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Fisher’s linear discriminant analysis (LDA) is one of the most popular supervised linear dimensionality
reduction methods. Unfortunately, LDA is not suitable for problems where the class labels are not avail-
able and only the spatial or temporal association of data samples is implicitly indicative of class member-
ship. In this study, a new strategy for reducing LDA to Hotelling’s canonical correlation analysis (CCA) is
proposed. CCA seeks prominently correlated projections between two views of data and it has been long
known to be equivalent to LDA when the data features are used in one view and the class labels are used
in the other view. The basic idea of the new equivalence between LDA and CCA, which we call within-
class coupling CCA (WCCCA), is to apply CCA to pairs of data samples that are most likely to belong to
the same class. We prove the equivalence between LDA and such an application of CCA. With such an
implicit representation of the class labels, WCCCA is applicable both to regular LDA problems and to
problems in which only spatial and/or temporal continuity provides clues to the class labels.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction lows. Given a dataset of samples and their class labels, if we consider
Fisher’s linear discriminant analysis (LDA; Fisher, 1936) and
Hotelling’s canonical correlation analysis (CCA; Hotelling, 1936)
are among the oldest, yet the most powerful multivariate data
analysis techniques. LDA is one of the most popular supervised
dimensionality reduction methods incorporating the categorical
class labels of the data samples into a search for linear projections
of the data that maximize the between-class variance while mini-
mizing the within-class variance (Rencher, 1997; Alpaydin, 2004;
Izenman, 2008).

On the other hand, CCA works with two sets of (related) variables
and its goal is to find a linear projection of the first set of variables
that maximally correlates with a linear projection of the second set
of variables. These sets have recently been also referred to as views
or representations (Hardoon et al., 2004). Finding correlated func-
tions (covariates) of the two views of the same phenomenon by dis-
carding the representation-specific details (noise) is expected to
reveal the underlying hidden yet influential semantic factors
responsible for the correlation (Hardoon et al., 2004; Becker, 1999;
Favorov and Ryder, 2004; Favorov et al., 2003).

Both LDA and CCA have been proposed in 1936, and shortly after,
a direct link between them has been shown by Bartlett (1938) as fol-
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the features given for the data samples as one view, versus the class
labels as the other view (a single binary variable works for the two-
class problem but a form of 1-of-C coding scheme is typically used for
multi-class categorical class labels), this CCA setup is known to be
equivalent to LDA (Bartlett, 1938; Hastie et al., 1995). In other words,
LDA can be simply said to be a special case of CCA.

The knowledge of this insightful equivalence between LDA and
CCA enabled the researchers attempt the use of CCA to surpass the
quality of the LDA projections. These attempts used samples versus
their class labels using several other forms of representations for
the labels (Loog et al., 2005; Barker and Rayens, 2003; Gestel et
al., 2001; Johansson, 2001; Sun and Chen, 2007). An interesting
example of such a label transformation is by replacing hard cate-
gorical labels by soft-labels; in (Sun and Chen, 2007), similar to
the support vector idea, the aim was to put more weight on the
samples near the class boundaries rather than using a common la-
bel for all the samples of a class; thus, more useful projections
were found as more focus was placed on the problematic regions
in the input space rather than the high-density regions with class
centers. Another example is the study on an image segmentation
task presented in (Loog et al., 2005), which uses image-pixel fea-
tures and their associated class labels for learning to classify pixels.
Their CCA-based method incorporates the class labels of the neigh-
boring pixels as well, which can naturally be expected to yield
LDA-like (but possibly more informative) projections. The method
can be applied to other forms of, non-image, data by accounting for
the spatial class label configuration in the vicinity of every feature
vector (Loog et al., 2005).
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In this paper, we present another extension of CCA to LDA along
with its equivalence proof. The main idea is to transform the class
label of a sample such that it is represented, in a distributed man-
ner, by all the samples in that same class. In other words, CCA is
asked to produce correlated outputs (projections) for any pair of
samples that belong to the same class, which we called WCCCA
that stands for within-class coupling CCA. This extension of CCA
to LDA has various advantages despite its increased complexity
(see Section 4.2 for a detailed list). One important advantage of
the WCCCA idea of using samples versus samples, as the two views,
is in its ability to perform a form of implicitly-supervised LDA (see
Section 5.2) as sometimes the class labels may be embedded in the
patterns of the data rather than being explicitly available, for
example, in the patterns of spatial and temporal continuity
(Becker, 1999; Favorov and Ryder, 2004; Favorov et al., 2003; Borga
and Knutsson, 2001; Stone, 1996). Among exemplary applications
on such data, the tasks of division of a video into sequences
of relevant frames (scenes), segmentation of an image into
image regions sharing certain visual characteristics, identifying
sequences of acoustic frames belonging to the same word in speech
analysis, or finding sequences of base pairs or amino acids belong-
ing to the same protein in biological sequence analysis can be men-
tioned. In such settings, the use of LDA is uneasy, if not impossible.

