and the 2cv F test we use [1], pure univariate, linear multivariate, and nonlinear multivariate trees,
compares two models and to be able to choose the best of more thatested all four methods on 30 datasets from the UCI repository [3].
two models, we need a methodology. Given three matlglsif;, and Table Il describes the properties of the data sets.

My, we may not have a full order and a clear winnerMdsis better The pure univariate tree is constructed using C4.5 algorithm. The
than bothM; and M., andM; better thand;. : M; > M;, M; > linear multivariate tree is constructed with a single-layer perceptron at
My, M; > M. In the absence of a clear winner among the three deach decision node. The nonlinear multivariate tree is constructed with
to no statistically significant difference between the methods, we uaenultilayer perceptron at each node havihigputs, one output, and
our prior information and prefer the simpler model. (d + 1)/2 hidden units(Number of inputst number of outputy/2 is

Table I shows the eight possible results of the statistical tests betwa@ecommon heuristic in determining the number of hidden units in an
the three node types; univariate, linear multivariate, and nonlinear mMLP. We have also made tests with+ 1 and3(d + 1)/2 hidden units
tivariate. The winner node type is chosen to satisfy two criteria: 1) rand noticed no significant difference in accuracy and tree size.
sults of the tests and 2) Our prior preferrence to choose the simpleBoth of the multivariate trees use binary nodes and use Guo and
model unless the test, based on the data, chooses the more complelfand’s [10] exchange heuristic to grodp > 2 classes into
model. We apply three tests to see at each test if the more compie® groups. Discrete attributes are 1-bf-encoded numerically
model is better than the simpler model or not. If the test returns faldmfore using these two methods. The omnivariate tree, if it chooses a
this may be either because 1) there is no difference between the modeisariate node, uses a discrete attribute as it is. Postpruning is used
or 2) it may be because the simpler model is better. In both cases, faetree simplification in all four architectures.
choose the simpler model; in 1) due to its simplicity and in 2) due to The test we use is the combinec&2cv F' Test [1] which performs
its being more accurate. five two-fold cross-validation runs on each data set. The results of the

