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Abstract—Given a data set and a number of supervised learning algorithms, we would like to find the algorithm with the smallest

expected error. Existing pairwise tests allow a comparison of two algorithms only; range tests and ANOVA check whether multiple

algorithms have the same expected error and cannot be used for finding the smallest. We propose a methodology, the MultiTest

algorithm, whereby we order supervised learning algorithms taking into account 1) the result of pairwise statistical tests on expected

error (what the data tells us), and 2) our prior preferences, e.g., due to complexity. We define the problem in graph-theoretic terms and

propose an algorithm to find the “best” learning algorithm in terms of these two criteria, or in the more general case, order learning

algorithms in terms of their “goodness.” Simulation results using five classification algorithms on 30 data sets indicate the utility of the

method. Our proposed method can be generalized to regression and other loss functions by using a suitable pairwise test.

Index Terms—Machine learning, classifier design and evaluation, experimental design.

�

1 INTRODUCTION

IN machine learning literature, there exist several super-
vised learning algorithms, and for any application, we

need to find the algorithm that generalizes the best, i.e., the
one with the smallest probability of misclassifying an
instance unseen during training. To check for a statistically
significant difference, the algorithms are trained and tested
on several training, validation folds and a sample of
validation errors are obtained. Statistical tests are used to
compare the means of populations which these validation
error values are sampled from, i.e., their expected error.

Tests in the literature are pairwise and compare the
means of two populations [1], [2]. Generally, these tests are
two-sided and, in our case of expected error comparison,
check whether two supervised learning algorithms yield the
same expected error. If the test accepts, we conclude that
they have the same expected error, but if the test rejects and
there is a statistically significantly difference, we do not
know which one is smaller; that requires a one-sided test.

To the best of our knowledge, there exists no method in
the statistical literature that, given K > 2 populations,
finds the population with the statistically significantly
smallest mean, or in our case, finds the supervised
learning algorithm with the smallest expected error.
Finding the smallest mean is a particular case of the more
general problem of ordering K > 2 populations in terms of
increasing mean, which can be solved by iteratively
applying the same method and removing the smallest at
each iteration. Such a method is the topic of this paper.

This paper is organized as follows: Section 2 contains a
literature survey on statistical methods used for comparing

the error rates of learning algorithms. The MultiTest
algorithm is given in Section 3. In Section 4, we give
experimental results using five classification algorithms on
30 data sets, and we conclude in Section 5.

2 STATISTICAL METHODS FOR COMPARING THE

ERROR RATES OF ALGORITHMS

2.1 Resampling Methods

In order to compare the error rates of learning algorithms, a
sample of their error values are obtained by training the
algorithm on a training set and then testing it on a validation
set. We do this training and validation multiple times to be
able to estimate the distribution of validation error values;
typically, we would like to estimate the expected error rate of
a learning algorithm, as well as how much the error rate can
vary around this expected value in any run.

When the data set is small, we need resampling
methods to generate multiple training/validation sets
from a single data set. In k-fold cross-validation, we divide
the data into k equal parts and in each fold, we use one
part for validation and the remaining k� 1 parts for
training. Note that two training sets share k� 2 parts.
Typically, k is taken as 10 or 30.

In 5� 2 cross-validation [1], we do two-fold cross-
validation five times, where, at each time, we randomly
divide the data into two, use one part for training, use the
other for validation to get the first half of the fold, and swap
the roles of the two parts to get the second half of the fold,
giving us a total of 10 training and validation set pairs to
use. The choice of five replications is not arbitrary: fewer
replications gives us few data points (to estimate distribu-
tion parameters, e.g., mean) and increases the variance of
estimates made; with more replications, the folds overlap
too much and the independence assumption of folds may
no longer be tenable.

In bootstrap [3], we randomly draw instances with
replacement from a data set where each drawn sample
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contains the same number of instances as the data set. This

is done k times, producing k bootstrap data sets for training,

and the full set is used for estimating the generalization

error. Since the bootstrap data sets overlap, the error

estimates look unrealistically good.