The idea of applying CCA or other forms of mutual information
maximization models, for example, between the consecutive
frames of a video or between the neighboring image patches for
finding correlated functions is not a new one (Becker, 1999; Favo-
rov and Ryder, 2004; Favorov et al., 2003; Borga and Knutsson,
2001; Borga, 1998; Stone, 1996; Kording and Konig, 2000; Phillips
et al., 1995; Phillips and Singer, 1997). Many of these attempts are
inspired by the learning mechanisms hypothesized to be used by
neurons in the cerebral cortex. For example, cortical neurons might
tune to correlated functions between their own afferent inputs and
the lateral inputs they receive from other neurons with different
but functionally related afferent inputs. Thus, groups of neurons
receiving such different but related afferent inputs can learn to
produce correlated outputs under the contextual guidance of each
other (Phillips et al., 1995; Phillips and Singer, 1997). However, it is
not mathematically justified whether these correlated functions
are good for discrimination. Would the covariates found this way
be suitable projections for clustering the frames into scenes or
for image segmentation? The results of our study show that such
a CCA application would be comparable to performing LDA; and
as LDA projections maximize the between-class variance and min-
imize the within-class variance, the covariates found this way
would be useful, for example, to cluster the frames into scenes.

This paper is organized as follows. In Sections 2 and 3, we re-
view the CCA and LDA techniques, respectively. In Section 4, we
present the WCCCA idea of using CCA on a samples versus samples
basis and provide the proof for its equivalence to LDA; we also
show that the theoretically derived equivalence holds also practi-
cally on a toy example. In Section 4, we also discuss the advantages
and disadvantages of this way of performing LDA; and finally, fin-
ish this section by showing the nonlinear kernel extension of
WCCCA. In Section 5, we present the experimental results on a face
database and show that WCCCA can perform the task of LDA even
when the images are made into a movie and the class label infor-
mation is kept only implicitly through the temporal continuity of
the identity of the individual seen in contiguous frames. We con-
clude in Section 6.
2. Canonical correlation analysis (CCA)

Canonical correlation analysis (CCA) is introduced by Hotelling
(1936) to describe the linear relation between two multidimen-
sional (or two sets of) variables as the problem of finding basis vec-
tors for each set such that the projections of the two variables on
their respective basis vectors are maximally correlated (Hotelling,
1936; Rencher, 1997; Hardoon et al., 2004; Izenman, 2008). These
two sets of variables, for example, may correspond to different
views of the same semantic object (e.g. audio versus video of a per-
son speaking, two cameras viewing the same object as in binocular
vision, text versus links or images in webpages, etc). Let u-dimen-
sional X and v-dimensional Y denote corresponding two sets of
real-valued random variables (i.e., X 2 Ru and Y 2 Rv ), the canoni-
cal correlation is defined as:

qðX; YÞ ¼ sup
f ;g

corrðf T X; gT YÞ; ð1Þ

where, corr(X;Y) stands for Pearson’s correlation coefficient. Let u-
dimensional column vector X = xi denote the ith sample (row) of
the first view (dataset), v-dimensional column vector Y = yi denote
the ith sample of the second dataset, and N denote the total number
of samples. Then, the first dataset D1 is an N � u matrix that can be
expressed as:

D1 ¼ ½x1; x2; . . . ; xN�T ð2Þ

and similarly, the N � v matrix for the second dataset D2 can be
written as:

D2 ¼ ½y1; y2; . . . ; yN�
T
: ð3Þ

Assuming that each dataset has zero mean, the total covariance ma-
trix of (X, Y) can be written as a block matrix:

CðX;YÞ ¼ E
X

Y

� �
X

Y

� �T
( )

¼
CXX CXY

CYX CYY

� �
; ð4Þ

where the within-sets covariance matrices are given as:

CXX ¼ EfXXTg;
CYY ¼ EfYYTg ð5Þ

and the between-sets covariance matrix is given as:

CXY ¼ EfXYTg ¼ CT
YX ð6Þ

and now the canonical correlation is the maximum of q with re-
spect to f and g:

qðX; YÞ ¼ sup
f ;g

f T CXY gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f T CXXfgT CYY g

q : ð7Þ

The problem of finding the orthogonal projections that achieve the
top correlations reduces to a generalized eigenproblem, where the
projection f (and the projection g can be solved for similarly) corre-
sponds to the top eigenvector of the following (Hardoon et al.,
2004):

C�1
XX CXY C�1

YY CYXf ¼ kCCAf ð8Þ

and

qðX; YÞ ¼
ffiffiffiffiffiffiffiffiffi
kCCA

p
; ð9Þ

where kCCA corresponds to the largest eigenvalue of Eq. (8).

3. Fisher linear discriminant analysis (LDA)

Fisher linear discriminant analysis (LDA) is a variance preserv-
ing approach with the goal of finding the optimal linear discrimi-
nant function (Fisher, 1936; Rencher, 1997; Raudys and Duin,
1998; Alpaydin, 2004; Izenman, 2008). As opposed to unsuper-
vised methods such as principal component analysis (PCA), inde-
pendent component analysis (ICA), or the two view counterpart
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CCA, to utilize the categorical class label information in finding
informative projections, LDA considers maximizing an objective
function that involves the scatter properties of every class as well
as the total scatter. The objective function is designed to be maxi-
mized by a projection that maximizes the between class (or equiv-
alently total scatter as in PCA) and minimize the within class
scatter. Let d-dimensional column vector zc

i denote the ith sample
of class c, Nc denote the number of samples in class c, m P 2 denote
the total number of classes, and finally N denote the total number
of samples. Then, the N � d data matrix D can be written as:

D ¼ z1
1; . . . ; Z1

N1
; z2

1; . . . ; z2
N2
; . . . ; zm

1 ; . . . ; zm
Nm

h iT
: ð10Þ

Assuming that the dataset D is centered (i.e. the data is normalized
to zero-mean), the overall scatter (covariance) matrix STb of the
dataset D is given by:

ST ¼ covðDÞ ¼ 1
N

X
c

XNc

i¼1

zc
i zcT

i ð11Þ

and the within-class scatter matrix is defined as:

SW ¼
X

c

Nc

N
covðDcÞ

� �
¼ 1

N

X
c

XNc

i¼1

zc
i � lc

� �
zc

i � lc

� �T
; ð12Þ

where lc 2 Rd denotes the mean of Dc (the samples of class c). The
between-class scatter matrix can be formulated as:

SB ¼
X

c

Nc

N
lcl

T
c : ð13Þ

In fact, the overall scatter matrix ST can be expressed as the sum of
the within-class and between-class scatter matrices:

ST ¼ SW þ SB: ð14Þ

Finally, the LDA objective function for finding the most discrimina-
tive projection vector h (and other orthogonal projection vectors) is
given by:

kLDA ¼ sup
hT SBh

hT SW h
¼ sup

hTðST � SWÞh
hT SW h

¼ sup
hT ST h

hT SW h
� 1: ð15Þ

The optimization can be shown to be accomplished by computing
the solution of the following generalized eigenproblem for the
eigenvectors corresponding to the largest eigenvalues:

SBh ¼ kLDASW h: ð16Þ

An already established direct connection between LDA and CCA,
which we refer to as samples versus labels CCA (SLCCA), was first gi-
ven in (Bartlett, 1938) by showing that LDA is exactly what is
accomplished by applying CCA between the data matrix D and
the class label matrix L, a dummy matrix that carries the class label
information using the 1-of-C, or the more compact 1-of-(C–1)) cod-
ing, defined as:

L ¼

1N1 0N1 0N1 � � � 0N1

0N2 1N2 0N2 � � � 0N2

0N3 0N3 1N3 � � � 0N3

..

. ..
. ..

. . .
. ..

.

0Nm 0Nm 0Nm � � � 1Nm

2
66666664

3
77777775

N�m

; ð17Þ

where 1j is a column vector of j ones and 0j is a column vector of j
zeros, and m is the number of classes. Searching for the maximal
correlation between the rows of D and L matrices via CCA yields
the LDA projection as the solution (Bartlett, 1938; Loog et al.,
2005; Barker and Rayens, 2003; Sun and Chen, 2007). It is straight-
forward to show that for the SLCCA setup, the CCA eigenproblem in
Eq. (8) reduces to that of LDA in Eq. (16) with:
kSLCCA ¼
kLDA

kLDA þ 1
: ð18Þ

Taking advantage of this equivalence, there are more recent ref-
erences utilizing CCA on the basis of samples versus their class la-
bels to extract more useful projections than LDA using other forms
of class label representations; the work in (Sun and Chen, 2007),
for example, uses soft labeling of the samples to deem the samples
near other classes more important (similar to the support vector
idea) rather than using the actual hard labels. In another recent
work (Loog et al., 2005), the class labels, used as the second view,
were augmented by the class labels of the neighboring pixels (i.e.
by taking advantage of the spatial context) for an image segmenta-
tion task. Moreover, Kursun and Alpaydin (2010) offer an idea
based on the equivalence on the multiview semisupervised learn-
ing problem, where a CCA-based setup utilizes the unlabelled
examples as well as the labelled ones in learning discriminants.
4. Within-class coupling CCA (WCCCA)

Clearly, for CCA to be applicable to a dataset D, two views are
necessary, denoted as X and Y in Eq. (1). However, constructing a
form of the dummy class label matrix L in Eq. (17) as the second
one of the two views is not the only way to create these views.
We prove that CCA can be used to perform LDA using a different
method of incorporating the class labels of the data samples. Let
us create the two views by coupling a pair of samples from the
same classes (one for each view). For an example, consider
a; b; c; d 2 Rd are our four training examples, with d features each,
and also let a and b belong to class 1 and c and d belong to class
2. Then we create two datasets such that the samples belonging
to the same classes correspond to each other in the subsequent
CCA analysis: a versus a, a versus b, b versus a, b versus b, c versus
c, c versus d, d versus c, d versus d. In other words, when the feature
vector X represents a sample (a row) in D (given in Eq. (10)) that
belongs to class c, then the feature vector Y will correspond to an-
other sample that also belongs to class c. The LDA problem can be
shown to be polynomially reducible to CCA using this change of
representation, as we show below. For the sake of simplicity, let
us assume Ni = n for all 1 6 i 6m (when the classes are of different
cardinalities, the number of pairs produced by each class must be
adjusted to preserve the prior distribution of the classes, see Sec-
tion 4.3). As there are n2 pairs for each class, for the full set of pairs
to be presented, mn2 � d matrices for the two views can be ob-
tained from the mn � d data matrix D as:

D1 ¼ z1
1; . . . ; z1

n; z
1
1; . . . ; z1

n; z
1
1; . . . ; z1

n; . . . ; z1
1; . . . ;

	
z1

n; . . . ; zm
1 ; . . . ; zm

n ; z
m
1 ; . . . ; zm

n ; z
m
1 ; . . . ; zm

n ; . . . ; zm
1 ; . . . ; zm

n


T
; ð19Þ

D2 ¼ z1
1; . . . ; z1

1; z
1
2; . . . ; z1

2; z
1
3; . . . ; z1

3; . . . ; z1
n; . . . ; z1

n; . . . ; zm
1 ; . . . ; zm

1 ;
	

zm
2 ; . . . ; zm

2 ; z
m
3 ; . . . ; zm

3 ; . . . ; zm
n ; . . . ; zm

n


T
; ð20Þ

where each one of the samples of a class is paired with every other
samples of that class (located on the same rows of D1 and D2,
respectively). CCA is, then, asked to find the maximally correlated
functions of the rows of D1 with those of D2. These functions are
indirectly forced to produce the same output for the samples of
the same class. What CCA produces as the maximally correlated
projections f and g are both the same projection h that LDA would
also find; because in this setup, the eigenproblems for LDA and
CCA can be shown to be equivalent as follows. Recall that CCA
solves the eigenproblem given in Eq. (8):

C�1
XX CXY C�1

YY CYXf ¼ kCCAf ; ð8 revisitedÞ
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where for this particular case, we have:

CXX ¼ covðD1Þ ¼ covðDÞ ¼ covðD2Þ ¼ CYY ¼ ST ; ð20Þ
CXY ¼ CYX ¼ SB: ð21Þ

Eq. (20) easily follows from the fact that the samples of D1 (and sim-
ilarly D2) are basically the samples in the dataset D repeated n
times. Therefore, the covariance matrix will not be altered at all.
To show the validity of Eq. (21), consider that X and Y stand for
all the pairs of the samples in the same classes. Therefore,

CXY ¼ E zc
i � zcT

j

h i
¼
X

c

Nc

N

XNc

i¼1

XNc

j¼1

1
N2

c

zc
i � zcT

j

" #

¼
X

c

Nc

N

XNc

i¼1

zc
i

Nc

XNc

j¼1

zcT

j

Nc

" #" #
¼
X

c

Nc

N

XNc

i¼1

zc
i

Nc
lT

c

" #

¼
X

c

Nc

N
lcl

T
c

� �
¼ SB: ð22Þ

Thus, Eq. (8) is equivalent to:

S�1
T SBS�1

T SBf ¼ kWCCCAf : ð23Þ

On the other hand, it was mentioned that LDA solves the
eigenproblem:

SBh ¼ kLDASW h: ð16 revisitedÞ

Equivalently,

SBh ¼ kLDAðST � SBÞh;
SBh ¼ kLDAST h� kLDASBh;

ðkLDA þ 1ÞSBh ¼ kLDAST h;

SBh ¼ kLDA

kLDA þ 1
ST h;

S�1
T SBh ¼ kLDA

kLDA þ 1
h: ð24Þ

Let

k� ¼ kLDA

kLDA þ 1
ð25Þ

and

A ¼ S�1
T SB: ð26Þ

Then, we get from the last line of Eq. (24):

Ah ¼ k�h: ð27Þ

Thus, rewriting Eq. (23), we get:

S�1
T SBS�1

T SBh ¼ AAh ¼ AðAhÞ ¼ Aðk�hÞ ¼ k�ðAhÞ ¼ k�ðk�hÞ ¼ ðk�Þ2h:

ð28Þ

Therefore, f = h is a solution of the eigenproblem (Eq. (23)) of
WCCCA with:

kWCCCA ¼ ðk�Þ2; ð29Þ

from which, it immediately follows that

qWCCCAðX; YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kWCCCA

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
ðk�Þ2

q
¼ k� ¼ kLDA

kLDA þ 1
: ð30Þ

Similarly, it can be shown that g = h. Therefore, we have:

f ¼ h ¼ g: ð31Þ

This shows that the LDA and WCCCA projections are exactly the
same. In fact, for every eigenvector of the LDA eigenproblem, that
eigenvector must be also a solution for the WCCCA eigenproblem
with the same ordering of the eigenvalues. That is because the order
of the eigenvalues will not change when they are squared.
Concisely, the projections found by LDA, the existing samples
versus class labels CCA setup (SLCCA), and the proposed samples
versus within-class samples CCA setup (WCCCA) are all identical,
with the following relationships among the eigenvalues of their
eigenproblems:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kWCCCA

p
¼ kSLCCA ¼

kLDA

kLDA þ 1
; ð32Þ

from which the relation between the correlation coefficients of
WCCCA and SLCCA is seen to be:

qWCCCA ¼ q2
SLCCA: ð33Þ

Alternatively, a different way of seeing the LDA and WCCCA equiv-
alence follows from the fact that the WCCCA algorithm is expected
to yield identical projections, f and g, as D1 and D2 are practically the
same dataset but only shuffled whilst preserving the class corre-
spondence. Thus, the objective function of CCA given in Eq. (7) could
be rewritten by substituting f for g as:

qWCCCAðX; YÞ ¼ sup
f ;g

f T CXY gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f T CXXfgT CYY g

q ¼ sup
f

f T SBfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f T ST ff T ST f

q

¼ sup
f

f T SBf
f T ST f

¼ sup
f

f TðST � SWÞf
f T ST f

¼ sup
f

1� f T SW f
f T ST f

� �
¼ 1� inf

f

f T SW f
f T ST f

� �

¼ 1� 1

sup
f

f T ST f
f T SW f

� � ¼ 1� 1

sup
f

f T ST f
f T SW f � 1
� �

þ 1

¼ 1� 1
kLDA þ 1

¼ kLDA

kLDA þ 1
: ð34Þ

It is clear from Eq. (34) as well as Eq. (30) that the objective function
for CCA for the WCCCA setup maximizes the objective function of
LDA given in Eq. (15). An interesting way to state this is that using
the best ratio, kLDA, for the Rayleigh quotient that LDA maximizes in
Eq. (15), we can directly calculate the canonical correlation maxi-
mized in Eq. (7). The same conclusion can be drawn from Eq. (32).
This is important in that it gives us a mechanism to judge the qual-
ity of a projection LDA finds from a correlation coefficient scale (see
Section 4.2).