We choose the best after three such pairwise tests are made. tEarruns are then averaged and we report the mean and standard devia-
example, if the linear multivariate model is better than the univariat®en of accuracy (Table Ill), tree size in terms of the number of nodes
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TABLE Il TABLE IV
THE FIRST TABLE GIVES THE ACCURACY RESULTS VALUES ARE AVERAGE THE FIRST TABLE GIVES THE TREE SIZE IN TERMS OF THENUMBER OF NODES
AND STANDARD DEVIATIONS OF TEN INDEPENDENTRUNS. THE SECOND IN THE TREE. VALUES ARE AVERAGE AND STANDARD DEVIATIONS OF TEN
TABLE CONTAINS PAIRWISE COMPARISONSWHERE (7, j) VALUES ARE INDEPENDENTRUNS. THE SECOND TABLE CONTAINS PAIRWISE COMPARISONS
THE NUMBER OF DATASETS ONWHICH MODEL ¢ IS STATISTICALLY WHERE (¢, j) VALUES ARE THE NUMBER OF DATASETS ONWHICH MODEL i IS
SIGNIFICANTLY BETTER THAN MODEL j STATISTICALLY SIGNIFICANTLY BETTER THAN MODEL j
Set Uni| Lin Mul Nonlin Omni Set Uni| Lin Mul Nonlin Omni
BAL(65.5,3.0(91.6, 2.0(91.7, 2.0| 92.7, 2.3 BAL| 38.0,11.5| 6.0, 4.0| 7.0, 4.1| 5.5, 2.4
BRE||94.6,1.8/96.2, 0.7/96.2, 0.8| 95.5, 1.5 BRE|| 13.0, 5.0| 3.2, 0.6| 3.0, 0.0| 4.6, 3.5
BUP|(62.8,3.3|64.1, 3.8|57.9, 1.3| 64.1, 3.9 BUP| 17.4,12.5| 4.0, 3.0} 1.0, 0.0121.2,13.6
CAR||86.0,1.692.7, 1.7|97.0, 1.4| 94.3, 2.2 CAR| 89.4,10.4)15.4, 6.6) 7.0, 0.0/22.6, 9.3
cMclls52.6.3.1|44.6, 2.2/a4.0, 2.6| 51.7, 2.0 CMC|[120.0,26.6(38.2,14.4/15.0,11.7|79.6,15.7
CRE|| 21.2,13.7| 7.8, 5.3| 3.2, 0.6{11.0, 8.3
CRE||84.7,1.0|82.5, 2.2(83.8, 1.6| 82.5, 2.1 oyL| 20.8, 8.7| 9.4, 4.0/ 3.4, 1.3]23.3, 8.9
CYL 67-2,4.6 69.2, 2.7 69.5, 5.0 6801, 3-2 DER 12‘4’ 1-3 11.0, 0.0 11.0, o.o 12.8, 2‘6
DER|92.5,2.4]|97.2, 1.0|96.6, 0.8 92.4, 3.1 ECO| 14.2, 4.8| 9.6, 2.1 8.6, 1.3/12.2, 5.5
ECD|178.2,4.0{80.0, 4.1/80.3, 4.1| 78.4, 4.3 FLA 4.7, 6.0 2.6, 2.6| 1.0, 0.0| 1.0, 0.0
FLA||88.3,2.5/88.0, 2.6(|88.8, 2.4| 88.8, 2.b GLA| 14.2, 4.0| 8.6, 3.1{ 6.6, 1.8|14.0, 6.3
GLA||60.0,5.5|57.3, 7.4/56.7, 4.5| 58.8, 7.0 HAB| 8.8,10.5| 2.4, 2.3| 1.4, 0.8} 7.0,10.1
HAB|71.9,3.6|73.3, 3.2|73.4, 3.1| 72.4, 3.8 HEP) =~ 2.8, 2.4} 2.0, 1.1} 1.8, 1.0} 3.4, 3.6
HEP||78.9,4.4|81.5, 4.4(81.2, 4.0| 79.9, 3.3 HOR) 37.5,19.5) 3.6, 1.3/ 3.2, 1.1) 4.6, 5.8
HOR[73.8,6.7|79.8, 6.6|79.6, 6.5 78.6, 6.2 IRI} 5.4, 0.8 5.0, 0.0) 4.6, 0.8) 5.6, 1.0
IRO| 7.6, 2.7| 4.4, 1.3| 3.2, 0.6] 6.2, 3.2
IRI}{92.9,3.3|95.4, 2.3|85.8,14.2| 93.1, 3.6 MON| 26.8,12.3| 8.4, 5.2| 3.2, 1.5/26.0, 6.9
IRD|86.1,3.7|87.8, 2.8|89.1, 1.7| 87.7, 4.0 wus| 26.8, 2.0| 3.0, 0.0| 3.0, 0.0] 3.0, 0.0
MON(89.8,7.7|72.3, 5.6|67.2,10.7| 88.2, 8.0 NUR | 351.4,41.7/88.2,14.9] 7.0, 3.0|16.4, 1.3
MUS|199.8,0.1/99.9, 0.0|99.9, 0.0|100.0, 0.0 OCR| 107.4, 9.9/26.8, 4.4]19.0, 0.0|36.2, 0.9
NUR||94.4,0.4|93.4, 0.6(95.6, 9.5| 99.6, 0.2 PEN|134.4,13.5/46.6,10.2{19.6, 2.1|37.0, 8.0
OCR||84.8,0.8{92.4, 0.8(94.6, 0.8| 92.4, 0.9 PIM| 27.0,14.5 9.4, 6.9 3.4, 0.8)|20.8, 9.9
PEN|I92.5,0.6|94.9, 2.7|94.8, 4.6| 95.6, 3.8 SEG) 42.8, 7.0120.6, 6.9112.8, 2.6/37.2, 6.6
PIM||70.7,2.9]73.9, 1.3(75.2, 1.5] 72.1, 2.9 SPA)| 75.4,20.7(27.4, 9.3| 3.2, 0.6|40.8,30.7
SEG||92.0,0.9/87.5,10.6|86.8,12.5| 92.8, 1.2 o 62:§; - g; - gg %0 22 yd
SPA1191.4,0.7/91.1, 0.6/93.0, 0.7| 92.5, 0.9 WAV | 143.8,21.7|39.8,16.1[12.0, 5.4|65.8,32.5
TIC| 78.7,1.8]97.9, 0.7|97.8, 0.6| 97.5, 0.8 WIN 6.8, 2.6| 5.0, 0.0| 5.0, 0.0| 6.4, 1.6
V0T ||95.6,0.6{95.4, 0.9(95.3, 0.7| 95.6, 1.1 YEA| 75.6,21.2(34.4,13.9(18.4, 4.8{72.0,19.3
WAV|l75.9,0.6/82.8, 0.9|82.4, 8.0| 83.0, 1.8 Z00 9.2, 2.4| 7.8, 2.3| 7.6, 1.3] 9.0, 2.3
WIN|/86.6,1.9|96.0, 1.9/95.0, 2.1| 89.6, 3.2
YEA|[54.4,3.047.7, 4.4|51.9, 3.6| 52.6, 1.9
200(82.9,7.3|79.2, 9.5|79.6, 8.2| 83.1, 6.4 Mothod |[Uai|Lin Wul|Nonlin|Oani|y"
Uni - 0 0 1] 1
Lin Mull| 14 - 0 4|16
Nonlin 16 5 - 918
Method ||Uni|Lin Mul|Nonlin|Omni Z Omni 10 1 0 10
Uni - 0 1 0] 1 Z 17 5 0 10
Lin Mul 6 - 0 0} 6
Nonlin 6 3 - oL 7
Omni 6 1 1 -1 7
> 8 4 2 0 as accurate as the others (Table IlI), showing that a univariate split