2.2 Hypothesis Testing

In hypothesis testing, we use a sample to test a hypothesis

about the population from which the sample is drawn. We

define a statistic that falls in a certain interval if the null

hypothesis H0 holds. We calculate the value of the statistic

using the sample, accept the hypothesis if the statistic is

indeed in the interval, and reject it otherwise. If we reject

when the hypothesis is correct, this is called type I error; if

we accept a hypothesis when it is not correct, this is called

type II error. The power of a test is the probability of rejecting

the null hypothesis when it is not correct. We want

hypothesis tests to have small type I and type II errors (or

large power).
For example, let us say we have a sample X ¼ fxtgNt¼1

drawn from unknown pðxÞ with unknown mean �, and we

want to check if � is equal to a given value of �0

H0 : � ¼ �0 versus H1 : � 6¼ �0: ð1Þ

The sample estimate of � is m ¼
P

t x
t=N and we accept the

hypothesis if m 2 ð�0 � c; �0 þ cÞ, or equivalently, if

jm� �0j < c, where c depends on pðxtÞ (assumed symmetric

here, e.g., Gaussian, t, etc.) and the significance level �.

Equation (1) can be rewritten as H0 : �1 � �2 ¼ 0 versus

H1 : �1 � �2 6¼ 0, and we test if the mean of the sample of

paired differences is 0 or not.
If we would like to test whether one mean is smaller, i.e.,

H0 : �1 � �2 versus H1 : �1 > �2, this is a one-sided test, and

can be rewritten as H0 : �1 � �2 � 0 versus H1 : �1 � �2 > 0.

We reject the null hypothesis if ðm1 �m2Þ > c, and accept it

otherwise., i.e., if ðm1 �m2Þ 2 ð�1; cÞ.

2.3 Pairwise Tests for Two Populations

2.3.1 Notation

rtij denotes the desired output, fðxtijÞ denotes the predicted

output by the fitted model (in classification, rtij, fðxtijÞ
2 f0; 1gÞ, and Xt

ij denotes the Bernoulli random variable

representing the outcome of classifier i ¼ 1; . . . ; K on

instance t ¼ 1; . . . ; N of validation fold j ¼ 1; . . . ; L. Xt
ij ¼ 1

if rtij 6¼ fðxtijÞ, 0 otherwise. The average error of learner i on

fold j is

Yij ¼
PN

t¼1 X
t
ij

N
: ð2Þ

Yij are the sum of independent and identically distributed

random variables (Xt
ij) and by the central limit theorem are

approximately normal distributed with mean �i. For each

classification algorithm i, the expected error is the sample

average mi (estimator to �i), calculated as

mi ¼
PL

j¼1 Yij

L
: ð3Þ

2.3.2 The k-Fold Cross-Validation t Test

This is a two-sided test which uses k-fold cross-validation to

generate k training/validation folds and then uses a paired

t test for H0 : �1 � �2 ¼ 0 versus H1 : �1 � �2 6¼ 0. pi is the

paired difference between the errors on fold i; so,

p1 ¼ Y11 � Y21. The estimators for the mean and variance

of the differences are (L ¼ k, the number of folds)

m ¼
PL

i¼1 pi
L

S2 ¼
PL

i¼1ðpi �mÞ
2

L� 1
: ð4Þ

Under the null hypothesis that the two error rates are the

same, the paired differences are approximately normally

distributed with 0 mean and unknown variance �2, and

t0 ¼
ffiffiffiffi
L
p

m

S
ð5Þ

is t with L� 1 degrees of freedom. H0 is accepted with

� confidence if t0 2 ð�t�=2;L�1; t�=2;L�1Þ. Similarly, the

one-sided test accepts H0 : �1 � �2 if t0 2 ð�1; t�;L�1Þ.

2.3.3 The 5� 2 cv t Test

This is a paired t test using 5� 2 cross-validation with H0 :

�1 ¼ �2 [1]. p
ðjÞ
i is the difference between the errors on

replication i of fold j; so p
ð1Þ
i ¼ Y1ð2i�1Þ � Y2ð2i�1Þ and

p
ð2Þ
i ¼ Y1ð2iÞ � Y2ð2iÞ. s2

i is the estimated variance of the

replication i: s2
i ¼ ðp

ð1Þ
i � piÞ

2 þ ðpð2Þi � piÞ
2, where pi is the

average of the differences on replication i: pi ¼ ðpð1Þi þ
p
ð2Þ
i Þ=2. Under H0, p

ðjÞ
i =� is unit normal (Z), and assuming

that p
ð1Þ
i and p

ð2Þ
i are independent normals, s2

i =�
2 is chi-

square distributed with one degree of freedom (X2
1).