4.1. Toy problem demonstration

For a simple demonstration, we created a dataset with two vari-
ables (d = 2) shown in Fig. 1(a). The dataset has two classes (m = 2)
with 100 samples in both classes (N1 = N2 = 100). The samples in
the classes are generated with multivariate random distributions
both with covariance identity and with class 1 having its mean
at l1 = (0, 0) and class 2 at l2 = (2, 2). The full set of 2 � 1002 =
20,000 pairs of samples are generated. CCA is then asked to pro-
duce maximally correlated functions of these two ‘‘views”.

Shown in Fig. 1(a) is the discriminant learnt by WCCCA, which is
identical to that by LDA. We see in Fig. 1(b) that the samples of
classes 1 and 2 are clearly separated when projected on the dimen-
sion that WCCCA (and also LDA) found.

4.2. Some advantages of such an indirect computation of LDA using
CCA

There are many advantages of the WCCCA way of computing
LDA that we could identify, which might not be limited to the
following.



Fig. 1. (a) The found LDA and WCCCA dimensions perfectly coincide. (b) The projection of the samples on the found WCCCA dimension; the first 100 (class 1) samples are
generated with l1 = (0, 0) and the second 100 (class 2) samples are generated with l2 = (2, 2).
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4.2.1. Computational flexibility
CCA gives an alternative way of performing LDA, which might

be a more plausible way of reaching the goal of LDA under some
architectures. For example, in the field of neuroscience, a number
of researchers have proposed that cerebral cortical neurons per-
form mutual information extraction from different, but etiologi-
cally related sets of inputs, which might be akin to CCA (Favorov
and Ryder, 2004; Kording and Konig, 2000; Phillips and Singer,
1997). That is, neural processing units (such as individual den-
drites, single neurons, or local neuronal populations) might take
advantage of contextual guidance they receive from their lateral
inputs to learn to extract such features from their sensory spatio-
temporal input patterns that will possess deeper, more inferen-
tially powerful meaning. In other words, neurons will learn to
discriminate classes of sensory events that are causally significant.
Such an LDA analysis could be accomplished by neurons using a
form of the proposed samples versus samples CCA.

As another example, taking advantage of robust CCA implemen-
tations, robust LDA computations can also be achieved; as a
specific illustration, consider SVM-2K (Farquhar et al., 2005).
SVM-2K is a method that combines kernel CCA (KCCA) followed
by an SVM classification into a single optimization problem and
accomplishes a robust form of KCCA. SVM-2K can be given the
views D1 and D2 to get a robust kernel-LDA followed by an SVM
classification at one-shot. Yet another extension of WCCCA could
be for achieving a form of local LDA (Sugiyama, 2007). This can
be done by creating pairs of samples from the same classes in some
neighborhood of each other.

4.2.2. Ease of representation
The class labels (or the dummy matrix) could be difficult to rep-

resent or store under certain architectures but the data samples
could be more readily available in the input channels (for example
the observation at time t – 1 could be paired with the current
observation at time t). Moreover, having a dataset with thousands
of different classes would make the dummy matrix with 1-of-C
coding impractical. However, the samples versus samples idea,
using an online implementation of CCA (or mutual information
maximization models) (Becker, 1999; Favorov and Ryder, 2004;
Favorov et al., 2003; Fyfe, 2005; Lai and Fyfe, 1999), could accom-
plish the task of LDA easier because, in fact, not all but some of the
pairs of within-class samples (or estimates for the class centers)
will be sufficient to learn a good approximation to LDA as shown
in Section 4.3.
4.2.3. Independence from class label information
The categorical class labels may simply be unavailable explic-

itly. The class labels might be embedded into the spatial and/or
temporal patterns of the data such as in video and speech process-
ing, in image segmentation, etc. For example, consider a movie of
faces such that the consecutive frames are more likely to be of
the same individual unless a ‘‘scene change” occurs. There are no
class labels given explicitly, therefore it is impossible to apply
LDA but CCA can be applied (see Section 5).

4.2.4. Correlation coefficient as a tool for evaluation of the LDA
projections

The (maximal) correlation coefficient calculated by the CCA
algorithm from a training set is typically an overestimate and it
is traditional to verify its dependability in terms of how correlated
the found covariates on a validation or a test set. However, when
using the LDA transform, its projections are given to a subsequent
classifier and LDA’s quality is measured in terms of correct classi-
fication rate of the classifier applied on the data set. Here, in this
section, we show that the quality of LDA projections can be mea-
sured without a need for a subsequent classifier (see Section 5.1
and Table 1), again in terms of the correlation coefficient borrowed
from the WCCCA equivalence.