is good enough in most cases. On six datasesR, OCR, WIN,
BAL, TIC, WAV ), the linear multivariate tree is more accurate than

. . the univariate tree and on six dataseBAR, OCR, PEN, WIN,
(Table IV) and the number of parameters (Table V), and learning tméeAL, TIC ), the nonlinear multivariate tree is more accurate than the

in seconds on a Pentium 111-600 (Table VI). T . . i

. . ) nivariate tree. The nonlinear one is better than the linear only on three
For each comparison, there are two tables where in the first table - o .

; - atasetsCAR, OCR, PIM). These indicate that a multivariate split

raw results are shown and the second table contains pairwise compar- . . )

. ; R . . S sometimes better. But WAV although the linear tree is more ac-

isons; the entryi, 7) in this second table gives the number of datasets S . .

. o - - = Curate than the univariate tree, the nonlinear tree is not more accurate
on which method is statistically significantly better than methgd

. ' than the univariate tree; as can be seen by the high standard deviation
with 95% confidence. In the second table, row and column sums arq . L .
. . value of 8.0, the nonlinear multivariate tree overfits here.
also given. The row sum gives the number of datasets out of 30 wher A A .
he omnivariate model outperforms the univariate tree on six

the algorithm on the row outperforms at least one of the other algo- L
rithms. The column sum gives the number of datasets where the alg]ggasetSQAR, OCR, BAL, NUR, TIC, WAV) which is almost

. . e union of the datasets on which the linear and nonlinear multivariate
rithm on the column is outperformed by at least one of the other algt - A L L
fithms rees outperform the univariate tree, indicating that the omnivariate
' tree includes as its special cases all three possibilities, using whichever
is more accurate at each node. The omnivariate tree outperforms the
linear multivariate on one datasé&tR, and the nonlinear multivariate
Comparing univariate, linear, and nonlinear multivariate trees amoage on one dataseCM@; this latter is also the dataset where the

themselves, we see that on 22 datasets out of 30, the univariate treangsariate is better than the nonlinear multivariate.