Assuming also that the s2
i are independent,

M ¼
P5

i¼1 s
2
i

�2
ð6Þ

is chi-square distributed with five degrees of freedom. We

know that if Z � Z and X � X 2
n and if Z and X are

independent, then Z=
ffiffiffiffiffiffiffiffiffiffi
X=n

p
is t distributed with n degrees

of freedom. Then,

t0 ¼ p
ð1Þ
1 =�ffiffiffiffiffiffiffiffiffiffi
M=5

p ¼ p
ð1Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP5
i¼1 s

2
i =5

q ð7Þ

is t-distributed with five degrees of freedom. Dietterich [1]

proposed the two-sided test where H0 : �1 ¼ �2 is accepted

with� confidence if t0 2 ð�t�=2;5; t�=2;5Þ, and has shown this to

have lower type I error than the k-fold t test. We can derive a

one-sided test and accept H0 : �1 � �2 if t0 2 ð�1; t�;5Þ. This

is the one-sided pairwise test we use in the rest of the paper.

The combined 5� 2 cvF test [4] is an improved version of the

5� 2 cv t test, but is two-sided and because it uses the squares

of the differences, it cannot be used to define a one-sided test.

2.4 Multiple Populations

2.4.1 Anova Test

Analysis of variance (Anova) [5] tests whether K samples

are drawn from populations with the same mean, and can
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be used to test whether K > 2 learning algorithms induce
learners with the same expected error:

H0 : �1 ¼ �2 ¼ � � � ¼ �K: ð8Þ

To apply Anova, we calculate the mean standard error
between the sample means

MST ¼ L
PK

i¼1ðmi �mÞ2

K � 1
; ð9Þ

where m ¼
P

i mi=K is the grand mean. The total mean
standard error around sample means is

MSE ¼
PK

i¼1

PL
j¼1ðYij �miÞ2

KL�K ð10Þ

and the test statistic for Anova

f ¼ MST

MSE
ð11Þ

under the null hypothesis that all population means are
equal, is F distributed with K � 1; KðL� 1Þ degrees of
freedom, and H0 is accepted with � confidence if
f 2 ð0; F�;K�1;KðL�1ÞÞ. If Anova accepts, then all algorithms
induce learners with the same expected error and we can
choose any of them. If Anova rejects, there is an inequality
somewhere but we cannot pinpoint the algorithm with the
smallest expected error.

2.4.2 Newman-Keuls Test

A multiple range test, similar to Anova, checks for the
equality of the means of subsets of populations. One such
test is the Newman-Keuls test. There are also multiple range
tests due to Duncan and Tukey, but the Newman-Keuls test
is favored over them ([6], p. 87). In our case of comparing
expected error, the multiple range test is used to find
subsets of algorithms with the same expected error. For
example, given algorithms 1, 2, 3, 4, 5, a range test can
conclude as

5 2 4 3 1:

The algorithms are sorted in ascending average error. An
underline implies that there is no statistically significant
difference between the means of the underlined popula-
tions. In the example above, the test concludes that there is
no statistically significant difference between the expected
errors of 5, 2, and 4, and also that there is no difference
between 4 and 3. We see that, for example, there is
difference between 2 and 3, and also between 3 and 1.
Note that a range test checks for equality and a rejection,
that is, the absence of an underline, does not imply an
ordering. For example, we know that 3 and 1 have
significantly different expected errors and that the average
of errors of 3 over the validation folds is less than the
average of errors of 1, but this does not imply that 3 has
significantly less error than 1; it might, or it might not; a
range test does not check for this.

In the Newman-Keuls test, we first test for equality of
K means ðm1; . . . ;mKÞ. If they are equal, we stop.
Otherwise, we check for equality of K � 1 means
ððm1; . . . ;mK�1Þ; ðm2; . . . ;mKÞÞ; . . . , up to two means

ððm1;m2Þ; ðm2;m3Þ; . . . ; ðmK�1;mKÞÞ. The test statistic to
compare P means between mi and mj in (mi; . . . ;mj) is

t ¼ ðmj �miÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
L

MSE

r
ð12Þ

and the null hypothesis H0 : mi ¼ . . . ¼ mj is accepted with
� level of confidence if t 2 ð0; q�;KðL�1Þ;P Þ, where q is the
studentized range distribution. If the test accepts, we do not
check for any of the subsets between mi and mj, and
assume all to have equal means.