It follows from Eqs. (32) and (33) that the LDA correlation is also
the variance explained between the class labels and the input vari-
ables because it is the square of the correlation coefficient pro-
duced by SLCCA (the samples versus class labels CCA):

qLDA ¼ qWCCCA ¼ q2
SLCCA: ð35Þ

Thus, the quality of an LDA projection h on the training set can be
calculated using D1 and D2 sets obtained from the training set D
(as in Eq. (20)) by:

qLDA ¼ corrðD1h;D2hÞ: ð36Þ

When applied to a test set, Eq. (36) may also be used as an approx-
imation to the LDA quality on the test set. However, more generally,
on any given dataset D, whether it is a training or a test set, with the
given labels L (1-of-C coded as in Eq. (17)), the quality of an LDA
projection h is given by:

qLDA ¼ corrðDh; LMhÞ; ð37Þ

where M is a m � d matrix that holds the d-dimensional class center
vectors, lc, of the training set for all the m classes.



Table 1
The quality of the WCCCA projections extracted using 20 random pairs from each individual.

Projection # Training set Test set of known individuals Test set of unknown individuals

Canonical correlation LDA correlation Canonical correlation LDA correlation Canonical correlation LDA correlation

1 0.97 0.97 0.95 0.96 0.92 0.87
2 0.97 0.97 0.92 0.92 0.47 0.37
3 0.96 0.96 0.89 0.91 0.69 0.80
4 0.95 0.94 0.83 0.83 0.77 0.80
5 0.93 0.92 0.90 0.92 0.75 0.70
6 0.90 0.89 0.88 0.87 0.76 0.72
7 0.90 0.89 0.88 0.88 0.87 0.78
8 0.89 0.87 0.78 0.81 0.63 0.57
9 0.87 0.86 0.77 0.82 0.73 0.86
10 0.84 0.83 0.73 0.57 0.76 0.78
11 0.84 0.83 0.78 0.81 0.93 0.91
12 0.82 0.81 0.55 0.74 0.35 0.42
13 0.81 0.79 0.68 0.67 0.18 0.05
14 0.79 0.76 0.79 0.71 0.82 0.76
15 0.77 0.71 0.61 0.68 0.38 0.75
16 0.74 0.72 0.65 0.63 0.61 0.59
17 0.70 0.70 0.63 0.66 0.57 0.03
18 0.69 0.66 0.70 0.72 0.54 0.25
19 0.65 0.62 0.61 0.65 0.36 0.39
20 0.63 0.59 0.49 0.54 0.06 0.32
21 0.60 0.57 0.56 0.48 0.27 0.21
22 0.55 0.49 0.05 0.07 0.26 0.51
23 0.50 0.47 0.22 0.31 0.40 0.58
24 0.49 0.47 0.22 0.25 0.42 0.58
25 0.44 0.37 0.47 0.46 0.46 0.38
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4.3. The resolutions for the disadvantages of WCCCA

Obviously, there are some limitations and disadvantages associ-
ated with the WCCCA method of computing LDA. As for its (impli-
cit) limitations, the assumptions of CCA, namely multivariate
normality and outliers, must hold in the data; otherwise, violations
of these assumptions would bias the algorithm. However, multi-
variate normality assumption can be overcome using kernels (see
Section 4.4) and there are regularization and robust estimation
techniques that can apply to CCA and give us flexibility in handling
outliers (Hastie et al., 1995; Glendinning and Herbert, 2003;
Kursun and Favorov, 2010). In the following, we discuss, in detail,
some other implementational disadvantages of WCCCA and
provide procedures to overcome them.
Fig. 2. The number of pairs used for each class p (in log scale) versus the quality of
WCCCA approximation to LDA (the angle H, in degrees, between the found
projections by LDA by WCCCA).
4.3.1. Complexity
As opposed to LDA, creating all the within-class pairs of samples

results in squaring the number of samples presented subsequently
to CCA. However, this complexity can be overcome because
WCCCA can work well even when only a small subset of pairs
are used. To quantify the quality of the LDA approximation by
WCCCA using fewer pairs than all the possible ones, we have ran-
ged the number of pairs used for the experiment given in Section
4.1. We have randomly taken p of all 10,000 pairs available for each
class, thus, presenting a total of 2p pairs to CCA. The plot of p versus
the angle H between the LDA and the WCCCA projection vectors, h
and f, (see Eq. (38)) is shown in Fig. 2 (reported angles in degrees
are the averages of 100 runs for each value of p).

H ¼ acos
f T h

kfk � khk

� �
: ð38Þ

Fig. 3 shows the average test errors and the standard deviations of
the found LDA and WCCCA projections over 100 test runs for each
value of p. Each test set is generated the same way that the training
data has been generated. We see that WCCCA does not require all
the pairs of within-class samples in order to attain the quality of
the optimal LDA projection, because the WCCCA error on the test
set very quickly reduces down to that of LDA as the number of pairs
increases.

Moreover, it is straightforward to show that using the class cen-
ters (the average of all samples of each class) as the second view in
a samples versus class centers CCA basis is also equivalent to LDA.
For example, a form of running average could be used to estimate
the class centers in such a setup to reduce the complexity back
to that of SLCCA.