A. Accuracy



1544 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

TABLE V TABLE VI
THE FIRST TABLE GIVES THE TREE SIZE IN TERMS OF THENUMBER OF FREE THE FIRST TABLE GIVES THE LEARNING TIME IN SECONDS ON APENTIUM
PARAMETERS IN THE TREE. VALUES ARE AVERAGE AND STANDARD 111-600. VALUES ARE AVERAGE AND STANDARD DEVIATIONS OF TEN
DEVIATIONS OF TEN INDEPENDENTRQNS. THE SECOND TABLE CONTAINS INDEPENDENTRUNS. THE SECOND TABLE CONTAINS PAIRWISE COMPARISONS
PAIRWISE COMPARISONSWHERE (4, j) VALUES ARE THE NUMBER WHERE (¢, j) VALUES ARE THE NUMBER OF DATASETS ONWHICH MODEL i IS
OF DATASETS ONWHICH MODEL ¢ IS STATISTICALLY SIGNIFICANTLY STATISTICALLY SIGNIFICANTLY BETTER THAN MODEL j
BETTER THAN MODEL j
Set Uni|Lin Mul Nonlin Omni
Set Uni| Lin Mul Nonlin Omni BAL 2, 0 2, 1 7, b5 48, 6
BAL| 46,14 56, 44 700, 479 44, 8 BRE 1, 1 i, 0 0, O 9, 2
BRE| 19, 7| 13, 3 58, 0| 22, 19 BUP 3, 0 1, 0 0, O 12, 3
BUP| 26,19 13, 12 1, 0 33, 21 CAR 11, 1| 17, 6 22, 5 326, 34
CAR| 134,16 167, 76 766, 0| 291, 158 CMC 24, 2| 45, 16 54, 36 451, b7
CMC|/168,38| 485,187| 2290,1919| 270, 106 CRE 5, 0 6, 1 6, 1 191, 19
CRE| 26,16!| 161,124 1192, 342| 226, 368 CYL 12, 1 9, 2 10, 3 243, 41
CYL| 31,13] 299,141 2985,1573| 119, 99 DER 3, 0 7, 1 17, 5 184, 16
DER| 18, 2| 181, Of 3161, 0 29, 17 ECO 3, 0 4, 1 3, 0 36, 9
ECO| 21, 7 40, 10 145, 24 29, 14 FLA 3, 1 1, 1 1, © 16, 7
FLAYy 7, 9 21, 33 1, 0 i, o GLA 4, 1| 2, 1 2, 0 26, 6
GLA| 21, 6 43, 17 161, 52 21, 10 HAB 1, 0 0o, 0 0, O 15, 4
HAB|| 13,16 5 6 3, 5{ 10, 15 HEP 2, 0| 0, O 0, 0 7, 1
HEP 4, 4 12, 11 86, 109 5, 5 HOR 6, 1 4, 1 12, § 141, 40
HOR| 56,29{ 130, 67| 5339,275b5 92, 33 IRI 1, 0 0, O 0, 0 4, 1
IRI 8, 1 13, 0 32, 7 8, 2 IRO 18, 4 i, 0 1, 0 65, 14
IRO| 11, 4 62, 24 696, 200| 103, 193 MON 12, 6 i, 0 0o, 0 T, 2
MON| 40,19 31, 21 34, 22| 42, 12 MUs| 12, 2|136, 72| 272, 85| 2077, 32
MUS| 40, 3 69, 0| 2281, 0 69, 0 NUR|l 245, 11(664,111| 404,151| 4305, 398
NUR | 459,54|1265,217| 1225, 608| 792, 10 0OCR||5303,1493|662,153(1233,393|26184,4240
OCR|(161,15| 852,144 19324, 014613,2553 PEN| 617, 32|823,167| 481,178| 7445,1133
PEN (201,20 411, 92| 1443, 164| 548, 106 PIM 9, 1 4, 1 1, 0 63, 5
PIM| 40,22 43, 34 57, 20| 53, 35 SEG|| 352, 15! 85, 16| 69, 9| 1837, 184
SEG| 64,10{ 197, 69| 1134, 247| 134, 28 SPA|| 789, 53|167, 41| 40, 11| 4743, 930
SPA (113,31 780,275| 1885, 542|4380,5589 TIC 5, 0 2, 1 2, 0 87, 16
TIC|| 92,12 36, 18 409, 0 47, 33 voT 8, 2 2, 1 1, 0 22, 7
VvOoT 6, 3 38, 11 564, 0 37, 4 WAV || 1272, 34|142, 37 64, 25 6496, 449
WAV (| 215,33| 447,174| 1404, 683 822, 416 WIN 4, 1 i, 0 1, 0 10, 2
WIN| 10, 4| 31, 0| 215, O 32, 44 YEA|l 28, 1| 47, 9| 36, 9| 636, 51
YEA 113,32 168, 69 410, 113| 247, 77 200 4, 1 3, 0 2, 0 25, 11
Z00| 13, 4 62, 21 613, 105 15, 7
Method ||Uni|Lin Mul|{Nonlin|Omni|)_
Method ||Uni|Lin Mul|Nonlin|Omni|) Uni - 3 2| 27|27
Uni - 11 191 11|22 Lin Mul| 14 - 1| 30{30
Lin Mul 0 - 16 2117 Nonlin 15 6 -1 30[|30
Nonlin 0 4] - 1] 1 Omni 1 0 0 -1
Omni 0 4 14 -|15 Z 16 9 2 30
> 0 11 19| 12