2.5 Related Work

Comparing statistics from multiple populations is called
multiple comparison procedures [7], [8], and failures to adjust
the statistical properties of multiple comparisons may lead
to attribute selection errors, overfitting, and oversearching
[9]. Several solutions were proposed to overcome these
errors, including randomization, cross-validation and Bon-
ferroni adjustment. The disadvantages of these solutions
are: Randomization tests are computationally expensive;
they require k randomized samples where k must be > 100
if one wants to make distinctions between probabilities that
differ by less than 1 percent. Cross-validation is also
computationally expensive, although not as much as
randomization (k = 10) and the results can be highly
variable. Although Bonferroni correction is well suited for
our purposes of getting � level of confidence for hypotheses
H1; H2; . . . ; Hn simultaneously, we must set very high
significance levels to each hypothesis, and in that case, we
may reject hypotheses which have high significance
individually.

In addition to the parametric tests we discussed, there
are also nonparametric tests [10]; for example, Kruskal-
Wallis’ test is the nonparametric version of Anova. In
contrast to parametric tests, nonparametric tests do not
assume a particular population probability distribution.
Contingency table analysis may also help in finding out if
two or more algorithms have the same expected error.
These tests use a single training/validation set and can be
used in cases where learning and/or validation is so costly
that they can only be done once, assuming that the internal
variability of the supervised learning algorithms is small.

McNemar’s test [11] is such a pairwise test having lower
type I error and reasonable power [1]. Let n01 denote the
number of instances misclassified by the first classifier but
not by the second and n10 denote the number of instances
misclassified by the second but not by the first. We accept
the null hypothesis that both classifiers have the same mean
with � level of confidence if

t ¼ ðjn01 � n10j � 1Þ2

n01 þ n10
> �2

1;�: ð13Þ

Similarly, Looney’s test [12] uses contingency table
analysis and checks for the equality of K means, as in
Anova. Since it checks whether multiple populations have
the same mean, it cannot be used for finding the population
with the smallest mean. On the other hand, when training/
validation can be done only once, it is used instead of
Anova. Let p:j denote the proportion of N test instances that
are correctly classified by classifier j, pi: denote the
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proportion of the K classifiers that correctly classify test

instance i, and p:: denote the total proportion of correct

classifications. Then, the sum of squares for classifiers and

the sum of squares for test instances are

SSA ¼ N
XK
j¼1

p2
:j �NKp2

:: SSB ¼ K
XN
i¼1

p2
i: �NKp2

:: ð14Þ

and the total sum of squares and the sum of squares for

classifier and instance interaction are

SST ¼ NKp::ð1� p::Þ SSAB ¼ SST � SSA� SSB: ð15Þ

Then, the ratio

F ¼ MSA

MSAB
¼ SSA=ðK � 1Þ
SSAB=ðK � 1ÞðN � 1Þ ð16Þ

has an F distribution with ðK � 1Þ and ðK � 1ÞðN � 1Þ
degrees of freedom. Looney prefers the adjusted Fþ test,

where the degrees of freedoms are multiplied with an

appropriate �̂� adjustment.
Dietterich has shown that the 5� 2 cv t test has low

power and the k-fold cv t test has high type I error [1].

Bouckaert [13] claims that the reuse of the same data causes

the effective degrees of freedom to be lower than

theoretically expected and calibrates the effective degrees

of freedom empirically. On synthetic problems with binary

features, the calibrated tests perform better when compared

to 5� 2 and k-fold tests proper.
Receiver Operating Characteristic (ROC) analysis is

another tool to compare the performances of classification

algorithms. ROC graphs depict trade-offs between true

positive and false positive rates. In applications where the

class distributions become skewed or when misclassifica-

tion losses are not equal, accuracy-based comparisons may

break down. Provost et al. [14] suggest using ROC analysis

in classifier comparisons and, to this aim, propose the

incremental ROC convex hull method (ROCCH) [15], which

allows clear visual comparisons and sensitivity analyses.