4.3.2. Imbalance of class priors
Using the within-class coupling, classes with higher prior prob-

abilities would have many more pairs of their samples than the
pairs of classes with lower priors due to the squaring effect. Thus,
simply taking all within-class pairs would be an unfair modifica-
tion of the prior probabilities of the classes that would bias the
LDA approximation by WCCCA. This issue can be easily resolved
by preserving the prior probabilities of classes also in their pairs



Fig. 3. The number of pairs used for each class p versus the test error of the projections (showing both averages and standard deviations of 100 independent random test sets,
each generated with the distribution of the training set). The test error of WCCCA quickly approaches to that of LDA.
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created into D1 and D2. While generating all the within-class pairs,
the pairs of the classes with lesser prior probabilities must be
appropriately proliferated (repeated). Recall the example in Sec-
tion 4.1 with N1 equals to 2 � N2 and suppose that the true equiv-
alence to LDA is sought using WCCCA. In this case, as the total
number of distinct pairs of the first class would be four times that
of the second class, each pair of the second class should be gener-
ated twice. Besides, the theoretical basis for this adjustment, our
numerical simulations have verified that the WCCCA and LDA give
exactly the same projections also in this case.
4.4. Kernel-WCCCA for approximating kernel-LDA

We present a straightforward nonlinear extension of WCCCA
using the kernels. When the classes are not linearly separable,
the kernels have been used efficiently that enable linear methods
calculate nonlinear discriminants (Melzer et al., 2003; Alpaydin,
2004; Hardoon et al., 2004; Shawe-Taylor and Cristianini, 2004;
Gonen and Alpaydin, 2010). CCA can be asked, as before, to pro-
duce correlated outputs using the kernel matrices (whose respec-
tive rows preserve the class label information) as the two views
(Hardoon et al., 2004; Melzer et al., 2003). Fig. 4 shows the results
on a known example of a decision boundary using the polynomial
kernel of degree two on a dataset with two Gaussians with means
l1 = [0, 0] and l2 = [0, 4] and with the covariance matrices

r1 ¼
1 0
0 1

� �
and r2 ¼

10 0
0 1

� �
.

5. Experimental results

In this section, we will present the results obtained using
WCCCA on two sets of experiments on the AT&T (ORL) face data-
base, which is composed of 400 grayscale images obtained from
40 different individuals, ten different images per person. The
images were taken at different times, varying the lighting, the
viewing angle (frontal or more or less semi-frontal view), facial
expressions (open or closed eyes, smiling or not, etc.), and other fa-
cial details (e.g., with or without glasses). All images were taken
against a dark homogeneous background with the subjects in an
upright position, with tolerance for some side movement. Each ori-
ginal image was 92 � 112 pixels, with 256 gray levels. To reduce
the computational load, we down-sampled each image to
23 � 28 (=644) pixels by bilinear interpolation.

5.1. Supervised LDA by WCCCA on face images

Among the total of 40 individuals (classes), we left out (a ran-
dom) five of the individuals for testing. This test set that we called
the test set of unknown individuals, is a difficult one because it
consists of individuals not used for training. We also left out two
pictures of each one of the 35 training individuals for a test of
known individuals in order to measure the generalization of the
methods to the known individuals. Therefore, we used a total of
35 � 8 = 280 pictures for learning WCCCA (and LDA) projections.
To avoid the computational instability of using 644 dimensional
covariance matrices obtained by such a low number of samples,
we first performed PCA dimensionality reduction to 50 compo-
nents that preserved around 91% of the total variation in the origi-
nal 644 dimensions.

We formed 20 random pairs for each class out of the 35 classes
in the training set. As each class has eight training samples, the to-
tal number of possible pairs is 64, or 56 if excluding the pairs of an
image with itself, but we choose using a random subset basis (Lee
and Huang, 2007; Lee and Mangasarian, 2001) to lessen the com-
putational loading as described in Section 4.3.1. Then we applied
CCA to get the most interesting WCCCA projections. As a demon-
stration, the top three WCCCA and LDA projections are shown in
Fig. 5b–d, respectively. The eigenvectors of WCCCA and LDA are
practically identical up to their signs. To quantify the difference
caused by the approximation to LDA by WCCCA, in Table 1, we tab-
ulated the correlation coefficient of the covariates on all the data-
sets (the training set, the test set of known individuals, and the test
set of unknown individuals). For a comparison, we also reported
the correlation of the LDA projections, qLDA, according to Eq. (36)
(i.e. refer to the advantage number four in Section 4.2). Although
WCCCA used only 20 pairs of pictures from each individual, the
correlations on all sets are practically the same.



Fig. 4. The nonlinear extension of WCCCA using polynomial kernel of degree two. (a) The found kernel LDA and kernel WCCCA dimensions perfectly coincide. (b) The
projection of the samples on the found kernel WCCCA dimension.

Fig. 5. The results of a representative run of WCCCA on the face images with explicit class labels. (a) Plot of canonical correlations of the found projections (on the training set
shown with solid line, on the test set of known individuals with dashed line, and on the test set of unknown individuals with dotted line). (b–d) The top three eigenvectors for
WCCCA (shown with solid line) and LDA (shown with dashed line).
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When the images are projected on the found WCCCA covariates
(and LDA dimensions to compare with), as expected, the images
that belong to the same individuals have similar projections but
the projections vary from individual to individual (Fig. 6). For
example, when the images are projected on the first covariate,
the average of the standard deviations of the projections for pic-
tures of the same individuals is only 0.16 ± 0.07. For the second
and third covariates, these averages are also low, 0.19 ± 0.05 and



Fig. 6. The projections of the training images (all the eight pictures of each individual are organized to take place consecutively in the dataset, thus on the X-axis) onto the top
three covariates found by WCCCA.
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0.21 ± 0.10, respectively. Given that each covariate vector is nor-
malized such that the standard deviation of the projections of all
the training samples onto the covariate is equal to 1.0, the variation
is due to the between-class separation of the data by the found
projection vectors.