univariate tree has a large number of simple nodes and in the other ex-
treme, the nonlinear multivariate tree has a small number of very com-
The omnivariate tree is never outperformed by any of the pure tre@sx nodes. The omnivariate tree uses univariate nodes unless the addi-

on any dataset, showing that when it is not more accurate, it is as acioral complexity is justified and heavily uses simple univariate nodes.
rate. This justifies our claim that it is not good to assume the same biag.ooking at Table V, the 19 datasets on which the univariate trees
on all levels of the tree and it is best to match the model complexiaye smaller than the nonlinear trees include the 16 datasets on which
at each level with each subproblem, i.e., the data arriving to that notlee linear trees are smaller than the nonlinear trees. Similarly, the four
Thus the model takes the best of the three models; the simplicity of udatasetsPER, IRl, ZOO, NUR ) on which the omnivariate trees
variate nodes when additional complexity is not justified and the poware smaller than the linear trees are among the 11 datasets on which

of linear or nonlinear multivariate nodes when it is. the univariate trees are smaller than the linear trees and the 14 datasets
on which the omnivariate trees are smaller than the nonlinear trees are
B. Tree Size among the 19 datasets on which the univariate trees are smaller than the

. . nonlinear trees. These 14 datasets are the union of the datasets on which
In Table 1V, we compare the sizes of the trees induced by the four

methods in terms of the number of nodes in the tree. We also give ither the univariate tree or linear tree is smaller than the nonlinear
T ' gve i€ This fact indicates again that the omnivariate tree sticks to simple
tree sizes in terms of free parameters because the nodes have diff

. L %88%3, mostly univariate and sometimes linear, rarely resorting to a

complexities (Table V). A univariate node has one or two parameters .
. : - : .~ complex nonlinear node.

(the attribute index and the threshold for a numeric attribute), a linear

multivariate node had + 1 parameters and a nonlinear multivariate . )

node hagd?+3d-+4) /2 parameters. We see thatin terms of the numbé&t- -€arming Time

of nodes, the ordering is UsiOmni>Lin>Nonlin butin terms of the Whenr is the number of nodes an¥ is the number of instances,

number of parameters, the ordering is exactly the opposite: Thiraining a univariate tree tak€3(7- N -d) time. When training takes
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TABLE VII
NUMBER OF UNIVARIATE, LINEAR AND NONLINEAR NODES IN
THE OMNIVARIATE TREES
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epochs, training a linear multivariate treegdér- N -d-e-K*) time and
training a nonlinear multivariate tree@( N -d%«K?) time. However,
because the univariate tree has more nodes, the overall training time
may be less with multivariate trees. Postprunining also has more effect
on univariate trees; the multivariate trees are almost not affected by
pruning. The nonlinear multivariate tree thus are induced fastest and
then it is the linear multivariate and then the univariate tree (Table VI).

Because, to be able to choose the best, all three nodes should be
trained and because the test usesbcross-validation, the only draw-
back of omnivariate tree induction is learning time, with complexity
O10-7-N/2-(d+ deK* + d*¢K?)). Note, however, that the:6 2
validations, as well as the training of univariate, linear, and nonlinear
nodes, are independent and can effectively be parallelized on a multi-
processor system.

The number of univariate, linear, and nonlinear nodes in the om-
nivariate trees are shown in Table VII. We see that a large majority
(77.7%) of the nodes are univariate, which, our analyzes of the induced
trees indicate, are closer to the leaves. 18.6% of the nodes are linear
and only 3.7% are nonlinear. The linear and nonlinear nodes are closer
to the root, indicating that an early complex discriminant is helpful
(Fig. 2). But as we go down the tree and work on subproblems con-

fined to a small subspace of the input space, simple univariate splgses, we have both the linear and nonlinear splits better than the uni-
generalize the best. variate and no significant difference between the linear and nonlinear

This can also be seen in Table VIII where we see that in 77.4% and we choose the linear split (row 7 of Table ). We also see that case
the cases, linear or nonlinear multivariate splits are not statistically s@<{Lin>Uni, Nonlin Uni, Nonlin>Lin) never occurs; this indicates
nificantly superior to the univariate split (row 1 of Table I) and thushat we have a good test. Case 3, which is another problematic case
the univariate split is chosen due to its simplicity. In 17.3% of thé.in}*Uni, Nonlin>Uni, Nonlin} Lin), is met in 1.5% of the cases,

N
=1
3

o
=3

Fig. 2. The number of nonlinear, linear, and univariate nodes in all trees as a
function of level in the tree+: univariate,”: linear,[d: nonlinear. We see that
complex nodes are used early in the tree.