ROCCH selects the classifiers that are potentially optimal;

therefore, only these classifiers must be kept for further

comparisons. ROCCH is an incremental algorithm and

incorporating new classifiers is an easy task. Provost and

Fawcett also argue that their algorithm allows studying

important phenomena without having precise prior class

and cost distributions. The most important limitation of

ROCCH is that it is only applicable to binary-class

problems.
In the multinomial selection problem (MSP) procedure

[16], for each test data point of class j, we compare class j

posterior probabilities of each classifier and select the one

with the maximum posterior. The best classifier is the one

that has the maximum number of wins across the test set.

With this procedure, it makes sense to compare algorithms

which produce sensitive posterior probabilities. For exam-

ple, with k-nearest neighbor, posterior probabilities are

multiples of 1=k, whereas with a neural network, one can

have virtually any value between 0 and 1.

3 THE MULTITEST ALGORITHM

3.1 Ordering Two Learning Algorithms

Though expected error is the most important criterion in
favoring one algorithm over another, it is by no means the
only one. Various measures of cost, e.g., space/time
complexity of training and test, costs of features (if learners
use different input representations), interpretability, and
ease of programmability affect our choosing an algorithm
over another one; various types of cost are discussed in
detail in [17]. Then, if we have two or more algorithms with
the same expected error, it is logical that we choose the
simplest one based on the cost measure we consider
important in that particular application.

In this work, we are going to use the fact that, given a
number of supervised learning algorithms for a particular
application, we can always order them in terms of such a
preference, e.g., based on their complexities. That is, given
any two algorithms, if they have the same expected error,
we favor one over another based on this preference. In our
method, this information of our prior preferences (before
looking at the data) is combined with what the data tells us
through the statistical tests, to give us a final ordering of the
algorithms. But, the expected error remains the most
important criterion and it overrides our prior preference.

For comparing error rates, we use a one-sided test and
use the prior ordering based on preference in choosing how
to apply the test. We only test for

H0 : �1 � �2; ð17Þ

where we have a prior preference of 1 over 2, e.g., because it
is simpler. Since we assume a prior ordering and we would
like to test whether it holds, the hypothesis follows the prior
and is one-sided. If the test accepts, we choose 1 over 2,
either because 1) �1 < �2, i.e., 1 has less expected error than
2; in such a case, 1 is chosen over 2 both because it has less
expected error and it is simpler, or 2) �1 ¼ �2, i.e., they have
the same expected error; we can choose either one and we
choose the preferred one. Only when the test rejects, do we
know that �1 > �2, and in this case, we choose 2 over 1, the
test overriding our prior preference.

Therefore, we choose an algorithm A over another one B,
and say that A is “better than” B by taking into account
both our prior preferences of A and B and the statistical test
comparing their expected error. A is better than B either
because 1) A has less expected error than B, or 2) they have
the same expected error and A is preferred to B, e.g.,
because it is simpler.

In the next section, we discuss how to combine the
results of such pairwise orders to find the best of
K > 2 algorithms, or order them in terms of their
“goodness” in the general case.

3.2 Combining Pairwise Orders

Before applying the tests, we assume that we are given a
full, linear ordering of supervised learning algorithms in
terms of our prior preferences. Depending on the particular
requirements and constraints of the particular application at
hand, such a linear ordering can always be defined. We
denote supervised learning algorithms by their indices in
this ordering as 1; 2; . . . ; K, such that 1 is the most preferred,
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2 is preferred over 3; 4; . . . ; K, and K is the least preferred.
We then apply the one-sided test of (17) as

H0 : �i � �j; ð18Þ

where i < j with i; j ¼ 1; . . . ; K. There are KðK � 1Þ=2 tests
to be applied. Note that the real cost is the training and
validating the K algorithms L times, where L is the number
of folds, e.g., 10 if we are using 5� 2-fold cross-validation.
Once the K algorithms are trained and validated L times
and the K � L validation errors are recorded, applying the
tests is simple.

We use the one-sided version of the 5� 2 cv t test that we
discuss in Section 2.3.3 because it has lower type I error than
the 10-fold cv test [1]. The confidence of the one-sided test
of (18) is set to �=ðKðK � 1Þ=2Þ. This is because we are
making KðK � 1Þ=2 multiple tests to get the resulting final
ordering and to have a confidence level of �, we need this
Bonferroni correction [7]. When K is large, Bonferroni
correction may be too conservative and we can use Holm
correction [18] instead to have higher confidence levels for
the one-sided statistical tests.