5.2. Unsupervised LDA by WCCCA on a movie of face images

The ORL face dataset is made into a movie in a way that the con-
secutive frames are more likely to be of the pictures of the same
Fig. 7. (a) Distribution of the scene duration in the movie. (b–d) The top three eigenvecto
labels (shown with solid lines) are approximately equivalent, up to their signs, to the p
individuals rather than different. When a scene change occurs,
the movie continues with the pictures of another individual and
so on.

With this movie dataset, there are no class labels given explic-
itly, therefore it is impossible to directly apply LDA but our WCCCA
can be applied to get the interesting (individual discriminatory)
projections similar to those found in Section 5.1. To accomplish
this, every two consecutive frames (frames at time t and t + 1)
can be used as the respective samples of the two views. That is,
we are asked to produce correlated outputs for the different images
rs for both methods. WCCCA projections learnt from the movie without explicit class
rojections LDA learnt from the labeled image dataset (shown with dashed lines).



Fig. 8. WCCCA results on the face movie without any explicit class labels. (a) The canonical correlations (between the functions on learnt from consecutive frames in the
movie). (b–d) The projections of all the training pictures on the first three covariates found (all the ten pictures of each individual are organized to take place in the dataset
consecutively and as a result, the obtained step-like responses are satisfactory).
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in consecutive frames. We randomly chose the length of a scene
(i.e. the number of frames during which the pictures of the same
individual to be played) from a normal-like distribution, shown
in Fig. 7a, ranging between 6 and 15 with its mean around 10.5
frames. After a scene completes, we chose another individual to
continue the movie for another randomly picked scene duration,
and so on. For our experiments, we created a sequence of 8000
frames such that, as in Section 5.1, each image is shown in the mo-
vie with an expectation of 20 times. With 8000 frames we had
7999 pairs of consecutive frames; however, as a pair of consecutive
frames could be used for both views in a symmetric fashion (i.e.
frame t versus frame t + 1, and in addition, frame t + 1 versus frame
t can be used as for the two views), we obtained a total of 15998
training pairs for WCCCA. As in Section 5.1, to avoid computational
instability, we performed PCA to reduce dimensionality from 644
pixels down to 50 principal components, which preserved 90.17%
of the total variation in the original 644 dimensional data. The
WCCCA projections found are practically identical up to their signs
with the projections LDA would find only if the class labels were
made explicitly available. Fig. 7b–d shows the top three WCCCA
projections, respectively.

The canonical correlations found by WCCCA are shown in
Fig. 8(a). In Fig. 8b–d, we show that, as in Section 5.1, WCCCA
learns to produce similar projections for the images of same indi-
viduals but different responses for the images of different individ-
uals. Each covariate (projection vector) is scaled so as that the
standard deviation of the projections of the whole training set is
1.0. For the first covariate, the average of the standard deviations
of the projections of the pictures of the same individuals is
0.17 ± 0.06; for the second covariate, this average of the deviations
within individuals is 0.21 ± 0.07; and it is 0.22 ± 0.09 for the third
covariate (these numbers are very close to those found in Section
5.1 on the supervised dataset). These results show that from the
movie dataset in which no explicit class labels were presented,
individual-discriminatory representations (features) have been ex-
tracted by WCCCA. Moreover, using a few of such features, an
unsupervised-LDA based coding of the currently viewing frame
could be obtained.
6. Conclusions

Fisher’s linear discriminant analysis (LDA) has two main goals:
(1) minimize the within-class variance, and (2) maximize the be-
tween-class variance. LDA has been long known to be a special case
of Hotelling’s canonical correlation analysis (CCA). That is, CCA can
be performed on a view that constitutes of samples (predictive fea-
tures) versus a second view that is directly made up of the class la-
bels of the samples in order to obtain projections that are identical
to those of LDA. In this paper, it has been shown that CCA can per-
form LDA also when it is applied on a samples versus samples basis,
which can be viewed as accomplishing LDA through a rather indi-
rect and distributed style of an implicit presentation of the categor-
ical class labels. More specifically, in the proposed WCCCA method,
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each one of the samples of a class, serving as the first view, is
paired with every other samples of that class serving as the second
view. We prove that when CCA is asked to find correlated functions
between these two views, it yields the LDA projections as expected
because it is the LDA projections that minimize the within-class
variance. As LDA has this as its first goal, samples from the same
class presented to CCA as pairs would give similar scores when
projected on the dimensions found by LDA. Likewise, if samples
that belonged to different classes gave different outputs that would
also help maximize the canonical correlation. Thus, WCCCA can
also be said to aim the maximization of the between-class vari-
ance, which is already the second one of the LDA goals. This equiv-
alence and the application of WCCCA can be particularly useful
when the class labels, rather than being explicitly available, can
be tracked down in the temporal and/or spatial patterns of the
data, such as for the tasks of splitting a video into scenes (se-
quences of relevant frames), segmentation of an image into image
regions sharing certain visual characteristics, speech analysis, or
biological sequence analysis. In such settings, the use of LDA is
not possible forthright. It has been known that it is possible to per-
form a CCA analysis between, say, the consecutive frames of a vi-
deo for searching correlations between a frame and the next; the
equivalence proof presented in this paper assures that the use of
CCA in this manner would yield discriminatory features favorable
for the subsequent learning tasks such as classification, segmenta-
tion, or clustering, without any need for explicit supervised class
memberships. We have also demonstrated that WCCCA can be eas-
ily generalized to its nonlinear version via the kernel trick. It is
straightforward to extend the equivalence proofs given for the lin-
ear case to the kernel version.
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