NUMBER OF TIMES STATISTICAL TEST CASES OF TABLE | ARE SEEN
IN THE DATASETS DURING THE INDUCTION OF OMNIVARIATE TREES
1-8 GORRESPOND TOROWS OF TABLE |

Set 1] 2] 8] 4] s| s 7] 8
BAL 2] o o of of of 19] o
BRE|| 10| 0| 2| O] 1| © 5| 0
BUP| 98| 0| 0| 0| 2| O il o
CAR|| 33| 3| 5| 0| o o 54| 1
cMC|| 318 0| 0| 1| 1| 0| 51| O
CRE|| 11| o} o] o o| of 23| 1
CcYL| 58| 0| 0| ©O| o 0| 13| o0
DER| 55| 1| 0| 0| 3| O 0| 0
ECO| 43| o| 1| o] 3| 0 9] o0
FLA 0| o| ol of of o 0| 0
GLA|| 65| 0| O| ©Of o0 O 0| 0
HAB|| 29| o] o o ol o il o
HEP|| 12| 0| 0] of o o 0| ©
HOR 2, 0| of o o o 9] 0
IRI|| 22 o] ol o o] o il o
IRD|| 16 ©O| 1] o] 3| © 6| 0
MON| 119] ©O| O O] 2| © 4, 0
MUS 0o/ ol o] o] o o 10f O
NUR|| 40/ o 0| 0| o o| 11| 10
OCR|| 84| 2| o| o| of o 71 19
PEN| 79| 1| 5| 2 s| o] 71| 17
PIM|| 92| 1| 3| of of o 3] 0
SEG|[ 135{ 0| o o| 2| o 44| o
SPA|l 174{ 1| 4| 1} 2| o] 11| 6
TIC 7/ o ol of of o] 15| 0
VOT 6/ 0o ol of o| o 10| o
WAvV| 283{ 1| 14| 1f 5| 0] 20f 0
WIN| 24| o] 2| o o o il 0
YEA| 318 o 5| 0| 9| O] 23] O
Z0o|| 39| ol o o 1| o 0| 0
> [[2172] 10] 42| 5| 39| of 486| 54
% ||77.410.3{1.5/0.2|1.4{0.0(17.3|1.9
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which shows our prior belief of UpiLin>Nonlin is true for 98.4% of

(3]

the cases. Though in Table | in four cases out of eight, the nonlinear
splitis chosen, these four cases happen very rarely in data and thus ti’tﬁ]

nonlinear split is chosen in only 3.7% of the cases.
In terms of computation during test, a univariate nod€id ), a

linear multivariate node i€)(d), and a nonlinear multivariate node

(when implemented as an MLP wit®(d) hidden units) isO(d?).

(3]
(6]

Thus an omnivariate tree with a large percentage of univariate nodes
takes much less time to give an output than pure linear or nonlinearz

multivariate trees.

VIII. CONCLUSION

We propose a novel decision tree architecture, the omnivariate dec[iIO]

(8]

[9]

siontree, which is a hybrid tree that contains both univariate, linear mul-
tivariate, and nonlinear multivariate nodes. Though we have used neural

networks in the decision nodes for the linear and nonlinear nodes, sonttll

other method can also be used to train a linear or nonlinear node and our

approach is not limited to having neural networks in the decision nodeg; »

The ideal node type is determined by taking into account our preference
due to simplicity and the results of statistical tests comparing accuracyl3]

Such a tree, instead of assuming the same bias at each node, matches
the complexity of a node with the data reaching that node. Our simu
lation results indicate that such an architecture generalizes better than

trees with the same types of nodes everywhere and generates smaltes]
trees. The only handicap is the longer training time, but the test runs can

be parallelized very easily on a parallel processor system. We belie
that with processors getting faster and cheaper, omnivariate archit

fo

e -

tures with built-in automatic model selection will become more popular

as they free the designer from choosing the appropriate structure.
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