We use graph theory to represent the result of the tests.
The algorithm is given in Fig. 1. The graph has K vertices
corresponding to the K algorithms. For all i < j where
i; j ¼ 1; . . . ; K, we test H0 : �i � �j, and if the test rejects, we
place a directed edge from i to j to indicate that we are
overriding the prior order. This corresponds to a binary
relation R defined on the set of supervised learning
algorithms where jRi implies that j > i and j has signifi-
cantly less expected error than i (�i � �j is rejected). If we
have j 6Ri, this means that the hypothesis test is accepted and
our choice of i over j stands. The resulting directed graph
has thus directed edges where the test is rejected for its
incident vertices. The number of incoming edges to a node j
is the number of algorithms that are preferred over j but
have higher expected error. The number of outgoing edges
from a node i is the number of algorithms that are less
preferred than i but have less expected error. The resulting
graph need not be connected. For example, when all

algorithms have the same expected error, there are no

edges.
Once the directed graph is formed, we choose the “best”

node. For this:

1. We find the nodes with no outgoing edges to
produce the set Sk. If there is no outgoing edge
from a node, there is no other algorithm that has less
expected error.

2. From Sk, we select the node with the lowest index
and report it. This selected algorithm is the one that
is the most preferred among all with the least
expected error.

This calculates the “best”; if we want to find an

ordering, we iterate steps 1 and 2 above, removing the

best node and its incident edges at each iteration to get a

topological sort [19].
Fig. 2 shows a sample execution of the MultiTest

algorithm on four (K ¼ 4) algorithms numbered 1 to 4.

They are sorted in decreasing order of prior preference 1, 2,
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Fig. 1. Pseudocode of MultiTest: 1; . . . ;K: Algorithms in decreasing order of prior preference, T : The one-sided test used for pairwise comparison,

�: Required confidence level. Lines 3-6 form the directed graph, lines 7-9 find the “best.” If we iterate lines 7-9, removing l and edges incident to it

after each iteration, we get an ordering in terms of “goodness.”

Fig. 2. Sample execution of the MultiTest algorithm on four algorithms,
1, 2, 3, 4, in decreasing order of preference (increasing order of
complexity). Nodes with thick lines indicate candidates at each step and
among them, the one with the lowest index (the most preferred) is taken
(shown shaded). The best one is 3 and if we continue iterating the
ordering found is 3 < 2 < 4 < 1.



3, and 4. After applying 4ð4� 1Þ=2 tests, let us say that
we place edges from 1 to 2, 1 to 3, 1 to 4, and 2 to 3
(shown in Fig. 2a). Then, we start generating the full
ordering: There are two nodes, 3 and 4, having no
outgoing edges (shown with a thicker line); this means
that there is no algorithm having less expected error than
these two. In this case, we choose the simpler of them, 3,
as the best algorithm (shown shaded). Assuming that we
want not only to find the best one but to order all
algorithms, we continue. We remove node 3 and all
edges incident to 3 and have the graph shown in Fig. 2b.
Here, nodes 2 and 4 have no outgoing edges, so we
choose the simpler 2 as the second best. After removing
node 2 and its incident edges, we have the graph shown
in Fig. 2c. Now, 4 has no outgoing edge and we select it
as the third and 1 as the last (Fig. 2d).

4 SIMULATION RESULTS

4.1 Learning Algorithms Used

The five classification algorithms we use in decreasing prior
preference because of their increasing time/space complex-
ity are (c is the number of classes, d is the number of inputs,
and N is the number of training instances):

1. MAX decides based on the prior class probability
without looking at the input. All test instances are
assigned to the class with the MAXimum prior. It has c
parameters. It is not a learning algorithm in the usual

sense, but any plausible learning algorithm must have
a smaller error rate than MAX; it is indeed surprising
that MAX is sometimes quite accurate.

2. NMC is the Nearest Mean Classifier, which keeps the
mean vector for each class and assigns instance to the
class whose mean has the smallest Euclidean distance
to the instance [2]. It has c � d parameters. This
corresponds to assuming that classes are Gaussian
distributed with a shared covariance matrix whose
diagonals are equal and whose off-diagonals are 0.

3. LGC [20] is the LoGistic Classification algorithm with
a linear model. We use gradient-descent for learning.
Discrete features are converted to numeric features by
1-of-n encoding. It has cðdþ 1Þ parameters.

4. C4.5 [21] is the archetypal decision tree method.
We use postpruning with 20 percent of the data
reserved for pruning. The tree changes depending
on the problem but generally the complexity of the
tree is between those of linear and nearest-neighbor
estimators.

5. NN [20] is the 1-Nearest Neighbor classification
algorithm and uses the Euclidean distance. It has
N � d parameters. This is the most complex (least
preferred) classifier since it stores all training data
and it is also the most time consuming algorithm.

4.2 Methods Alternative to MultiTest

Comparing with the results of MultiTest, we remember that

Anova and Newman-Keuls only check for equality of

YILDIZ AND ALPAYDIN: ORDERING AND FINDING THE BEST OF K > 2 SUPERVISED LEARNING ALGORITHMS 397

TABLE 1
Average and Standard Deviations of the Misclassification Error Rates of Five Classification Algorithms on 5� 2-Fold in 1,000 Runs



means and do not provide ordering, whereas the pairwise
test used by MultiTest is for ordering. The result of Anova
can be used to choose the best one only when it accepts and
in this case, we choose the simplest algorithm. The result of
Newman-Keuls can be used to find the best learner if one of
the following conditions hold:

. The first one, namely the algorithm with the smallest
average, is not underlined. For example, if Newman-
Keuls result is 3 5 4 2 1, the best can be taken as 3.

. There is a line under the first one and this line does
not overlap with any other line(s), e.g., if Newman-
Keuls result is 5 4 3 2 1, the best is 3 because it is
simpler than 4 and 5.

. There is a line under the first one and this line
overlaps with one or more lines but the overlap
does not include the first one; e.g., with 2 4 5 3 1,
the best is 2.

. If we have the case above and the overlap does not
contain a simpler algorithm, the most simple is
selected as the best; e.g., if Newman-Keuls result is
5 2 4 3 1, the best is 2.

If neither of these four cases occur, Newman-Keuls test
cannot yield the best. For example, if Newman-Keuls result
is 5 4 2 1 3 the first underline chooses 2, the second
underline chooses 1, which is simpler than 2. But we
cannot choose 1 as it has higher error than 5. These indicate
that Anova and Newman-Keuls test results should be
further processed to generate orderings and in certain cases,

they may be unable to generate an ordering. This is

expected because they, unlike MultiTest, are designed not

to generate orderings but to find subsets of equality.
For comparison, we also propose a simple method that

one would normally use to find the best. This

TestFirst algorithm sorts the algorithms in increasing order

of average error. Then, TestFirst tests the first algorithm, the

algorithm with the smallest average error, to be the best by

comparing it with the other K � 1 algorithms using the one-

sided pairwise test and accepts it if 1) it has less expected

error, or 2) it has equal expected error and is simpler.

Otherwise, TestFirst cannot find the best. For example, if the

order in terms of average error is 3 < 4 < 1 < 2 < 5,

TestFirst tries to select 3 as the best. Since 3 is simpler than 4

and 5, the first condition holds for those two. Since 3 is more

complex than 1 and 2, we check if 3 has less error than 1 and

2. If so, 3 is the best; otherwise, we say that TestFirst cannot

find the best.

4.3 Results

These classification algorithms are tested on 30 data sets

from the UCI Machine Learning Repository [22]. The

overall � is taken as 0.05 and Bonferroni correction is used.

The full results on all 30 data sets are given in Tables 1 and

2. In Table 1, we report the average and standard deviations

of the error rates on validation folds of 30 data sets in

1,000 runs. In Table 2, we give the most and second most

selected algorithms and their percentages by TestFirst,
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Newman-Keuls and MultiTest on 5� 2-fold in 1,000 runs. If
a best algorithm cannot be found, we show it by a *.

We discuss our results in more detail on two data sets.
On hepatitis, all tests says that all five algorithms have the
same expected error (Fig. 3). Anova accepts; Newman-
Keuls underlines all five. With MultiTest, all pairwise tests
are accepted and in the absence of any other information,
the classification algorithms are sorted in terms of prior
preference. TestFirst cannot find the best algorithm because
3 (LGC) has the smallest average error but it is not the
simplest.

On pendigits (Fig. 4), there is an exact ordering of
algorithms. Anova rejects. Newman-Keuls does not under-
line any: 5 3 4 2 1. With MultiTest, all tests except H0 : �3 �
�4 are rejected and the ordering is 5 < 3 < 4 < 2 < 1 and 5 is
chosen. TestFirst also selects 5.

4.4 Discussion

We give the total frequencies of algorithms chosen as best
by Anova, Newman-Keuls, TestFirst, and MultiTest in
Table 3. Anova can find the best algorithm only if it accepts
the null hypothesis, which occurs only 2 percent of the time.
In that case, Anova will select the simplest algorithm (in our
case, MAX) as the best algorithm. The TestFirst algorithm
can find the best algorithm only if the algorithm with the
smallest error rate is significantly better than the simpler
algorithms, otherwise it cannot find the best algorithm,

which occurs in 70 percent of the cases. When simple
algorithms do not have the smallest average, or when
complex algorithms have the smallest average but do not
have significantly less error, TestFirst cannot find the best
algorithm. As we have said before, Newman-Keuls is not
able to find the best algorithm if none of the four cases
applies (Section 4.2). In our simulations, on two data sets,
namely, hepatitis and glass, there are cases where Newman-
Keuls cannot find the best algorithm.

On balance, breast, car, dermatology, flare, haberman,
hepatitis, mushroom, nursery, pendigits, tictactoe, wave, wine,
and zoo, in most of the cases, Newman-Keuls and MultiTest
select the same algorithm as the best algorithm. On the
other data sets, the best algorithms selected by MultiTest
and Newman-Keuls are different. This occurs because of
three reasons:

. Newman-Keuls uses the studentized test, whereas
MultiTest (in this case) uses the 5� 2 cv t test. The
5� 2 cv t test tends to reject H0: �i � �j less than the
studentized test. Because the 5� 2 cv t test accepts
more, it favors simpler algorithms more than
Newman-Keuls does.

. Since MultiTest uses a Bonferroni correction, the

confidence of each comparison is higher than the

original confidence, whereas Newman-Keuls always

uses the same confidence. If the confidence level is

YILDIZ AND ALPAYDIN: ORDERING AND FINDING THE BEST OF K > 2 SUPERVISED LEARNING ALGORITHMS 399

TABLE 2
Most and Second Most Selected Algorithms (and Percentages)



higher, the probability of rejecting the null hypoth-

esis will be lower, and as above, MultiTest favors

simpler algorithms over more complex ones.

. If Newman-Keuls finds an equality between algo-

rithms i and j, it does not check for algorithms

whose average error rates are between those two

and assumes that all between i and j have the same

expected error. On the other hand, MultiTest does all

the pairwise tests, checks for all differences and has

more information at its disposal.

These results show that Anova results can be converted
to an ordering only if it accepts; we order in terms of our
prior preference. But this occurs rarely, in only two data sets
out of 30. Converting Newman-Keuls results to an ordering
is possible in some cases but not always. We only compare
five algorithms in this paper; if there are more, we may
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expect to have more groups of algorithms having similar
expected error and more occurrences of this problematic
case where multiple underlines overlap. There are similar
problems with a straightforward approach such as the
heuristic TestFirst algorithm, which is not always able to
choose a best algorithm. These results show that a
methodological approach as proposed by the MultiTest
algorithm is necessary and that MultiTest is always able to
find a best algorithm.

5 CONCLUSIONS

We introduce the MultiTest method, which allows
choosing the “best” of an arbitrary number of learning
algorithms where the “goodness” takes into account the
results of pairwise statistical tests on expected error and
our prior preferences. We apply it to classification by
making use of the 5� 2 pairwise t test. It is applicable to
regression and other loss functions by using a suitable
test [23]. MultiTest is always able to find an algorithm as
the “best” one (or order the algorithms in the general

case) combining the expected error and prior preferences.
Though Anova and Newman-Keuls or the pairwise test
results using TestFirst can be extended to find a “best”
algorithm, these do not always work, justifying the
methodology we propose with MultiTest.

The MultiTest method does not increase the compu-
tational and/or space complexity because the real cost
is the training and validation of the algorithms. Once
the validation errors of algorithms are recorded, apply-
ing the calculation necessary for MultiTest is simple in
comparison.
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Bo�ggaziçi Univ., 2005.

Olcay Taner Yildiz received the BS, MS, and
PhD degrees in computer science from Bo�ggaziçi
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